甘肃省天水一中2016-2017学年高二(下)开学数学试卷(理科)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年甘肃省天水一中高二(下)开学数学试卷(理科)
一、选择题(每小题5分,共45分)
1.设x∈R,则“x>”是“2x2+x﹣1>0”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
2.已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()
A.p∧q B.(¬p)∧q C.p∧(¬q) D.(¬p)∧(¬q)
3.函数函数f(x)=(x﹣3)e x的单调递增区间是()
A.(﹣∞,2)B.(0,3)C.(1,4)D.(2,+∞)
4.平面α的一个法向量=(1,﹣1,0),则y轴与平面α所成的角的大小为()A.B.C.D.
5.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()
A.1 B.C.D.
6.已知抛物线y2=2px上一点M(1,m)到其焦点的距离为5,则该抛物线的准线方程为()
A.x=8 B.x=﹣8 C.x=4 D.x=﹣4
7.函数f(x)的定义域为(a,b),其导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在区间(a,b)内极小值点的个数是()
A.4 B.3 C.2 D.1
8.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3) B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在
9.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f (x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣∞,﹣3)∪(0,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞) D.(﹣3,0)∪(0,3)
二、填空题(每题5分,共15分)
10.已知双曲线的一条渐近线为,则a=.
11.函数f(x)=x3﹣3x2+m在区间上的最大值是2,则常数m=.
12.点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x+2的距离的最小值是.
三、解答题(共40分)
13.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
14.已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
15.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB
面积的最大值.
2016-2017学年甘肃省天水一中高二(下)开学数学试卷(理
科)
参考答案与试题解析
一、选择题(每小题5分,共45分)
1.设x∈R,则“x>”是“2x2+x﹣1>0”的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
【考点】必要条件、充分条件与充要条件的判断.
【分析】求出二次不等式的解,然后利用充要条件的判断方法判断选项即可.
【解答】解:由2x2+x﹣1>0,可知x<﹣1或x>;
所以当“x>”⇒“2x2+x﹣1>0”;
但是“2x2+x﹣1>0”推不出“x>”.
所以“x>”是“2x2+x﹣1>0”的充分而不必要条件.
故选A.
2.已知命题p:∃x∈R,使得x+<2,命题q:∀x∈R,x2+x+1>0,下列命题为真的是()
A.p∧q B.(¬p)∧q C.p∧(¬q) D.(¬p)∧(¬q)
【考点】复合命题的真假.
【分析】本题的关键是判定命题p:∃x∈R,使得,命题
的真假,在利用复合命题的真假判定.
【解答】解:对于命题p:∃x∈R,使得,
当x<0时,命题p成立,命题p为真
命题,
显然,命题q为真
∴根据复合命题的真假判定,
p∧q为真,(¬p)∧q为假,p∧(¬q)为假,(¬p)∧(¬q)为假
3.函数函数f(x)=(x﹣3)e x的单调递增区间是()
A.(﹣∞,2)B.(0,3)C.(1,4)D.(2,+∞)
【考点】利用导数研究函数的单调性.
【分析】首先对f(x)=(x﹣3)e x求导,可得f′(x)=(x﹣2)e x,令f′(x)>0,解可得答案.
【解答】解:f′(x)=(x﹣3)′e x+(x﹣3)(e x)′=(x﹣2)e x,令f′(x)>0,解得x >2.
故选:D.
4.平面α的一个法向量=(1,﹣1,0),则y轴与平面α所成的角的大小为()A.B.C.D.
【考点】用空间向量求直线与平面的夹角.
【分析】设y轴与平面α所成的角的大小为θ,由在y轴上的单位向量和平面α的一个法向量,利用向量法能求出结果.
【解答】解:设y轴与平面α所成的角的大小为θ,
∵在y轴上的单位向量=(0,1,0),平面α的一个法向量=(1,﹣1,0),
∴sinθ=|cos<,>|=||=,
∴θ=.
故选:B.
5.已知向量=(1,1,0),=(﹣1,0,2)且k+与2﹣互相垂直,则k的值是()
A.1 B.C.D.
【考点】平面向量数量积的运算.
【分析】由向量=(1,1,0),=(﹣1,0,2),求得k+与2﹣的坐标,代入数量积的坐标表示求得k值.
【解答】解:∵=(1,1,0),=(﹣1,0,2),
∴k+=k(1,1,0)+(﹣1,0,2)=(k﹣1,k,2),
2﹣=2(1,1,0)﹣(﹣1,0,2)=(3,2,﹣2),
又k+与2﹣互相垂直,
∴3(k﹣1)+2k﹣4=0,解得:k=.
故选:D.
6.已知抛物线y2=2px上一点M(1,m)到其焦点的距离为5,则该抛物线的准线方程为()
A.x=8 B.x=﹣8 C.x=4 D.x=﹣4
【考点】抛物线的简单性质.
【分析】由题意得:抛物线焦点为F(,0),准线方程为x=﹣.因为点M(1,m)到其焦点的距离为5,所以点M到抛物线的准线的距离为:,从而得到p=8,得到该抛物线的准线方程.
【解答】解:∵抛物线方程为y2=2px
∴抛物线焦点为F(,0),准线方程为x=﹣
又∵点M(1,m)到其焦点的距离为5,
∴p>0,根据抛物线的定义,得,
∴p=8,所以准线方程为x=﹣4
故选D
7.函数f(x)的定义域为(a,b),其导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在区间(a,b)内极小值点的个数是()
A.4 B.3 C.2 D.1
【考点】导数的运算;函数的图象.
【分析】根据当f'(x)>0时函数f(x)单调递增,f'(x)<0时f(x)单调递减,可从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,然后得到答案
【解答】解:从f′(x)的图象可知f(x)在(a,b)内从左到右的单调性依次为增→减→增→减,
根据极值点的定义可知在(a,b)内只有一个极小值点.
故选:D.
8.函数f(x)=x3﹣ax2﹣bx+a2在x=1处有极值10,则点(a,b)为()A.(3,﹣3) B.(﹣4,11)C.(3,﹣3)或(﹣4,11)D.不存在
【考点】函数在某点取得极值的条件.
【分析】首先对f(x)求导,然后由题设在x=1时有极值10可得解之即可求出a和b的值.
【解答】解:对函数f(x)求导得f′(x)=3x2﹣2ax﹣b,
又∵在x=1时f(x)有极值10,
∴,
解得或,
验证知,当a=3,b=﹣3时,在x=1无极值,
故选B.
9.f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f (x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()
A.(﹣∞,﹣3)∪(0,3)B.(﹣∞,﹣3)∪(3,+∞)C.(﹣3,0)∪(3,+∞) D.(﹣3,0)∪(0,3)
【考点】利用导数研究函数的单调性;函数奇偶性的性质.
【分析】构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.
【解答】解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.
①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,
故函数h(x)在R上单调递增.
∵h(﹣3)=f(﹣3)g(﹣3)=0,
∴h(x)=f(x)g(x)<0=h(﹣3),
∴x<﹣3.
②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h(3)=﹣h(﹣3)=0,
∴h(x)<0,的解集为(0,3).
∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).
故选:A
二、填空题(每题5分,共15分)
10.已知双曲线的一条渐近线为,则a=.
【考点】双曲线的标准方程.
【分析】通过双曲线方程求出渐近线方程,与已知方程比较即可求出a的值.
【解答】解:双曲线的一条渐近线方程为x+y=0,
可知=,
∴a=,
故答案为:.
11.函数f(x)=x3﹣3x2+m在区间上的最大值是2,则常数m=2.
【考点】函数的最值及其几何意义.
【分析】求出函数的导数,得到函数的单调区间,求出函数的最大值是f(0)=m,则m值可求.
【解答】解:f′(x)=3x(x﹣2),
令f′(x)>0,解得:x>2或x<0,
令f′(x)<0,解得:0<x<2,
∴f(x)在递减,
∴f(x)max=f(0)=m=2,
故答案为:2
12.点P是曲线y=x2﹣lnx上任意一点,则点P到直线y=x+2的距离的最小值是.【考点】利用导数研究曲线上某点切线方程;两条平行直线间的距离.
【分析】求出平行于直线y=x+2且与曲线y=x2﹣lnx相切的切点坐标,再利用点到直线的距离公式可得结论.
【解答】解:设P(x,y),则y′=2x﹣(x>0)
令2x﹣=1,则(x﹣1)(2x+1)=0,
∵x>0,∴x=1
∴y=1,即平行于直线y=x+2且与曲线y=x2﹣lnx相切的切点坐标为(1,1)
由点到直线的距离公式可得d==
故答案为:
三、解答题(共40分)
13.如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.(Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
【考点】与二面角有关的立体几何综合题;平面与平面垂直的判定;向量语言表述面面的垂直、平行关系;用空间向量求平面间的夹角.
【分析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)根据坐标系,求出、、的坐标,由向量积的运算易得•=0,•=0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;
(Ⅱ)依题意结合坐标系,可得B、、的坐标,进而求出平面的PBC的法向量与平面PBQ法向量,进而求出cos<,>,根据二面角与其法向量夹角的关系,可得答案.
【解答】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);
则=(1,1,0),=(0,0,1),=(1,﹣1,0),
所以•=0,•=0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ⊂平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依题意,有B(1,0,1),
=(1,0,0),=(﹣1,2,﹣1);
设=(x,y,z)是平面的PBC法向量,
则即,
因此可取=(0,﹣1,﹣2);
设是平面PBQ的法向量,则,
可取=(1,1,1),
所以cos<,>=﹣,
故二面角角Q﹣BP﹣C的余弦值为﹣.
14.已知函数f(x)=x﹣alnx(a∈R)
(1)当a=2时,求曲线y=f(x)在点A(1,f(1))处的切线方程;
(2)求函数f(x)的极值.
【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的极值.
【分析】(1)把a=2代入原函数解析式中,求出函数在x=1时的导数值,直接利用直线方程的点斜式写直线方程;
(2)求出函数的导函数,由导函数可知,当a≤0时,f′(x)>0,函数在定义域(0,+∝)上单调递增,函数无极值,当a>0时,求出导函数的零点,由导函数的零点对定义域分段,利用原函数的单调性得到函数的极值.
【解答】解:函数f(x)的定义域为(0,+∞),.
(1)当a=2时,f(x)=x﹣2lnx,,
因而f(1)=1,f′(1)=﹣1,
所以曲线y=f(x)在点A(1,f(1))处的切线方程为y﹣1=﹣(x﹣1),
即x+y﹣2=0
(2)由,x>0知:
①当a≤0时,f′(x)>0,函数f(x)为(0,+∞)上的增函数,函数f(x)无极值;
②当a>0时,由f′(x)=0,解得x=a.
又当x∈(0,a)时,f′(x)<0,当x∈(a,+∞)时,f′(x)>0.
从而函数f(x)在x=a处取得极小值,且极小值为f(a)=a﹣alna,无极大值.
综上,当a≤0时,函数f(x)无极值;
当a>0时,函数f(x)在x=a处取得极小值a﹣alna,无极大值.
15.已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离
为.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB 面积的最大值.
【考点】直线与圆锥曲线的综合问题;椭圆的标准方程.
【分析】(Ⅰ)设椭圆的半焦距为c,依题意求出a,b的值,从而得到所求椭圆的方程.(Ⅱ)设A(x1,y1),B(x2,y2).(1)当AB⊥x轴时,.(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.
由已知,得.把y=kx+m代入椭圆方程,整理得(3k2+1)
x2+6kmx+3m2﹣3=0,然后由根与系数的关系进行求解.
【解答】解:(Ⅰ)设椭圆的半焦距为c,依题意∴b=1,∴所求椭圆方程为.
(Ⅱ)设A(x1,y1),B(x2,y2).
(1)当AB⊥x轴时,.
(2)当AB与x轴不垂直时,设直线AB的方程为y=kx+m.
由已知,得.
把y=kx+m代入椭圆方程,整理得(3k2+1)x2+6kmx+3m2﹣3=0,
∴,.
∴|AB|2=(1+k2)(x2﹣x1)2
=
=
=
=
=.
当且仅当,即时等号成立.当k=0时,,
综上所述|AB|max=2.∴当|AB|最大时,△AOB面积取最大值

2017年4月25日。

相关文档
最新文档