南宁下册圆周运动单元试卷(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、第六章 圆周运动易错题培优(难)
1.如图所示,用一根长为l =1m 的细线,一端系一质量为m =1kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=30°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为T ,取g=10m/s 2。
则下列说法正确的是( )
A .当ω=2rad/s 时,T 3+1)N
B .当ω=2rad/s 时,T =4N
C .当ω=4rad/s 时,T =16N
D .当ω=4rad/s 时,细绳与竖直方向间夹角
大于45° 【答案】ACD 【解析】 【分析】 【详解】
当小球对圆锥面恰好没有压力时,设角速度为0ω,则有
cos T mg θ=
2
0sin sin T m l θωθ=
解得
053
2
rad/s 3
ω= AB .当02rad/s<ωω=,小球紧贴圆锥面,则
cos sin T N mg θθ+=
2sin cos sin T N m l θθωθ-=
代入数据整理得
(531)N T =
A 正确,
B 错误;
CD .当04rad/s>ωω=,小球离开锥面,设绳子与竖直方向夹角为α,则
cos T mg α= 2sin sin T m l αωα=
解得
16N T =,o 5
arccos 458
α=>
CD 正确。
故选ACD 。
2.如图所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的物体A 和B ,A 和B 质量都为m .它们分居在圆心两侧,与圆心距离分别为R A =r ,R B =2r ,A 、B 与盘间的动摩擦因数μ相同.若最大静摩擦力等于滑动摩擦力,当圆盘转速加快到两物体刚好还未发生滑动时,下列说法正确的是( )
A .此时绳子张力为T =3mg μ
B .此时圆盘的角速度为ω2g
r
μC .此时A 所受摩擦力方向沿半径指向圆外 D .此时烧断绳子物体A 、B 仍将随盘一块转动 【答案】ABC 【解析】 【分析】 【详解】
C .A 、B 两物体相比,B 物体所需要的向心力较大,当转速增大时,B 先有滑动的趋势,此时B 所受的静摩擦力沿半径指向圆心,A 所受的静摩擦力沿半径背离圆心,故C 正确; AB .当刚要发生相对滑动时,以B 为研究对象,有
22T mg mr μω+=
以A 为研究对象,有
2T mg mr μω-=
联立可得
3T mg μ=
2g
r
μω=
故AB 正确;
D .若烧断绳子,则A 、B 的向心力都不足,都将做离心运动,故D 错误. 故选ABC.
3.如图所示,水平的木板B 托着木块A 一起在竖直平面内做圆心为O 的匀速圆周运动,Oa 水平,从最高点b 沿顺时针方向运动到a 点的过程中( )
A.B对A的支持力越来越大
B.B对A的支持力越来越小
C.B对A的摩擦力越来越小
D.B对A的摩擦力越来越大
【答案】AD
【解析】
【分析】
【详解】
由于始终做匀速圆周运动,合力指向圆心,合力大小不变,从最高点b沿顺时针方向运动到a点的过程中,合力的水平分量越来越大,竖直向下的分量越来越小,而合力由重力,支持力和摩擦力提供,因此对A进行受力分析可知,A受到的摩擦力越来越大,B对A的支持力越来越大,因此AD正确,BC错误。
故选AD。
4.荡秋千是小朋友们喜爱的一种户外活动,大人在推动小孩后让小孩自由晃动。
若将此模型简化为一用绳子悬挂的物体,并忽略空气阻力,已知O点为最低点,a、b两点分别为最高点,则小孩在运动过程中()
A.从a到O的运动过程中重力的瞬时功率在先增大后减小
B.从a到O的运动过程中,重力与绳子拉力的合力就是向心力
C.从a到O的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能D.从a到O的运动过程中,拉力向上有分量,位移向下有分量,所以绳子拉力做了负功【答案】AC
【解析】
【分析】
【详解】
A.由题可知,a、b两点分别为最高点,所以在a、b两点人是速度是0,所以此时重力的瞬时功率为0;在最低点O时,速度方向与重力方向垂直,所以此时重力的瞬时功率为0,所以从a到O的运动过程中重力的瞬时功率在先增大后减小,故A正确;
B.从a到O的运动过程中,将重力分解为速度方向的分力和背离半径方向的分力,所以提供向心力的是重力背离半径方向的分力和绳子的拉力的合力共同提供的,故B错误;
C .根据动能定理可知,从a 到O 的运动过程中,重力与绳子拉力做的总功等于小球在此过程中获得的动能,故C 正确;
D .从a 到O 的运动过程中,绳子的拉力与人运动的速度方向垂直,所以拉力不做功,故D 错误。
故选AC 。
5.如图所示,叠放在水平转台上的物体A 、B 、C 能随转台一起以角速度ω匀速转动,A 、B 、C 的质量分别为3m 、2m 、m ,A 与B 、B 和C 与转台间的动摩擦因数都为μ,A 和B 、C 离转台中心的距离分别为r 、1.5r 。
设本题中的最大静摩擦力等于滑动摩擦力。
以下说法正确的是( )
A .
B 对A 的摩擦力一定为3μmg B .B 对A 的摩擦力一定为3mω2r
C 3g
r
μD g
r
μ【答案】BC 【解析】 【分析】 【详解】
AB .对A 受力分析,受重力、支持力以及B 对A 的静摩擦力,静摩擦力提供向心力,有
2(3)(3)f m r m g ωμ=
故A 错误,B 正确;
CD .由于A 、AB 整体、C 受到的静摩擦力均提供向心力,故对A 有
2(3)(3)m r m g ωμ
对AB 整体有
()()23232m m r m m g ωμ+≤+
对物体C 有
()21.5m r mg ωμ≤
解得
23g
r
μω≤
故C 正确,D 错误。
故选BC 。
6.如图所示,在水平圆盘上放有质量分别为m 、m 、2m 的可视为质点的三个物体A 、B 、C ,圆盘可绕垂直圆盘间的动摩擦因数均为0.1μ=,最大静摩擦力近似等于滑动摩擦力。
三个物体与中心轴O 处共线且0.2 m OA OB BC r ====。
现将三个物体用轻质细线相连,保持细线伸直且恰无张力。
若圆盘从静止开始转动,角速度ω极其缓慢地增大,重力加速度g 取210 m/s ,则对于这个过程,下列说法正确的是( )
A .A 、
B 两个物体同时达到最大静摩擦力 B .B 、
C 两个物体所受的静摩擦力先增大后不变 C .当 5 rad/s ω>时整体会发生滑动
D 2 rad/s 5 rad/s ω<<时,在ω增大的过程中B 、C 间细线的拉力不断增大 【答案】BC 【解析】 【分析】 【详解】
ABC .当圆盘转速增大时,由静摩擦力提供向心力。
三个物体的角速度相等,由
2F m r ω=
知,由于C 的半径最大,质量最大,故C 所需要的向心力增加得最快,最先达到最大静摩擦力,此时
21222C mg m r μω⋅=⋅
得
1 2.5 rad/s 2g
r
μω=
=
当C 所受的摩擦力达到最大静摩擦力之后,BC 间细线开始提供拉力,B 的摩擦力增大,达到最大静摩擦力后,AB 间细线开始有力的作用,随着角速度增大,A 所受的摩擦力将减小到零然后反向增大,当A 与B 的摩擦力也达到最大值,且B 、C 间细线的拉力大于AB 整体的摩擦力时整体将会出现相对滑动,此时A 与B 还受到细线的拉力,对C 有
2
2222T mg m r μω+⋅=⋅
对AB 整体有
2T mg μ=
得2g
r
μω,当
5 rad/s g
r
μω>
=
时,整体会发生滑动。
故A 错误,BC 正确。
D .当 2.5 rad/s 5 rad/s ω<<时,在ω增大的过程中,BC 间细线的拉力逐渐增大。
故D 错误。
故选BC 。
7.如图所示,半径分别为R 和2R 的甲、乙两薄圆盘固定在同一转轴上,距地面的高度分别为2h 和h ,两物块a 、b 分别置于圆盘边缘,a 、b 与圆盘间的动摩擦因数μ相等,转轴从静止开始缓慢加速转动,观察发现,a 离开圆盘甲后,未与圆盘乙发生碰撞,重力加速度为g ,最大静摩擦力等于滑动摩擦力,则( )
A .动摩擦因数μ一定大于
32R h
B .离开圆盘前,a 所受的摩擦力方向一定指向转轴
C .离开圆盘后,a 运动的水平位移大于b 运动的水平位移
D .若52R
h
μ=
,落地后a 、b 1114【答案】ABD 【解析】 【详解】
A .由题意可知,两物块随圆盘转动的角速度相同,当最大静摩擦力提供物体向心力时,此时的角速度为物体随圆盘做圆周运动的最大角速度,为临界角速度,根据牛顿第二定律得
2b b b 2m g m R μω=
解得b 物体滑离圆盘乙的临界角速度为
b 2g
R μω=
同理可得,a 物块的临界角速度为
a g
R
μω=
由几何知识知,物体a 滑离圆盘时,其位移的最小值为
22min (2)3x R R R =-=
由题意知,其未与圆盘乙相碰,根据平抛运动规律可知
a a min x R t R x ωω=⋅=>= 解得
32R h
μ>
所以A 正确;
B .离开圆盘前,a 随圆盘一起做匀速圆周运动,由静摩擦力来提供向心力,所以a 所受的摩擦力方向一定指向转轴,B 正确;
C .由于
b a ωω<
所以一定是b 物块先离开圆盘,离开圆盘后,物块做平抛运动,对b 物体的水平位移为
b b b 2x v t R ω===同理可得,a 物体的水平位移为
a a a a x v t R t R ωω''==⋅==故离开圆盘后a 的水平位移等于
b 的水平位移,所以C 错误; D .当
52R h
μ=
时 a 的落地点距转轴的距离为
1x ==
同理,b 的落地点距转轴的距离为
2x ==
故
12x x = 所以D 正确。
故选ABD 。
8.如图所示,在水平转台上放置有轻绳相连的质量相同的滑块1和滑块2,转台绕转轴OO ′以角速度ω匀运转动过程中,轻绳始终处于水平状态,两滑块始终相对转台静止,且与转台之间的动摩擦因数相同,滑块1到转轴的距离小于滑块2到转轴的距离.关于滑块1和滑块2受到的摩擦力f 1和f 2与ω2的关系图线,可能正确的是
A .
B .
C .
D .
【答案】AC 【解析】 【详解】
两滑块的角速度相等,根据向心力公式F=mrω2,考虑到两滑块质量相同,滑块2的运动半径较大,摩擦力较大,所以角速度增大时,滑块2先达到最大静摩擦力.继续增大角速度,滑块2所受的摩擦力不变,绳子拉力增大,滑块1的摩擦力减小,当滑块1的摩擦力减小到零后,又反向增大,当滑块1摩擦力达到最大值时,再增大角速度,将发生相对滑动.故滑块2的摩擦力先增大达到最大值不变.滑块1的摩擦力先增大后减小,在反向增大.故A 、C 正确,B 、D 错误.故选AC .
9.A 、B 、C 三个物体放在旋转圆台上,它们由相同材料制成,A 的质量为2m ,B 、C 的质量各为m .如果OA=OB=R ,OC=2R ,则当圆台旋转时(设A 、B 、C 都没有滑动),下述结论中正确的是( )
A .物体A 向心加速度最大
B .B 物静摩擦力最小
C .当圆台旋转转速增加时,C 比B 先开始滑动
D .当圆台旋转转速增加时,A 比B 先开始滑动 【答案】BC 【解析】
A 、三个物体都做匀速圆周运动,角速度相等,向心加速度2
n a r ω=,可见,半径越大,
向心加速度越大,所以C 物的向心加速度最大,A 错误; B 、三个物体的合力都指向圆心,对任意一个受力分析,如图
支持力与重力平衡,由静摩擦力f 提供向心力,则得 f n F =. 根据题意,222C A B r r r R ===
由向心力公式2
m n F r ω=,得三个物体所受的静摩擦力分别为:
()2222A f m R m R ωω==,
2B f m R ω=.
()2222C f m R m R ωω==,
故B 物受到的静摩擦力最小,B 正确;
C 、
D 当ω变大时,所需要的向心力也变大,当达到最大静摩擦力时,物体开始滑动.当转速增加时,A 、C 所需向心力同步增加,且保持相等.B 所需向心力也都增加,A 和C 所需的向心力与B 所需的向心力保持2:1关系.由于B 和C 受到的最大静摩擦力始终相等,都比A 小,所以C 先滑动,A 和B 后同时滑动,C 正确;D 错误;故选BC .
10.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿于环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳能承受的最大拉力为2mg .重力加速度的大小为g ,当圆环以角速度ω绕竖直直径转动时,下列说法错误的是( )
A .圆环角速度ωg
R
时,小球受到2个力的作用 B .圆环角速度ω2g
R
C .圆环角速度ω等于2
g
R
D .圆环角速度ω6g
R
2个力的作用 【答案】C
【解析】 【分析】 【详解】
A 、
B 、设角速度ω在0~ω1范围时绳处于松弛状态,球受到重力与环的弹力两个力的作用,弹力与竖直方向夹角为θ,则有mg tan θ=mR sin θ·ω2,即cos g
R ωθ
=,当绳恰好
伸直时,θ=60°,对应12g
R
ω=
,A 、B 正确. 设在ω1<ω<ω2时绳中有张力且小于2mg ,此时有F N cos 60°=mg +F T cos 60°,F N sin 60°+F T sin 60°=mω2R sin 60°,当F T 取最大值2mg 时代入可得26g R ω=
,即当6g R
ω>时绳将断裂,小球又只受到重力、环的弹力两个力的作用,C 错误,D 正确. 本题选错误的故选C. 【点睛】
本题主要考查了圆周运动向心力公式的应用以及同学们受力分析的能力,要求同学们能找出临界状态并结合几何关系解题.
11.如图所示,一个内壁光滑的弯管处于竖直平面内,其中管道半径为R . 现有一个半径略小于弯管横截面半径的光滑小球在弯管里运动,当小球通过最高点时速率为v 0,则下列说法中错误的是
A .若0v gR
B .若0v gR >
,则小球对管内上壁有压力 C .若00v gR <<
D .不论v 0多大,小球对管内下壁都有压力
【答案】D 【解析】 【分析】 【详解】
A .到达管道的最高点,假设恰好与管壁无作用力.则有:小球仅受重力,由重力提供向心力,即:
2
v mg m R
=
得
0v gR =
所以A 选项是正确的,不符合题意. B .当0v gR >,则小球到达最高点时,有离心的趋势,与内上壁接触,从而受到内上壁向下
的压力,所以小球对管内上壁有压力,故B 选项是正确的,不符合题意. C .当00v gR <<,则小球到达最高点时, 有向心的趋势,与内下壁接触,从而受到内下壁
的压力.所以C 选项是正确的,不符合题意. D .小球对管内壁的作用力,要从速度大小角度去分析.,若0v gR >
,则小球对管内上壁有压力;若00v gR <<,则小球对管内下壁有压力.故D 不正确,符合题意.
12.如图所示,放于竖直面内的光滑金属细圆环半径为R ,质量为m 的带孔小球穿在环上,同时有一长为R 的细绳一端系于球上,另一端系于圆环最低点,绳上的最大拉力为2mg ,当圆环以角速度ω绕竖直直径转动,且细绳伸直时,则ω不可能...
为( )
A .2g R
B .2g R
C .6g R
D .7g R
【答案】D
【解析】
【分析】
【详解】
因为圆环光滑,所以小球受到重力、环对球的弹力、绳子的拉力等三个力。
细绳要产生拉力,绳要处于拉伸状态,根据几何关系可知,此时细绳与竖直方向的夹角为60°,如图所示
当圆环旋转时,小球绕竖直轴做圆周运动,向心力由三个力在水平方向的合力提供,其大小为
2F m r ω=
根据几何关系,其中
sin60r R ︒=
一定,所以当角速度越大时,所需要的向心力越大,绳子拉力越大,所以对应的临界条件是小球在此位置刚好不受拉力,此时角速度最小,需要的向心力最小,对小球进行受力分析得
min tan60F mg ︒=
即
2min tan60sin60mg m R ω︒︒=
解得
min ω=
当绳子的拉力达到最大时,角速度达到最大, m max N ax 606sin sin 0F T F ︒=+︒
N max cos cos 6060T mg F =︒︒+
可得
max g F =
同理可知,最大角速度为
max ω=
ω≤≤范围内,故选D 。
13.小明撑一雨伞站在水平地面上,伞面边缘点所围圆形的半径为R ,现将雨伞绕竖直伞杆以角速度ω匀速旋转,伞边缘上的水滴落到地面,落点形成一半径为r 的圆形,当地重力加速度的大小为g ,根据以上数据可推知伞边缘距地面的高度为( )
A .2222()2g r R R
ω- B .2222()2g r R r ω- C .222()2g r R R ω- D .222
2gr R ω 【答案】A
【解析】
【分析】
【详解】 雨点甩出后做平抛运动,竖直方向有
h =12
gt 2
t=2h g
水平方向初速度为雨伞边缘的线速度,所以 v 0=ωR
雨点甩出后水平方向做匀速直线运动
x=v 0t =ωR 2h g
伞边缘上的水滴落到地面,落点形成一半径为r 的圆形,根据几何关系可知水平距离为
x =22r R -
所以
22r R -=ωR
2h g
解得 h =2222
()2g r R R ω- 故选A.
点评:本题就是对平抛运动规律的考查,平抛运动可以分解为在水平方向上的匀速直线运动,和竖直方向上的自由落体运动来求解.
14.如图所示,一个半径为R 的实心圆盘,其中心轴与竖直方向的夹角为30︒,开始时,圆盘静止,其上表面覆盖着一层灰尘,没有掉落。
现将圆盘绕其中心轴旋转,其角速度从零缓慢增大至ω,此时圆盘表面上的灰尘75%被甩掉。
设灰尘与圆盘间的动摩擦因数为μ=32
,重力加速度为g ,则ω的值为( )
A 2g R
B 32g R
C 52g R
D g R
【答案】A
【解析】
【分析】
【详解】
越靠近边缘的灰尘越容易被甩掉,剩余的灰尘半径为r ,则
22(175%)R r ππ-=
解得
1
2
r R
=
在圆盘的最低点,根据牛顿的第二定律
2
cos sin
mg mg m r
μθθω
-=
解得
2
g
R
ω=
A正确,BCD错误。
故选A。
15.如图是德国物理学家史特恩设计的最早测定气体分子速率的示意图.M、N是两个共轴圆筒的横截面,外筒N的半径为R,内筒的半径比R小得多,可忽略不计.筒的两端封闭,两筒之间抽成真空,两筒以相同角速度ω绕其中心轴线匀速转动.M筒开有与转轴平行的狭缝S,且不断沿半径方向向外射出速率分别为v1和v2的分子,分子到达N筒后被吸附,如果R、v1、v2保持不变,ω取某合适值,则以下结论中正确的是()
A.当
12
2
R R
n
V V
π
ω
-≠时(n为正整数),分子落在不同的狭条上
B.当
12
2
R R
n
V V
π
ω
+=时(n为正整数),分子落在同一个狭条上
C.只要时间足够长,N筒上到处都落有分子
D.分子不可能落在N筒上某两处且与S平行的狭条上
【答案】A
【解析】
微粒从M到N运动时间
R
t
v
=,对应N筒转过角度
R
t
v
ω
θω
==,即如果以v1射出时,转过
角度:1
1
R
t
v
ω
θω
==,如果以v
2射出时,转过角度:2
2
R
t
v
ω
θω
==,只要θ
1、θ2不是相差2π的整数倍,即当
12
2
R R
n
v v
π
ω
-≠
时(n为正整数),分子落在不同的两处与S平行的狭条上,故A正确,D错误;若相差2π的
整数倍,则落在一处,即当
122
R R
n v v πω
-=
时(n为正整数),分子落在同一个狭条上.故B错误;若微粒运动时间为N筒转动周期的整数倍,微粒只能到达N筒上固定的位置,因此,故C错误.故选A
点睛:
解答此题一定明确微粒运动的时间与N筒转动的时间相等,在此基础上分别以v1、v2射出时来讨论微粒落到N筒上的可能位置.。