2.1导数的背景.doc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的背景(5月4日)
教学目标 理解函数的增量与自变量的增量的比的极限的具体意义
教学重点 瞬时速度、切线的斜率、边际成本
教学难点 极限思想
教学过程
一、导入新课
1. 瞬时速度
问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是22
1gt s =(其中g 是重力加速度). 当时间增量t ∆很小时,从3秒到(3+t ∆)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度.
从3秒到(3+t ∆)秒这段时间内位移的增量:
222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ∆+∆=⨯-∆+=-∆+=∆ 从而,t t
s v ∆+=∆∆=-
-9.44.29. 从上式可以看出,t ∆越小,t
s ∆∆越接近29.4米/秒;当t ∆无限趋近于0时,t s ∆∆无限趋近于29.4米/秒. 此时我们说,当t ∆趋向于0时,t
s ∆∆的极限是29.4. 当t ∆趋向于0时,平均速度t s ∆∆的极限就是小球下降3秒时的速度,也叫做瞬时速度.
一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ∆)这段时间内的平均速度为
t t s t t s t s ∆-∆+=∆∆)()(. 如果t ∆无限趋近于0时,t
s ∆∆无限趋近于某个常数a ,就说当t ∆趋向于0时,t s ∆∆的极限为a ,这时a 就是物体在时刻t
的瞬时速度.
2. 切线的斜率
问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.
析:设点Q 的横坐标为1+x ∆,则点Q 的纵坐标为(1+x ∆)2,点Q 对于点
P 的纵坐标的增量(即函数的增量)22)(21)1(x x x y ∆+∆=-∆+=∆, 所以,割线PQ 的斜率x x
x x x y k PQ ∆+=∆∆+∆=∆∆=2)(22. 由此可知,当点Q 沿曲线逐渐向点P 接近时,x ∆变得越来越小,PQ k 越来越接近2;当点Q 无限接近于点P 时,即x ∆无限趋近于0时,PQ k 无限趋近于
2. 这表明,割线PQ 无限趋近于过点P 且斜率为2的直线. 我们把这条直线叫做曲线在点P 处的切线. 由点斜式,这条切线的方程为:12-=x y .
一般地,已知函数)(x f y =的图象是曲线C ,P (00,y x ),Q (y y x x ∆+∆+00,)是曲线C 上的两点,当点Q 沿曲线逐渐向点P 接近时,割线PQ 绕着点P 转动. 当点Q 沿着曲线无限接近点P ,即x ∆趋向于0时,如果割线PQ 无限趋近于一个极限位置PT ,那么直线PT 叫做曲线在点P 处的切线. 此时,割线PQ 的斜率x
y k PQ ∆∆=
无限趋近于切线PT 的斜率k ,也就是说,当x ∆趋向于0时,割线PQ 的斜率x
y k PQ ∆∆=的极限为k. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2+=q q C ,我们来研究当q =50时,产量变化q ∆对成本的影响.在本问题中,成本的增量为:222)(3300)10503(10)50(3)50()50(q q q C q C C ∆+∆=+⨯-+∆+=-∆+=∆.
产量变化q ∆对成本的影响可用:q q C ∆+=∆∆3300来刻划,q ∆越小,q C ∆∆越接近300;当q ∆无限趋近于0时,
q
C ∆∆无限趋近于300,我们就说当q ∆趋向于0时,q C ∆∆的极限是300. 我们把q
C ∆∆的极限300叫做当q =50时103)(2+=q q C 的边际成本. 一般地,设C 是成本,q 是产量,成本与产量的函数关系式为C =C (q ),当产量为0q 时,产量变化q ∆对成本的影响可用增量比q q C q q C q C ∆-∆+=∆∆)()(00刻划. 如果q ∆无限趋近于0时,q
C ∆∆无限趋近于常数A ,经济学上称A 为边际成本. 它表明当产量为0q 时,增加单位产量需付出成本A (这是实际付出成本的一个近似值).
二、小结
瞬时速度是平均速度
t s ∆∆当t ∆趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率
x
y ∆∆当x ∆趋近于0时的极限;边际成本是平均成本q C ∆∆当q ∆趋近于0时的极限. 三、练习与作业:
1. 某物体的运动方程为25)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度.
2. 判断曲线22x y =在点P (1,2)处是否有切线,如果有,求出切线的方程.
3. 已知成本C 与产量q 的函数关系式为522+=q C ,求当产量q =80时的边际成本.
4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2t h =,求t =4s 时此球在垂直方向的瞬时速度.
5. 判断曲线221x y =
在(1,2
1)处是否有切线,如果有,求出切线的方程.
6. 已知成本C 与产量q 的函数关系为742+=q C ,求当产量q =30时的边际成本. 精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。