【物理】高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【物理】高考必备物理带电粒子在磁场中的运动技巧全解及练习题(含答案)
一、带电粒子在磁场中的运动专项训练
1.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为
26qB L
m
;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A
发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.
(1)求碰撞后A 球的速度大小;
(2)若A 从ed 边离开磁场,求k 的最大值;
(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间.
【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或1
3
k =;32m t qB π=
【解析】 【分析】 【详解】
(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m
= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222
kmv kmv mv =+ 解得:A 21k qBL v k m
=
⋅+
(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2
A A mv qv
B R
= 解得:21
k
R L k =
+ 由公式可得R 越大,k 值越大
如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =
(3)令z 点为ed 边的中点,分类讨论如下:
(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有
222()(1.5)2
L
R L R =+-
解得:56
L R = 由21k R L k =
+可得:5
7
k =
(II )由图可知A 球能从z 点离开磁场要满足2
L
R ≥
,则A 球在磁场中还可能经历一次半
圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开. 如图3和如图4,由几何关系有:2
2
23()(3)2
2
L R R L =+- 解得:58L R =或2
L R = 由21k R L k =
+可得:511k =或13
k = 球A 在电场中克服电场力做功的最大值为222
6m q B L W m
=
当511k =时,A 58qBL v m =,由于2222222
A 12521286q
B L q B L mv m m
⋅=>
当13k =时,A 2qBL v m =,由于2222222
A 1286q
B L q B L mv m m
⋅=<
综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或1
3
k = A 球在磁场中运动周期为2m
T qB
π= 当13k =时,如图4,A 球在磁场中运动的最长时间34
t T = 即32m
t qB
π=
2.如图所示,在xOy 平面内,以O ′(0,R )为圆心,R 为半径的圆内有垂直平面向外的匀强磁场,x 轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x 轴成45°角倾斜放置的挡板PQ ,P ,Q 两点在坐标轴上,且O ,P 两点间的距离大于2R ,在圆形磁场的左侧0<y <2R 的区间内,均匀分布着质量为m ,电荷量为+q 的一簇带电粒子,当所有粒子均沿x 轴正向以速度v 射入圆形磁场区域时,粒子偏转后都从O 点进入x 轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:
(1)磁场的磁感应强度B 的大小; (2)挡板端点P 的坐标;
(3)挡板上被粒子打中的区域长度.
【答案】(1)mv
qR (2)(21),0R ⎡⎤+⎣⎦ (3)21042R +- 【解析】 【分析】 【详解】
(1)设一粒子自磁场边界A 点进入磁场,该粒子由O 点射出圆形磁场,轨迹如图甲所示,过A 点做速度的垂线长度为r ,C 为该轨迹圆的圆心.连接AO ˊ、CO ,可证得ACOO ˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r =R ,
由2
v qvB m r
=
得:mv B qR
=
(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点
2DP R =(21)OP R =
P 点的坐标为((21)R ,0 )
(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①
过O 点做挡板的垂线交于G 点,
22(21)(1)OG R R =+⋅
=+② 225-22=2
FG OF OG R
=-③
2
2
EG R =
④ 挡板上被粒子打中的区域长度l =FE =
2R +5-222R =2+10-42R ⑤
3.如图所示,两块平行金属极板MN 水平放置,板长L =" 1" m .间距d =
3
m ,两金属板间电压U MN = 1×104V ;在平行金属板右侧依次存在ABC 和FGH 两个全等的正三角形区域,正三角形ABC 内存在垂直纸面向里的匀强磁场B 1,三角形的上顶点A 与上金属板M 平齐,BC 边与金属板平行,AB 边的中点P 恰好在下金属板N 的右端点;正三角形FGH 内存在垂直纸面向外的匀强磁场B 2,已知A 、F 、G 处于同一直线上.B 、C 、H 也处于同一直
线上.AF 两点距离为
2
3
m .现从平行金属极板MN 左端沿中心轴线方向入射一个重力不计的带电粒子,粒子质量m = 3×10-10kg ,带电量q = +1×10-4C ,初速度v 0= 1×105m/s .
(1)求带电粒子从电场中射出时的速度v 的大小和方向
(2)若带电粒子进入中间三角形区域后垂直打在AC 边上,求该区域的磁感应强度B 1 (3)若要使带电粒子由FH 边界进入FGH 区域并能再次回到FH 界面,求B 2应满足的条件. 【答案】(1)523
10/m s ⨯;垂直于AB 方向出射.(2)33
10
T (3)
235T + 【解析】
试题分析:(1)设带电粒子在电场中做类平抛运动的时间为t ,加速度为a , 则:U q
ma d =解得:102310/qU a m s md ==⨯ 50
110L
t s v -=
=⨯ 竖直方向的速度为:v y =at =3
×105m/s 射出时速度为:225023
10/3
y v v v m s =
+=
⨯ 速度v 与水平方向夹角为θ,0
3
tan y v v θ=
=
,故θ=30°,即垂直于AB 方向出射. (2)带电粒子出电场时竖直方向的偏转的位移213262
d y at m ===,即粒子由P 1点垂直AB 射入磁场,
由几何关系知在磁场ABC 区域内做圆周运动的半径为12
cos303
d R m =
=o
由2
11
v B qv m R =
知:1133
mv B T qR =
= (3)分析知当轨迹与边界GH 相切时,对应磁感应强度B 2最大,运动轨迹如图所示:
由几何关系得:2
21sin 60
R R o
+
= 故半径2(233)R m =
又2
22
v B qv m R =
故
223 5
B T
+
=
所以B2应满足的条件为大于
23
5
T
+
.
考点:带电粒子在匀强磁场中的运动.
4.如图所示,在第一象限内存在匀强电场,电场方向与x轴成45°角斜向左下,在第四象
限内有一匀强磁场区域,该区域是由一个半径为R的半圆和一个长为2R、宽为
2
R
的矩形组成,磁场的方向垂直纸面向里.一质量为m、电荷量为+q的粒子(重力忽略不计)以速度v从Q(0,3R)点垂直电场方向射入电场,恰在P(R,0)点进入磁场区域.
(1)求电场强度大小及粒子经过P点时的速度大小和方向;
(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;
(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?
【答案】(1)
2
2mv
E=2v,速度方向沿y轴负方向
(2)
8222
5
mv mv
B
qR qR
≤≤(3)
)
271
3
mv
qR
【解析】
【分析】
【详解】
(1)在电场中,粒子沿初速度方向做匀速运动
1
3
2cos4522
cos45
R
L R R
=-︒=
︒
1
L vt
=
沿电场力方向做匀加速运动,加速度为a
2
2sin452
L R R
=︒=
2
2
1
2
L at
=
qE
a
m
=
设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'
1
v v
=、
2
v at
=,2
tan
v
v
θ=
联立可得
2
2
4
mv
E
qR
=
进入磁场的速度22
12
2
v v v v
=+=
'
45
θ=︒,速度方向沿y轴负方向
(2)由左手定则判定,粒子向右偏转,当粒子从A点射出时,运动半径
12
R
r=
由
2
1
1
mv
qv B
r
=
'
'得
1
22mv
B
qR
=
当粒子从C点射出时,由勾股定理得
()2
22
22
2
R
R r r
⎛⎫
-+=
⎪
⎝⎭
解得
2
5
8
r R
=
由
2
2
2
mv
qv B
r
=
'
'得
2
82
5
mv
B
qR
=
根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当
8222
5
mv mv
B
qR qR
≤≤时,粒子从AC边界射出
(3)为使粒子不再回到电场区域,需粒子在CD区域穿出磁场,设出磁场时速度方向平行
于x轴,其半径为3r,由几何关系得
2
22 33
2
R
r r R
⎛⎫
+-
=
⎪
⎝⎭
解得
()
3
71
4
R
r
+
=
由
2
3
3
mv
qv B
r
=
'
'得
()
3
2271
3
mv
B
qR
-
=
磁感应强度小于3B,运转半径更大,出磁场时速度方向偏向x轴下方,便不会回到电场中
5.如图所示,平面直角坐标系xoy的第二、三象限内有方向沿y轴正向的匀强电场,第一、四象限内有圆形有界磁场,有界磁场的半径为当
2
2
L,磁扬场的方向垂直于坐标平面向里,磁场边界与y轴相切于O点,在x轴上坐标为(-L,0)的P点沿与x轴正向成θ=45°方向射出一个速度大小为v0的带电粒子,粒子的质量为m,电荷量为q,粒子经电场偏转垂直y轴射出电场,粒子进人磁场后经磁场偏转以沿y轴负方向的速度射出磁场,不计粒子的重力.求
(1)粒子从y轴上射出电场的位置坐标;
(2)匀强电场电场强度大小及匀强磁场的磁感应强度大小;
(3)粒子从P点射出到出磁场运动的时间为多少?
【答案】(1)(0,1
2
L)(2)
2
2
mv
E
qL
=0
2
2
mv
B
qL
=(3)
00
2(1)
2
L L
t
v v
π
+
=+
【解析】
【分析】
(1)粒子在电场中的运动为类平抛运动的逆过程,应用类平抛运动规律可以求出粒子出射位置坐标.
(2)应用牛顿第二定律求出粒子在电场中的加速度,应用位移公式求出电场强度;粒子在磁场中做圆周运动,应用牛顿第二定律可以求出磁感应强度.
(3)根据粒子运动过程,求出粒子在各阶段的运动时间,然后求出总的运动时间.
【详解】
(1)粒子在电场中的运动为类平抛运动的逆运动,
水平方向:L=v0cosθ•t1,
竖直方向:y=
1
2
v0sinθ•t1,
解得:y=
1
2
L,
粒子从y轴上射出电场的位置为:(0,
1
2
L);
(2)粒子在电场中的加速度:a=qE
m
,
竖直分位移:y=
1
2
a t12,
解得:
2
2
mv
E
qL
=;
粒子进入磁场后做匀速圆周运动,粒子以沿y轴负方向的速度射出磁场,粒子运动轨迹运动轨迹如图所示,
由几何知识得:AC与竖直方向夹角为45°,
2y=
2
2
L,
因此AAC刚好为有界磁场边界圆的直径,粒子在磁场中做圆周运动的轨道半径:r=L,
粒子在磁场中做圆周运动,由牛顿第二定律得:qvB=m
2
v
r
,
其中,粒子的速度:v=v 0cosθ, 解得:0
22mv B qL
=
; (3)粒子在电场中的运动时间:
100
2L L
t v cos v θ=
=
, 粒子离开电场进入磁场前做匀速直线运动,位移:21
22
x L L =-, 粒子做运动直线运动的时间:20
(22)2x L t v v -=
=
, 粒子在磁场中做圆周运动的时间:30
1122442m L
t T qB v ππ=
=⨯=
, 粒子总的运动时间:t=t 1+t 2+t 3=()00
212L L
v v π++
; 【点睛】
本题考查了带电粒子在磁场中运动的临界问题,粒子在磁场中的运动运用洛伦兹力提供向心力结合几何关系求解,类平抛运动运用运动的合成和分解牛顿第二定律结合运动学公式求解,解题关键是要作出临界的轨迹图,正确运用数学几何关系,分析好从电场射入磁场衔接点的速度大小和方向,运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间.
6.如图为一装放射源氡的盒子,静止的氡核经过一次α衰变成钋Po ,新核Po 的速率约为2×105m/s .衰变后的α粒子从小孔P 进入正交的电磁场区域Ⅰ,且恰好可沿中心线匀速通过,磁感应强度B =0.1T .之后经过A 孔进入电场加速区域Ⅱ,加速电压U =3×106V .从区域Ⅱ射出的α粒子随后又进入半径为r =
3
m 的圆形匀强磁场区域Ⅲ,该区域磁感应强度B 0=0.4T 、方向垂直纸面向里.圆形磁场右边有一竖直荧光屏与之相切,荧光屏的中心点M 和圆形磁场的圆心O 、电磁场区域Ⅰ的中线在同一条直线上,α粒子的比荷为
q
m
=5×107C/kg .
(1)请写出衰变方程,并求出α粒子的速率(保留一位有效数字);
(2)求电磁场区域Ⅰ的电场强度大小; (3)粒子在圆形磁场区域Ⅲ的运动时间多长? (4)求出粒子打在荧光屏上的位置. 【答案】(1)
2222184
86
842Rn Po He →
+ 1×107 m/s
(2)1×106V/m (3)
6
π
×10-7s (4)打在荧光屏上的M 点上方1 m 处 【解析】 【分析】
(1)根据质量数守恒和电荷数守恒写出方程,根据动量守恒求解速度; (2)根据速度选择器的原理求解电场强度的大小;
(3)粒子在磁场中匀速圆周运动,并结合几何知识进行求解即可; 【详解】
(1)根据质量数守恒和电荷数守恒,则衰变方程为:
2222184
86
842Rn Po He →
+ ①
设α粒子的速度为0v ,则衰变过程动量守恒:100Po He m v m v =- ②
联立①②可得:7
0110/v m s =⨯ ③
(2)α粒子匀速通过电磁场区域Ⅰ:0qE qv B =④ 联立③④可得:6110/E V m =⨯ ⑤ (3)α粒子在区域Ⅱ被电场加速:2201122
qU mv mv =- 所以得到:7210/v m s =⨯⑥
α粒子在区域Ⅲ中做匀速圆周运动: 2v qvB m R
= 所以轨道半径为:1R m =⑦ 而且:2R
T v
π=
⑧ 由图根据几何关系可知:α粒子在磁场中偏转角60θ=︒,所以α粒子在磁场中的运动时
间1
6
t T =
⑨ 联立⑧⑨可得:7106
t s π
=
⨯-;
(4)α粒子的入射速度过圆心,由几何关系可知,出射速度方向也必然过圆心O ,几何关系如图: 60x
tan r
︒=
,所以1x m =,α粒子打在荧光屏上的M 点上方1m 处.
【点睛】
本题实质是考查带电粒子在电场和磁场中的运动,解决类似习题方法是洛伦兹力提供向心力,同时结合几何知识进行求解,同时画出图形是解题的关键.
7.如图所示,y,N为水平放置的平行金属板,板长和板间距均为2d.在金属板左侧板间中点处有电子源S,能水平发射初速为V0的电子,电子的质量为m,电荷量为e.金属板右侧有两个磁感应强度大小始终相等,方向分别垂直于纸面向外和向里的匀强磁场区域,两磁场的宽度均为d.磁场边界与水平金属板垂直,左边界紧靠金属板右侧,距磁场右边界d处有一个荧光屏.过电子源S作荧光屏的垂线,垂足为O.以O为原点,竖直向下为正方向,建立y轴.现在y,N两板间加上图示电压,使电子沿SO方向射入板间后,恰好能够从金属板右侧边缘射出.进入磁场.(不考虑电子重力和阻力)
(1)电子进人磁场时的速度v;
(2)改变磁感应强度B的大小,使电子能打到荧光屏上,求
①磁场的磁感应强度口大小的范围;
②电子打到荧光屏上位置坐标的范围.
【答案】(1)
2v,方向与水平方向成45°
(2)①
()0
12mv
B
ed
+
<,②4224
d d d
-→
【解析】
试题分析:(1)电子在MN间只受电场力作用,从金属板的右侧下边沿射出,有(1分)
(1分)
(1分)
(1分)
解得(1分)
速度偏向角
(1分)
(1分)
(2)电子恰能(或恰不能)打在荧光屏上,有磁感应强度的临界值0B ,此时电子在磁场中作圆周运动的半径为R
(2分) 又有2
0mv qvB R
=(2分)
由⑦⑧解得:00(12)m
B v ed
+=
(1分) 磁感应强度越大,电子越不能穿出磁场,所以取磁感应强度0(12)m
B v ed
+<时电子能打
在荧光屏上(得0(12)m
B v ed
+≤
不扣分). (1分) 如图所示,电子在磁感应强度为0B 时,打在荧光屏的最高处,由对称性可知,电子在磁场右侧的出射时速度方向与进入磁场的方向相同,
即. (1分)
出射点位置到SO 连线的垂直距离
12sin 45y d R =-︒(1分)
电子移开磁场后做匀速直线运动,则电子打在荧光屏的位置坐标
021tan 45y y d =+(1分)
解得2422y d d =-(1分)
当磁场的磁感应强度为零时,电子离开电场后做直线运动,打在荧光屏的最低点,其坐标
为0
33tan 454y d d d =+=(1分)
电子穿出磁场后打在荧光民屏上的位置坐标范围为:
4
22 d
d
-到4d(2分)
考点:带电粒子在磁场中受力运动.
8.如图所示,在竖直平面内有一直角坐标系xOy,在直角坐标系中y轴和x=L之间有沿y 轴正方向的匀强电场,电场强度大小为E,在电场的右侧以点(3L,0)为圆心、L为半径的圆形区域内有垂直于坐标平面向里的匀强磁场,磁感应强度大小为B,在y轴上A点(0,L)处沿x轴正方向射出一质量为m、电荷量为q的带负电的粒子,粒子经电场偏转后,沿半径方向射入磁场,并恰好竖直向下射出磁场,粒子的重力忽略不计,求:(结果可含根式)
(1)粒子的初速度大小;
(2)匀强磁场的磁感应强度大小.
【答案】(1)
5
2
qEL
m
(2)
29102290
50
mE
qL
-
【解析】
【详解】
(1)粒子射入电场中并在电场中发生偏转,由于能沿半径方向进入磁场,因此其处电场后的轨迹如图所示,出电场后的速度方向的反向延长线交于在电场运动的水平位移的中点:
则由几何关系可知粒子在电场中的竖直位移y满足
1
2
2
L
y
L y L
=
-
解得
1
5
y L
=
竖直方向
212y a t
=
水中方向
0L t v =
在电场中根据牛顿第二定律
qE ma =
联立可以得到
0v =
(2)设粒子进磁场时的轨迹与磁场边界交点为C ,由于粒子出磁场时方向沿y 轴负方向,因此粒子在磁场中做圆周运动的圆心在2O 点,连接2O 和C 点,交x 轴与D 点,做2O F 垂直x 轴,垂直为F . 由几何关系
452L
CD L L
=
解得
2
5
CD L =
由于21O F O C L ==,故2O FD ∆与1O CD ∆全等,可以得到
21O D O D =
则
1O D ==
因此粒子在磁场中做圆周运动的半径为
2R O D CD =+=
粒子出电场时速度沿y 轴负方向的分速度
y v ==
因此粒子进磁场时的速度为
v ==
粒子在磁场中做匀速圆周运动有
2
qvB m R
v =
解得
()
52929102290
5010229
mE mE
B qL qL
-=
=+ 点睛:本题考查了粒子在电场与磁场中的运动,分析清楚 粒子运动过程、作出粒子运动轨迹是解题的前提与关键,应用类平抛运动规律、牛顿第二定律即可解题.
9.(20分)如图所示,平面直角坐标系xOy 的第二象限内存在场强大小为E ,方向与x 轴平行且沿x 轴负方向的匀强电场,在第一、三、四象限内存在方向垂直纸面向里的匀强磁场。
现将一挡板放在第二象限内,其与x,y 轴的交点M 、N 到坐标原点的距离均为2L 。
一质量为m ,电荷量绝对值为q 的带负电粒子在第二象限内从距x 轴为L 、距y 轴为2L 的A 点由静止释放,当粒子第一次到达y 轴上C 点时电场突然消失。
若粒子重力不计,粒子与挡板相碰后电荷量及速度大小不变,碰撞前后,粒子的速度与挡板的夹角相等(类似于光反射时反射角与入射角的关系)。
求:
(1)C 点的纵坐标。
(2)若要使粒子再次打到档板上,磁感应强度的最大值为多少?
(3)磁感应强度为多大时,粒子从A 点出发与档板总共相碰两次后到达C 点?这种情况下粒子从A 点出发到第二次到达C 点的时间多长? 【答案】(1)3L ;(2)qL mE B 221=;(3)qL Em B 2322=;9(2)24mL
t qE
π+=总 【解析】
试题分析:(1)设粒子到达挡板之前的速度为v 0
有动能定理 202
1
mv qEL =
(1分) 粒子与挡板碰撞之后做类平抛运动
在x 轴方向 2
2t m
qE L = (1分) 在y 轴方向 t v y 0= (1分) 联立解得 L y 2=
C 点的纵坐标为L L y 3=+ (1分) (2)粒子到达C 点时的沿x 轴方向的速度为m
qEL
at v x
2=
= (1分) 沿y 轴方向的速度为m
qEL
v v y 20== (1分)
此时粒子在C 点的速度为m
qEL
v 2= (1分) 粒子的速度方向与x 轴的夹角 x
y v v =
θtan ο
45=θ (1分)
磁感应强度最大时,粒子运动的轨道半径为 L r 2
2
1= (2分)
根据牛顿第二定律 1
2
1r v m qvB = (1分)
要是粒子再次打到挡板上,磁感应强度的最大值为 qL
mE
B 22
1= (1分) (3)当磁感应强度为B 2时,粒子做半径为r 2的圆周运动到达y 轴上的O 点,之后做直线运动打到板上,L r 2
2
32=
(2分) 此时的磁感应强度为qL
Em
B 2322=
(1分)
此后粒子返回到O 点,进入磁场后做匀速圆周运动,由对称性可知粒子将到达D 点,接着做直线运动到达C 点 从A 到板,有2121t m Eq L =
qE
mL
t 21= (1分)
在磁场中做圆周运动的时间 qE
mL
T t 249232π==
(1分) 从O 到板再返回O 点作直线运动的时间qE
mL
t 23=
(1分) 从x 轴上D 点做匀速直线运动到C 点的时间为qE
mL
t 2234= (1分)
总时间为qE
mL
t t t t t t 24)2(94321π+=
++++=总 (1分)
考点:带电粒子在磁场中的运动,牛顿第二定律,平抛运动。
10.
如图所示,在0≤x ≤a 、0≤y ≤
2
a
范围内有垂直于xy 平面向外的匀强磁场,磁感应强度大小为B .坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为q 的带正电粒子,它们的速度大小相同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~90o 范围内.己知粒子在磁场中做圆周运动的半径介于
2
a
到a 之间,从发射粒子到粒子全部离开磁场经历的时间恰好为粒子在磁场中做圆周运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时的: (1)速度的大小;
(2)速度方向与y 轴正方向夹角的正弦.
【答案】(1)6(2)
aqB
v m
=;(2)66sin α-= 【解析】 【分析】
(1)根据题意,粒子运动时间最长时,其回旋的角度最大,画出运动轨迹,根据几何关系列出方程求解出轨道半径,再根据洛伦兹力提供向心力得出速度大小;(2)最后离开磁场的粒子,其运动时间最长,即为第一问中轨迹,故可以根据几何关系列出方程求解出其速度方向与y 轴正方向夹角的正弦. 【详解】
设粒子的发射速度为v ,粒子做圆周运动的轨道半径为R ,根据洛伦兹力提供向心力,得
2
v qvB m R
=
解得
mv R qB
=
当
2
a
<R <a 时,在磁场中运动的时间最长的粒子,其轨迹是圆心为C 的圆弧,圆弧与磁场的边界相切,如图所示,设该粒子在磁场中运动的时间为t ,依题意t =4
T
,回旋角度为∠OCA =
π
2
,设最后离开磁场的粒子的发射方向与y 轴正方向的夹角为α,由几何关系得 sin 2
a R R α=-
sin cos R a R αα=-
sin 2α+cos 2α=1
解得
62 2R a ⎛⎫=- ⎪ ⎪⎝⎭ 622aqB v m ⎛⎫=- ⎪ ⎪⎝⎭ 66
sin α-=
故最后离开磁场的粒子从粒子源射出时的速度大小为62aqB
v m ⎛⎫=- ⎪ ⎪⎝⎭
.
(2)由第一问可知,最后离开磁场的粒子从粒子源射出时的速度方向与y 轴正方向夹角的正弦为66
sin 10
α-=
.
【点评】
本题关键是画出运动时间最长的粒子的运动轨迹,然后根据几何关系得到轨道半径,再根据洛仑兹力提供向心力得到速度大小.
11.如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 正方向;在第Ⅳ象限的正三角形abc 区域内有匀强电场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行。
一质量为m 、电荷量为q 的粒子,从y 轴上的P (0,h )点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a (2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力。
求:
(1)电场强度E 的大小;
(2)粒子到达a 点时速度的大小和方向; (3)abc 区域内磁场的磁感应强度B 的最小值。
【答案】(1)2
2mv E qh
=;(2)02v v =,方向与x 轴的夹角为45°;(3)02mv B qL =
【解析】 【详解】
(1)设粒子在电场中运动的时间为t , 则有x=v 0t=2h ,
2
12
y h at ==
qE=ma ,
联立以上各式可得20
2mv E qh
= ;
(2)粒子达到a 点时沿负y 方向的分速度为v y =at=v 0, 所以2
2
002y v v v v =+=
,
方向指向第IV 象限与x 轴正方和成45o 角;
(3)粒子在磁场中运动时,有2
mv qvB r
= ,
当粒子从b 点射出时,磁场的磁感应强度为最小值,此时有2
r L =
,
所以磁感应强度B 的最小值0
2mv B qL
=
12.如图所示,匀强磁场的磁感应强度大小为B .磁场中的水平绝缘薄板与磁场的左、右边界分别垂直相交于M 、N ,MN =L ,粒子打到板上时会被反弹(碰撞时间极短),反弹前后水平分速度不变,竖直分速度大小不变、方向相反.质量为m 、电荷量为-q 的粒子速度一定,可以从左边界的不同位置水平射入磁场,在磁场中做圆周运动的半径为d ,且d <L ,粒子重力不计,电荷量保持不变. (1)求粒子运动速度的大小v ;
(2)欲使粒子从磁场右边界射出,求入射点到M 的最大距离d m ; (3)从P 点射入的粒子最终从Q 点射出磁场,PM =d ,QN =2
d
,求粒子从P 到Q 的运动时间t .
【答案】(1)qBd v m =
;(2)m 23d +=;(3)A.当3
1L nd d =+-(时, 334π2L m t d qB -=(),B.当3
L nd d =+(时, 334π2L m t d qB -=()
【解析】 【分析】 【详解】
(1)粒子在磁场中做匀速圆周运动由洛伦兹力提供向心力有:
2
v qvB m R
=,解得:mv R qB = 由题可得:R d = 解得qBd
v m
=
; (2)如图所示,粒子碰撞后的运动轨迹恰好与磁场左边界相切
由几何关系得d m =d (1+sin60°) 解得m 23
d d +=
(3)粒子的运动周期2πm
T qB
=
设粒子最后一次碰撞到射出磁场的时间为t ',则 (1,3,5,)4
T
t n
t n '=+=L L A.当3
1L nd d =+-()时,粒子斜向上射出磁场 1
12
t T '=
解得334π2L m t d qB -=+() B.当3
1+L nd d =+()时,粒子斜向下射出磁场 5
12
t T '=
解得334π2L m t d qB -=-().
13.现代科学仪器常利用电场磁场控制带电粒子的运动,如图所示,真空中存在着多层紧密
相邻的匀强电场和匀强磁场,宽度均为d 电场强度为E ,方向水平向左;垂直纸面向里磁场的磁感应强度为B 1,垂直纸面向外磁场的磁感应强度为B 2,电场磁场的边界互相平行且与电场方向垂直.一个质量为
、电荷量为的带正电粒子在第层电场左侧边界某处由静止
释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.
(1)求粒子在第2层磁场中运动时速度2v 的大小与轨迹半径2r ;
(2)粒子从第n 层磁场右侧边界穿出时,速度的方向与水平方向的夹角为n θ,试求sin n θ;
(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之
【答案】(1);(2);(3)见解析;
【解析】
(1)粒子在进入第2层磁场时,经两次电场加速,中间穿过磁场时洛伦兹力不做功,由动能定理,有:
解得:
粒子在第2层磁场中受到的洛伦兹力充当向心力,有:
联立解得:
(2)设粒子在第n层磁场中运动的速度为v n,轨迹半径为r n(下标表示粒子所在层数),
粒子进入到第n层磁场时,速度的方向与水平方向的夹角为,从第n层磁场右侧边界突出时速度方向与水平方向的夹角为,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有:
由图根据几何关系可以得到:
联立可得:
由此可看出,,…,为一等差数列,公差为d,可得:
当n=1时,由下图可看出:
联立可解得:
(3)若粒子恰好不能从第n层磁场右侧边界穿出,则:
,
在其他条件不变的情况下,打印服务比荷更大的粒子,设其比荷为,假设通穿出第n 层磁场右侧边界,粒子穿出时速度方向与水平方向的夹角为,由于,则导致:
说明不存在,即原假设不成立,所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.
考点:带电粒子在电磁场中的运动
14.(17分)在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。
一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P 点(AP=d)射入磁场(不计重力影响)。
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度。
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线的夹角为φ(如。