等差数列基础测试题题库百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、等差数列选择题
1.已知等差数列{}n a 的前n 项和为n S ,若936S S =,则6
12S
S =( ) A .
17
7 B .
83 C .
143
D .
10
3
2.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14
3.在等差数列{}n a 中,3914a a +=,23a =,则10a =( ) A .11
B .10
C .6
D .3
4.定义
12n
n
p p p ++
+为n 个正数12,,
,n p p p 的“均倒数”,若已知数列{}n a 的前
n 项的“均倒数”为
12n ,又2n n a b =,则1223
910
111
b b b b b b +++
=( ) A .
8
17 B .
1021
C .
1123 D .
919
5.在巴比伦晚期的《泥板文书》中,有按级递减分物的等差数列问题,其中有一个问题大意是:10个兄弟分100两银子,长兄最多,依次减少相同数目,现知第8兄弟分得6两,则长兄可分得银子的数目为( ) A .
825
两 B .
845
两 C .
865
两 D .
885
两 6.设等差数列{}n a 的前n 项和为n S ,且3944a a a +=+,则15S =( ) A .45
B .50
C .60
D .80
7.设数列{}n a 的前n 项和2
1n S n =+. 则8a 的值为( ).
A .65
B .16
C .15
D .14
8.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n n
n S a b n =---⨯+,*n N ∈,则
存在数列{}n b 和{}n c 使得( )
A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列
B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列
C .·
n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·
n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列9.题目文件丢失!
10.已知等差数列{}n a 中,前n 项和2
15n S n n =-,则使n S 有最小值的n 是( )
A .7
B .8
C .7或8
D .9
11.已知等差数列{}n a 的前n 项和为n S ,且310179a a a ++=,则19S =( ) A .51
B .57
C .54
D .72
12.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
13.已知数列{}n a 中,132a =
,且满足()*
1112,22
n n n a a n n N -=+≥∈,若对于任意*
n N ∈,都有
n a n
λ
≥成立,则实数λ的最小值是( ) A .2
B .4
C .8
D .16
14.《张丘建算经》是我国北魏时期大数学家张丘建所著,约成书于公元466-485年间.其中记载着这么一道“女子织布”问题:某女子善于织布,一天比一天织得快,且每日增加的数量相同.已知第一日织布4尺,20日共织布232尺,则该女子织布每日增加( )尺 A .
47
B .
1629
C .
815
D .
45
15.已知等差数列{}n a 中,161,11a a ==,则数列{}n a 的公差为( ) A .
53
B .2
C .8
D .13
16.设等差数列{}n a 的前n 项之和为n S ,已知10100S =,则47a a +=( ) A .12
B .20
C .40
D .100
17.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6
18.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36
B .48
C .56
D .72
19.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
20.已知数列{}n a 是公差不为零的等差数列,且1109a a a +=,则129
10
a a a a ++⋅⋅⋅+=
( )
A .
278
B .
52
C .3
D .4
二、多选题
21.等差数列{}n a 的前n 项和为n S ,1385a a S +=,则下列结论一定正确的是( ) A .100a = B .911a a = C .当9n =或10时,n S 取得最大值
D .613S S =
22.黄金螺旋线又名等角螺线,是自然界最美的鬼斧神工.在一个黄金矩形(宽长比约等于0.618)里先以宽为边长做正方形,然后在剩下小的矩形里以其宽为边长做正方形,如此循环下去,再在每个正方形里画出一段四分之一圆弧,最后顺次连接,就可得到一条“黄金螺旋线”.达·芬奇的《蒙娜丽莎》,希腊雅典卫城的帕特农神庙等都符合这个曲线.现将每一段黄金螺旋线与其所在的正方形所围成的扇形半径设为a n (n ∈N *),数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3).再将扇形面积设为b n (n ∈N *),则( )
A .4(b 2020-b 2019)=πa 2018·a 2021
B .a 1+a 2+a 3+…+a 2019=a 2021-1
C .a 12+a 22+a 32…+(a 2020)2=2a 2019·a 2021
D .a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=0
23.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件
11a >,66771
1,
01
a a a a -><-,则下列结论正确的是( ) A .01q <<
B .681a a >
C .n S 的最大值为7S
D .n T 的最大值为6T
24.公差不为零的等差数列{}n a 满足38a a =,n S 为{}n a 前n 项和,则下列结论正确的
是( ) A .110S =
B .10n n S S -=(110n ≤≤)
C .当110S >时,5n S S ≥
D .当110S <时,5n S S ≥
25.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且32019
11
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T > D .当数列{}n a 为等比数列时,20210T <
26.设d 为正项等差数列{}n a 的公差,若0d >,32a =,则( ) A .244a a ⋅<
B .22
415
4
a a +≥
C .15
11
1a a +> D .1524a a a a ⋅>⋅
27.等差数列{}n a 的首项10a >,设其前n 项和为{}n S ,且611S S =,则( ) A .0d > B .0d <
C .80a =
D .n S 的最大值是8
S 或者9S
28.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( ) A .60a >
B .数列1n a ⎧⎫
⎨
⎬⎩⎭
是递增数列 C .0n S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
29.已知数列{}n a 满足:13a =,当2n ≥
时,)
2
11n a =
-,则关于数列
{}n a 说法正确的是( )
A .28a =
B .数列{}n a 为递增数列
C .数列{}n a 为周期数列
D .2
2n a n n =+
30.公差为d 的等差数列{}n a ,其前n 项和为n S ,110S >,120S <,下列说法正确的有( ) A .0d <
B .70a >
C .{}n S 中5S 最大
D .49a a <
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
由等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,结合已知条件得633S S =和31210S S =计算得结果. 【详解】
已知等差数列{}n a 的前项和为n S ,∴3S ,63S S -,96S S -,129S S -构成等差数列,
所以()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =. 又
()()()96631292S S S S S S ⋅-=-+-,∴31210S S =,从而
126103
S S =. 故选:D
【点睛】 思路点睛:
(1)利用等差数列前n 项和性质得3S ,63S S -,96S S -,129S S -构成等差数列,
(2)()()633962S S S S S ⋅-=+-,且9
3
6S S =,化简解得633S S =, (3)()()()96631292S S S S S S ⋅-=-+-,化简解得31210S S =. 2.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 3.A 【分析】
利用等差数列的通项公式求解1,a d ,代入即可得出结论. 【详解】
由3914a a +=,23a =, 又{}n a 为等差数列, 得39121014a a a d +=+=,
213a a d =+=,
解得12,1a d ==, 则101+92911a a d ==+=; 故选:A. 4.D 【分析】
由题意结合新定义的概念求得数列的前n 项和,然后利用前n 项和求解通项公式,最后裂项求和即可求得最终结果. 【详解】
设数列{}n a 的前n 项和为n S ,由题意可得:12n n S n
=,则:2
2n S n =, 当1n =时,112a S ==,
当2n ≥时,142n n n a S S n -=-=-, 且14122a =⨯-=,据此可得 42n a n =-, 故212n
n a b n =
=-,()()1
11111212122121n n b b n n n n +⎛⎫==- ⎪-+-+⎝⎭, 据此有:
1223910
1111111111233517191.21891919b b b b b b +++
⎡⎤⎛⎫⎛⎫⎛⎫=
-+-++- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭
⎝⎭⎣⎦
=⨯= 故选:D 5.C 【分析】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,数列{}n a 是等差数列,
8106
100
a S =⎧⎨
=⎩利用等差数列的通项公式和前n 项和公式转化为关于1a 和d 的方程,即可求得长兄可分得银子的数目1a . 【详解】
设10个兄弟由大到小依次分得()1,2,,10n a n =⋅⋅⋅两银子,由题意可得 设数列{}n a 的公差为d ,其前n 项和为n S ,
则由题意得8106100a S =⎧⎨=⎩,即1176109
101002a d a d +=⎧⎪
⎨⨯+=⎪⎩,解得186585a d ⎧
=⎪⎪⎨⎪=-⎪⎩
. 所以长兄分得86
5
两银子. 故选:C. 【点睛】
关键点点睛:本题的关键点是能够读懂题意10个兄弟由大到小依次分得
()1,2,,10n a n =⋅⋅⋅两银子构成公差0d <的等差数列,要熟练掌握等差数列的通项公式和
前n 项和公式. 6.C 【分析】
利用等差数列性质当m n p q +=+ 时m n p q a a a a +=+及前n 项和公式得解 【详解】
{}n a 是等差数列,3944a a a +=+,4844a a a ∴+=+,84a =
1158158()15215
156022
a a a S a +⨯⨯=
===
故选:C 【点睛】
本题考查等差数列性质及前n 项和公式,属于基础题 7.C 【分析】
利用()12n n n a S S n -=-≥得出数列{}n a 的通项公差,然后求解8a . 【详解】
由2
1n S n =+得,12a =,()2
111n S n -=-+,
所以()2
21121n n n a S S n n n -=-=--=-, 所以2,1
21,2
n n a n n =⎧=⎨-≥⎩,故828115a =⨯-=.
故选:C. 【点睛】
本题考查数列的通项公式求解,较简单,利用()12n n n a S S n -=-≥求解即可. 8.D 【分析】
由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:
(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,
∴当1n =时,有110S a a ==≠;
当2n ≥时,有1
1()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,0
1()2a a b b a =-+⋅=也适合上式,
1()2n n a a bn b -∴=-+⋅,
令n b a b bn =+-,1
2n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,
故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;
因为11
()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{
}1
2
n bn -⋅即不是等差数列,也不是等比数
列,故AB 错. 故选:D. 【点睛】 方法点睛:
由数列前n 项和求通项公式时,一般根据11
,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能
力.
9.无
10.C 【分析】
215n S n n =-看作关于n 的二次函数,结合二次函数的图象与性质可以求解.
【详解】
2
2
152251524n S n n n ⎛⎫=-=--
⎪⎝
⎭,
∴数列{}n S 的图象是分布在抛物线2
1522524y x ⎛⎫=--
⎪⎝
⎭上的横坐标为正整数的离散的
点.
又抛物线开口向上,以15
2x =为对称轴,且1515|
7822
-=-|, 所以当7,8n =时,n S 有最小值. 故选:C 11.B 【分析】
根据等差数列的性质求出103a =,再由求和公式得出答案. 【详解】
317102a a a += 1039a ∴=,即103a =
()11910
19191921935722
a a a S +⨯∴=
==⨯= 故选:B 12.A 【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】
在等差数列{}n a 中,设公差为d ,由
467
811a a a =⎧⇒⎨
+=⎩444812311a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A 13.A
将11122
n n n a a -=+变形为11221n n n n a a --=+,由等差数列的定义得出2
2n n n a +=,从而得
出()
22n
n n λ+≥
,求出()max
22n n n +⎡⎤⎢⎥⎣⎦的最值,即可得出答案. 【详解】 因为2n ≥时,111
22
n n n a a -=
+,所以11221n n n n a a --=+,而1123a = 所以数列{
}
2n
n a 是首项为3公差为1的等差数列,故22n
n a n =+,从而2
2n n
n a +=
. 又因为
n a n λ
≥恒成立,即()22n
n n λ+≥恒成立,所以()max
22n n n λ+⎡⎤≥⎢⎥⎣⎦. 由()()()
()()()()
1
*121322,221122n n n
n n n n n n n n n n n +-⎧+++≥⎪⎪∈≥⎨
+-+⎪≥⎪⎩N 得2n = 所以()()2
max
2222222n n n +⨯+⎡⎤
==⎢
⎥⎣⎦,所以2λ≥,即实数λ的最小值是2 故选:A 14.D 【分析】
设该妇子织布每天增加d 尺,由等差数列的前n 项和公式即可求出结果 【详解】
设该妇子织布每天增加d 尺, 由题意知202019
2042322
S d ⨯=⨯+=, 解得45
d =
. 故该女子织布每天增加4
5
尺. 故选:D 15.B 【分析】
设公差为d ,则615a a d =+,即可求出公差d 的值. 【详解】
设公差为d ,则615a a d =+,即1115d =+,解得:2d =, 所以数列{}n a 的公差为2,
16.B 【分析】
由等差数列的通项公式可得47129a a a d +=+,再由1011045100S a d =+=,从而可得结果. 【详解】 解:
1011045100S a d =+=,
12920a d ∴+=, 4712920a a a d ∴+=+=.
故选:B. 17.C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】
因为1342
22a a a a +=⎧⎨-=⎩,所以122222a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+=⨯+⨯=, 故选:C. 18.A 【分析】
根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】
因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()199998
3622
a a S +⨯===. 故选:A . 【点睛】
熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键. 19.B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】
由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈, 即11
2
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B 20.A 【分析】
根据数列{}n a 是等差数列,且1109a a a +=,求出首项和公差的关系,代入式子求解. 【详解】
因为1109a a a +=, 所以11298a d a d +=+, 即1a d =-, 所以
()1129510101992727
88
49a a a a a d a a d d a d ++⋅⋅⋅+====++.
故选:A
二、多选题
21.ABD 【分析】
由题意利用等差数列的通项公式、求和公式可得19a d =-,结合等差数列的性质,逐一判断即可得出结论. 【详解】
∵等差数列{}n a 的前n 项和为n S ,1385a a S +=, ∴()11187
5282
a a d a d ⨯++=+
,解得19a d =-, 故10190a a d =+=,故A 正确;
∵918a a d d d =+=-=,11110a a d d =+=,故有911a a =,故B 正确; 该数列的前n 项和()21119
2
22
n n n n S na d d d n -=+=-⋅ ,它的最值,还跟d 的值有关,
故C 错误;
由于61656392S a d d ⨯=+=-,1311312
13392
S a d d ⨯=+=-,故613S S =,故D 正确, 故选:ABD. 【点睛】
思路点睛:利用等差数列的通项公式以及前n 项和公式进行化简,直接根据性质判断结果. 22.ABD 【分析】
对于A ,由题意得b n =
4
πa n 2
,然后化简4(b 2020-b 2019)可得结果;对于B ,利用累加法求解即可;对于C ,数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n -12=a n -1 a n -2-a n -1 a n ,然后累加求解;对于D ,由题意a n -1=a n -a n -2,则a 2019·a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2,化简可得结果 【详解】
由题意得b n =
4πa n 2,则4(b 2020-b 2019)=4(4πa 20202-4π
a 20192)=π(a 2020+a 2019)(a 2020-a 2019)=πa 2018·
a 2021,则选项A 正确; 又数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),所以a n -2=a n -a n -1(n ≥3),a 1+a 2+a 3+…+a 2019=(a 3-a 2)+(a 4-a 3)+(a 5-a 4)+…+(a 2021-a 2020)=a 2021-a 2=a 2021-1,则选项B 正确;
数列{a n }满足a 1=a 2=1,a n =a n -1+a n -2 (n ≥3),即a n -1=a n -2-a n ,两边同乘a n -1 ,可得a n
-1
2
=a n -1 a n -2-a n -1 a n ,则a 12+a 22+a 32…+(a 2020)2=a 12+(a 2a 1-a 2a 3)+(a 3a 2-a 3a 4)+…+
(a 2020a 2019-a 2020a 2021)=a 12-a 2020a 2021=1-a 2020a 2021,则选项C 错误;
由题意a n -1=a n -a n -2,则a 2019·
a 2021-(a 2020)2+a 2018·a 2020-(a 2019)2=a 2019·(a 2021-a 2019)+a 2020·(a 2018-a 2020)=a 2019·a 2020+a 2020·(-a 2019)=0,则选项D 正确; 故选:ABD. 【点睛】
此题考查数列的递推式的应用,考查累加法的应用,考查计算能力,属于中档题 23.AD 【分析】
分类讨论67,a a 大于1的情况,得出符合题意的一项. 【详解】
①671,1a a >>, 与题设
671
01
a a -<-矛盾. ②671,1,a a ><符合题意.
③671,1,a a <<与题设
671
01
a a -<-矛盾. ④ 671,1,a a <>与题设11a >矛盾.
得671,1,01a a q ><<<,则n T 的最大值为6T .
∴B ,C ,错误.
故选:AD. 【点睛】
考查等比数列的性质及概念. 补充:等比数列的通项公式:()1
*
1n n a a q n N -=∈.
24.BC 【分析】 设公差d 不为零,由38a a =,解得192
a d =-,然后逐项判断.
【详解】 设公差d 不为零, 因为
38a a =,
所以1127a d a d +=+, 即1127a d a d +=--, 解得192
a d =-,
11191111551155022S a d d d d ⎛⎫
=+=⨯-+=≠ ⎪⎝⎭
,故A 错误;
()()()()()()221101110910,10102222
n n n n n n d
d na d n n n a n n S S d ----=+
=-=-+=-,故B 正确; 若11191111551155022S a d d d d ⎛⎫
=+=⨯-
+=> ⎪⎝⎭
,解得0d >,
()()2
2510525222
n d d d n n S n S =
-=--≥,故C 正确;D 错误; 故选:BC 25.AC 【分析】 将
3201911111a a e e +≤++变形为32019
1111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+,
()()1111101111
x
x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x
f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题 26.ABC 【分析】
由已知求得公差d 的范围:01d <<,把各选项中的项全部用d 表示,并根据01d <<判断各选项. 【详解】
由题知,只需1220
010a d d d =->⎧⇒<<⎨
>⎩, ()()2242244a a d d d ⋅=-⋅+=-<,A 正确;
()()2
222415
223644
a a d d d d +=-++=-+>≥
,B 正确; 2
1511111122221a a d d d +=+=>-+-,C 正确; ()()()()2152422222230a a a a d d d d d ⋅-⋅=-⋅+--⋅+=-<,所以1524a a a a ⋅<⋅,
D 错误. 【点睛】
本题考查等差数列的性质,解题方法是由已知确定d 的范围,由通项公式写出各项(用d 表示)后,可判断. 27.BD 【分析】
由6111160S S S S =⇒-=,即950a =,进而可得答案. 【详解】
解:1167891011950S S a a a a a a -=++++==, 因为10a >
所以90a =,0d <,89S S =最大, 故选:BD .
【点睛】
本题考查等差数列的性质,解题关键是等差数列性质的应用,属于中档题. 28.ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n a 在1,6n n N
上单调递增,
1
n
a 在7n
n N ,
上单调递增,可判断B ;由()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得24
37d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()11
12+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以
1
n
a 在1,6n n N
上单调递增,
1
n
a 在7n n N ,上单调递增,所
以数列1n a ⎧⎫
⎨
⎬⎩⎭
不是递增数列,故B 不正确; 由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,
0n
S <,所以当[]7,12n ∈时,0n a <,>0n S ,0n
n
S a <,[]712
n ∈,时,n a 为递增数
列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确; 【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题. 29.ABD 【分析】
由已知递推式可得数列
2=,公差为1的等差数列,结合选项
可得结果. 【详解】
)
2
11n a =
-
得)
2
11n a +=
,
1=,
即数列
2=,公差为1的等差数列,
2(1)11n n =+-⨯=+,
∴2
2n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,
所以易知ABD 正确, 故选:ABD. 【点睛】
本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题. 30.AD 【分析】
先根据题意得1110a a +>,1120a a +<,再结合等差数列的性质得60a >,70a <,
0d <,{}n S 中6S 最大,49a a <-,即:49a a <.进而得答案.
【详解】
解:根据等差数列前n 项和公式得:()111111102a a S +=>,()
112121202
a a S +=< 所以1110a a +>,1120a a +<, 由于11162a a a +=,11267a a a a +=+, 所以60a >,760a a <-<, 所以0d <,{}n S 中6S 最大, 由于11267490a a a a a a +=+=+<, 所以49a a <-,即:49a a <. 故AD 正确,BC 错误.
故选:AD.
【点睛】
本题考查等差数列的前n项和公式与等差数列的性质,是中档题.。