吴桥县第一高级中学2018-2019学年高二上学期第二次月考试卷数学

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

吴桥县第一高级中学2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1. 已知直线l :2y kx =+过椭圆)0(122
22>>=+b a b y a x 的上顶点B 和左焦点F ,且被圆
224x y +=截得的弦长为L
,若5
L ≥e 的取值范围是( ) (A ) ⎥⎦⎤
⎝⎛550, ( B )
0⎛ ⎝
⎦ (C ) ⎥⎦⎤ ⎝⎛5530, (D ) ⎥⎦⎤

⎛5540, 2. 设函数()''y f x =是()'y f x =的导数.某同学经过探究发现,任意一个三次函数
()()320f x ax bx cx d a =+++≠都有对称中心()()00,x f x ,其中0x 满足()0''0f x =.已知函数
()3211533212f x x x x =-+-,则1232016...2017201720172017f f f f ⎛⎫⎛⎫⎛⎫⎛⎫
++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
( )
A .2013
B .
2014 C .2015 D .20161111] 3. 设S n 是等比数列{a n }的前n 项和,S 4=5S 2
,则
的值为( )
A .﹣2或﹣1
B .1或2
C .±2或﹣1
D .±1或2
4. 设函数f (x )在R 上的导函数为f ′(x ),且2f (x )+xf ′(x )>x 2
,下面的不等式在R 内恒成立的是( ) A .f (x )>0
B .f (x )<0
C .f (x )>x
D .f (x )<x
5. 若函数y=x 2+(2a ﹣1)x+1在区间(﹣∞,2]上是减函数,则实数a 的取值范围是( ) A .[
﹣,+∞) B .(﹣∞
,﹣] C .
[,+∞) D .(﹣∞
,]
6. 设复数z 满足(1﹣i )z=2i ,则z=( )
A .﹣1+i
B .﹣1﹣i
C .1+i
D .1﹣i
7. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( ) A .b <a <c B .a <c <b C .a <b <c D .b <c <a
8. 已知a ∈R ,复数z=(a ﹣2i )(1+i )(i 为虚数单位)在复平面内对应的点为M ,则“a=0”是“点M 在第四象限”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件 9. 已知
表示数列
的前项和,若对任意的
满足
,且
,则
( )
A .
B .
C .
D .
10.实数a=0.2
,b=log
0.2,c=
的大小关系正确的是( )
A .a <c <b
B .a <b <c
C .b <a <c
D .b <c <a
11.设βα,是两个不同的平面,是一条直线,以下命题正确的是( ) A .若α⊥l ,βα⊥,则β⊂l B .若α//l , βα//,则β⊂l C .若α⊥l ,βα//,则β⊥l D .若α//l ,βα⊥,则β⊥l 12.如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( ) A . B . C .
D .
二、填空题
13.已知函数22tan ()1tan x f x x =
-,则()3
f π
的值是_______,()f x 的最小正周期是______.
【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 14.已知偶函数f (x )的图象关于直线x=3对称,且f (5)=1,则f (﹣1)= . 15.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .
16.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为
________.
17.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________
18.设
,则
三、解答题
19.2015年第7届女足世界杯在加拿大埃德蒙顿联邦体育场打响,某连锁分店销售某种纪念品,每件纪念品的成本为4元,并且每件纪念品需向总店交3元的管理费,预计当每件纪念品的售价为x元(7≤x≤9)时,一年的销售量为(x﹣10)2万件.
(Ⅰ)求该连锁分店一年的利润L(万元)与每件纪念品的售价x的函数关系式L(x);
(Ⅱ)当每件纪念品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值.
20.某农户建造一座占地面积为36m2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m,墙高为2m,鸡舍正面的造价为40元/m2,鸡舍侧面的造价为20元/m2,地面及其他费用合计为1800元.
(1)把鸡舍总造价y表示成x的函数,并写出该函数的定义域.
(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?
21.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y(单位:kg)与它的“相近”作物株数X之间的关系如下表所示:
X 1 2 3 4
Y 51 48 45 42
这里,两株作物“相近”是指它们之间的直线距离不超过1米.
(I)从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概率;
(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.
22.如图,在四棱柱ABCD﹣A1B1C1D1中,底面ABCD是矩形,且AD=2CD=2,AA1=2,∠A1AD=.若O
为AD的中点,且CD⊥A1O
(Ⅰ)求证:A1O⊥平面ABCD;
(Ⅱ)线段BC上是否存在一点P,使得二面角D﹣A1A﹣P为?若存在,求出BP的长;不存在,说明理由.
23.已知函数f (x )=sinx ﹣2sin 2
(1)求f (x )的最小正周期;
(2)求f (x )在区间[0,]上的最小值.
24.(本小题满分16分)
在互联网时代,网校培训已经成为青年学习的一种趋势,假设某网校的套题每日的销售量()h x (单位:千套)与销售价格(单位:元/套)满足的关系式()()()h x f x g x =+(37x <<,m 为常数),其中()f x 与()3x -成反比,()g x 与()7x -的平方成正比,已知销售价格为5元/套时,每日可售出套题21千套,销售价格为3.5元/套时,每日可售出套题69千套. (1) 求()h x 的表达式;
(2) 假设网校的员工工资,办公等所有开销折合为每套题3元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数)
吴桥县第一高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案) 一、选择题
1. 【答案】 B
【解析】依题意,2, 2.b kc ==
设圆心到直线l 的距离为d ,则L =≥
解得216
5d ≤。

又因为
d =2116,15k ≤+解得2
14k ≥。

于是222
222211c c e a b c k
===++,所以2
40,5e <≤解得0e <≤故选B . 2. 【答案】D
【解析】
1120142201520161...2201720172017201720172017f f f f f f ⎡⎤
⎛⎫⎛⎫
⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫
⎛⎫=++++++⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭
⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦
()1
2201620162
=⨯⨯=,故选D. 1 考点:1、转化与划归思想及导数的运算;2、函数对称的性质及求和问题.
【方法点睛】本题通过 “三次函数()()3
2
0f x ax bx cx d a =+++≠都有对称中心()
(
)00,x f x ”这一探索
性结论考查转化与划归思想及导数的运算、函数对称的性质及求和问题,属于难题.遇到探索性结论问题,应耐心读题,分析新结论的特点,弄清新结论的性质,按新结论的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.本题的解答就是根据新结论性质求出()3115
33212
f x x x x =-+-的对称中心后再利用对称性和的.
第Ⅱ卷(非选择题共90分)
3. 【答案】C
【解析】解:由题设知a1≠0,当q=1时,S4=4a1≠10a1=5S2;q=1不成立.
当q≠1时,S n=,
由S4=5S2得1﹣q4=5(1﹣q2),(q2﹣4)(q2﹣1)=0,(q﹣2)(q+2)(q﹣1)(q+1)=0,
解得q=﹣1或q=﹣2,或q=2.
==q,
∴=﹣1或=±2.
故选:C.
【点评】本题主要考查等比数列和等差数列的通项公式的应用,利用条件求出等比数列的通项公式,以及对数的运算法则是解决本题的关键.
4.【答案】A
【解析】解:∵2f(x)+xf′(x)>x2,
令x=0,则f(x)>0,故可排除B,D.
如果f(x)=x2+0.1,时已知条件2f(x)+xf′(x)>x2成立,
但f(x)>x 未必成立,所以C也是错的,故选A
故选A.
5.【答案】B
【解析】解:∵函数y=x2+(2a﹣1)x+1的图象是方向朝上,以直线x=为对称轴的抛物线
又∵函数在区间(﹣∞,2]上是减函数,
故2≤
解得a≤﹣
故选B.
6.【答案】A
【解析】解:∵复数z满足z(1﹣i)=2i,
∴z==﹣1+i
故选A.
【点评】本题考查代数形式的除法运算,是一个基础题,这种题目若出现一定是一个送分题目,注意数字的运算.
7.【答案】A
【解析】解:∵a=0.52=0.25,
b=log20.5<log21=0,
c=20.5>20=1,
∴b<a<c.
故选:A.
【点评】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数的单调性的合理运用.
8.【答案】A
【解析】解:若a=0,则z=﹣2i(1+i)=2﹣2i,点M在第四象限,是充分条件,
若点M在第四象限,则z=(a+2)+(a﹣2)i,推出﹣2<a<2,推不出a=0,不是必要条件;
故选:A.
【点评】本题考查了充分必要条件,考查了复数问题,是一道基础题.
9.【答案】C
【解析】
令得,所以,即,所以是以1为公差的等差数列,首项为,
所以,故选C
答案:C
10.【答案】C
【解析】解:根据指数函数和对数函数的性质,知log0.2<0,0<0.2<1,,
即0<a<1,b<0,c>1,
∴b<a<c.
故选:C.
【点评】本题主要考查函数数值的大小比较,利用指数函数,对数函数和幂函数的性质是解决本题的关键. 11.【答案】C 111]
【解析】

点:线线,线面,面面的位置关系 12.【答案】B
【解析】【知识点】函数的奇偶性
【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

故答案为:B
二、填空题
13.
【答案】π.
【解析】∵22tan ()tan 21tan x f x x x ==-
,∴2()tan 33f ππ==22
1tan 0
x k x ππ

≠+⎪⎨⎪-≠⎩
,∴()f x 的定义域为(,)(,
)(,)244442k k k k k k π
π
π
π
ππ
ππππππ-
+-
+-
++++,k Z ∈,将()f x 的图象如下图画出,从而
可知其最小正周期为π,故填:,π.
14.【答案】1.
【解析】解:f(x)的图象关于直线x=3对称,且f(5)=1,则f(1)=f(5)=1,f(x)是偶函数,所以f(﹣1)=f(1)=1.
故答案为:1.
15.【答案】.
【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,
∴3aa=1(1﹣2a),解得a=﹣1或a=,
经检验当a=﹣1时,两直线重合,应舍去
故答案为:.
【点评】本题考查直线的一般式方程和平行关系,属基础题.
16.【答案】
【解析】【知识点】空间几何体的三视图与直观图
【试题解析】正方体中,BC中点为E,CD中点为F,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为: 17.【答案】21
2
【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.
因为BE ⊥AC ,AB =3,所以AE =3
2
,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2
-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =21
2.
18.【答案】9
【解析】由柯西不等式可知
三、解答题
19.【答案】
【解析】解:(Ⅰ)该连锁分店一年的利润L (万元)与售价x 的函数关系式为:
L (x )=(x ﹣7)(x ﹣10)2,x ∈[7,9],
(Ⅱ)L ′(x )=(x ﹣10)2
+2(x ﹣7)(x ﹣10)=3(x ﹣10)(x ﹣8),
令L ′(x )=0,得x=8或x=10(舍去),
∵x ∈[7,8],L ′(x )>0,x ∈[8,9],L ′(x )<0, ∴L (x )在x ∈[7,8]上单调递增,在x ∈[8,9]上单调递减,
∴L (x )max =L (8)=4;
答:每件纪念品的售价为8元,该连锁分店一年的利润L 最大,最大值为4万元.
【点评】本题考查了函数的解析式问题,考查函数的单调性、最值问题,是一道中档题.
20.【答案】
【解析】解:(1)…
=

定义域是(0,7]…
(2)∵,…
当且仅当即x=6时取=…
∴y≥80×12+1800=2760…
答:当侧面长度x=6时,总造价最低为2760元.…
21.【答案】
【解析】
【专题】概率与统计.
【分析】(I)确定三角形地块的内部和边界上的作物株数,分别求出基本事件的个数,即可求它们恰好“相近”的概率;
(II)确定变量的取值,求出相应的概率,从而可得年收获量的分布列与数学期望.
【解答】解:(I)所种作物总株数N=1+2+3+4+5=15,其中三角形地块内部的作物株数为3,边界上的作物株
数为12,从三角形地块的内部和边界上分别随机选取一株的不同结果有=36种,选取的两株作物恰好“相近”的不同结果有3+3+2=8,∴从三角形地块的内部和边界上分别随机选取一株作物,求它们恰好“相近”的概
率为=;
(II)先求从所种作物中随机选取一株作物的年收获量为Y的分布列
∵P(Y=51)=P(X=1),P(48)=P(X=2),P(Y=45)=P(X=3),P(Y=42)=P(X=4)
∴只需求出P(X=k)(k=1,2,3,4)即可
记n k为其“相近”作物恰有k株的作物株数(k=1,2,3,4),则n1=2,n2=4,n3=6,n4=3
由P(X=k)=得P(X=1)=,P(X=2)=,P(X=3)==,P(X=4)==
∴所求的分布列为
Y 51 48 45 42
P
数学期望为E(Y)=51×+48×+45×+42×=46
【点评】本题考查古典概率的计算,考查分布列与数学期望,考查学生的计算能力,属于中档题.
22.【答案】
【解析】满分(13分).
(Ⅰ)证明:∵∠A1AD=,且AA1=2,AO=1,
∴A1O==,…(2分)
∴+AD2=AA12,
∴A1O⊥AD.…(3分)
又A1O⊥CD,且CD∩AD=D,
∴A1O⊥平面ABCD.…(5分)
(Ⅱ)解:过O作Ox∥AB,以O为原点,建立空间直角坐标系O﹣xyz(如图),
则A(0,﹣1,0),A
(0,0,),…(6分)
1
设P(1,m,0)m∈[﹣1,1],平面A1AP的法向量为=(x,y,z),
∵=,=(1,m+1,0),

取z=1,得=.…(8分)
又A1O⊥平面ABCD,A1O⊂平面A1ADD1
∴平面A1ADD1⊥平面ABCD.
又CD⊥AD,且平面A1ADD1∩平面ABCD=AD,
∴CD⊥平面A1ADD1.
不妨设平面A1ADD1的法向量为=(1,0,0).…(10分)
由题意得==,…(12分)
解得m=1或m=﹣3(舍去).
∴当BP的长为2时,二面角D﹣A1A﹣P的值为.…(13分)
【点评】本小题主要考查直线与平面的位置关系,二面角的大小等基础知识,考查空间想象能力、推理论证能力和运算求解能力,考查函数与方程思想、化归与转化思想、数形结合思想.
23.【答案】
【解析】解:(1)∵f (x )=sinx ﹣2sin 2
=sinx ﹣2×
=sinx+
cosx ﹣
=2sin (x+
)﹣
∴f (x )的最小正周期T==2π;
(2)∵x ∈[0,],
∴x+
∈[
,π],
∴sin (x+)∈[0,1],即有:f (x )=2sin (x+
)﹣∈[﹣
,2﹣],
∴可解得f (x )在区间[0,
]上的最小值为:﹣

【点评】本题主要考查了三角函数恒等变换的应用,三角函数的周期性及其求法,三角函数的最值的应用,属于基本知识的考查.
24.【答案】(1) ()()2
10473h x x x =
+-- (37x <<)(2) 13 4.33
x =≈ 试
题解析:(1) 因为()f x 与3x -成反比,()g x 与7x -的平方成正比, 所以可设:()13
k f x x =-,()()2
27g x k x =-,12.00k k ≠≠,,
则()()()()2
1273
k h x f x g x k x x =+=
+--则 ………………………………………2分 因为销售价格为5元/套时,每日可售出套题21千套,销售价格为2.5元/套时,每日可售出套题69千套
所以,()()521, 3.569h h ==,即1
2124212
49269
4
k k k k ⎧+=⎪⎪⎨⎪+=⎪⎩,解得:12104k k =⎧⎨=⎩, ……………6分
所以,()()2
10473
h x x x =
+-- (37x <<) ………………………………………8分 (2) 由(1)可知,套题每日的销售量()()2
10473
h x x x =
+--,
答:当销售价格为4.3元/套时,网校每日销售套题所获得的利润最大.…………16分 考点:利用导数求函数最值。

相关文档
最新文档