粉末冶金的烧结技术
一、烧结基本原理解析
一、烧结(1)、烧结基本原理烧结是粉末冶金生产过程中最基本的工序之一。
烧结对最终产品的性能起着决定性作用,因为由烧结造成的废品是无法通过以后的工序挽救的;相反,烧结前的工序中的某些缺陷,在一定的范围内可以通过烧结工艺的调整,例如适当改变温度,调节升降温时间与速度等而加以纠正。
烧结是粉末或粉末压坯,加热到低于其中基本成分的熔点温度,然后以一定的方法和速度冷却到室温的过程。
烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加。
在烧结过程中发生一系列物理和化学的变化,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得具有所需物理,机械性能的制品或材料。
烧结时,除了粉末颗粒联结外,还可能发生致密化,合金化,热处理,联接等作用。
人们一般还把金属粉末烧结过程分类为:1、单相粉末(纯金属、古熔体或金属化合物)烧结;2、多相粉末(金属—金属或金属—非金属)固相烧结;3、多相粉末液相烧结;4、熔浸。
通常在目前PORITE微小轴承所接触的和需要了解的为前三类烧结。
通常在烧结过程中粉末颗粒常发生有以下几个阶段的变化:1、颗粒间开始联结;2、颗粒间粘结颈长大;3、孔隙通道的封闭;4、孔隙球化;5、孔隙收缩;6、孔隙粗化。
上述烧结过程中的种种变化都与物质的运动和迁移密切相关。
理论上机理为:1、蒸发凝聚;2、体积扩散;3、表面扩散;4、晶间扩散;5、粘性流动;6、塑性流动。
(2)、烧结工艺2-1、烧结的过程粉末冶金的烧结过程大致可以分成四个温度阶段:1、低温预烧阶段,在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。
在PORITE微小铜、铁系轴承中,用R、B、O(Rapid Burning Off)来代替低温预烧阶段,且铜、铁系产品经过R、B、O 后会氧化,但在本体中可以被还原,同时还可以促进烧结。
2、中温升温烧结阶段,在此阶段开始出现再结晶,首先在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时颗粒表面氧化物被完全还原,颗粒界面形成烧结颈。
烧结的工艺技术
烧结的工艺技术烧结是一种重要的粉末冶金加工工艺,其主要用于生产金属粉末冶金制品。
烧结的工艺技术通常可以分为四个步骤:混合、压制、烧结和后处理。
首先是混合步骤。
混合是将不同金属粉末按照一定比例混合均匀。
混合的目的是将不同金属粉末充分混合,形成均匀的混合粉末。
接下来是压制步骤。
压制是将混合粉末放入模具中,并通过机械或液体压力对粉末进行分子压缩,使其形成一定形状。
压制的目的是提高粉末密度,增加粉末颗粒间的力学联系。
然后是烧结步骤。
烧结是通过高温和压力作用下,将粉末颗粒相互融合,形成致密的固体材料。
烧结的目的是使金属粉末颗粒间的结合力增强,从而提高材料的力学性能。
最后是后处理步骤。
后处理是将烧结得到的材料进行表面处理、热处理等工艺,以改善材料的性能。
后处理的目的是消除材料内部的缺陷,增强材料的强度和耐久性。
在烧结工艺中,一些关键参数对最终产品的品质和性能有着重要影响。
例如,烧结温度和时间决定了烧结过程中金属粉末颗粒的表面扩散速率和结合力形成,过高的温度和时间可能导致结合界面的烧结不均匀和晶粒长大,从而降低材料的力学性能。
压制力度的大小直接影响到烧结后的密度,过低的压制力度可能导致烧结后的材料孔隙率较高,而过高的压制力度则可能导致烧结成型困难。
此外,烧结工艺中的气氛和保护措施,以及烧结过程中的冷却速率等因素也会对烧结工艺和产品质量产生影响。
总的来说,烧结作为一种重要的粉末冶金加工工艺,具有许多优点,如可以制备高强度、高硬度和高耐磨性的制品,且原材料利用率高、产品尺寸精度高等。
但是,烧结工艺也存在一些挑战,如烧结时控制工艺参数较为复杂,产品质量易受原料和工艺影响,烧结成本相对较高等。
因此,烧结工艺技术的研究和改进仍然具有重要意义,可进一步提高产品质量和开发新材料。
烧结生产工艺流程
烧结生产工艺流程烧结是一种重要的金属制造工艺,通过粉末冶金的方式将金属粉末加热到合适的温度,使其粒子间发生扩散和结合,从而形成固态的金属件。
下面将介绍烧结生产工艺流程。
1. 准备原材料:选择合适的金属粉末作为原材料,根据产品要求控制粉末的成分和粒度。
2. 混合:将不同成分的金属粉末按一定比例混合均匀,可以加入一些助剂如润滑剂、增塑剂等,以提高粉末的流动性和可塑性。
3. 成型:将混合好的金属粉末放入模具中,进行成型。
常见的烧结成型方法有压制成型和注射成型两种。
4. 压制成型:将金属粉末放入专用的压制机中,通过给予一定的压力使其成型。
压制成型包括冷压和等静压两种方式,通常需要经过多道工序进行。
5. 注射成型:将金属粉末和一定比例的粘结剂混合后,通过注射成型机将其注入模具中,利用粘结剂的粘合力将粉末粒子黏结在一起。
6. 烧结:将成型好的金属零件置于烧结炉中进行加热处理。
烧结温度通常在金属的熔点以下,但足够高以使粉末颗粒表面形成液相。
烧结过程中,金属粉末的颗粒间发生扩散和结合,形成密实的结构。
7. 冷却:烧结结束后,将待烧结的金属件从烧结炉中取出,进行自然冷却。
冷却过程中需要控制冷却速度,以避免由于温度变化过快引起的应力和变形。
8. 后处理:经过烧结和冷却后的金属件通常需要进行后处理,以提高其性能。
后处理过程包括热处理、表面处理、机械加工等,以获得所需的尺寸、性能和外观。
9. 检验:对烧结成品进行检验,包括尺寸、密度、力学性能等方面的检测,确保产品符合要求。
10. 包装和出货:对合格的烧结件进行包装,并按照订单要求出货。
烧结生产工艺流程是一个相对复杂的过程,需要控制好各个环节的参数和条件,以确保最终产品的质量。
随着科技的进步和生产工艺的发展,烧结技术在各个行业中得到广泛应用,成为一种重要的制造方法。
粉末冶金烧结工艺
粉末冶金中的烧结烧结是粉末冶金过程中最重要的工序。
在烧结过程中,由于温度的变化粉末坯块颗粒之间发生粘结等物理化学变化,从而增加了烧结制品的电阻率、强度、硬度和密度,减小了孔隙度并使晶粒结构致密化。
一.定义将粉末或粉末压坯经过加热而得到强化和致密化制品的方法和技术。
二.烧结分类根据致密化机理或烧结工艺条件的不同,烧结可分为液相烧结、固相烧结、活化烧结、反应烧结、瞬时液相烧结、超固相烧结、松装烧结、电阻烧结、电火花烧结、微波烧结和熔浸等。
1.固相烧结:按其组元的多少可分为单元系固相烧结和多元系固相烧结两类。
单元系固相烧结纯金属、固定成分的化合物或均匀固溶体的松装粉末或压坯在熔点以下温度(一般为绝对熔点温度的2/3一4/5)进行的粉末烧结。
单元系固相烧结过程大致分3个阶段:(1)低温阶段(T烧毛0.25T熔)。
主要发生金属的回复、吸附气体和水分的挥发、压坯内成形剂的分解和排除。
由于回复时消除了压制时的弹性应力,粉末颗粒间接触面积反而相对减少,加上挥发物的排除,烧结体收缩不明显,甚至略有膨胀。
此阶段内烧结体密度基本保持不变。
(2)中温阶段(T烧(0.4~。
.55T动。
开始发生再结晶、粉末颗粒表面氧化物被完全还原,颗粒接触界面形成烧结颈,烧结体强度明显提高,而密度增加较慢。
(3)高温阶段(T烧二0.5一。
.85T熔)。
这是单元系固相烧结的主要阶段。
扩散和流动充分进行并接近完成,烧结体内的大量闭孔逐渐缩小,孔隙数量减少,烧结体密度明显增加。
保温一定时间后,所有性能均达到稳定不变。
(2)多元固相烧结:组成多元系固相烧结两种组元以上的粉末体系在其中低熔组元的熔点以下温度进行的粉末烧结。
多元系固相烧结除发生单元系固相烧结所发生的现象外,还由于组元之间的相互影响和作用,发生一些其他现象。
对于组元不相互固溶的多元系,其烧结行为主要由混合粉末中含量较多的粉末所决定。
如铜一石墨混合粉末的烧结主要是铜粉之间的烧结,石墨粉阻碍铜粉间的接触而影响收缩,对烧结体的强度、韧性等都有一定影响。
粉末冶金新技术-烧结
用SPS制取块状纳米晶Fe90Zr7B3软磁的过程是: 先将由非 晶薄带经球磨制成的50~150μm非晶粉末装入WC/Co合金 模具内,并在SPS烧结机上烧结(真空度1×10-2Pa以下、升温 速度0.09~1.7K/s、温度673~873K、压力590MPa), 再把所 得的烧结体在1×10-2Pa真空下、以3 7K/s速度加热到923K、 保温后而制成。材料显示较好的磁性能:最大磁导率29800、 100Hz下的动态磁导率3430, 矫顽力12A/m。
3
双频微波烧结炉 生产用大型微波烧结炉 已烧结成多种材料:如陶瓷和铁氧体等材料。另 外,在日本又开发出相似的毫米波烧结技术,并成功 地在2023K下保温1h烧结成全致密的AlN材料。
4
2.爆炸压制技术 爆炸压制又称冲击波压制是一种有前途的工艺
方法,它在粉末冶金中发挥了很重要的作用, 爆炸压 制时,只是在颗粒的表面产生瞬时的高温,作用时间 短,升温和降温速度极快。适当控制爆炸参数,使得 压制的材料密度可以达到理论密度的90%以上,甚至 达到99%。
3)快速脉冲电流的加入, 无论是粉末内的放电部位还是焦耳 发热部位, 都会快速移动, 使粉末的烧结能够均匀化。
11
与传统的粉末冶金工艺相比,SPS工艺的特点是:
• 粉末原料广泛:各种金属、非金届、合金粉末,特别是 活性大的各种粒度粉末都可以用作SPS 烧结原科。
• 成形压力低:SPS烛结时经充分微放电处理,烧结粉末表 面处于向度活性化状态.为此,其成形压力只需要冷压烧 结的l/10~1/20。
17
SPS制备软磁材料 通常用急冷或喷射方法可得到FeMe(Nb、Zr、Hf)B的非 晶合金,在稍高于晶化温度处理后, 可得到晶粒数10nm,具有 体心立方结构,高Bs 、磁损小的纳米晶材料。但非晶合金目 前只能是带材或粉末, 制作成品还需要将带材重叠和用树脂固 结, 这使得成品的密度和Bs均变低。近年, 日本采用SPS工艺研 究FeMeB块材的成形条件及磁性能。
粉末烧结技术
加压烧结—加压和加热同时并用,以达到消除孔
隙的目的,从而大幅度提高粉末制品的性能。常用
的加压烧结工艺有热压、热等静压及烧结-热等静压。
热压—将粉末装在压模内,在加压的同时把粉末加热到熔
点以下,使之加速烧结成比较均匀致密的制品。
热等静压—把粉末压坯或把装入特制容器内的粉末置于热
等静压机高压容器内,使其烧结成致密的材料或零件的过 程。
电火花等离子烧结—也叫等离子活化烧结或电火
花等离子烧结,是利用粉末间火花放电多产生的等
离子活化颗粒,同时在外力作用下进行的一种特殊
烧结方法。
真空热压烧结炉图
微波生物陶瓷烧结炉图
微波烧结炉图
热等静压烧结炉图
放电等离子烧结炉图
烧结-热等静压—把压坯放入烧结-热等静压设备的高压容
器内,先进行脱蜡、烧结,再充入高压气体进行热等静压。
反应烧结—先将原材料(如制备Si3N4时使用Si粉)
粉末以适当方式成形后,在一定气氛中(如氮气)
加热发生原位反应合成所需的材料并同时发生烧结。
微波烧结—材料内部整体地吸收微波能并被加热,
使得在微波场中试样内部的热梯度和热流方向与常规 烧结的试样相反。
表面张力造成的一种机械力,它垂直作用于烧结颈曲面上, 使烧结颈向外扩大,最终形成孔隙网。 过剩空位浓度梯度将引起烧结颈表面下微小区域内的空位 向粉末颗粒内扩散,从而造成原子在相反方向上的迁移, 使颈部得以长大。
烧结时物质迁移
烧结过程的传质机理很复杂,目前大体上有四种说法
粘塑性流动过程 扩散过程,包括体积、 表面和界面的扩散
依靠外在条件变 化活化烧结过程
提高粉末 本身活性
二、烧结工艺
烧结工艺
无压烧结
粉末冶金的烧结技术
粉末冶金烧结技术1.烧结法不同的产品、不同性能的不同烧结方法。
⑴ 按原料组成不同分类。
可以将烧结分为单元系烧结、多组分固相烧结和多组分液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、MoSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag-W等。
在高于系统中低熔点组分熔点的温度下进行多系统液相烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵ 按进料方式不同分类。
可分为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,在烧结过程中,烧结材料是连续的或稳定的、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可以根据炉内烧结材料的性能确定合适的烧结系统,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
根据烧结温度下是否存在液相,可分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
粉末冶金的烧结技术
粉末冶金的烧结技术粉末冶金是一种通过将金属或非金属粉末在一定条件下,加工成具有一定形状和尺寸的零部件的方法。
烧结技术是粉末冶金中的关键步骤之一,它将粉末颗粒通过加热并施加压力使其质点之间结合得更加牢固,形成一体化的零部件。
本文将对粉末冶金的烧结技术进行深入探讨。
一、烧结技术的基本原理和过程烧结技术是将粉末颗粒通过加热至其熔点以下,但高于材料的再结晶温度,同时施加压力,使粉末颗粒发生结合,形成一体化的零部件。
其基本原理是利用了粉末颗粒与粉末颗粒之间的扩散作用和表面张力降低效应。
烧结过程中,颗粒间的间隙先得到迅速消除,然后颗粒之间产生再结晶,通过扩散使粒间结合更为牢固。
整个烧结过程可以分为初期活化期、再结晶期和液相期三个阶段。
初期活化期是指在烧结过程开始的阶段,颗粒发生活化并形成结合,此时烧结坯体变得更为致密。
再结晶期是指烧结坯体中增强再结晶的发生。
液相期是指在达到受结合的颗粒之间的最小距离后,材料产生液相,并通过液相扩散加快了颗粒间的结合。
在这个过程中,烧结坯体结构的致密度和强度会显著提高。
二、烧结技术的主要参数在进行粉末冶金的烧结过程中,有许多参数需要注意和控制,如温度、压力、时间和气氛等。
这些参数会对烧结过程和烧结产品的质量产生重要影响。
1. 温度:温度是烧结过程的关键参数之一。
合适的温度能够使粉末颗粒迅速熔结,并形成均匀的结构。
过高或过低的温度都会影响烧结效果和质量。
2. 压力:在烧结过程中,施加的压力可以使粉末颗粒更加紧密地结合在一起。
增加压力可以提高烧结物品的致密度和强度。
3. 时间:烧结时间是烧结过程中的一个重要参数。
适当的烧结时间可以使粉末颗粒充分结合并形成致密的结构。
时间过长或过短都会影响产品的质量。
4. 气氛:烧结过程中的气氛对烧结质量和产品性能有很大影响。
不同的气氛可以对不同材料产生不同的效果。
常用的烧结气氛有氢气、氮气、氧气和真空等。
三、烧结技术的应用和优点烧结技术在现代工业中有着广泛的应用,尤其是在金属材料和陶瓷材料的制备过程中。
金属冶炼过程中的烧结技术
将混合好的烧结料在烧结设备中进行高温 烧结,使原料熔融、固结,形成具有一定 强度和冶金性能的烧结制品。
烧结制品在冷却过程中进行整粒处理,以 减小颗粒度,提高制品的物理性能。
烧结设备的分类与选择
连续式烧结设备
如带式烧结机、步进式烧结机等 ,适用于大规模、连续化生产。
间歇式烧结设备
如台车式烧结炉、转盘式烧结炉 等,适用于小规模、间歇性生产 。
2023-2026
ONKU
金属冶炼过程中的烧 结技术
WENKU
WENKU
WENKU
汇报人:可编辑
REPORTING
2024-01-05
CATALOGUE
目 录
• 烧结技术概述 • 烧结原理及影响因素 • 烧结工艺及设备 • 烧结技术的应用与实例 • 烧结技术的挑战与未来发展
烧结的目的是为了使粉末或压坯通过 烧结获得所要求的物理、化学和机械 性能,使其成为具有所需综合性能的 制品或材料。
意义
烧结是粉末冶金工艺中的关键工序, 通过烧结可得到各种密度、孔隙率、 机械性能和物理性能的制品或材料, 以满足各种不同的用途要求。
烧结技术的发展历程
古代烧结
人类在长期的生产实践中,如烧制陶器、冶炼金属等,发展了烧结 技术。
在烧结过程中,粉末颗粒之间的物理 化学作用力发生变化,导致颗粒间的 空隙逐渐缩小,最终形成致密的结构 。
烧结温度的影响因素
烧结温度是影响烧结过程的重要因素,它决定了粉末颗粒间的黏合程度和扩散速 度。
适当的烧结温度可以提高粉末的致密度和机械性能,而温度过高可能导致材料过 烧或性能下降。
烧结气氛的影响因素
烧结技术的挑战与未来发 展
烧结技术的挑战
高温环境下的材料稳定性
粉末冶金材料的烧结
粉末冶金材料的烧结在粉末冶金生产过程中,为了将成型工艺制得的压坯或者松装粉末体制成有一定强度、一定密度的产品,需要在适当的条件下进行热处理,最常用的工艺是烧结。
烧结是把粉末或粉末压坯后,在适当的温度和气氛条件下加热的过程,从而使粉末颗粒相互黏结起来,改善其性能。
烧结的结果是颗粒间发生黏结,烧结体强度增加,而且多数情况下,其密度也提高。
在烧结过程中,发生一系列的物理和化学变化,粉末颗粒的聚集体变为晶粒的聚集体,从而获得具有所需物理、力学性能的制品或材料。
在粉末冶金生产过程中,烧结是最基本的工序之一。
从根本上说,粉末冶金生产过程一般是由粉末成型和粉末毛坯热处理这两道基本工序组成的。
虽然在某些特殊情况下(如粉末松装烧结)缺少成型工序,但是烧结工序或相当于烧结的高温工序(如热压或热锻)是不可缺少的。
另外,烧结工艺参数对产品性能起着决定性的作用,由烧结工艺产生的废品是无法通过其他的工序来挽救的。
影响烧结的两个重要因素是烧结时间和烧结气氛。
这两个因素都不同程度地影响着烧结工序的经济性,从而对整个产品成本产生影响。
因此,优化烧结工艺,改进烧结设备,减少工序的物质和能量消耗,如降低烧结温度、缩短烧结时间,对产品生产的经济性具有重大意义。
一、烧结过程的基本类型用粉末烧结的方法可以制得各种纯金属、合金、化合物以及复合材料。
烧结体按粉末原料的组成可分为由纯金属、化合物或固溶体组成的单相系,由金属,金属、金属-非金属、金属化合物组成的多相系。
为了反映烧结的主要过程和烧结机构的特点,通常按烧结过程有无明显液相出现和烧结系统的组成对烧结进行分类,如固相烧结和液相烧结,单元系烧结和多元系烧结等。
二、固相烧结粉末固相烧结是指整个烧结过程中,粉末压坯的各个组元都不发生熔化,即无液相出现和形成的烧结过程。
按其组元的多少,可分为单元系固相烧结和多元系固相烧结两类。
1.单元系固相烧结单元系固相烧结,即单一粉末成分的烧结。
例如各种纯金属的烧结、预合金化粉末的烧结、固定成分的化合物粉末的烧结等,均为单元系固相烧结。
粉末冶金的工艺流程-粉末的烧结
粉末的烧结定义烧结:压坯置于基体金属熔点以下温度(约0.7~0.8T,单位K)加热保温,粉末颗粒之间产生原子扩散、固溶、化合和熔接,致使压坯收缩并强化,这一过程称为烧结。
烧结对粉末冶金材料和制品的性能有着决定性的影响。
烧结的结果是粉末颗粒之间发生粘接,烧结体的强度增加,密度提高。
在烧结过程中,压坯要经过一系列的物理化学变化。
开始是水分或有机物的蒸发或挥发,吸附气体的排除,应力的消除,粉末颗粒表面氧化物的还原;继之是原子间发生扩散,粘性流动和塑性流动,颗粒间的接触面增大,发生再结晶和晶粒长大等。
出现液相时,还可能有固相的溶解和重结晶。
这些过程彼此之间并无明显的界限,而是穿插进行,互相重叠,互相影响。
加之一些其它烧结条件,使整个烧结过程变得很复杂。
用粉末烧结的方法可以制得各种纯金属、合金、化合物以及复合材料。
在烧结过程中,固体颗粒表面能的减小是烧结的“推动力”,也即热力学条件。
烧结是一个自发的不可逆过程。
粉末烧结用填料(packing material for powder sintering)粉末烧结时在烧舟内充填于产品间的,起均热、保护作用和防止成分挥发的粉状或粒状材料。
将粉末压坯埋入惰性粉末或者装入密封盒内进行烧结是一种极简单的烧结技术,从生产粉末冶金零件的早期起,它就得到了广泛的应用。
采用装有填料的密封盒,则在烧结时可以不必使用还原气氛。
含于填料内的空气中的氧,在烧结开始阶段会与压坯表面起反应,如果填料中含有还原剂,则不足以引起严重的氧化。
适合于用作填料材料的有Al2O3粉、ZrO2粉以及石墨粉、炭黑、木炭粉、铸铁屑等以及它们的混合物。
对铁粉压坯的烧结,为了防止脱碳,填料中含有少量的碳是必不可少的。
在有色金属粉末冶金中,黄铜压坯的烧结总与一定程度的锌的挥发联系在一起,如果黄铜压坯放入密封盒内进行烧结,则盒内气氛很快充满锌的蒸气而可防止合金的进一步脱锌。
在氢气中烧结硬质合金时,为减少和防止硬质合金压坯脱碳而使合金性能下降,通常使用Al2O3粉并在其中加入少量炭黑作填料等等。
粉末冶金的烧结技术
粉末冶金的烧结技术粉末冶金是一种重要的金属材料加工技术,其烧结技术是其中的关键环节之一。
烧结是指将金属粉末在高温和压力下进行加工,使其粒子间发生结合,形成致密坚固的材料。
烧结技术主要包括前期制备、烧结过程和后期处理三个阶段。
前期制备主要是选用合适的原料并进行预处理;烧结过程是指将粉末加热至一定温度下,使其颗粒形成熔连和扩散,从而实现颗粒间的结合;后期处理则是通过热处理和机械加工等方式对烧结材料进行改性和加工。
在烧结过程中,主要涉及到的问题包括热传导、粒子熔融和扩散等。
热传导是指热能在颗粒间的传递,它直接影响到烧结过程中的温度分布和物理性质的演化。
热传导主要受到粉末细度、烧结温度和热处理时间等因素的影响。
粒子熔融是指粉末颗粒在高温下发生熔化并与周围颗粒结合。
熔融过程中,粒子表面的氧化物会被还原,同时金属原子也会扩散到颗粒间,从而实现结合。
扩散是指金属原子在颗粒间的迁移和交换,它是烧结过程中颗粒结合的重要机制。
在烧结技术中,常用的烧结方法包括热压烧结、等静压烧结和电子束烧结等。
热压烧结是指将粉末加热至高温后进行压实,它可以在较短时间内获得高致密度的烧结材料。
等静压烧结是指在恒定温度下进行压实,它可以获得均匀的压力分布和高度致密的材料。
电子束烧结则是利用电子束的热效应进行烧结,它具有快速和局部加热的优势。
烧结技术在粉末冶金中具有广泛的应用。
一方面,它可以制备各种金属材料和合金,包括高温合金、硬质合金、不锈钢、铜陶瓷等。
另一方面,它还可以制备复杂形状和微细结构的材料,如蜂窝结构、多孔材料和纳米颗粒等。
此外,烧结技术还可以用于制备金属陶瓷复合材料、金属纤维和金刚石等高性能材料。
总之,粉末冶金的烧结技术是一项重要的金属材料加工技术,它通过热传导、粒子熔融和扩散等机制实现了金属粉末的结合,从而获得高致密度和高强度的材料。
烧结技术在金属材料研究和工业生产中具有广泛的应用前景,将为人们提供更多种类和性能的金属材料。
粉末冶金原理第四部分 粉末烧结技术
52
Part 2: 粉末烧结
对于具体的粉末烧结体系,能量平衡, 则:
• • • • K=COS(θ /2)=γ gb/2γ s E=6γ sρ Vb[K+A(1-K)]/G ρ 为烧结进行过程中的密度 对Vb微分,得致密化压力 Pd=6γ s(1-ρ )ρ 2(1-K)/[G(1-ρ o)2] ρ o为坯块的起始密度
一、作用在烧结颈上的原动力(driving force for neck growth) 二 、 烧 结 扩 散 驱 动 力 (driving force atom diffusion) 三、蒸发-凝聚物质迁移动力—蒸汽压差 四、烧结收缩应力(补)-宏观烧结应力
37
Part 2: 粉末烧结
一、作用在烧结颈上的拉应力
46
Part 2: 粉末烧结
• 考虑在烧结颈部与附近区域(线度 为 ρ )空位浓度的差异 空 位 浓 度 梯 度 ▽ Cv= Cvoγ Ω / (kTρ 2) • 可以发现 • ↑γ (活化) • ↓ρ (细粉) • 均有利于提高浓度梯度
47
Part 2: 粉末烧结
三、蒸发-凝聚气相迁移动力—蒸汽压差 (driving force for mass transportation by evaporation-condensation)
Part 2: 粉末烧结
含 义
2 低于主要组分熔点的温度
* 固相烧结—烧结温度低于所有组分的熔点 * 液相烧结—烧结温度低于主要组分的熔点 但高于次要组分的熔点 WC-Co合金, W-Cu-Ni合金
Part 2: 粉末烧结
含 义
3 烧结的目的
依靠热激活作用,原子发生迁移,粉末 颗粒形成冶金结合 Mechanical interlocking or physical bonging →Metallurgical bonding ↑烧结体的强度
粉末冶金烧结工艺
粉末冶金烧结工艺粉末冶金烧结是金属粉末材料由熔结、烧结( Sintering )和重新熔结(re-melting)组成的一系列连续步骤,用于成型和去除烧结产品中的分散相以及加工件的表面弥散现象。
这是一种灵活的制造技术,可用于生产几乎任何形状的表面密度和精度的零件。
它为制造便捷、无焊接、精度高、成本低等优势,成为可靠、可替代的零件制造技术之一。
粉末冶金烧结的主要步骤包括加工(Machining)、组装(Assembly)、预先烧结(Pre-Sintering)、最终烧结(Final-Sintering)、冷却(Cooling)和尺寸检查(Size Checking)。
加工步骤要求选择合适的粉体原料,进行分散处理和混合,此外,还要按照技术要求来设置机械装置以组装成规定的粉末模具。
组装后的模具在预先烧结的过程中,有助于原料形成加工回弹性,使部件固体分散,其过程一般采用低温干烧,或者在煤气发生炉中进行湿烧,或考虑由于物料不同而采取适当的其他烧结方式。
完成预先烧结后,再进入最终烧结环节,这是冶金零件最重要的环节,也是实现最终产品性能的关键步骤。
烧结温度(sintering temperature)及质量使用的主要如热处理温度,氩气烧结温度,真空/气压烧结温度,以及电磁烧结温度。
烧结的主要目的是使粉末加工件达到最大成型密度;所有内外部变形均使零件达到特定的规格和几何尺寸要求。
冷却是烧结的完成产品的最后一道工序,它的主要目的是控制零件表面的温度,使零件得以稳定。
在冷却过程中,会对零件进行最终化学成分、尺寸和形状进行检测,确定几何尺寸符合客户具体要求。
粉末冶金烧结工艺是一种基于粉末冶金技术的制造技术,可大大提高零件制造的效率,且已被广泛应用于各行各业。
该技术的应用不仅可以替代传统制造技术,还可以应用于一些极其复杂的工程结构,从而使零部件制造实现更高的经济效益。
粉末冶金烧结在零件制造过程中具有高效、精确、无需焊接、表面质量好等特点,可为各行各业提供优质高效的零件制造技术。
粉末冶金:粉末烧结
烧结机理
烧结过程中物质的迁移方式
➢ 粘性流动:在剪切应力作用下,产生粘性流动, 物质向颈部迁移
➢ 蒸发凝聚:表面层原子向空间蒸发,借蒸汽压差 通过气相向颈部空间扩散,沉积在颈部
➢ 体积扩散:借助于空位运动,原子等向颈部迁移 ➢ 表面扩散:原子沿颗粒表面迁移 ➢ 晶界扩散:晶界为快速扩散通道,原子沿晶界向
颈部迁移 ➢ 位错管道扩散:位错为非完整区域,原子易于沿
此通道向颈部扩散,导致物质迁移
烧结过程中物质的迁移方式
扩散
蒸发凝聚
回复再结晶和聚晶长大
➢ 回复 ➢ 再结晶 ➢ 聚晶长大
◊无限固溶系 ◊有限固溶系 ◊完全不溶系
液相烧结 多元系液相烧结
◊稳定液相烧结 ◊瞬时液相烧结 ◊熔浸
烧结理论的研究范畴
研究粉末压坯在烧结过程中微观结构的 演化和物质变化规律 ➢ 热力学:烧结过程的驱动力(Why) ➢ 动力学:烧结过程中物质迁移方式和迁移 速度(How)
烧结理论的发展
➢ 烧结工艺始于公元前3000年 ➢ 烧结理论始于20世纪中期 ➢ 目前还没有成熟的理论
烧结基本过程
三阶段:
(1) 颗粒之间形成接触 (2) 烧结颈长大
➢ 粘结阶段
(3) 连通孔洞闭合 (4) 孔洞固化
➢ 烧结颈长大阶段
(5) 孔洞收缩和致密化 (6) 孔洞粗化
(7) 晶粒长大
➢ 闭孔隙球化和缩小阶段
水分挥发 化学反应 应力消除 回复和再结晶
粘结面和晶界的形成
粘结面和晶界的形成
烧结后的孔隙
粉末冶金原理-烧结
粉末冶金原理-烧结烧结是粉末冶金中一种常用的加工方法,它通过高温和压力的作用,将金属粉末粒子相互结合成致密的块状体,从而获取所需的材料性能和形状。
本文将介绍烧结的原理、方法以及应用。
1. 烧结原理粉末冶金烧结的原理基于固相扩散和短程扩散的作用。
在烧结过程中,金属粉末颗粒之间的接触面发生原子间的扩散,使得粒子之间形成更强的结合力,从而实现粉末的聚结。
烧结过程中,首先是金属粉末颗粒之间的接触,原子开始扩散。
随着温度的升高,扩散速率也随之增加。
当粉末颗粒之间的接触点扩散到一定程度后,开始形成颗粒之间的原子键合。
键合的形成使得颗粒间的结合力增强,同时形成新的晶体结构或弥散态结构。
2. 烧结方法2.1 传统烧结传统烧结是指采用外加热源和压力来实现烧结过程。
该方法通常包括以下几个步骤:1.装料:将金属粉末和所需添加剂按照一定比例混合,并形成一定的装料形状,如坯料或颗粒。
2.预压:将装料放入模具中,并施加一定的压力,使装料初步固结成形。
3.高温烧结:将装料放入烧结炉中,在一定的温度下暴露一段时间,使装料中的金属粉末颗粒扩散、晶粒长大并结合。
4.冷却:烧结完成后,将烧结块从炉中取出,经过冷却以稳定材料结构。
5.表面处理:根据需求,对烧结块进行加工、修整和处理,以得到最终所需的形状和表面特性。
2.2 反应烧结反应烧结是指在烧结过程中引入化学反应,利用固相反应进行金属粉末的结合。
相较于传统烧结,反应烧结可以实现更高的烧结温度,加快晶粒生长和结合的速度。
反应烧结的具体步骤包括:1.装料:将金属粉末和反应剂按照一定比例混合,并形成装料。
2.高温烧结:将装料放入烧结炉中,在一定的温度下暴露一段时间。
在高温下,反应剂与金属粉末发生固相反应,生成新的物质并结合金属粉末颗粒。
3.冷却:烧结完成后,将烧结块从炉中取出,经过冷却以稳定材料结构。
4.表面处理:根据需求,对烧结块进行加工、修整和处理,以得到最终所需的形状和表面特性。
3. 烧结应用烧结方法在粉末冶金中具有广泛的应用。
粉末冶金的烧结技术规程
粉末冶金的烧结技术规程一、前言粉末冶金是一种现代工艺技术,其主要应用于各种含金属、非金属和合金的粉末烧结制备。
粉末冶金技术具有独特的优势,例如可以生产出细粒度、高密度、高强度、耐磨、耐腐蚀的零件等。
在本文中,将介绍粉末冶金的烧结技术规程。
二、烧结原理烧结是将粉末冶金材料在高温下加热压实,使其形成致密的固体块材料的过程。
烧结时,原粉末经过初步加工处理,如混合、压制等工艺。
而后再放入保护气氛的烧结炉中加热,使粉末颗粒在融合时形成块状材料。
烧结的原理是粉末团聚过程的加快,通过在高温下加压使粉末颗粒间形成连接,形成致密的物理结构,从而提高材料的密度和强度。
三、不同材料的烧结温度烧结温度取决于使用材料的种类、成分和形状。
以下列出一些典型的烧结温度范围:1. 硬质合金烧结烧结温度为1300-1520°C,可以使硬质合金材料的密度达到99%以上,从而提高硬度和耐磨性能。
2. 钨合金烧结烧结温度为1400-1600°C,可以使钨合金材料的密度达到90%以上,从而提高硬度和抗腐蚀性能。
3. 不锈钢烧结烧结温度为1250-1350°C,可以使不锈钢材料的密度达到95%以上,从而提高耐腐蚀性能。
4. 铜烧结烧结温度为700-900°C,可以使铜材料的密度达到90%以上,从而提高材料的导电性能和强度。
五、烧结工艺流程1. 原料制备粉末冶金材料的粉末需要在专业的设备中进行初步处理,如混合、筛分等,以满足烧结的要求。
2. 压制将初步处理过的粉末加入模具中,进行压制。
压缩时需要控制压实的压力和时间,以确保形成高密度的材料坯。
3. 烘干将压制后的材料坯进行烘干,以去除多余的水分和其他杂质。
4. 烧结将烘干的材料坯放入烧结炉中,在高温下进行保护气氛烧结。
烧结温度需要根据材料的种类、形状和成分来确定,以确保形成高密度、高强度的材料。
5. 冷却待烧结完成后,将材料坯从烧结炉取出放凉,并在不同温度下进行降温,以防止材料的变形或裂纹。
粉末冶金原理烧结ppt课件
二、烧结的热力学问题
粉末有自动粘结或成团的倾向 粉末烧结使系统自由能减少的过程 烧结系统自由能降低是烧结过程的原动力。烧结
后系统自由能降低包括下述几个方面: (1)由于颗粒结合面(烧结颈)的增大和颗粒表
面平直化,粉末体的总比表面积和总表面自由能 减小; (2)烧结体内孔隙的总体积和总表面积减小; (3)粉末颗粒内晶格畸变部分消除。
借助于建立物理、几何或化学模型, 进行烧结过程的计算机模拟(蒙特-卡 洛模拟)
粉末烧结过程模拟
多相粉末烧结
液相烧结
三、烧结技术的发展
● 外力的引入(加压同时烧结): ➢ HP、HIP、超高压烧结(纳米晶材料)等 ➢ 气压烧结
●快速烧结技术
1 电固结工艺 2 快速热等静压(quick-HIP) 3 微波烧结技术 4 激光烧结 5 等离子体烧结 6 电火花烧结
按烧结过程有无液相出现
固相烧结:
单元系固相烧结:单相(纯金属、化合物、固溶体)粉末 的烧结:烧结过程无化学反应、无新相形成、无物质聚集 状态的改变。 多元系固相烧结:
两种或两种以上组元粉末的烧结过程,包括反应烧结等。
无限固溶系:Cu-Ni、Cu-Au、Ag-Au等 有限固溶系:Fe-C、Fe-Ni、Fe-Cu、W-Ni等 互不固溶系:Ag-W、Cu-W、Cu-C等
烧结颈长大
3.封闭孔隙球化和缩小阶段 当烧结体密度达到90%以后, 多数孔隙被完全分隔,闭
孔数量大的增加,孔隙形状趋近球形并不断缩小。在这个 阶段,整个烧结体仍可缓慢收缩,但主要是靠小孔的消失 和孔隙数量的减少来实现。这一阶段可以延续很长时间, 但是仍残留少量的隔离小孔隙不能消除。也就是一般不能 达到完全致密。
对烧结定义的理解-1:
● 粉末也可以烧结(不一定要成形) 松装烧结,制造过滤材料(不锈钢,青铜,黄铜,钛等)
粉末冶金的烧结技术范文
粉末冶金的烧结技术范文粉末冶金烧结技术是一种将金属或非金属粉末制备成坯体或制品的关键工艺。
它采用烧结炉进行烧结,通过高温、高压和时间的作用,使粉末颗粒之间发生相互结合和扩散,形成具有一定形状和性能的致密坯体或制品。
烧结技术广泛应用于各个领域,例如汽车零部件、机械零件、电子元器件等。
本文将重点探讨粉末冶金烧结技术的原理、工艺和应用。
一、烧结技术的原理烧结是指在一定条件下,将粉末颗粒致密地结合成坯体或制品的过程。
烧结技术的原理可以分为以下几个方面:1. 粉末颗粒之间的扩散:在高温下,粉末颗粒之间会发生扩散作用,即原子从高浓度区域向低浓度区域扩散。
这种扩散作用是烧结过程中实现粉末颗粒结合的关键。
2. 颗粒之间的颈部形成:在烧结过程中,粉末颗粒的表面会开始熔化,形成一层薄薄的液相。
当液相通过扩散作用流动到相邻颗粒之间时,会在两个颗粒之间形成一个细小的颈部,从而使得颗粒之间结合更加牢固。
3. 颗粒之间的压实作用:在烧结过程中,经过一段时间的烧结,粉末颗粒之间的颈部会逐渐增大,使得整体的坯体或制品更加致密。
二、烧结技术的工艺烧结技术的工艺包括前处理、原料制备、成型、烧结和后处理。
1. 前处理:前处理主要是对原料进行筛分、清洁和除杂等处理,以提高原料的均匀性和纯度。
2. 原料制备:原料制备是指将纯度高的金属或非金属粉末按一定比例混合,然后使用球磨机等设备进行混合和细化,以获得均匀的混合粉末。
3. 成型:成型是指将混合粉末通过模具压制成具有一定形状的坯体。
常见的成型方法有压片法、注塑法和挤压法等。
4. 烧结:烧结是将成型的坯体放入烧结炉中进行加热和烧结的过程。
烧结过程中,通过控制温度、时间和压力等条件,使粉末颗粒结合成致密的坯体或制品。
5. 后处理:后处理主要是对烧结后的坯体或制品进行清洁、退火和表面处理等,以提高其性能和质量。
三、烧结技术的应用烧结技术在各个领域中有广泛的应用,主要包括以下几个方面:1. 汽车零部件:烧结技术广泛应用于汽车零部件的生产中,例如发动机缸体、变速箱零件、刹车片等。
粉末冶金烧结培训
6CO+8H2+3×3.76N2
23% 31% 46%
六、吸热式气氛②
2。吸热式气氛的制备方法 ①炉外裂解装置(例如:RX烧结炉) ②炉内裂解装置(例如:意得渗碳炉) ③内置式发生装置(例如:扬保渗碳炉) 3。吸热式气氛的制备流程
六、吸热式气氛③
4。制备可控气氛燃料要求
燃料要求: ①价格低廉 ②裂解转化完全,不易积碳黑 ③硫含量低(<180mg/m3 ④便于运输和储存 ⑤成分稳定
四、氨分解气氛②
2。制备分解氨的流程
液氨瓶(槽) 冷却器 3。氨分解气氛管理指标 气化 分解炉 入炉
干燥净化系统
残NH3量
露点DP值
NH3%要求0.1%以下
一般使用要求—35℃以下
五、氮基气氛
氮基气氛指的是以空气分离氮(液氮、分子筛制 氮等)分别与一定量的氢 气,燃料气有机液体以及 含有一定比例氧化性介质(H2O、CO2、空气)的燃 料气混合,直接通入工作炉内所生成的气氛。
2.1 烧结的过程
A 粘结阶段 烧结初期,颗粒间的原始接触点或面转变成晶体结合,即通过成核、 结晶长大等原子过程形成烧结颈。 B 烧结颈长大阶段 原子向颗粒结合面的大量迁移使烧结颈扩大,颗粒间距离缩小, 形成连续的孔隙网络;同时由于晶粒长大,晶界越过孔隙移动,而 被晶界扫过的地方,孔隙大量消失。烧结体收缩,密度和强度增加 是这个阶段的主要特征; C 闭孔隙球化和缩小阶段 当烧结体密度达到90%多数孔隙被完全分隔,闭孔数量大为增加, 孔隙形状趋近球形并不断缩小。在这个阶段,整个烧结体仍可缓慢 收缩,但主要是靠小孔的消失和孔隙数量的减少来实现。
三、烧结气氛的分类 烧结气氛可分为还原性、真空及中性(惰性)、 氧化性、渗碳性(或脱碳性)、氮化性等类型 根据制备气氛的原样不同分类: a.放热式气氛 b.吸热式气氛 c.防热—吸热式气氛 d.有机液体裂解气氛 e.氨分解气氛 f.氮基气氛 g.木炭制备气氛 h.氢气
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
粉末冶金的烧结技术作者:本站整理文章来源:本站搜集点击数:466 更新时间:2008-3-17 16:03:201.烧结的方法不同的产品、不同的性能烧结方法不一样。
⑴按原料组成不同分类。
可以将烧结分为单元系烧结、多元系固相烧结及多元系液相烧结。
单元系烧结是纯金属(如难熔金属和纯铁软磁材料)或化合物(Al2O3、B4C、BeO、M oSi2等)熔点以下的温度进行固相烧结。
多元系固相烧结是由两种或两种以上的组元构成的烧结体系,在其中低熔成分的熔点温度以下进行的固相烧结。
粉末烧结合金多属于这一类。
如Cu-Ni、Fe-Ni、Cu-Au、W-Mo、Ag-Au、Fe-Cu、W-Ni、Fe-C、Cu-C、Cu-W、Ag -W等。
多元系液相烧结以超过系统中低熔成分熔点的温度进行的烧结。
如W-Cu-Ni、W-Cu、WC-Co、TiC-Ni、Fe-Cu(Cu>10%、Fe-Ni-Al、Cu-Pb、Cu-Sn、Fe-Cu(Cu<10%)等⑵按进料方式不同分类。
分为为连续烧结和间歇烧结。
连续烧结烧结炉具有脱蜡、预烧、烧结、制冷各功能区段,烧结时烧结材料连续地或平稳、分段地完成各阶段的烧结。
连续烧结生产效率高,适用于大批量生产。
常用的进料方式有推杆式、辊道式和网带传送式等。
间歇烧结零件置于炉内静止不动,通过控温设备,对烧结炉进行需要的预热、加热及冷却循环操作,完成烧结材料的烧结过程。
间歇烧结可依据炉内烧结材料的性能确定合适的烧结制度,但生产效率低,适用于单件、小批量生产,常用的烧结炉有钟罩式炉、箱式炉等。
除上述分类方法外。
按烧结温度下是否有液相分为固相烧结和液相烧结;按烧结温度分为中温烧结和高温烧结(1100~1700℃),按烧结气氛的不同分为空气烧结,氢气保护烧结(如钼丝炉、不锈钢管和氢气炉等)和真空烧结。
另外还有超高压烧结、活化热压烧结等新的烧结技术。
2.影响粉末制品烧结质量的因素影响烧结体性能的因素很多,主要是粉末体的性状、成形条件和烧结的条件。
烧结条件的因素包括加热速度、烧结温度和时间、冷却速度、烧结气氛及烧结加压状况等。
⑴烧结温度和时间烧结温度的高低和时间的长短影响到烧结体的孔隙率、致密度、强度和硬度等。
烧结温度过高和时间过长,将降低产品性能,甚至出现制品过烧缺陷;烧结温度过低或时间过短,制品会因欠烧而引起性能下降。
⑵烧结气氛粉末冶金常用的烧结气氛有还原气氛、真空、氢气氛等。
烧结气氛也直接影响到烧结体的性能。
在还原气氛下烧结防止压坯烧损并可使表面氧化物还原。
如铁基、铜基制品常采用发生炉煤气或分解氨,硬质合金、不锈钢常采用纯氢。
活性金属或难熔金属(如铍、钛、锆、钽)、含TiC的硬质合金及不锈钢等可采用真空烧结。
真空烧结能避免气氛中的有害成分(H2O、O2、H2)等的不利影响,还可降低烧结温度(一般可降低100~150℃)。
粉末冶金基础知识作者:本站整理文章来源:本站搜集点击数:404 更新时间:2008-3-17 16:25:00 (一)粉末的化学成分及性能尺寸小于1mm的离散颗粒的集合体通常称为粉末,其计量单位一般是以微米(μm)或纳米(nm)。
1.粉末的化学成分常用的金属粉末有铁、铜、铝等及其合金的粉末,要求其杂质和气体含量不超过1%~2%,否则会影响制品的质量。
2.粉末的物理性能⑴粒度及粒度分布粉料中能分开并独立存在的最小实体为单颗粒。
实际的粉末往往是团聚了的颗粒,即二次颗粒。
实际的粉末颗粒体中不同尺寸所占的百分比即为粒度分布。
⑵颗粒形状即粉末颗粒的外观几何形状。
常见的有球状、柱状、针状、板状和片状等,可以通过显微镜的观察确定。
⑶比表面积即单位质量粉末的总表面积,可通过实际测定。
比表面积大小影响着粉末的表面能、表面吸附及凝聚等表面特性。
3.粉末的工艺性能粉末的工艺性能包括流动性、填充特性、压缩性及成形性等。
⑴填充特性指在没有外界条件下,粉末自由堆积时的松紧程度。
常以松装密度或堆积密度表示。
粉末的填充特性与颗粒的大小、形状及表面性质有关。
⑵流动性指粉末的流动能力,常用50克粉末从标准漏斗流出所需的时间表示。
流动性受颗粒粘附作用的影响。
⑶压缩性表示粉末在压制过程中被压紧的能力,用规定的单位压力下所达到的压坯密度表示,在标准模具中,规定的润滑条件下测定。
影响粉末压缩性的因素有颗粒的塑性或显微硬度,塑性金属粉末比硬、脆材料的压缩性好;颗粒的形状和结构也影响粉末的压缩性。
⑷成形性指粉末压制后,压坯保持既定形状的能力,用粉末能够成形的最小单位压制压力表示,或用压坯的强度来衡量。
成形性受颗粒形状和结构的影响。
(二)粉末冶金的机理1.压制的机理压制就是在外力作用下,将模具或其它容器中的粉末紧密压实成预定形状和尺寸压坯的工艺过程。
钢模冷压成形过程如图7.1.2所示。
粉末装入阴模,通过上下模冲对其施压。
在压缩过程中,随着粉末的移动和变形,较大的空隙被填充,颗粒表面的氧化膜破碎,颗粒间接触面积增大,使原子间产生吸引力且颗粒间的机械楔合作用增强,从而形成具有一定密度和强度的压坯。
2.等静压制压力直接作用在粉末体或弹性模套上,使粉末体在同一时间内各个方向上均衡受压而获得密度分布均匀和强度较高的压坯的过程。
按其特性分为冷等静压制和热等静压制两大类。
⑴冷等静压制即在室温下等静压制,液体为压力传递媒介。
将粉末体装入弹性模具内,置于钢体密封容器内,用高压泵将液体压入容器,利用液体均匀传递压力的特性,使弹性模具内的粉末体均匀受压。
因此,冷等静压制压坯密度高,较均匀,力学性能较好,尺寸大且形状复杂,已用于棒材、管材和大型制品的生产。
⑵热等静压制把粉末压坯或装入特制容器内的粉末体置入热等静压机高压容器中,施以高温和高压,使这些粉末体被压制和烧结成致密的零件或材料的过程。
在高温下的等静压制,可以激活扩散和蠕变现象的发生,促进粉末的原子扩散和再结晶及以极缓慢的速率进行塑性变形,气体为压力传递媒介。
粉末体在等静压高压容器内同一时间经受高温和高压的联合作用,强化了压制与烧结过程,制品的压制压力和烧结温度均低于冷等静压制,制品的致密度和强度高,且均匀一致,晶粒细小,力学性能高,消除了材料内部颗粒间的缺陷和孔隙,形状和尺寸不受限制。
但热等静压机价格高,投资大。
热等静压制已用于粉末高速钢、难熔金属、高温合金和金属陶瓷等制品的生产。
3.粉末轧制将粉末通过漏斗喂入一对旋转轧辊之间使其压实成连续带坯的方法。
将金属粉末通过一个特制的漏斗喂入转动的轧辊缝中,可轧出具有一定厚度、长度连续、强度适宜的板带坯料。
这些坯体经预烧结、烧结,再轧制加工及热处理等工序,就可制成具有一定孔隙度的、致密的粉末冶金板带材。
粉末轧制制品的密度比较高,制品的长度原则上不受限制,轧制制品的厚度和宽度会受到轧辊的限制;成材率高为80%~90%,熔铸轧制的仅为60%或更低。
粉末轧制适用于生产多孔材料、摩擦材料、复合材料和硬质合金等的板材及带材。
4.粉浆浇注是金属粉末在不施加外力的情况下成形的,即将粉末加水或其它液体及悬浮剂调制成粉浆,再注入石膏模内,利用石膏模吸取水分使之干燥后成形。
常用的悬浮剂有聚乙烯醇、甘油、藻肮酸钠等,作用是防止成形颗粒聚集,改善润湿条件。
为保证形成稳定的胶态悬浮液,颗粒尺寸不大于5μm~10μm,粉末在悬浮液中的质量含量为40%~70%。
粉浆成形工艺参见本书6.2.2。
5.挤压成形将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
挤压成形能挤压出壁很薄直经很小的微形小管,如厚度仅0.01mm,直径1mm的粉末冶金制品;可挤压形状复杂、物理力学性能优良的致密粉末材料,如烧结铝合金及高温合金。
挤压制品的横向密度均匀,生产连续性高,因此,多用于截面较简单的条、棒和螺旋形条、棒(如麻花钻等)。
6.松装烧结成形粉末未经压制而直接进行烧结,如将粉末装入模具中振实,再连同模具一起入炉烧结成形,用于多孔材料的生产;或将粉末均匀松装于芯板上,再连同芯板一起入炉烧结成形,再经复压或轧制达到所需密度,用于制动摩擦片及双金属材料的生产。
将置于挤压筒内的粉末、压坯或烧结体通过规定的模孔压出。
按照挤压条件不同,分为冷挤压和热挤压。
冷挤压是把金属粉末与一定量的有机粘结剂混合在较低温度下(4 0℃~200℃)挤压成坯块;粉末热挤压是指金属粉末压坯或粉末装入包套内加热到较高温度下压挤,热挤压法能够制取形状复杂、性能优良的制品和材料。
挤压成形设备简单,生产率高,可获得长度方向密度均匀的制品。
7.爆炸成形借助于爆炸波的高能量使粉末固结的成形方法。
爆炸成形的特点是爆炸时产生压力很高,施于粉末体上的压力速度极快。
如炸药爆炸后,在几微秒时间内产生的冲击压力可达106MPa(相当于107个大气压),比压力机上压制粉末的单位压力要高几百倍至几千倍。
爆炸成形压制压坯的相对密度极高,强度极佳。
如用炸药爆炸压制电解铁粉,压坯的密度接近纯铁体的理论密度值。
爆炸成形可加工普通压制和烧结工艺难以成形的材料,如难熔金属、高合金材料等,还可压制普通压力无法压制的大型压坯。
除上述方法外,还有注射成形及热等静压制新技术等新的成形方法。
粉末冶金的后处理作者:本站整理文章来源:本站搜集点击数:345 更新时间:2008-3-17 15:53:51指压坯烧结后的进一步处理,根据产品具体要求决定是否需要后处理。
常用的后处理方法有复压、浸渍、热处理、表面处理和切削加工等。
1.复压为提高烧结体物理和力学性能而进行的施加压力处理,包括精整和整形等。
精整是为达到所需尺寸而进行的复压,通过精整模对烧结体施压以提高精度。
整形是为达到特定的表面形状而进行的复压,通过整形模对制品施压以校正变形且降低表面粗糙度值。
复压适用于要求较高且塑性较好的制品,如铁基、铜基制品。
2.浸渍用非金属物质(如油、石蜡和树脂等)填充烧结体孔隙的方法。
常用的浸渍方法有浸油、浸塑料、浸熔融金属等。
浸油即在烧结体内浸入润滑油,改善其自润滑性能并防锈,常用于铁、铜基含油轴承。
浸塑料是采用聚四氟乙烯分散液,经固化后,实现无油润滑,常用于金属塑料减摩零件。
浸熔融金属可提高强度及耐磨性,铁基材料常采用浸铜或铅。
3.热处理对烧结体加热到一定温度,再通过控制冷却方法等处理,以改善制品性能的方法。
常用的热处理方法有淬火、化学热处理、热机械处理等,工艺方法一般与致密材料相似。
对于不受冲击而要求耐磨的铁基制件可采用整体淬火,由于孔隙的存在能减少内应力,一般可以不回火。