扬州市文津中学2019届中考第一次模拟试卷九年级数学(含答案)

合集下载

2019年江苏省扬州市中考数学模拟测试试卷附解析

2019年江苏省扬州市中考数学模拟测试试卷附解析

2019年江苏省扬州市中考数学模拟测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.把抛物线226y x =−+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( )A . 向上平移 4 个单位B .向下平移4个单位C . 向左平移 4 个单位D .向右平移4 个单位2.在梯形ABCD 中,AD BC ∥,AB DC =,E F G H ,,,分别是AB BC CD DA ,,,的中点,则四边形EFGH 是( )A .等腰梯形B .矩形C .菱形D .正方形3.在下列汽车商标图案中,是中心对称图形的是( )4.下列函数:①18y x =;②18y x =−;③22y x =;④2y x=.其中是一次函数的个数为( ) A . 0个 B .1个 C . 2个 D .3个5.已知点P 关于x 轴的对称点为(a ,-2),关于y 轴的对称点为(1,b ),那么点P 的坐标为( )A .(a ,-b )B .(b ,-a )C .(-2,1)D .(-1,2)6.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等7.如图,直线12l l ∥,l 分别与12l l ,相交,如果2120∠=,那么1∠的度数是( )A .30 B .45 C .60 D .758.现实生活中存在大量的平移现象,下列现象属于平移变换的是( ) A .行进中自行车车轮的运动 B .急刹车后汽车在路面上的滑动 C .人与镜子中的像 D .台球在桌面上从一点到另一点的运动9. 计算32()x 的结果是( )A .5xB .6xC .8xD .9x l l 1 l 21 210.2007年10月,“欧洽会”在浙江上虞举行,总投资额累计达8700万欧元. 总投资额用记数法表示( )A .38.710⨯欧元B .78.710⨯欧元C .38710⨯ 欧元D .48.710⨯欧元 11.下列各组数中,互为倒数的是( ) A . -1与-1B . 0.1与 1C .-2与 0.5D .-43与43 12.一个数的绝对值是最小的正整数,那么这个数是( )A .0B .-1C .1D .1± 二、填空题13.关于x 的方程2(1)10x k x +−−=的一个根为2,那么k 的值为 . 14.请给假命题“两个锐角的和是锐角”举出一个反例: . 15.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边形的周长为 .16.如图,△ABC 是等边三角形,P 是三角形内任一点,PD ∥AB ,PE ∥BC ,PF ∥AC ,若△ABC 周长为12,PD+PE+PF= .17.如图所示,以五边形的各顶点为圆心,l cm 长为半径,画五个等圆,则图中阴影部分的面积之和为 cm 2.18.当2009x =时,代数式2913x x −−+的值为 . 19.把12()a −写成同底数幂的乘积的形式(写出一种即可):如:12()a −= × = × × .20.一个口袋中装有 4个白球,2 个红球,6 个黄球,摇匀后随机从中摸出一个球是白球的概率是 .21.如图,在直角三角形ABC 中,∠ACB=90°,CD ⊥AB , 点D 为垂足. 在不添加辅助线的情况下,请写出图中一对相等的锐角: .(写出一对即可).22.对于加法,我们有 3+5=5+3,11112332+=+,(-3) +(-0.5) = (-0. 5)+(-3),…,用字母可以表示成 .23.相反数等于本身的数是.三、解答题24.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.25.如图,在矩形 ABCD 中,AB =6 cm,BC=12 cm,点P从点A出发,沿 AB 边向点 B 以1cm/s的速度移动,同时点 Q从点B 出发沿 BC 边向点C 以2cm/s 的速度移动,回答下列问题:(1)设运动后开始第 t(s)时,五边形 APQCD 的面积为 S(m2),写出 S与t的函数关系式,并指出自变量 t 的取值范围;(2)t 为何值时S最小?求出 S的最小值.26.如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.我找的等腰三角形是: .证明:27.如图,AC =AE ,∠BAM =∠BND =∠EAC , 图中是否存在与△ABE 全等的三角形?并说明理由.28.先化简2(21)(31)(31)5(1)x x x x x −−+−+−,再选取一个你喜欢的数代替x 求值.29.解方程组278ax by cx y +=⎧⎨−=⎩时,小明正确地解出32x y =⎧⎨=−⎩,小红把c 看错了,解得22x y =−⎧⎨=⎩,试求a ,b ,c 的值.30.某工厂做一批零件共 m 个,第一周完成了12,第二周因为人手减少只完成了全部的剩下部分的12. (1)问现在还剩多少零件?(2)若剩下部分为 100 个零件,则零件总数m 为多少个?A D M CB E N【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.C4.C5.D6.D7.C8.B9.B10.B11.A12.D二、填空题13. 12−14. 如50α=,60β=,90αβ+>(答案不惟一) 15.68cm16.417.32π18. 200519.不唯一,如:2()a −,10()a −;4()a −,6()a −,2()a − 20.1321. 答案不唯一,如∠1 =∠A ,∠2=∠B 等22.a+b=b+a23.三、解答题24.如图,阴影部分即为小明的活动区域.25.(1) PBQ ABCD S S S ∆=−矩形=1126(6)22t t ⨯−−⋅=2672t t −+, t 的取值范围为 0≤t<6. (2) 2672s t t =−+2(3)63t =−+,∴当 t=3 时,63s =最大值cm 2. 26.我所找的等腰三角形是:△ABC (或△BDC 或△DAB ). 证明:在△ABC 中,∵∠A=36°,∠C=72°, ∴∠ABC=180°-(72°+36°)=72°.∵∠C=∠ABC ,∴AB=AC ,∴△ABC 是等腰三角形.27.存在△ABE ≌△ADC ,理由略28.92x −+;29.4a =,5b =,2c =−30. (1) 14m (2)40O。

2019-2020年扬州市初三中考数学第一次模拟试题

2019-2020年扬州市初三中考数学第一次模拟试题

2019-2020年扬州市初三中考数学第一次模拟试题一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.中学数学一模模拟试卷一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.已知a是方程x2﹣5x+1=0的一个根,那么a4+a﹣4的末位数字是()A.3B.5C.7D.92.某个一次函数的图象与直线y=x+3平行,与x轴,y轴的交点分别为A,B,并且过点(﹣2,﹣4),则在线段AB上(包括点A,B),横、纵坐标都是整数的点有()A.3个B.4个C.5个D.6个3.菱形的两条对角线之和为L,面积为S,则它的边长为()A.B.C.D.4.某商场出售甲、乙、丙三种型号的电动车,已知甲型车在第一季度的销售额占这三种车总销售额的56%,第二季度乙、丙两种型号的车的销售额比第一季度减少了a%,但该商场电动车的总销售额比第一季度增加了12%,且甲型车的销售额比第一季度增加了23%.则a的值为()A.8B.6C.3D.25.把一枚六个面编号分别为1,2,3,4,5,6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别为m,n,则二次函数y=x2+mx+n的图象与x轴有两个不同交点的概率是()A.B.C.D.6.如图,在梯形ABCD中,AB∥DC,AB⊥BC,E是AD的中点,AB+BC+CD=6,,则梯形ABCD的面积等于()A.13B.8C.D.47.如图,已知圆心为A,B,C的三个圆彼此相切,且均与直线l相切.若⊙A,⊙B,⊙C 的半径分别为a,b,c(0<c<a<b),则a,b,c一定满足的关系式为()A.2b=a+c B.=C.D.8.已知函数y=3﹣(x﹣m)(x﹣n),并且a,b是方程3﹣(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是()A.m<n<b<a B.m<a<n<b C.a<m<b<n D.a<m<n<b二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.假期学校组织360名师生外出旅游,某客车出租公司有两种大客车可供选择:甲种客车每辆车有40个座,租金400元;乙种客车每辆车有50个座,租金480元.则租用该公司客车最少需用租金元.10.若a+x2=2010,b+x2=2011,c+x2=2012,且abc=24.则的值为.11.如下左图,小明设计了一个电子游戏:一电子跳蚤从横坐标为t(t>0)的P1点开始,按点的横坐标依次增加1的规律,在抛物线y=ax2(a>0)上向右跳动,得到点P2、P3,这时△P1P2P3的面积为.12.在直角梯形ABCD中,∠A为直角,AB∥CD,AB=7,CD=5,AD=2.一条动直线l 交AB于P,交CD于Q,且将梯形ABCD分为面积相等的两部分,则点A到动直线l的距离的最大值为.13.如图,把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,已知正方形的边长为4,那么折痕EF的长为.14.点D是△ABC的边AB上的一点,使得AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则的值为.15.观察下列图形,根据图①、②、③的规律,若图①为第1次分割,图②为第2次分割,图③为第3次分割,按照这个规律一直分割下去,进行了n(n≥1)次分割,图中一共有个三角形(用含n的代数式表示).三、简答题(本题有4小题,共45分.务必写出解答过程)16.(9分)已知,一次函数(k是不为0的自然数,且是常数)的图象与两坐标轴所围成的图形的面积为S k(即k=1时,得S1,k=2时,得S2,…).试求S1+S2+S3+…+S2012的值.17.(12分)如图所示,正方形ABCD的边长为1,点M、N分别在BC、CD上,使得△CMN 的周长为2.求:(1)∠MAN的大小;(2)△MAN面积的最小值.18.(12分)若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?19.(12分)对非负实数x,“四舍五入”到个位的值记为<x>,即:当n为非负整数时,如果,则<x>=n.试解决下列问题:(1)①当x≥0,m为非负整数时,求证:<x+m>=m+<x>;②举例说明<x+y>=<x>+<y>不恒成立;(2)求满足的所有非负实数x的值;(3)设n为常数,且为正整数,函数的自变量x在n≤x<n+1范围内取值时,函数值y为整数的个数记为a,满足的所有整数k的个数记为b.求证:a=b=2n.参考答案一、选择题(本题共有8小题,每小题5分,共40分.请选出一个正确的选项,将其代号填入题后的括号内,不选、多选、错选均不给分)1.【解答】解:根据韦达定理可得:方程x2﹣5x+1=0的两根之积为1,两根之和为5,∵a是方程x2﹣5x+1=0的一个根,∴另一个根为a﹣1,∴a+a﹣1=5,∴a4+a﹣4=(a2+a﹣2)2﹣2=[(a+a﹣1)2﹣2]2﹣2,∵232末位数字是9,∴a4+a﹣4末位数字为7.故选:C.2.【解答】解:根据题意,设一次函数的解析式为y=x+b,由点(﹣2,﹣4)在该函数图象上,得﹣4=×(﹣2)+b,解得b=﹣3.所以,y=x﹣3.可得点A(6,0),B(0,﹣3).由0≤x≤6,且x为整数,取x=0,2,4,6时,对应的y是整数.因此,在线段AB上(包括点A、B),横、纵坐标都是整数的点有4个.故选:B.3.【解答】解:设边长为m,一条对角线为2a,另外一条为2b,则a+b=L,2ab=S∵m2=a2+b2=(a+b)2﹣2ab=L2﹣S∴m=.故选:C.4.【解答】解:把第一季度的销售额看作单位1;则有56%×(1+23%)+(1﹣56%)•(1﹣a%)=1+12%,解可得:a=2;故选:D.5.【解答】解:掷骰子有6×6=36种情况.根据题意有:4n﹣m2<0,因此满足的点有:n=1,m=3,4,5,6,n=2,m=3,4,5,6,n=3,m=4,5,6,n=4,m=5,6,n=5,m=5,6,n=6,m=5,6,共有17种,故概率为:17÷36=.故选:C.6.【解答】解:如图,过点E作EF∥AB交BC于点F,则BF=BC,EF=(AB+CD)=(6﹣BC),又∵AB⊥BC,∴EF⊥BC,∴在Rt△BFE中,EF2+BF2=BE2.∴,即BC2﹣6BC+8=0,解得BC=2或BC=4,则EF=2或EF=1,∴S梯形ABCD=EF•BC=4.故选:D.7.【解答】解:过点A、B、C分别向直线l引垂线,垂足分别为A1、B1、C1,易得:A1B1==2,同理B1C1==2,A1C1==2;又有A1C1+B1C1=A1B1,可得=+,两边同除以可得:.故选:D.8.【解答】解:由3﹣(x﹣m)(x﹣n)=0变形得(x﹣m)(x﹣n)=3,∴x﹣m>0,x﹣n>0或x﹣m<0,x﹣n<0,∴x>m,x>n或x<m,x<n,∵a,b是方程的两个根,将a,b代入,得:a>m,a>n,b<m,b<n或a<m,a<n,b>m,b>n,观察选项可知:a<b,m<n,只有D可能成立.故选:D.二、填空题(本题共7小题,每小题5分,共35分.将答案填在题中横线上)9.【解答】解:若只租甲种客车需要360÷40=9辆.若只租乙种客车需要8辆,因而两种客车用共租8辆.设甲车有x辆,乙车有8﹣x辆,则40x+50(8﹣x)≥360,解得:x≤4,整数解为0、1、2、3、4.汽车的租金W=400x+480(8﹣x)即W=﹣80x+3840W的值随x的增大而减小,因而当x=4时,W最小.故取x=4,W的最小值是3520元.故答案为:3520.10.【解答】解:∵a+x2=2010,b+x2=2011,c+x2=2012,∴2010﹣a=2011﹣b=2012﹣c,∴b=a+1,c=a+2,又abc=24,则=﹣====.故答案为:.11.【解答】解:作P1A⊥x轴,P2B⊥x轴,P3C⊥x轴,垂足分别为A,B,C.由题意得A(t,0),B(t+1,0),C(t+2,0),P1(t,at2),P2[t+1,a(t+1)2],P3[t+2,a(t+2)2]==a.12.【解答】解:设M、N分别是AD,PQ的中点∵S梯形ABCD=(DC+AB)•AD=12若直线l将梯形ABCD分为面积相等的两部分,则S梯形AQPD=(DP+AQ)•AD=6,∴DP+AQ=6∴MN=3∴N是一个定点若要A到l的距离最大,则l⊥AN此时点A到动直线l的距离的最大值就是AN的长在Rt△AMN中,AM=1,MN=3∴AN==.13.【解答】解:过E点作EH⊥BC于H点,MD′交AD于G点,如图,∵把正方形ABCD沿着直线EF对折,使顶点C落在边AB的中点M,∴FC=FM,BM=AB=×4=2,ED=ED′,∠D′MF=∠C=90°,∠D′=∠D =90°,设MF=x,则BF=4﹣x,在Rt△BFM中,MF2=BF2+BM2,即x2=(4﹣x)2+22,∴x=,∴MF=FC=,BF=4﹣=,∵∠1+∠3=90°,∠1+∠2=90°,∴∠2=∠3,∴Rt△AGM∽Rt△BMF,∴==,即==,∴AG=,MG=,设DE=t,则D′E=t,GE=4﹣t﹣=﹣t,易证得Rt△D′GE∽Rt△AGM,∴=,即=,解得t=,∴HC=ED=,∴FH=4﹣﹣=2,在Rt△EFH中,EH=DC=4,FH=2,∴EF===2.故答案为2.14.【解答】解:连接AP,∵∠APB与∠ACB是所对的圆周角,∴∠APB=∠ACB,∵∠ADP=∠ACB,∴∠APB=∠ACB=∠ADP,∵∠DAP=∠DAP,∴△APB∽△ADP,∴==,∴AP2=AD•AB=AD•(3AD)=3AD2,∴===.故答案为:.15.【解答】解:依题意,n次分割,所得三角形个数为:5+3×4+3×3×4+…+3n﹣1×4个,设S=5+3×4+3×3×4+…+3n﹣1×4 ①则3S=15+3×3×4+…+3n﹣1×4+3n×4 ②②﹣①得,2S=3n×4+15﹣5﹣3×4=4×3n﹣2,S=2×3n﹣1.故答案为:2×3n﹣1.三、简答题(本题有4小题,共45分.务必写出解答过程)16.【解答】解:令x=0,得y=,y=0,得x=,∴S=××=(﹣),∴S1+S2+S3+…+S2012=(1﹣+﹣+﹣+…+﹣)=(1﹣)=.17.【解答】解:(1)如图,延长CB至L,使BL=DN,则Rt△ABL≌Rt△ADN,故AL=AN,∠1=∠2,∠NAL=∠DAB=90°又∵MN=2﹣CN﹣CM=DN+BM=BL+BM=ML∴△AMN≌△AML∴∠MAN=∠MAL=45°(2)设CM=x,CN=y,MN=z,则x2+y2=z2,∵x+y+z=2,则x=2﹣y﹣z于是(2﹣y﹣z)2+y2=z2整理得2y2+(2z﹣4)y+(4﹣4z)=0∴△=4(z﹣2)2﹣32(1﹣z)≥0即(z+2+)(z+2﹣)≥0又∵z>0∴z≥﹣2当且仅当x=y=2﹣时等号成立此时S△AMN=S△AML=ML•AB=z因此,当z=﹣2,x=y=2﹣时,S△AMN取到最小值为﹣1.18.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y ﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.19.【解答】解:(1)①证明:设<x>=n,则为非负整数;∴,且n+m为非负整数,∴<x+m>=n+m=m+<x>.②举反例:<0.6>+<0.7>=1+1=2,而<0.6+0.7>=<1.3>=1,∴<0.6>+<0.7>≠<0.6+0.7>,∴<x+y>=<x>+<y>不一定成立;(2)∵x≥0,为整数,设x=k,k为整数,则∴∴,∵O≤k≤2,∴k=0,1,2,∴x=0,,.(3)∵函数,n为整数,当n≤x<n+1时,y随x的增大而增大,∴,即,①∴,∵y为整数,∴y=n2﹣n+1,n2﹣n+2,n2﹣n+3,…,n2﹣n+2n,共2n个y,∴a=2n,②∵k>0,<>=n,则,∴,③比较①,②,③得:a=b=2n.中学数学一模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×104 3.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠6 6.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x。

江苏省扬州市2019-2020学年中考数学一模考试卷含解析

江苏省扬州市2019-2020学年中考数学一模考试卷含解析

江苏省扬州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列说法不正确的是( )A .某种彩票中奖的概率是11000,买1000张该种彩票一定会中奖B .了解一批电视机的使用寿命适合用抽样调查C .若甲组数据的标准差S 甲=0.31,乙组数据的标准差S 乙=0.25,则乙组数据比甲组数据稳定D .在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件2.在Rt △ABC 中,∠C=90°,AC=1,BC=3,则∠A 的正切值为( )A .3B .13C .1010D .310103.在Rt ABC ∆中,90︒∠=C ,2AC =,下列结论中,正确的是( )A .2sin AB A =B .2cos AB A =C .2tan BC A =D .2cot BC A =4.衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .30x ﹣361.5x=10 B .36x ﹣301.5x =10 C .361.5x ﹣30x =10 D .30x +361.5x =10 5.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .233π-B .233π-C .3π-D .3π-6.当ab >0时,y =ax 2与y =ax+b 的图象大致是( )A .B .C .D .7.等腰三角形的两边长分别为5和11,则它的周长为( )A.21 B.21或27 C.27 D.258.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°9.如图,△ABC中,AB=4,AC=3,BC=2,将△ABC绕点A顺时针旋转60°得到△AED,则BE的长为()A.5 B.4 C.3 D.210.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A.B与C B.C与D C.E与F D.A与B11.如图,点M是正方形ABCD边CD上一点,连接MM,作DE⊥AM于点E,BF⊥AM于点F,连接BE,若AF=1,四边形ABED的面积为6,则∠EBF的余弦值是()A 213B.313C.23D1312.如图,淇淇一家驾车从A地出发,沿着北偏东60°的方向行驶,到达B地后沿着南偏东50°的方向行驶来到C地,C地恰好位于A地正东方向上,则()①B地在C地的北偏西50°方向上;②A地在B地的北偏西30°方向上;③cos∠3④∠ACB=50°.其中错误的是()A.①②B.②④C.①③D.③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长等于_________.14.计算:(13)0﹣38=_____.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.16.某航空公司规定,乘客所携带行李的重量x(kg)与运费y(元)满足如图所示的函数图象,那么每位乘客最多可免费携带____kg的行李.17.已知一次函数y=ax+b,且2a+b=1,则该一次函数图象必经过点_____.18.大型纪录片《厉害了,我的国》上映25天,累计票房约为402700000元,成为中国纪录电影票房冠军.402700000用科学记数法表示是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?20.(6分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.21.(6分)某楼盘2018年2月份准备以每平方米7500元的均价对外销售,由于国家有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格连续两个月进行下调,4 月份下调到每平方米6075元的均价开盘销售.(1)求3、4两月平均每月下调的百分率;(2)小颖家现在准备以每平方米6075元的开盘均价,购买一套100平方米的房子,因为她家一次性付清购房款,开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,小颖家选择哪种方案更优惠?(3)如果房价继续回落,按此平均下调的百分率,请你预测到6月份该楼盘商品房成交均价是否会跌破4800元/平方米,请说明理由.22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4). 请画出△ABC向左平移5个单位长度后得到的△A B C;请画出△ABC关于原点对称的△A B C;在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.(8分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为12.求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;24.(10分)某汽车制造公司计划生产A、B两种新型汽车共40辆投放到市场销售.已知A型汽车每辆成本34万元,售价39万元;B型汽车每辆成本42万元,售价50万元.若该公司对此项计划的投资不低于1536万元,不高于1552万元.请解答下列问题:(1)该公司有哪几种生产方案?(2)该公司按照哪种方案生产汽车,才能在这批汽车全部售出后,所获利润最大,最大利润是多少?(3)在(2)的情况下,公司决定拿出利润的2.5%全部用于生产甲乙两种钢板(两种都生产),甲钢板每吨5000元,乙钢板每吨6000元,共有多少种生产方案?(直接写出答案)25.(10分)关于x的一元二次方程x2﹣x﹣(m+2)=0有两个不相等的实数根.求m的取值范围;若m为符合条件的最小整数,求此方程的根.26.(12分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=12 BF.27.(12分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.(1)求∠AOC的度数;(2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;(3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可. 试题解析:A 、某种彩票中奖的概率是11000,只是一种可能性,买1000张该种彩票不一定会中奖,故错误; B 、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C 、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D 、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A .考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.2.A【解析】【分析】根据锐角三角函数的定义求出即可.【详解】∵在Rt △ABC 中,∠C=90°,AC=1,BC=3,∴∠A 的正切值为31BC AC ==3, 故选A .【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键. 3.C【解析】【分析】直接利用锐角三角函数关系分别计算得出答案.【详解】∵90︒∠=C ,2AC =, ∴2cos AC A AB AB==, ∴2cos AB A =, 故选项A ,B 错误,∵tan 2BC BC A AC ==, ∴2tan BC A =,故选项C 正确;选项D 错误.故选C .【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.4.A【解析】【分析】根据题意可得等量关系:原计划种植的亩数-改良后种植的亩数=10亩,根据等量关系列出方程即可. 【详解】设原计划每亩平均产量x万千克,则改良后平均每亩产量为1.5x万千克,根据题意列方程为:3036101.5x x-=.故选:A.【点睛】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系.5.B【解析】【分析】根据菱形的性质得出△DAB是等边三角形,进而利用全等三角形的判定得出△ABG≌△DBH,得出四边形GBHD的面积等于△ABD的面积,进而求出即可.【详解】连接BD,∵四边形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等边三角形,∵AB=2,∴△ABD3,∵扇形BEF的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD、BE相交于点G,设BF、DC相交于点H,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD=2602123602π⨯-⨯=23π- 故选B .6.D【解析】【详解】∵ab >0,∴a 、b 同号.当a >0,b >0时,抛物线开口向上,顶点在原点,一次函数过一、二、三象限,没有图象符合要求;当a <0,b <0时,抛物线开口向下,顶点在原点,一次函数过二、三、四象限,B 图象符合要求. 故选B .7.C【解析】试题分析:分类讨论:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系;当腰取11,则底边为5,根据等腰三角形的性质得到另外一边为11,然后计算周长.解:当腰取5,则底边为11,但5+5<11,不符合三角形三边的关系,所以这种情况不存在;当腰取11,则底边为5,则三角形的周长=11+11+5=1.故选C .考点:等腰三角形的性质;三角形三边关系.8.C【解析】试题分析:∵DC ∥AB ,∴∠DCA=∠CAB=65°. ∵△ABC 绕点A 旋转到△AED 的位置,∴∠BAE=∠CAD ,AC=AD.∴∠ADC=∠DCA="65°." ∴∠CAD=180°﹣∠ADC ﹣∠DCA="50°." ∴∠BAE=50°.故选C .考点:1.面动旋转问题; 2. 平行线的性质;3.旋转的性质;4.等腰三角形的性质.9.B【解析】【分析】根据旋转的性质可得AB=AE,∠BAE=60°,然后判断出△AEB是等边三角形,再根据等边三角形的三条边都相等可得BE=AB.【详解】解:∵△ABC绕点A顺时针旋转 60°得到△AED,∴AB=AE,∠BAE=60°,∴△AEB是等边三角形,∴BE=AB,∵AB=1,∴BE=1.故选B.【点睛】本题考查了旋转的性质,等边三角形的判定与性质,主要利用了旋转前后对应边相等以及旋转角的定义.10.A【解析】试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.故选A.考点:1、计算器—数的开方;2、实数与数轴11.B【解析】【分析】首先证明△ABF≌△DEA得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12•x•x+•x×1=6,解方程求出x得到AE=BF=3,则EF=x-1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.【详解】∵四边形ABCD为正方形,∴BA=AD,∠BAD=90°,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90°,∠DEA=90°,∵∠ABF+∠BAF=90°,∠EAD+∠BAF=90°,∴∠ABF=∠EAD,在△ABF 和△DEA 中BFA DEA ABF EAD AB DA ∠=∠⎧⎪∠=⎨⎪=⎩∴△ABF ≌△DEA (AAS ),∴BF =AE ;设AE =x ,则BF =x ,DE =AF =1,∵四边形ABED 的面积为6, ∴111622x x x ⋅⋅+⋅⨯=,解得x 1=3,x 2=﹣4(舍去), ∴EF =x ﹣1=2,在Rt △BEF中,BE ==∴cos 13BF EBF BE ∠===. 故选B .【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形. 12.B【解析】【分析】先根据题意画出图形,再根据平行线的性质及方向角的描述方法解答即可.【详解】如图所示,由题意可知,∠1=60°,∠4=50°,∴∠5=∠4=50°,即B 在C 处的北偏西50°,故①正确;∵∠2=60°,∴∠3+∠7=180°﹣60°=120°,即A 在B 处的北偏西120°,故②错误;∵∠1=∠2=60°,∴∠BAC=30°,∴cos ∠∵∠6=90°﹣∠5=40°,即公路AC 和BC 的夹角是40°,故④错误.故选B .。

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷(附参考答案)

2019年中考第一次模拟考试数学试卷注意事项:1. 本试卷分试题卷和答题卡两部分。

试题卷共4页,三个大题,满分120分,考试时间100分钟.2. 试题卷上不要答题,请用0.5毫米黑色签字水笔直接把答案写在答题卡上,答在试题卷上的答案无效.3. 答题前,考生务必将本人姓名、准考证号填写在答题卡第一面的指定位置上.一、选择题 (每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填在题后括号内。

)1、21-的相反数是……………………( )(A ) 21+ (A ))12(+- (C )12- (D )211-2、有一种病毒粒子的直径为0.000 000 018米,用科学记数法表示,0.000 000 018等于……………………………………………………( )(A )91018-⨯ (B )71018.0-⨯ (C )8108.1-⨯ (D )7108.1-⨯3、已知关于x 的一元二次方程0142=+-x ax 有两个不相等的实数根,则a 的取值范围是……………………………………( )(A )a >4 (B )a <4 (C )4≤a (D) a <4,且0≠a4、如图,已知直线m //n ,AD 平分CAB ∠,044=∠ACD ,则CAD ∠等于…………( )(A )068 (B )0136 (C )092 (D )0225众数为800元;③该公司月工资的平均数是1240元;④用众数、中位数、平均数这三个统计量中的任意一个反映该公司工作人员的工资水平都比较合适。

其中正确的个数是…………………………( )(A )4个 (B )3个 (C )2个 (D )1个)则组成这个几何体的小正方体共有 ( ) (A )5个(B )6个 (C )7个 (D )8个8、如图,AB 是⊙O 的直径,点P 是直径AB 延长线上的一点,过点P 作射线交⊙O 于点C 、D ,若OD//BC ,)(A )∠PBC=∠PDA ;(B )PBC ∆∽POD ∆(C )AD=DC ; (D )OAD ∆是等边三角形.二、填空题(每小题3分,共21分)9、计算:=-+-20)41(2015=________10、当x >0时,反比例函数xmy -=1随着x 的增大而增大,则m 的取值范围是_________.11、正三角形的边心距与边长之比等于________.12、在一个不透明的袋子中有2个黑球、3个白球,它们除颜色外其他均相同,充分搅匀后,先摸出1个球,放回并充分搅匀后,再摸出1个球,那么2个球都是黑球的概率是_______.13、如图,AB 是DAC ∠的平分线,090=∠D ,5=AB ,4=AD .按下列步骤操作:(1)以点B 为圆心,以适当的长为半径作圆弧与直线AC 相交于点E 、F ;(2)分别以E 、F 为圆心,以大于EF 21的长为半径作圆弧相交于点G ;(3)作直线BG 交AC 于点P .则PB=________.14、如图,在Rt △ABC 中,∠B=900,AC=BC=1.将Rt △ABC 绕顶点A 顺时针旋转060,点B 、C 分别落到B '、C '的位置,则图中阴影部分的面积为_____.15、如图,OABC 是矩形,点B 坐标是(3,3),点D 坐标是(0,1),点P 是矩形对角线OB PD PA +的最小值等于____________.三、解答题(8个题,共计75分)16、(8分)先化简,再求值:23)12(x xx x x x -÷--,其中x =12-. 17、(9分)如图,AD 、CB 分别是⊙O 的直径,点E 在AB 的延长线上,DE AD =。

2019-2020年最新扬州市中考数学仿真模拟试卷有答案

2019-2020年最新扬州市中考数学仿真模拟试卷有答案

扬州市初中毕业、升学统一考试数学试题说明:1.本试卷共6页,包含选择题(第1题~第8题,共8题)、非选择题(第9题~第28题,共20题)两部分。

本卷满分150分,考试时间为120分钟,考试结束后,请将本试卷和答题卡一并交回。

2.答题前,考生务必将自己的姓名、准考证号填写在答题卡相应的位置上,同时务必在试卷的装订线内将本人的姓名、准考证号、毕业学校填写好,在试卷第一面的右下角写好座位号。

3.所有的试题都必须在专用的“答题卡”上作答,选择题用2B 铅笔作答、非选择题在指定位置用0.5毫米的黑色笔作答。

在试卷或草稿纸上答题无效。

4.如有作图需要,请用2B 铅笔作答,并请加黑加粗,描写清楚。

一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置.......上) 1.与-2的乘积为1的数是 ( ) A .2 B .-2 C .12D .12-2.函数y =变量x 的取值范围是 ( )A .x >1B .x ≥1C .x <1D .x ≤1 3.下列运算正确的是 ( ) A . 2233x x -= B .33a aa ? C .632a a a ? D .236()a a =4.下列选项中,不是..如图所示几何体的主视图、左视图、俯视图之一的是 ( )(第4题)DC B A5.剪纸是扬州的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是 ( )A B C D6.某社区青年志愿者小分队年龄情况如下表所示:则这12名A.2,20岁B.2,19岁C.19岁,20岁D.19岁,19岁7.已知219M a=-,279N a a=-(a为任意实数),则M、N的大小关系为( )A.M<N B.M=NC.M>N D.不能确定8.如图,矩形纸片ABCD中,AB=4,BC=6。

将该矩形纸片剪去3个等腰直角三角形,所有剪法中剩余部分面积的最小值是( )A.6 B.3C.2.5 D.2二、填空题(本大题共有10小题,每小题3分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)9.2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为。

2019年扬州市中考数学模拟试题(含答案)

2019年扬州市中考数学模拟试题(含答案)

2019年扬州市中考数学模拟试题(满分:150分 时间:120分钟)一、 选择题(每小题3分,共24分) 1. 下列运算中不正确的是( )A. a 3+a 2=a 5B. a 3·a 2=a 5C. a 3÷a 2=aD. (a 3)2=a 62. 如图,数轴的单位长度为1,若点A ,B 表示的数的绝对值相等,则点A 表示的数是( )A. 4B. 0C. -2D. -4 3. 下列根式中,能与8合并的二次根式是( ) A.12 B. 18 C. 20 D. 27 4. 如图是某几何体的三视图,该几何体是( )A. 三棱柱B. 长方体C. 圆锥D. 圆柱(第4题) (第5题) (第6题)5. 如图,A ,D 是半圆O 上两点,BC 是直径.若∠ADB =35°,则∠OAB 的度数是( ) A. 70° B. 65° C. 55° D. 35°6. 如图,在△ABC 中,∠CAB =55°,将△ABC 在平面内绕点A 逆时针旋转到△AB ′C ′的位置,使CC ′∥AB ,则旋转角的度数至少为( ) A. 15° B. 55° C. 60° D. 70°7. 某大学生创业团队有研发、管理和操作三个小组,各组的日工资和人数如下表所示.现从管理组分别抽调1人到研发组和操作组,调整后与调整前相比,下列说法中正确的是( )A. 团队平均日工资增大B. 日工资的方差不变C. 日工资的中位数变小D. 日工资的众数变大8. 如图,在平面直角坐标系xOy 中,菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,顶点C 的坐标为(-3,4),反比例函数y =k x 的图像与菱形对角线AO 交于D 点,连接BD ,当BD ⊥x 轴时,k 的值是( )A. -503 B. -252 C. -12 D. -254二、 填空题(每小题3分,共30分)9. 据统计,2018年扬州春节黄金周共接待游客约806 000人次,数据“806 000”用科学记数法可表示为 . 10. 函数y =1x +2中,自变量x 的取值范围是 . 11. 分解因式:a 3-9a = .12. 口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .13. 设函数y =2x 与y =x -1的图像的交点坐标为(a ,b ),则1a -1b的值为 .14. 抛物线y =x 2-2x +k (k <0)与x 轴相交于A (x 1,0),B (x 2,0)两点,其中x 1<0<x 2,当x =x 1+2时,y 0(填“>”“<”或“=”).15. 如图,直线a ∥b ,三角板的直角顶点放在直线b 上,如果∠1=65°,则∠2= °.(第15题) (第16题) (第17题)16. 如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2 cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 cm.17. 如图,已知l 1∥l 2∥l 3,相邻两条平行直线间的距离相等,若等腰直角三角形ABC 的直角顶点C 在l 1上,另两个顶点A 、B 分别在l 3、l 2上,则tan α的值是 .18. 在平面直角坐标系中,已知平行四边形ABCD 的点A (0,-2),点B (3m ,4m +1)(m ≠-1),点C (6,2),则对角线BD 的最小值是 . 三、 解答题(本大题共10小题,共96分)19. (8分)(1)计算:|1-3|-3tan 30°+⎝⎛⎭⎫13-2;(2)已知x 2-5x -4=0,求代数式(x +2)(x -2)-(2x -1)(x -2)的值.20.(8分)(1)解不等式:x+12+x-13≤1;(2)用配方法解方程:x2+4x-1=0.21.(8分)随机抽取某中学九年级40名同学进行一次30秒钟跳绳测试,他们的成绩统计如下表:将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(不完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这40名同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校九年级共有720人,试估计该中学九年级还有多少人跳绳不能得满分.22.(8分)现有一个可以自由转动的转盘,转盘被等分成3个相等的扇形,这些扇形除颜色外完全相同,其中2个扇形涂上白色,1个扇形涂上红色,转动转盘2次.(1)求指针2次都指向红色区域的概率;(2)写出一个与转动这个转盘相关且概率为49的事件.23.(10分)已知:如图,四边形ABCD是正方形,∠PAQ=45°,将∠PAQ绕着正方形的顶点A旋转,使它与正方形ABCD的两个外角∠EBC和∠FDC的平分线分别交于点M和N,连接MN. (1)求证:△ABM∽△NDA;(2)连接BD,当∠BAM的度数为多少时,四边形BMND为矩形?并加以证明.24.(10分)甲、乙两厂生产某种产品各60 000件,已知乙厂比甲厂人均多生产40件,甲厂人数比乙厂人数多20%.请你根据以上信息,提出一个用分式方程....解决的问题,并写出解答过程.25.(10分)小敏遇到这一个问题:已知α为锐角,且tan α=12,求tan 2α的值.小敏根据锐角三角函数及三角形有关的学习经验,先画出一个含锐角α的直角三角形:如图,在Rt△ABC中,∠C=90°,∠B=α.她通过独立思考及与同学进行交流、讨论后,形成了构造2α角的几种方法:方法1:如图①,作线段AB的垂直平分线交BC于点D,连接AD.方法2:如图②,以直线BC为对称轴,作出△ABC的轴对称图形△A′BC.方法3:如图③,以直线AB为对称轴,作出△ABC的轴对称图形△ABC′.请你参考上面的想法,选择一种方法帮助小敏求tan 2α的值.26.(10分)如图,在菱形ABCD中,P是对角线AC上的一点,且PA=PD,⊙O为△APD的外接圆.(1)试判断直线AB与⊙O的位置关系,并说明理由;(2)若AC=8,tan∠DAC=12,求⊙O的半径.27.(12分)如图,在平面直角坐标系xOy中,四边形OABC为矩形,A(0,6),C(8,0).(1)如图①,D是OC的中点,将△AOD沿AD翻折后得到△AED,AE的延长线交BC于F.①试说明线段EF和CF的关系;②求点F的坐标;(2)如图②,点M,N分别是线段AB,OB上的动点,ON=2MB,如果以M,N,B三点中的一点为圆心的圆恰好过另外两个点(M,N,B三点不在同一条直线上),求点M的坐标.28.(12分)如图,已知直线y=34x,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线y=34x上的一点,以点A,B,D为顶点作正方形.(1)图①是符合条件的一种情况,图①中点D的坐标为;(2)求出其他所有符合条件的点D的坐标;(3)在图①中,若点P以每秒1个单位长度的速度沿直线y=34x从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?参考答案5. C 解析:本题考查了圆周角定理.∵∠ADB =35°,∴∠AOB =2∠ADB =2×35°=70°.∵AO =OB ,∴∠OAB =∠OBA =12×(180°-70°)=55°,故选C.6. D 解析:本题考查了旋转的性质、平行线的性质及等腰三角形的性质.∵CC ′∥AB ,∴∠ACC ′=∠CAB =55°.∵△ABC 绕点A 旋转得到△AB ′C ′,∴AC =AC ′,∠CAC ′=180°-2∠ACC ′=180°-2×55°=70°,∴∠CAC ′=∠BAB ′=70°.故选D.7. C 解析:本题考查了平均数、中位数、众数及方差的概念.调整前的平均数是8303元,调整后的平均数是8303元,则团队平均日工资不变,故A 选项错误;调整前的方差是2 3009,调整后的方差是2 9009,则日工资的方差变大,故B 选项错误;调整前中位数是280,调整后中位数是270,则工资的中位数变小,故C 选项正确;调整前的众数是260,调整后的众数也是260,则众数不变,故D 选项错误,故选C.8. B 解析:本题考查了反比例函数、一次函数的解析式及菱形的性质.∵C (-3,4),∴OC =32+42 =5.∵四边形OBAC 为菱形,∴AC =OB =OC =5.∵AC ∥OB ,∴B (-5,0),A (-8,4),设直线OA 的解析式为y =mx ,把A (-8,4)代入得m =-12,∴直线OA 的解析式为y =-12x ,当x =-5时,y =-12x =52,则D ⎝⎛⎭⎫-5,52,把D ⎝⎛⎭⎫-5,52代入y =k x ,得k =-5×52=-252,故选B. 9. 8.06×105 10. x ≠-2 11. a(a +3)(a -3) 12. 0.313. -12 解析:本题考查了反比例函数与一次函数的交点问题.y =2x与y =x -1的图像的交点坐标为(a ,b),∴ab =2,b -a =-1,∴1a -1b =b -a ab =-12.14. < 解析:本题考查了二次函数的图像与性质.抛物线y =x 2-2x +k(k <0)的对称轴是x =1,由x 1<0,得x 1与对称轴x =1距离大于1,∴x 1+2<x 2,∴当x =x 1+2时,抛物线图像在x 轴下方, 即y <0.15. 25 解析:本题考查了平行线的性质.如图,∵直线a ∥b ,∴∠3=∠1=65°.又∵∠4=90°,∴∠2=180°-65°-90°=25°.16. 6 解析:本题考查了圆锥的侧面展开图和弧长公式.扇形弧长120πl180等于圆锥的底面周长4π,解得l =6 cm.17. 13解析:本题考查了全等三角形的性质及锐角三角函数.如图,过点A 作AD ⊥l 1于D ,过点B 作BE ⊥l 1于E ,∵∠CAD +∠ACD =90°,∠BCE +∠ACD =90°,∴∠CAD =∠BCE .∵△ABC 是等腰直角三角形,∴AC =BC .在△ACD 和△CBE 中,⎩⎪⎨⎪⎧∠CAD =∠BCE ,∠ADC =∠BEC =90°,AC =BC ,∴△ACD ≌△CBE (AAS).设l 1,l 2,l 3相邻两条平行直线间的距离为1,∴CD =BE =1,AD =CE=2,∴DE =3,∴tan α=13.18. 6 解析:本题考查了平行四边形的性质、一次函数图像上点的坐标特征、勾股定理及垂线段最短.∵点B(3m ,4m +1),令⎩⎪⎨⎪⎧3m =x ,4m +1=y ,∴y =43x +1.如图,过B 作BH ⊥x 轴于H ,则BH =4m +1,∵E ,G 在直线y =43x +1上,∴E ⎝⎛⎭⎫-34,0,G(0,1).∵平行四边形对角线交于一点,且AC 的中点一定在x 轴上,∴F 是AC 的中点.∵A(0,-2),C(6,2),∴F(3,0).当FB ⊥直线y =43x +1时BD 最短,在Rt △BEF 中,∵BH 2=EH ·FH ,∴(4m +1)2=⎝⎛⎭⎫3m +34(3-3m ),解得m 1=-14(舍去),m 2=15,∴B 点坐标为⎝⎛⎭⎫35,95,BF =⎝⎛⎭⎫3-352+⎝⎛⎭⎫0-952=3,BD =6.19. 解:(1)原式=3-1-3+9=8.(2)原式=-x 2+5x -6. ∵x 2-5x -4=0,∴ x 2-5x =4. ∴原式=-(x 2-5x)-6=-4-6=-10.20. 解:(1)去分母,得3(x +1)+2(x -1)≤6,去括号,得3x +3+2x -2≤6,移项、合并同类项,得5x ≤5,解得x ≤1,∴原不等式的解集是x ≤1.(2)移项,得x 2+4x =1,两边同时加4,得x 2+4x +4=5,配方,得(x +2)2=5,解得x 1=-2+5,x 2=-2- 5.21. 解析:本题考查了频数分布直方图、众数和中位数的概念以及用样本估计总体.(1)由直方图知95.5~100.5小组共有13人,由统计表知跳100个的有5人,从而求得跳98个的人数,再根据总人数减去其他成绩的人数求得跳90个的人数;(2)根据众数和中位数的定义,出现次数最多即为众数,95出现了11次,则众数为95个,40个数据按从小到大排列,第20个数和第21个数均为95,则它们的平均数是95,即中位数为95个;(3)用样本中成绩小于90个的人数所占比例×学校的总人数求得答案.解:(1)根据直方图得到95.5~100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13-(2)95 95(3)估计该中学九年级不能得满分的有720×1+240=54(人). 22. 解析:本题考查了画树状图或列表求等可能条件下的概率.(1)画出树状图,然后根据概率公式解答即可;(2)根据树状图设计有4种可能性的事件.解:(1)根据题意,画出树状图如下:共有9种等可能的结果,其中2次都指向红色区域只有1种,∴P(两次都指向红色区域)=19.(2)转动转盘2次,两次都指向白色区域(或两次一红一白).23. 解析:本题考查了正方形的性质、矩形的判定以及相似三角形的判定与性质.(1)由正方形的性质和角平分线,可证得∠ABM =∠ADN =135°,又由∠MAN =45°,可证得∠DAN =∠BMA ,由两角对应相等的两个三角形相似证得△ABM ∽△NDA ;(2)当∠BAM =22.5°时,可证得BM =DN ,先根据对边平行且相等的四边形是平行四边形,证四边形BMND 为平行四边形,再根据有一个角是直角的平行四边形是矩形证得.解:(1)∵四边形ABCD 是正方形,∴∠ABC =∠ADC =∠BAD =90°.∵BM ,DN 分别是∠EBC 和∠FDC 的平分线,∴∠ABM =∠ADN =135°.∵∠MAN =45°,∴∠BAM +∠DAN =45°.∵∠EBM =∠BAM +∠BMA =45°,∴∠DAN =∠BMA ,∴△ABM ∽△NDA .(2)当∠BAM =22.5°时,四边形BMND 为矩形;理由如下:∵∠BAM =22.5°,∠EBM =45°,∴∠AMB =22.5°,∴∠BAM =∠AMB ,∴AB =BM ,同理AD =DN ,∵AB =AD ,∴BM =DN .∵四边形ABCD 是正方形,∴∠ABD =∠ADB =45°,∴∠BDN =∠DBM =90°,∴∠BDN +∠DBM =180°,∴BM ∥DN .∴四边形BMND 为平行四边形.∵∠BDN =90°,∴四边形BMND 为矩形.24. 解析:本题考查了分式方程的应用.先提出问题,例如,求甲、乙两公司的人数分别是多少.再根据等量关系“乙公司的人均生产量-甲公司的人均生产量=40”,列方程求解.解:问题:求甲、乙两公司的人数分别是多少.设乙公司人数为x ,则甲公司的人数为(1+20%)x ,根据题意得60 000x -60 000(1+20%)x=40,解得x =250,经检验x =250是原方程的根,故(1+20%)×250=300(人).答:甲公司有300人,乙公司有250人.【一题多解】问题:求甲、乙两厂人均分别生产多少件.设甲厂人均生产x 件,则乙厂人均生产(x +40)件,由题意得60 000x =(1+20%)60 000x +40,解得x =200,经检验x =200是方程的解.则x +40=240(件).答:甲厂人均生产200件,乙厂人均生产240件.25. 解析:本题考查了解直角三角形、垂直平分线的性质以及三角形的外角性质.以方法1为例,设AC =k ,DC =x ,利用勾股定理列关于x 的方程,求出x ,在Rt △ADC 中直接计算∠ADC 的正切值即可.解:选择方法1:∵线段AB 的垂直平分线交BC 于点D ,∴AD =BD ,∴∠1=∠B .∵∠B =α,∴∠2=∠1+∠B =2α.在Rt △ABC 中,∠C =90°,tan α=12,∴AC BC =12.设AC =k ,DC =x ,则AD =BD =2k -x ,在Rt △ADC 中,∠C =90°,由勾股定理得,k 2+x 2=(2k -x )2,解得x =3k4,∴tan 2α=AC DC =k 3k 4=43.【一题多解】选择方法2:如图,过点A 作AD ⊥A ′B ,在Rt △ABC 中,∠ACB =90°,tan α=12.∴AC BC =12,设AC =A ′C =k ,则BC =2k ,AB =5k .∵S △ABA ′=12AA ′·BC =12BA ′·AD ,即12×2k ×2k =12×5k ×AD ,∴AD =455k ,在Rt △ABD 中,BD =(5k )2-⎝⎛⎭⎫455k 2=355k ,∴tan 2α=tan ∠ABD =AD BD =455k 355k =43.26. 解析:本题考查了垂径定理、菱形的性质、切线的判定与性质、锐角三角函数及勾股定理.(1)连接OP ,OA ,OP 交AD 于E ,由PA =PD ,根据垂径定理得OP ⊥AD ,AE =DE ,则∠1+∠OPA =90°,而∠OAP =∠OPA ,所以∠1+∠OAP =90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP =90°,由此可证得;(2)连接BD ,交AC 于点F ,根据菱形的性质得DB 与AC 互相垂直平分,则AF =4,在Rt △DAF 中求出DF ,AD ,在Rt △PAE 中求出PE ,最后设半径为R ,在Rt △OAE 中用勾股定理列出方程,求出R .解:(1)直线AB 与⊙O 相切.理由如下:连接OP ,OA ,OP 交AD 于E ,如图,∵PA =PD ,∴AP ︵=DP ︵,∴OP ⊥AD ,AE =DE ,∴∠1+∠OPA =90°.∵OP =OA ,∴∠OAP =∠OPA ,∴∠1+∠OAP =90°.∵四边形ABCD 为菱形,∴∠1=∠2,∴∠2+∠OAP =90°,∴OA ⊥AB ,∴直线AB 与⊙O 相切.(2)连接BD ,交AC 于点F ,如图,∵四边形ABCD 为菱形,∴DB 与AC 互相垂直平分.∵AC =8,tan ∠DAC =12,∴AF =4,tan ∠DAC =DF AF =12,∴DF =2,∴AD =AF 2+DF 2=25,∴AE = 5.在Rt △PAE 中, tan ∠1=PE AE =12.∴PE =52.设⊙O 的半径为R ,则OE =R -52,OA =R ,在Rt △OAE 中,OA 2=OE 2+AE 2,∴R 2=⎝⎛⎭⎫R -522+(5)2,∴R =554,即⊙O 的半径为554.27. 解析:本题考查了矩形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理以及分类讨论思想等.(1)①连接DF ,利用轴对称和矩形的性质,证△DEF ≌△DCF 即可;②利用△AOD ∽△ADF 得出AF =AD 2AO,再利用勾股定理计算AD 2 ,从而计算出AF ,最后在Rt △ABF 中求出BF ,由此可得点F 的坐标;(2)设BM =x ,分别按M ,N ,B 三点中的一点为圆心画出图形:①当点B 为圆心时,BM =BN ;②当点M 为圆心时,MB =MN ;③当点N 为圆心时,MN =BN .列关于x 的方程求解即可.解:(1)①如图①,连接DF ,∵△AOD 沿AD 翻折后得到△AED ,∴∠AED =∠AOD =∠DEF =90°.∵D 是OC 的中点,∴OD =DC .∵OD =DE ,∴DE =DC .在Rt △DEF 和Rt △DCF中,⎩⎪⎨⎪⎧DE =DC ,DF =DF ,∴△DEF ≌△DCF ,∴EF =CF .②∵△DEF ≌△DCF ,∴∠EDF =∠CDF ,∴∠ADF =90°,∴∠AOD =∠ADF .又∵∠OAD=∠DAF ,∴△AOD ∽△ADF .∴AO AD =AD AF ,∴AF =AD2AO.∵A (0,6),C (8,0),D 是OC 的中点,∴AO =BC =6,AB =OC =8,OD =4,AD 2 =42 +62=52,∴AF =526=263,BF =AF 2-AB 2=103.∴FC =BC -BF =6-103=83,∴F ⎝⎛⎭⎫8,83.(2)∵BC =6,OC =8,∴OB =62+82=10.设BM =x ,①如图②,当点B 为圆心时,则BM =BN ,∵ON =2MB ,∴10-x =2x ,∴x =103.∴AM =8-103=143,∴M ⎝⎛⎭⎫143 ,6.①②②如图③,当点M 为圆心时,则MB =MN ,过M 作MG ⊥OB 于点G ,则△BGM ∽△BAO ,∴BG AB =BM OB ,∴12(10-2x )8=x 10,解得x =259,∴AM =8-259=479,∴M ⎝⎛⎭⎫479,6.③④③如图④,当点N 为圆心时,则MN =BN ,过N 作NG ⊥AB 于G ,则△BGN ∽△BAO ,∴BG AB =BN OB ,∴12x 8=10-2x 10,解得x =8021,∴AM =8-8021=8821,∴M ⎝⎛⎭⎫8821,6.综上所述,M 点坐标为⎝⎛⎭⎫143,6或⎝⎛⎭⎫479,6或⎝⎛⎭⎫8821,6.【技法点拨】与圆的弦有关的计算问题,常从圆心作弦的垂线段,用垂径定理、勾股定理或相似三角形解决问题.28. 解析:本题考查了一次函数的图像与性质、正方形的性质以及数形结合思想.(1)由点A的坐标是(4,0)得x B =4,代入直线y =34x 得y B =3,即AB =3,由正方形的性质得AD =3,∴D(7,0);(2)分AD 是正方形的一边或AD 是正方形的对角线两种情况讨论;(3)根据AB 之间的距离是32+42=5,得点O 移动到点B 的时间为5秒,又∵当点P 到达点B 时两点停止运动,∴0<t ≤5,结合Q 以相同的速度从点A 出发沿着折线A -B -C 移动,分两种情况:当点Q 在AB 段运动时,即0<t ≤3;当点Q 在BC 段运动时,即3<t ≤5;利用S △APQ 得出二次函数解决问题.解:(1)(7,0)(2)设B 点的坐标为⎝⎛⎭⎫x ,34x ,如图②,若BD 垂直于x 轴,则BD =BC =34x.又∵点C 的横坐标为4,∴x -34x =4,解得x =16,∴D(16,0).如图③,若AD 为对角线,∴BE =CE =AE =DE =34x.又∵OE =x ,∴x - 34x =4,解得x =16,∴B(16,12),D(28,0).②③(3)①当0<t ≤3时,如图④,过点P 作PE ⊥x 轴,垂足为点E.设AQ =OP =t ,OE =45t ,AE =4-45t.∴S △APQ =12AQ·AE =12t·⎝⎛⎭⎫4-45t =-25⎝⎛⎭⎫t -522+52,当t =52时,S △APQ 的最大值为52.④⑤②当3<t ≤5时,如图⑤,过点P 作PE ⊥x 轴,垂足为点E ,过点Q 作QF ⊥x 轴,垂足为点F.设OP =t ,PE =35t ,OE =45t ,AE =4-45t.∴QF =3,AF =BQ =t -3,EF =AE +AF =1+15t ,∴S △APQ = S 梯形PEFQ -S △PEA -S △QFA =12(PE +QF)·EF - 12PE·AE -12QF· AF =12⎝⎛⎭⎫35t +3·⎝⎛⎭⎫1+15t -12·35t·⎝⎛⎭⎫4-45t -12×3·(t -3)=310⎝⎛⎭⎫t -722+9340.∵抛物线开口向上,对称轴为直线x =72,∴当t =5时,S △APQ 的最大值为3>52.∴在移动过程中,△PAQ 的面积最大值是3.。

2019届江苏省扬州市九年级下学期第一次月考数学试卷【含答案及解析】(2)

2019届江苏省扬州市九年级下学期第一次月考数学试卷【含答案及解析】(2)

2019届江苏省扬州市九年级下学期第一次月考数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 的相反数是()A.2 B. C. D.2. 下列计算正确的是()A. B.C. D.3. 如图是由几个小立方块所塔成的几何的俯视图,小正方形中的数字表示该位置小立方块的个数,则该几何体的主视图是()4. 下列事件中,必然事件是()A.打开电视,它正在播广告B.掷两枚质地均匀的正方体骰子,点数之和一定大于6C.早晨的太阳从东方升起D.没有水分,种子发芽5. 下列图形中,由AB∥CD,能得到∠1=∠2的是()6. 某反比例函数图象经过点,则下列各点中此函数图象也经过的点是()A. B. C. D.7. 已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有()A.1个 B.2个 C.3个 D.4个8. 电子跳蚤游戏盘是如图所示的△ABC,AB=6,AC=7,BC=8.如果跳蚤开始时在BC边的P0处,BP0=2.跳蚤第一步从P0跳到AC边的P1(第1次落点)处,且CP1=CP0;第二步从P1跳到AB边的P2(第2次落点)处,且AP2=AP1;第三步从P2跳到BC边的P3(第3次落点)处,且BP3=BP2;……;跳蚤按上述规则一直跳下去,第n次落点为Pn (n为正整数),则点P2013与P2016之间的距离为()A.1 B.2 C.3 D.4二、填空题9. “十二五”期间,我市农民收入稳步提高,2015年农民人均纯收入达到25600元,将数据25600用科学记数法表示为______________.10. 在函数y=中,自变量x的取值范围是__________11. 因式分【解析】 .12. 数学老师布置10道选择题作业,批阅后得到如下统计表.根据表中数据可知,这45名同学答对题数组成的样本的中位数是___________题.13. 如图,岛在岛的北偏东方向,在岛的北偏西方向,则从岛看两岛的视角=__________°14. 某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是___________.15. 如图,的弦与直线径相交,若,则=____°16. 如图,是的中位线,分别是的中点,,则_____________.17. 如图,已知函数与的图象交于点,点的纵坐标为1,则关于的方程的解为_____________.18. 如图,双曲线y=经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为6,则k的值是.三、解答题19. (1)(2)20. 解不等式组,并写出它的所有整数解.21. 扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:(1)这次被调查的学生共有人.(2)请你将统计图1补充完整.(3)统计图2中D项目对应的扇形的圆心角是度.(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.22. 一个不透明的布袋里装有4个大小,质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4,小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有种可能的结果.(2)请用画树状图或列表的方法求两次摸出的乒乓球的数字之积为偶数的概率.23. 如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD,垂足为E.求证:BE=DE.24. 为了改善生态环境,防止水土流失,某村计划在荒坡上种480棵树,由于青年志愿者的支援,每日比原计划多种,结果提前4天完成任务,原计划每天种多少棵树?25. 如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)26. 如图,AB是⊙O的直径,C是⊙O上一点,AD垂直于过点C的切线,垂足为D.(1)求证:AC平分BAD;(2)若AC=2,CD=2,求⊙O的直径.27. 已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.28. 某班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ= ,P1Q1= .(用含a的代数式表示)(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O 重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ 交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为点Pn的纵坐标为(直接用含a、b、n的代数式表示)参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】第26题【答案】第27题【答案】第28题【答案】。

2019年扬州市中考数学模拟试卷及答案

2019年扬州市中考数学模拟试卷及答案

第6题图扬州市中考数学模拟试卷(时间:120分钟 总分:150分)姓名__________________________ 成绩_______________ 一、选择题(本题共8个小题,每小题3分,共24分)1.12-的相反数是…………………………………………………………( )A .2B .12C .2-D .12-2.下列计算正确的是……………………………………………………( ) A .235a a a +=B .236a a a ×=C .842a a a ¸=D .()236aa =3.下列立体图形中,主视图是三角形的是……………………………( )A .B .C .D .4.某反比例函数图像经过点()16,-,则此函数图像也经过的点是…………………( )A .()32,-B .()32,C .()23,D .()61,5.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是………………( )A .8B .9C .10D .11 6.如图,在⊙ O 中∠ BOD =120°,则∠ BCD 的度数是……………………………( )A .60°B .80°C .120°D .150°7.某地一家庭记录了去年12是……………( )A .中位数为5,众数为4B .中位数为5,众数为5C .中位数为4.5,众数为4D .中位数、众数均无法确定8.已知二次函数223y x x =-++,截取该函数图像在40≤≤x 间的部分记为图像G ,设经过点(0,t )且平行于x 轴的直线为l ,将图像G 在直线l 下方的部分沿直线l 翻折,图像G 在直线l 上方的部分不变,得到一个新函数的图像M ,若函数M 的最大值与最小值的差不大于5,则t 的取值范围是……………………………………………………( ) A .10t -≤≤ B . 112t -≤≤-C . 102t -≤≤ D .1-≤t 或0≥t二、填空题(本题共10个小题,每小题3分,共30分)9x 的取值范围是 .10.2019年扬州“烟花三月”国际经贸旅游节将于4月18日如期举行,筹备项目组预算开幕式费用约375000元,将375000用料学记数法表示为 .11.在2-,1,4,3-,0这5个数字中,任取一个数是负数的概率是 . 12.如图,BD 平分∠ ABC ,点E 为BA 上一点,EG ∥BC 交BD 于点F .若∠ DFG =35°,则∠ ABC 的度数为13.如图,D 、E 分别是△ ABC 边AC ,BC 的中点,若△ CDE 的面积为2,则四边形ABED 的面积为 .14.如果a +b =2,那么22a b a b b a+--的值是 .15.已知圆锥的母线长为10cm ,高为8cm ,则该圆锥的侧面积为 cm 2.(结果用π表示) 16.如图,在平行四边形ABCD 中,AB =10,AD =6,AC ⊥BC .则BD = .17.如图,射线AB 经过A (2,0)、B (0,2),若将射线AB 绕点A 顺时针旋转,旋转到经过点C (3,3)的位置,若旋转的角度为α,则tan α=.18.在平面直角坐标系中,已知x 轴上一点A (0),B 为y 轴上的一动点,连接AB ,以AB 为边作等边△ABC 如图所示,已知点C 随着点B 的运动形成的图形是一条直线,连接OC , 则AC +OC 的最小值 . 三、解答题(本题共10个小题,共96分) 19.(本题满分8分) (1)计算:()︒-02cos4512019(2)化简:(2)(2)(1)a a a a +-+-第17题图第16题图第18题图520.(本题满分8分)解不等式组3811223x x x x ≤-<⎧⎪++⎨⎪⎩,并写出它的所有整数解.21.(本题满分8分)“2019扬州鉴真国际半程马拉松赛”将于2019年4月21日举行.赛事共有三项:“中国梦华人半程马拉松”、“幸福大道市民半程马拉松”、“青春在途高校团体半程马拉松”.小明和小华积极报名成为了赛事的志愿者,组委会随机将志愿者分配到三个项目组. (1)小明被分配到“中国梦华人半程马拉松”项目组的概率为 ; (2)请用树状图或列表求小明和小华被分配到不同项目组的概率.22.(本题满分8分)为了解本校九年级学生期末考试数学成绩情况,小亮在九年级随机抽取一部分学生的数学成绩为样本,分为A (100~90分)、B (89~80分)、C (79~60分)、D (59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题: (1)这次随机抽取的学生共有多少人? (2)请补全条形统计图;(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末考试数学成绩为优秀的学生人数大约有多少?23.(本题满分10分)某超市预测某饮料将会畅销,用1600元购进了这种饮料,面市后果然供 不应求,又用6000元购进同种饮料,第二次购进的饮料数量是第一次的3倍,但单价比第一次 贵2元.问第一次购进饮料的单价为多少元?24.(本题满分10分)如图,AB 为⊙ O 的直径,点D 在⊙O 上,不与点A ,B 重合,点C 是的中点,过点C 作AD 的垂线EF 交直线AD 于点E .(1)求证:EF 是⊙ O 的切线; (2)若AB =5,sin ∠ BAC =35,求线段AE 的长.25.(本题满分10分)我们已经知道,一次函数y =x +1的图像可以看成由正比例函数y =x 的图像沿x 轴向左平移1个单位得到;也可以看成由正比例函数y =x 的图像沿y 轴向上平移1个单位得到. (1)函数y =11x -的图像可以看成由反比例函数y =1x的图像沿x 轴向 平移1个单位得到; (2)函数y =24x +的图像可以看成由正比例函数y =2x 图像沿x 轴向 平移 个单位得到; (3)如果将二次函数2y x =-的图像沿着x 轴向右平移a (a >0)个单位,再沿y 轴向上平移2a 个单位,得到215y x mx =-+-的图像,试求m 的值.26.(本题满分10分)如图,矩形ABCD中,E是BC上一点,点F是点E关于点C的对称点,过点F作对角线BD的平行线,交DC的延长线于点H,连接HE并延长与矩形的边AB、对角线BD于点N、M.(1)试判定△BME的形状,并说明理由.(2)若BE=2EC,连接DE,当△MED为直角三角形时,求AB:BC的值.备用图27.(本题满分12分)我区某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规定甲产品每天至少生产20件.设每天安排x(x≥1)人生产乙产品.(1)根据信息填表:(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?(3)该企业准备通过对外招工,增加工人数量的方式降低每天的生产总成本,那么至少招多少名工人才能实现每天的生产总成本不高于350元?28.(本题满分12分)如图,在平面直角坐标系中,直线l :2y x =--与坐标轴分别交与A 、C 两点,点B 的坐标为(4,,⊙ B 与x 轴相切于点M . (1)∠ CAO 的度数是(2)若直线l 以每秒15度的速度绕点A 顺时针旋转t 秒(0<t <12),当直线l 与⊙ B 有公共点时,求t 的取值范围?(3)在(2)中直线与⊙ B 有公共点的条件下,若⊙B 在直线l 上截得的弦的中点为N .① 试判断∠ ANM 的度数是否会发生变化,若不变求出其度数,若变化说明理由; ② 直接写出点N 运动路径的长 .备用图。

扬州市2019年中考数学模拟试卷及答案

扬州市2019年中考数学模拟试卷及答案

扬州市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1. 一个数的绝对值是5,这个数是A.5 B 、-5 C .5和-5 D .02. 2017年我省粮食总产量695.2亿斤,居历史第二高位,695.2亿用科学记数法表示为A.695.2×108B.6.952×109C.6.952×1010D.6.952×10113. 下列运算正确的是 D A .2a 2•a 3=2a6B .(3ab )2=6a 2b2C .2abc +ab =2D .3a 2b +ba 2=4a 2b4.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是5.设一元二次方程(1x +)(3x -)=m (m >0)的两实数分别为α、β且α<β,则α、β满足 A.-1<α<β<3 B.α<-1且β>3 C.α<-1<β<3 D.-1<α<3<β 6. 如图,M 、N 、P 、Q 是数轴上的四个点,这四个点中最适合表示的点是A. 点MB. 点NC. 点PD. 点Q7. 如图,在⊙O 中,AB =AC ,∠AOB =40°,则∠ADC 的度数是 A .40° B .30° C .20° D .15°8.将A ,B 两位篮球运动员在一段时间内的投篮情况记录如下:下面有三个推断:① 投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.② 随着投篮次数的增加,A 运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A 运动员投中的概率是0.750.③ 投篮达到200次时,B 运动员投中次数一定为160次. 其中合理的是N A .①B .②C .①③D .②③9.如图,菱形ABCD 的边长为4,∠DAB =60°,过点A 作AE ⊥AC ,AE =1,连接BE ,交AC 于点F ,则AF 的长度为A.B.C.D.10.. 甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米. 设甲车的速度为x 千米/小时,依题意列方程正确的是 A.304015x x =+ B. 304015x x =+ C. 304015x x =- D. 304015x x =- 二、填空题(本大共6小题,每小题4分,满分24分) 11.分解因式:a 3-9a= ___________.12.在平面直角坐标系中,以原点为中心,把点A (4,5)逆时针旋转90°,得到的点A ′的坐标 为 .13.关于x 的不等式组2131x a x +>⎧⎨->⎩的解集为1<x <4,则a 的值为 .14.如果关于x 的方程x 2-2x +k =0(k 为常数)有两个不相等的实数根,那么k 的取值范围是 .15.若一个等腰三角形有两边长为3和4,则它的周长为 .16.若圆锥的底面积为216cm π,母线长为cm 12,则它的侧面展开图的圆心角为 °第11题图三、(本大题共2小题 ,满分80分)17. (本题满分6分)计算:18. (本题满分10分)已知关于x 的方程(k +1)x 2-2(k -1)x +k =0有两个实数根x 1,x 2.(1)求k 的取值范围; (2)若12122x x x x +=+,求k 的值.19.(本题满分10分)如图,点B 、E 分别在AC 、DF 上,AF 分别交BD 、CE 于点M 、N ,∠A =∠F ,∠1=∠2.(1)求证:四边形BCED 是平行四边形;(2)已知DE =2,连接BN ,若BN 平分∠DBC ,求CN 的长.20.(10分)某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)此次参赛的作文篇数共有 篇;(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图; (3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率. 21. (本题满分12分)在正方形网格中,建立如图所示的平面直角坐标系的三个顶点都在格点上,点A 的坐标,请解答下列问题:画出关于y 轴对称的,并写出点、、的坐标;2021*******-⎪⎭⎫⎝⎛+---将绕点C逆时针旋转,画出旋转后的,并求出点A到的路径长.22.(本小题满分8分)随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?23.(本题满分12分)如图,四边形ABCD是边长为4的菱形,且∠ABC=60°,对角线AC与BD相交点为O,∠MON=60°,N在线段BC上.将∠MON绕点O旋转得到图1和图2.(1)选择图1或图2中的一个图形,证明:△MOA∽△ONC;(2)在图2中,设NC=x,四边形OMBN的面积为y. 求y与x的函数关系式;当NC的长x为多少时,四边形OMBN面积y最大,最大值是多少?(根据材料:正实数a,b满足a+b≥2ab,仅当a=b时,a+b=2ab).24.(本题满分14分)给出如下定义:对于⊙O 的弦MN 和⊙O 外一点P (M ,O ,N 三点不共线,且P ,O 在直线MN 的异侧),当∠MPN +∠MON=180°时,则称点 P 是线段MN 关于点O 的关联点.图1是点P 为线段MN 关于点O 的关联点的示意图.在平面直角坐标系xOy 中,⊙O 的半径为1.(1)如图2, ,22M ⎛ ⎝⎭,N ⎝⎭.在A (1,0),B (1,1),)C三点中, 是线段MN 关于点O 的关联点的是 ;(2)如图3, M (0,1),N 122⎛⎫- ⎪ ⎪⎝⎭,点D 是线段 MN 关于点O 的关联点.①∠MDN 的大小为 °;②在第一象限内有一点E),m ,点E 是线段MN 关于点O 的关联点,判断△MNE 的形状,并直接写出点E 的坐标;③点F 在直线2y x =+上,当∠MFN ≥∠MDN 时,求点F 的横坐标F x 的取值范围.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

2019学年江苏省扬州市邗江区九年级第一次中考模拟数学试卷【含答案及解析】

2019学年江苏省扬州市邗江区九年级第一次中考模拟数学试卷【含答案及解析】

2019学年江苏省扬州市邗江区九年级第一次中考模拟数学试卷【含答案及解析】姓名____________ 班级_______________ 分数____________ 题号-二二三四五六总分得分、选择题1. —3的绝对值是()A.二 B . C . 3 D . -33 32. 下列运算中,结果正确的是()BA.C. 二% D . - 站3. 用两块完全相同的长方体搭成如图所示几何体,这个几何体的主视图是()4. 甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为•' •,则四人中成绩最稳定的是()A.甲 B •乙 C •丙 D •丁5. 如图,过正五边形ABCDE勺顶点A作直线I // BE,则/I的度数为()A. 30 B . 36 C . 38 D . 456.如图,点A 是反比例函数〔■一的图像上的一点,过点 A 作嵌丨x 轴,垂足为B.点C X为y 轴上的一点,连接 AC , BC.若△ ABC 的面积为3,则k 的值是()7.如图,是一张平行四边形纸片 ABC D 要求利用所学知识将它变成一个菱形,甲、乙两对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B •甲错误,乙正确 C.甲、乙均正确D•甲、乙均错误S’ HF s ib ^b, L HF s8•记-■-I ":”•,令. -------------------- ,则称’为•,,……,这列数的“凯森和” •已知-,,……, 的“凯森和”为2004,那么13,,, .... ,:迪的“凯森和"为()A. 2013B. 2015 C . 2017 D . 2019二、填空题9.若二次根式有意义,则•的取值范围是10•点A (- 2, 3)关于x 轴的对称点A '的坐标为 11.日前一部雾霾纪录片《穹顶之下》引发了人们对环境污染的深刻反响,片中主持人柴 静在某城市用PM2.5采样仪测得当地空气中 PM2.5指数为305.9ug/m3,将数据305.9ug/m3用科学计数法表示为 ug/m3.12. 一个八边形的内角和是CBO\A. 3 B-3CD . -6甲:连接卫:作山朝中垂线交沖。

2019年江苏省扬州市中考数学摸底考试试卷附解析

2019年江苏省扬州市中考数学摸底考试试卷附解析

2019年江苏省扬州市中考数学摸底考试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,已知⊙O 过正方形ABCD 的顶点A 、B ,且与CD 边相切,若正方形的边长为2,则圆的半径为( )A .34B .45 C .25 D .1 2.如图,△OCD 和△OAB 是位似三角形,则位似中心是( ) A .点A B .点C C .点0 D .点B3.两个相似三角形对应高的长分别为 8 和 6则它们的面积比是( )A .4:3B .16:9C .23D 324.下列语句是命题的有 ( )①若a 2 =a ,则a>0;②延长线段AB 到C ,使B 是AC 的中点;③一条直线的垂线只有一条;④如果两个角的两边互相平行,那么这两个角相等.A .1个B .2个C .3个D .4个 5.若关于x 的分式方程2344m x x =+−−有增根,则m 的值为( ) A . -2 B . 2 C .2± D .46.下列各题:①(-4x 3y 3)÷(-4x 2y )=x 2y 3; ②(-3x 2y 4)÷(-3xy 2)=x 2y 2;③2x 2y 2z÷21x 2y 2=4z ;•④15x 2y 3z 4÷(-5xyz )2=1125yz 2.其中计算正确的是( ) A .①②B .①③C .②④D .③④ 7.一个数的立方根是它本身,则这个数是( ) A .0B .1,0C .1,-1D .1,-1或0 8.用四舍五入法对60340取近似数,保留两个有效数字,结果为( ) A .6.03×104B .6.0×104C .6×104D .6.0×103 9.下列运算中,结果为负数的是( ) A .(-5)×(-3)B .(-8)×O ×(-6)C . (-6)+(-8)D . (-6)-(-8) 二、填空题10.如图,已知正方形ABCD 的边长为2.如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′点处,那么tan BAD ∠′等于__________.11.如图,⊙O 的半径为4cm ,直线l ⊥OA ,垂足为O ,则直线l 沿射线OA 方向平移________cm 时与⊙O 相切.12.已知斜坡AB=12m,AB 的坡度i=1:3,则斜坡AB 的高为_______ m. 13.如图,已知∠1 =∠2,请补充条件 (写出一个即可),使△ADE ∽△ABC.14.弦AB 分圆为1:5两部分,则劣弧AB 所对的圆心角等于______.15.如图,菱形ABCD 中,O 是对角线AC BD ,的交点,5cm AB =,4cm AO =,则BD =cm .16.如果一个数的平方根是28a −和1a −,那么这个数是 ,其中算术平方根是 .17.若关于x 的不等式30x a −≤有且只有3 个正整数解,那么整数a 的最大值是 .18. 如图,将长方形纸片 ABCD 沿 EF 折叠,C 、D 两点分别落在 C ′,D ′处. 若∠1=40°,则∠2= .19. 在多项式241x +中,添加一个单项式,使其成为一个完全平方式,则添加的单项式是 (只写出一个即可).20.已知x=1,y=2是二元一次方程mx-3y=2的解,则m=________.21. 已知三角形的两边长分别为3cm 和7cm ,第三边的长为偶数,则这个三角形的周长为 .22.A 地海拔高度是-30 m ,B 地海拔高度是lO m ,C 地海拔高度是-10 m ,则 地势最高,地地势最低,地势最高与地势最低的相差 m.三、解答题23.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12. (1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.24.如图,玻璃刷AB 由两根OA 、OB 杆撑起,把△AOB 绕着点0旋转 90°至△DOC 位置,OA= 30cm ,OB= 10cm ,求图中玻璃刷刷过的阴影部分面积.25.如图所示,它是函数5y x=的大致图象,其中点A 在其图象上,A 点的横坐标为2. (1)求点A 的坐标;(2)求出点A 关于原点的对称点A 的坐标,并证明 A ′点也在5y x =的图象上; (3)过A 作x 轴、y 轴的平行线,过A ′作x 轴、y 轴的平行线,分别交于 B .C 两点,证明平行四边形 ABA'C 为矩形,并求其面积.26.如图所示,把一张长方形纸条按如下方法折叠2次后,沿图③中的虚线剪下,展开后的多边形的内角和是多少度?27.已知关于x 的一次函数y=(m+1)x-m-5.求:(1)当m 为何值时,直线y=(m+1)x-m-5交y 轴于正半轴;(2)当m 为何值时,直线y=(m+1)x-m-5交y 轴于负半轴;(3)当m 为何值时,直线y=(m+1)x-m-5经过原点.28.如图,一块三角形模具的阴影部分已破损.(1)只要从残留的模具片中度量出哪些边、角,就可以不带残留的模具片到店铺加工一块与原来的模具ABC 的形状和大小完全相同的模具A B C '''?请简要说明理由.(2)作出模具A B C '''△的图形.(要求:尺规作图,保留作图痕迹,不写作法和证明)29.如图,一个4×2的矩形可以用不同的方式分割成2或5或8个小正方形,那么一个5×3的矩形用不同的方式可以分割成多少个小正方形?简要画出图形并说明理由.BA30.把下列各数填入相应的括号内:-2.5,10,0.22,0,1213−,-20,+9.78,+68,0.45,47+自然数{ };负整数{ };正分数{ };有理数{ }.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.B4.C5.A6.D7.D8.B9.C二、填空题10.211.412.613.∠E=∠C 或∠D=∠B14.60度15.616.36,617.1118.70°19.答案不唯一,例如4x ,4x −等20.821.16cm 或18cm22.B,A,40三、解答题23.(1)1个;(2)树状图略;P=61. 24.由旋转得AOD S S S =−阴影扇形扇形OBC ,2290903010200360360S πππ⨯⨯−⨯⨯=阴影= cm 2. 25.(1)把x=2代入5y x =得A 点坐 (2,52) (2)∵A 与 A ′关于原点对称,∴.A ′的坐标是(—2,52−)5(2)()52−⨯−=,∴A ′点也在5y x =的图象上.. (3)∵x 轴⊥y 轴于点O ,∴∠.CAB=90°,同理可知∠B=∠C=∠CA ′B =90°. ∴ 平行四边形 ABA ′C 为矩形,4520AC AB =⋅=⨯=面积.26.展开后的图形为八边形,其内角和为1080°27.(1)m<-5;(2)m>-5且m ≠-l ;(3)m=-528.(1)只要度量残留的三角形模具片的B C ∠∠,的度数和边BC 的长, 因为两角及其夹边对应相等的两个三角形全等;(2)略29.如图,可以分割成4或7或9或15个小正方形30.自然数{10,0,+68,·…};负整数{-20,…};正分数{0.22,+9.78,有理数{-2.5,10,0.22,0,1312−,-20, +9.78,+68, 0.45,47+,…}。

2019年江苏省扬州市中考数学一模试卷(解析版)

2019年江苏省扬州市中考数学一模试卷(解析版)

2019年江苏省扬州市中考数学一模试卷一、选择题(本大题共8小题,共24.0分)1.下列计算正确的是()A. 2a+3b=5abB. (ab)3=ab3C. (a2)3=a5D. a2⋅a3=a52.一个正方形的面积是12,估计它的边长大小在()A. 2与3之间B. 3与4之间C. 4与5之间D. 5与6之间3.如图,下列选项中不是正六棱柱三视图的是()A. B.C. D.4.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:年龄/岁 1314 15 16人数 5 15由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差5.如图,将三角板的直角顶点放在直尺的一边上,∠2=40°,那么∠1的度数为()A. 40∘B. 50∘C. 60∘D. 90∘6.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为()A. 3B. 4C. 6D. 87.已知1m -1n=1,则代数式2m−mn−2nm+2mn−n的值为()A. 3B. 1C. −1D. −38.如图,⊙O是以原点为圆心,2√3为半径的圆,点P是直线y=-x+8上的一点,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A. 2√5B. 4C. 8−2√3D. 2√13二、填空题(本大题共10小题,共30.0分)9.扬州2月份某日的最高气温是6℃,最低气温是-3℃,则该日扬州的温差(最高气温-最低气温)是______℃.10.分解因式:x3-2x2+x=______.11.长度单位1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是______米.12.反比例函数y=1−kx与y=2x的图象没有交点,则k的取值范围为______.13.抛掷一枚质地均匀的硬币,连续3次都是正面向上,则关于第4次抛掷结果,P(正面向上)______P(反面向上).(填写“>”“<”或“=”)14.三角形在正方形网格中的位置如图所示,则sinα的值是______.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,OH=4,则菱形ABCD的周长等于______.16.如图,在△ABC中,∠A=70°,∠B=55°,以BC为直径作⊙O,分别交AB、AC于点E、F,则EF⏜的度数为______°.17.如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=kx的图象经过点Q,若S△BPQ=14S△OQC,则k的值为______.18.若-2≤a<2,则满足a(a+b)=b(a+1)+a的b的取值范围为______.三、计算题(本大题共3小题,共26.0分)19.(1)计算:√27−2cos30°+(12)−2−|1−√3|;(2)解不等式:1−2x2−1≥x+23.20.先化简再求值:(3x−1−x−1)÷x−2x2−2x+1,其中x是方程x2-2x=0的根.21.已知关于x的一元二次方程x2+2(m-1)x+m2-3=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为非负整数,且该方程的根都是无理数,求m的值.四、解答题(本大题共7小题,共70.0分)22.2018年江苏省扬州市初中英语口语听力考试即将举行,某校认真复习,积极迎考,准备了A、B、C、D四份听力材料,它们的难易程度分别是易、中、难、难;a,b是两份口语材料,它们的难易程度分别是易、难.(1)从四份听力材料中,任选一份是难的听力材料的概率是______.(2)用树状图或列表法,列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,并求出两份材料都是难的一套模拟试卷的概率.23.某市需调查该市九年级男生的体能状况,为此抽取了50名九年级男生进行引体向上个数测试,测试情况绘制成表格如下:个数1234567891011人数1161810622112(1)求这次抽样测试数据的平均数、众数和中位数;(2)在平均数、众数和中位数中,你认为用哪一个统计量作为该市九年级男生引体向上项目测试的合格标准个数较为合适?简要说明理由;(3)如果该市今年有3万名九年级男生,根据(2)中你认为合格的标准,试估计该市九年级男生引体向上项目测试的合格人数是多少?24.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.25.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CAB=2∠CBF.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求tan∠CBF.26.某商场购进一批30瓦的LED灯泡和普通白炽灯泡进行销售,其进价与标价如下表:LED灯泡普通白炽灯泡进价(元)4525标价(元)6030(1)该商场购进了LED灯泡与普通白炽灯泡共300个,LED灯泡按标价进行销售,而普通白炽灯泡打九折销售,当销售完这批灯泡后可获利3200元,求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进这两种灯泡120个,在不打折的情况下,请问如何进货,销售完这批灯泡时获利最多且不超过进货价的30%,并求出此时这批灯泡的总利润为多少元?27.有一边是另一边的√2倍的三角形叫做智慧三角形,这两边中较长边称为智慧边,这两边的夹角叫做智慧角.(1)在Rt△ABC中,∠ACB=90°,若∠A为智慧角,则∠B的度数为______;(2)如图①,在△ABC中,∠A=45°,∠B=30°,求证:△ABC是智慧三角形;(3)如图②,△ABC 是智慧三角形,BC 为智慧边,∠B 为智慧角,A (3,0),点B ,C 在函数y =kx (x >0)的图象上,点C 在点B 的上方,且点B 的纵坐标为√2.当△ABC 是直角三角形时,求k 的值.28. 如图①,一次函数y =12x -2的图象交x 轴于点A ,交y 轴于点B ,二次函数y =−12x 2+bx +c 的图象经过A 、B 两点,与x 轴交于另一点C .(1)求二次函数的关系式及点C 的坐标;(2)如图②,若点P 是直线AB 上方的抛物线上一点,过点P 作PD ∥x 轴交AB 于点D ,PE ∥y 轴交AB 于点E ,求PD +PE 的最大值;(3)如图③,若点M 在抛物线的对称轴上,且∠AMB =∠ACB ,求出所有满足条件的点M 的坐标.答案和解析1.【答案】D【解析】解:A、2a+3b≠5ab,故本选项错误;B、(ab)3=a3b3,故本选项错误;C、(a2)3=a6,故本选项错误;D、a2•a3=a2+3=a5,故本选项正确.故选:D.根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识.解题要注意细心.2.【答案】B【解析】解:设正方形的边长等于a,∵正方形的面积是12,∴a==2,∵9<12<16,∴3<<4,即3<a<4.故选:B.先设正方形的边长等于a,再根据其面积公式求出a的值,估算出a的取值范围即可.本题考查的是估算无理数的大小及算术平方根,估算无理数的大小时要用有理数逼近无理数,求无理数的近似值.3.【答案】A【解析】解:正六棱柱三视图分别为:三个左右相邻的矩形,两个左右相邻的矩形,正六边形.故选:A.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查了几何体的三种视图,注意所有的看到的棱都应表现在三视图中.4.【答案】B【解析】解:因为共有30位同学,所以14岁有15人,所以14为众数,第15个数和第16个数都是14,所以数据的中位数为14.故选:B.利用数据有30个,而14占15个,则可得到数据的众数;然后利用中位数的定义可确定这组数据的中位数,从而可对各选项进行判断.本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了中位数、众数.5.【答案】B【解析】解:如图,∵∠ACB=90°,∠2=40°,∴∠3=50°,∵AB∥CD,∴∠1=∠3=50°,故选:B.由三角板的直角∠ACB=90°,∠2=40°,即可求得∠3的度数,又根据两直线平行,同位角相等,即可求得∠1的度数.此题考查了平行线的性质.解题的关键是注意两直线平行,同位角相等定理的应用.6.【答案】C【解析】解:∵⊙O的半径与这个正n边形的边长相等,∴这个多边形的中心角=60°,∴=60°,∴n=6,故选:C.因为⊙O的半径与这个正n边形的边长相等,推出这个多边形的中心角=60°,构建方程即可解决问题;本题考查正多边形与圆,解题的关键是熟练掌握基本知识,灵活运用所学知识解决问题,属于中考常考题型.7.【答案】D【解析】解:∵-=1,∴-=1,则=1,∴mn=n-m,即m-n=-mn,则原式====-3,故选:D.由-=1利用分式的加减运算法则得出m-n=-mn,代入原式=计算可得.本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和整体代入思想的运用.8.【答案】A【解析】解:∵P在直线y=-x+8上,∴设P坐标为(m,8-m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在Rt△OPQ中,根据勾股定理得:OP2=PQ2+OQ2,∴PQ2=m2+(8-m)2-=2m2-16m+52=2(m-4)2+20,则当m=4时,切线长PQ的最小值为.故选:A.由P在直线y=-x+8上,设P(m,8-m),连接OQ,OP,由PQ为圆O的切线,得到PQ⊥OQ,在直角三角形OPQ中,利勾股定理列出关系式,配方后利用二次函数的性质即可求出PQ的最小值.此题考查了一次函数综合题,涉及的知识有:切线的性质,勾股定理,配方法的应用,以及二次函数的性质,熟练掌握二次函数的性质是解本题的关键.9.【答案】9【解析】解:6-(-3)=9(℃)∴该日扬州的温差(最高气温-最低气温)是9℃.故答案为:9.根据有理数的减法的运算方法,用扬州2月份某日的最高气温减去最低气温,求出该日扬州的温差(最高气温-最低气温)是多少即可.此题主要考查了有理数的减法的运算方法,要熟练掌握.10.【答案】x(x-1)2【解析】解:x3-2x2+x=x(x2-2x+1)=x(x-1)2.故答案为:x(x-1)2.首先提取公因式x,进而利用完全平方公式分解因式即可.此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.11.【答案】2.51×10-5【解析】解:25100科学记数法可表示为2.51×104,然后把纳米转化成米,即2.51×104×10-9=2.51×10-5.故答案为:2.51×10-5.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,25100科学记数法可表示为2.51×104,然后把纳米转化成米2.51×104×10-9化简得结果.本题考查科学记数法的表示方法,关键是注意当n是负数.12.【答案】k>1【解析】解:∵函数y=与y=2x的图象没有交点,∴1-k<0,即k>1,故答案为:k>1.根据反比例函数与一次函数图象的特征,得到1-k小于0,即可确定出k的范围.本题考查了反比例函数与一次函数的交点问题,熟练掌握两函数的性质是解本题的关键.13.【答案】=【解析】解:∵抛掷一枚质地均匀的硬币一次,可能的结果有:正面向上,反面向上,∴P(正面向上)=P(反面向上)=.故答案为:=.由抛掷一枚质地均匀的硬币一次,可能的结果有:正面向上,反面向上;直接利用概率公式求解即可求得答案.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】35【解析】解:由图可得,直角三角形的斜边长==5,∴sinα=,故答案为:.锐角A的对边a与斜边c的比叫做∠A的正弦,即sinA=∠A的对边除以斜边.本题主要考查了锐角三角函数的定义,我们把锐角A的对边a与斜边c的比叫做∠A的正弦,记作sinA.15.【答案】32【解析】解:∵四边形ABCD是菱形,∴AD=AB=CD=BC,AC⊥BD,∴∠AOD=90°,∵H为AD边中点,OH=4,∴AD=2OH=8,即AD=CD=BC=AB=8,∴菱形ABCD的周长是8+8+8+8=32,故答案为:32.根据菱形的性质得出AD=AB=CD=BC,AC⊥BD,根据直角三角形斜边上的中线性质求出AD,再求出周长即可.本题考查了菱形的性质和直角三角形斜边上的中线性质,能求出AD的长是解此题的关键.16.【答案】40【解析】解:∵∠A=70°,∠B=55°,∴∠C=180°-∠A-∠B=55°,∴∠B=∠C,∴AB=AC,连接OF,∵OC=OF,∴∠C=∠CFO=55°,∴∠COF=70°,∴的度数是70°,∵∠B=55°,∴的度数是110°,∴的度数是110°-70°=40°,故答案为:40连接OF,求出∠C和∠CFO度数,求出∠COF,即可求出度数,即可求出答案.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.17.【答案】16【解析】解:∵四边形OABC为正方形,∴OC∥AB ,∴△BPQ∽△OQC,∵S△BPQ=S△OQC,∴BP=AB.∵正方形OABC的边长为6,∴点C(0,6),B(6,6),P(6,3),利用待定系数法可求出:直线OB的解析式为y=x,直线CP的解析式为y=-x+6,联立OB、CP 的解析式得:,解得:,∴Q(4,4).∵函数y=的图象经过点Q,∴k=4×4=16.故答案为:16.根据正方形的性质可得出OC∥AB,从而得出△BPQ∽△OQC,再根据S△BPQ =S△OQC,即可得出点P的坐标,利用待定系数法求出直线OB、CP的解析式,联立两个解析式求出交点坐标后再由反比例函数图象上点的坐标特征即可得出结论.本题考查了正方形的性质、反比例函数图象上点的坐标特征以及相似三角形的性质,解题的关键是求出点Q的坐标.本题属于中档题,难度不大,解决该题型题目时,根据点的坐标利用待定系数法求出函数解析式是关键.18.【答案】-14≤b≤6【解析】解:由a(a+b)=b(a+1)+a,化简得:b=a2-a(-2≤a<2)将二次函数化为顶点式得:b=(-2≤a<2)则二次函数开口朝上,顶点为(,-),当a<时,b随a的增大而减小,当a>时,b随a的增大而增大.因此当a=-2时,b取得最大值6;当a=时,b取得最小值.故答案为:.由题目中的等式化简,用含a的代数式表示b,因为-2≤a<2,则b可看作变量a的函数,利用二次函数的性质即可得出.本题考察二次函数的基本性质,在解题时要注意将题目会中的等式正确化简得到二次函数,再利用函数的性质解决问题.19.【答案】解:(1)原式=3√3-2×√32+4-(√3-1)=3√3-√3+4-√3+1=√3+5;(2)去分母,得:3(1-2x)-6≥2(x+2),去括号,得:3-6x-6≥2x+4,移项,得:-6x-2x≥4-3+6,合并同类项,得:-8x≥7,系数化为1,得:x≤-78.【解析】(1)先化简二次根式、代入三角函数值、计算负整数指数幂、去绝对值符号,再去括号,计算加减可得;(2)根据解一元一次不等式的基本步骤依次计算可得.本题主要考查实数的运算与解一元一次不等式,解题的关键是熟练掌握二次根式的性质、三角函数值、负整数指数幂、绝对值的性质及解不等式的基本步骤.20.【答案】解:原式=[3x−1-(x−1)(x+1)x−1]•(x−1)2x−2=-x2−4x−1•(x−1)2x−2=-(x+2)(x−2)x−1•(x−1)2x−2=-(x+2)(x-1)=-x2-x+2,解x2-2x=0得:x1=0,x2=2(使分式无意义,舍去),∴当x=0时,原式=-0-0+2=2.【解析】先把括号内通分、除法化为乘法以及分子和分母因式分解得到原式=[-]•=-•=-•,然后约分后整理得到原式=-x2-x+2,再用因式分解法解方程x2-2x=0得到x1=0,x2=2(使分式无意义,舍去),最后把x=0代入计算即可.本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了因式分解法解一元二次方程.21.【答案】解:(1)△=[2(m-1)]2-4(m2-3)=-8m+16.∵方程有两个不相等的实数根,∴△>0.即-8m+16>0.解得m<2;(2)∵m<2,且m为非负整数,∴m=0或m=1,当m=0时,原方程为x2-2x-3=0,解得x1=3,x2=-1,不符合题意舍去,当m=1时,原方程为x2-2=0,解得x 1=√2,x2=-√2,综上所述,m=1.【解析】(1)利用根与系数的关系得到△=[2(m-1)]2-4(m2-3)=-8m+16>0,然后解不等式即可;(2)先利用m 的范围得到m=0或m=1,再分别求出m=0和m=1时方程的根,然后根据根的情况确定满足条件的m的值.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.22.【答案】12【解析】解:(1)∵A、B、C、D四份听力材料的难易程度分别是易、中、难、难,∴从四份听力材料中,任选一份是难的听力材料的概率是;故答案为:;(2)树状图如下:∴P(两份材料都是难)==.(1)依据A、B、C、D四份听力材料的难易程度分别是易、中、难、难,即可得到从四份听力材料中,任选一份是难的听力材料的概率是;(2)利用树状图列出分别从听力、口语材料中随机选一份组成一套完整的模拟试卷的所有情况,即可得到两份材料都是难的一套模拟试卷的概率.本题主要考查了利用树状图或列表法求概率,当有两个元素时,可用树形图列举,也可以列表列举.随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.23.【答案】解:(1)平均数为(1×1+1×2+6×3+18×4+10×5+6×6+2×7+2×8+1×9+1×10+2×11)÷50=5个;众数为4个,中位数为4个.(2)用中位数或众数(4个)作为合格标准次数较为合适,因为4个大部分同学都能达到.(3)30000×4250=25200(人).故估计该市九年级男生引体向上项目测试的合格人数是25200人.【解析】(1)根据出现最多的是众数;把这组数据按大小关系排列,中间位置的是中位数(偶数个数据取中间两个数的平均值);平均数是总成绩除以次数;(2)根据中位数或众数比较接近大部分学生成绩,故中位数或众数作为合格标准次数较为合适;(3)根据50人中,有42人符合标准,进而求出3万名该市九年级男生引体向上项目测试的合格人数即可.此题主要考查了平均数、中位数和众数的定义以及利用样本估计总体,熟练掌握中位数和众数的定义以及平均数的计算方法解答是解题关键.24.【答案】(1)证明:∵E是AD的中点,∴AE=DE.∵AF∥BC,∴∠FAE=∠BDE,∠AFE=∠DBE.在△AFE和△DBE中,{∠FAE=∠BDE ∠AFE=∠DBE AE=DE,∴△AFE≌△DBE(AAS).∴AF=BD.∵AF=DC,∴BD=DC.即:D是BC的中点.(2)解:四边形ADCF是矩形;证明:∵AF=DC,AF∥DC,∴四边形ADCF是平行四边形.∵AB=AC,BD=DC,∴AD⊥BC即∠ADC=90°.∴平行四边形ADCF是矩形.【解析】(1)可证△AFE≌△DBE,得出AF=BD,进而根据AF=DC,得出D是BC中点的结论;(证法2:可根据AF平行且相等于DC,得出四边形ADCF是平行四边形,从而证得DE是△BCF 的中位线,由此得出D是BC中点)(2)若AB=AC,则△ABC是等腰三角形,根据等腰三角形三线合一的性质知AD⊥BC;而AF与DC平行且相等,故四边形ADCF是平行四边形,又AD⊥BC,则四边形ADCF是矩形.此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.25.【答案】解:(1)BF为⊙O的切线.证明:连接AE.∵AB为⊙O的直径,∴∠AEB=90°(直径所对的圆周角是直角),∴∠BAE+∠ABE=90°(直角三角形的两个锐角互余);又∵AB=AC,AE⊥BC,∴AE平分∠BAC,即∠BAE=∠CAE;∵∠CAB=2∠CBF,∴∠BAE=∠CBF,∴∠BAE+∠ABE=∠ABE+∠CBF=90°,即AB⊥BF,∵OB是半径,∴BF为⊙O的切线;(2)过点C作CG⊥BF于点G.在Rt△ABF中,AB=6,BF=8,∴AF=10(勾股定理);又∵AC=AB=6∴CF=4;∵CG⊥BF,AB⊥BF,∴CG∥AB,∴FGBF=FCAF=410=25,(平行线截线段成比例),∴FG=165,由勾股定理得:CG=√CF2−FG2=125,∴BG=BF-FG=8-165=245,在Rt△BCG中,tan∠CBF=CGBG=12.【解析】(1)连接AE.通过AB⊥BF,点B在⊙O上可以推知BF为⊙O的切线;(2)作辅助线CG(过点C作CG⊥BF于点G)构建平行线AB∥CG.由“平行线截线段成比例”知===,从而求得FG的值;然后根据图形中相关线段间的和差关系求得直角三角形CBG的两直角边BG、CG的长度;最后由锐角三角函数的定义来求tan∠CBF的值.本题考查了切线的判定与性质、勾股定理、平行线截线段成比例、直角所对的圆周角是直角等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.26.【答案】解:(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个.根据题意,得{(60−45)x+(0.9×30−25)y=3200x+y=300解得{y=100x=200答:该商场购进LED灯泡与普通白炽灯泡的数量分别为200个和100个.(2)设该商场再次购进LED灯泡a个,这批灯泡的总利润为W元.则购进普通白炽灯泡(120-a)个.根据题意得W=(60-45)a+(30-25)(120-a)=10a+600.∵10a+600≤[45a+25(120-a)]×30%,解得a≤75,∵k=10>0,∴W随a的增大而增大,∴a=75时,W最大,最大值为1350,此时购进普通白炽灯泡(120-75)=45个.答:该商场再次购进LED灯泡75个,购进普通白炽灯泡45个,这批灯泡的总利润为1 350元.【解析】(1)设该商场购进LED灯泡x个,普通白炽灯泡的数量为y个,利用该商场购进了LED灯泡与普通白炽灯泡共300个和销售完这批灯泡后可以获利3200元列方程组,然后解方程组即可;(2)设该商场购进LED灯泡a个,则购进普通白炽灯泡(120-a)个,这批灯泡的总利润为W元,利用利润的意义得到W=(60-45)a+(30-25)(120-a)=10a+600,再根据销售完这批灯泡时获利最多且不超过进货价的30%可确定a的范围,然后根据一次函数的性质解决问题.本题考查了一次函数的应用:建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题;也考查了二元一次方程组.27.【答案】45°【解析】解:(1)如图1,在Rt△ABC中,∠ACB=90°,∠A是智慧角,∴AB=AC,根据根据勾股定理得,BC=AC,∴∠B=∠A=45°,故答案为45°;(2)如图2,过点C作CD⊥AB于点D.在Rt△ACD中,∠A=45°,∴AC=DC.在Rt△BCD中,∠B=30°,∴BC=2DC.∴=.∴△ABC是智慧三角形.(3)由题意可知∠ABC=90°或∠BAC=90°.①当∠ABC=90°时,如图3,过点B作BE⊥x轴于点E,过点C作CF⊥EB交EB延长线于点F,过点C作CG⊥x轴于点G,则∠AEB=∠F=∠ABC=90°.∴∠BCF+∠CBF=∠ABE+∠CBF=90°.∴∠BCF=∠ABE.∴△BCF∽△ABE.∴===.设AE=a,则BF=a.∵BE=,∴CF=2.∵OG=OA+AE-GE=3+a-2=1+a,CG=EF=+a,∴B(3+a ,),C(1+a ,+a).∵点B,C在函数y=(x>0)的图象上,∴(3+a)=(1+a )(+a)=k.解得:a1=1,a2=-2(舍去).∴k=.②当∠BAC=90°时,如图4,过点C作CM⊥x轴于点M,过点B作BN⊥x轴于点N.则∠CMA=∠CAB=∠ANB=90°.∴∠MCA+∠CAM=∠BAN+∠CAM=90°.∴∠MCA=∠BAN.由(1)知∠B=45°.∴△ABC是等腰直角三角形.∴AC=AB.由①知△MAC∽△NBA.∴△MAC≌△NBA(AAS).∴AM=BN=.设CM=AN=b,则ON=3+b.∴B(3+b ,),C(3-,b).∵点B,C在函数y=(x>0)的图象上,∴(3+b)=(3-)b=k.解得:b=9+12.∴k=18+15.综上所述,k=4或18+15.(1)利用智慧角的意义和勾股定理即可得出结论;(2)构造出两个直角三角形,即可得出结论;(3)分两种情况:①先判断出△BCF∽△ABE,进而得出B(3+a ,),C(1+a ,+a),最后代入反比例函数解析式中即可得出结论;②先判断出△MAC≌△NBA(AAS).进而AM=BN=,进而得出B(3+b ,),C(3-,b ),第11页,共11页最后代入反比例函数解析式中即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,构造直角三角形和相似三角形是解本题的关键.28.【答案】解:(1)令y =12x −2=0,解得x =4,则A (4,0).令x =0,得y =-2,则B (0,-2);∵二次函数y =−12x 2+bx +c 的图象经过A 、B 两点, ∴{c =−2−8+4b+c=0,解得{b =52c =−2∴二次函数的关系式为y =-12x 2+52x -2;当y =0时,-12x 2+52x -2=0,解得x 1=1,x 2=4,则C (1,0); (2)如图2,∵PD ∥x 轴,PE ∥y 轴, ∴∠PDE =∠OAB ,∠PED =∠OBA . ∴△PDE ∽△OAB . ∴PD PE =OA OB =42=2, ∴PD =2PE .设P (m ,-12m 2+52m -2),则E (m ,12m -2).∴PD +PE =3PE =3×[-12m 2+52m -2-(12m -2)]=-32m 2+6m =-32(m -2)2+6; ∵0<m <4,∴当m =2时,PD +PE 有最大值6;(3)当点M 在直线AB 上方时,则点M 在△ABC 的外接圆上,如图1.∵△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(52,-t ), ∵O 1B =O 1A ,∴(52)2+(-t +2)2=(52-4)2+t 2,解得t =2. ∴圆心O 1的坐标为(52,-2).∴O 1A =√(52−4)2+22=52,即⊙O 1的半径半径为52.此时M 点坐标为(52,12);当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2. ∵AO 1=O 1B =52,∴∠O 1AB =∠O 1BA . ∵O 1B ∥x 轴,∴∠O 1BA =∠OAB .∴∠O 1AB =∠OAB ,O 2在x 轴上, ∴点O 2的坐标为 (32,0). ∴O 2D =1,∴DM =√(52)2−12=√212.此时点M 的坐标为(52,−√212).综上所述,点M 的坐标为(52,12)或(52,−√212).【解析】(1)先根据一次函数解析式确定A (4,0),B (0,-2),再利用待定系数法求抛物线解析式;然后解方程-x 2+x-2=0得C 点坐标;(2)如图2,先证明△PDE ∽△OAB .利用相似比得到PD=2PE .设P (m ,-m 2+m-2),则E (m ,m-2).再利用m 表示出PD+PE 得到PD+PE=3×[-m 2+m-2-(m-2)],然后根据二次函数的性质解决问题;(3)讨论:当点M 在直线AB 上方时,根据圆周角定理可判断点M 在△ABC 的外接圆上,如图1,由于抛物线的对称轴垂直平分AC ,则△ABC 的外接圆O 1的圆心在对称轴上,设圆心O 1的坐标为(,-t ),根据半径相等得到()2+(-t+2)2=(-4)2+t 2,解方程求出t 得到圆心O 1的坐标为(,-2),然后确定⊙O 1的半径半径为.从而得到此时M 点坐标;当点M 在在直线AB 下方时,作O 1关于AB 的对称点O 2,如图2,通过证明∠O 1AB=∠OAB 可判断O 2在x 轴上,则点O 2的坐标为 (,0),然后计算出DM 即可得到此时M 点坐标.本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和圆周角定理;会利用待定系数法求抛物线解析式;理解坐标与图形性质,记住两点间的距离公式;会利用分类讨论的思想解决数学问题.。

2019年扬州中考数学模拟试卷及答案

2019年扬州中考数学模拟试卷及答案

2019年扬州中考数学模拟试卷及答案你的考试准备的怎么样啦?一起来看看考试栏目组小编为你提供的2019年扬州中考数学模拟试卷及答案,来试试自己的水平吧,更多相关资讯,请关注网站更新。

2019年扬州中考数学模拟试卷及答案一、选择题(共10小题,每小题3分,满分30分)1.(3分)(江西)下列运算正确的是( )A.a6a3=a18B.(﹣a)6(﹣a)3=﹣a9C.a6÷a3=a2D.(﹣a)6(﹣a)3=a92.(3分)(上城区一模)在2008年北京奥运会国家体育场的“鸟巢”钢结构工程施工建设中,首次使用了我国科研人员自主研制的强度为4.58亿帕的钢材.4.58亿帕用科学记数法表示为( )帕.A.4.58×106B.4.58×107C.4.58×108D.4.58×1093.(3分)(上城区一模)如果点P(a,b)在第二象限内,那么点Q(1﹣a,﹣b)在第( )象限.A.一B.二C.三D.四4.(3分)(上城区一模)某班四位学生参加跑步测试,得分依次为:7,8,9,8,那么下面说法错误的是( )A.平均数是8B.众数是8C.中位数是8.5D.极差是2二、填空题(共6小题,每小题4分,满分24分)11.(4分)(上城区一模)方程x2﹣3x﹣m+1=0的一个根是x=1,则m的值为_________ .三、解答题(共8小题,满分66分)19.(6分)(上城区一模)如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)20.(8分)(上城区一模)中考体育测试有三大类十二个项目供学生选择,已知女生在力量类测试中有实心球、篮球(运球上篮)、排球(发球)、铅球、仰卧起坐(1分钟)共五个项目可选择,为了解同学的选项情况,小敏在某校随机对部分初三女生进行了调查,并根据调查结果绘制了如下条形统计图和扇形统计图.(1)请补全条形统计图;(2)该校共有600名初三女生,估计其中有多少人选择了仰卧起坐项目.。

2019年江苏省扬州市中考数学模拟试题附解析

2019年江苏省扬州市中考数学模拟试题附解析

2019年江苏省扬州市中考数学模拟试题 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.在夏日的上午,树影变化的方向是( )A .正西→正北B .西偏北→西偏南C .正西→正南D .东偏北→东偏南2.如图,EB 为半圆O 的直径,点A 在EB 的延长线上,AD 切半圆O 于点D ,BC ⊥AD 于点C ,AB =2,半圆O 的半径为2,则BC 的长为( )A .2B .1C .1.5D .0.53.如图,某飞机于空中A 处探测倒地面目标B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC=1200米,则飞机到目标B 的距离AB 为( )A .1200米B .2400米C .3400米D .31200米 4.已知O 为□ABCD 对角线的交点,且△AOB 的面积为1,则□ABCD 的面积为( ) A .1 B .2 C .3 D .45.在正数范围内定义一种运算“*”,其规则为11a b a b *=+,根据这个规则,方程3(1)2x x *+= 的解是( )A . 23x =B .1x =C .23x =−或1x = D . 23x =或1x =− 6.不等式组⎩⎨⎧>−>−03042x x 的解集为( ) A .x >2 B .x <3 C .x >2或 x <-3 D .2<x <37.如图,△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB ,垂足为D ,如果AC=3 cm ,那么AE+DE 的值为( )A .2cmB .3cmC .5cmD .4cm8.设221P y y =++,21Q y =+,如果P Q >,那么必有( )A .0y >B .0y <C .0y ≥D .0y ≤9.在ABC △中,275A B ∠=∠=,则C ∠=( )A .30°B .135°C .105°D .67°30′ 10.如图,AC=AD ,BC=BD ,则图中全等三角形的对数是( ) A .6对 B .3对 C .2对 D .1对11.一个角的补角等于这个角的3倍,则这个角的度数是( )A .45°B .60°C .75°D .30° 二、填空题12.甲、乙、丙三名学生各自随机选择到A 、B 两个书店购书.(1)求甲、乙两名学生在不同书店购书的概率;(2)求甲、乙、丙三名学生在同一书店购书的概率.13.如果菱形的边长是6的周长是 . 14.某超市三月份的营业额为200万元,五月份 288万元,假设每月比上月增长的百分数相同,若设营业额平均每月的增长率为x ,可列出方程为: .15.如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形 EFGB 也是矩形,且2EF BE =,则AFC S =△ 2cm .16.已知自变量为x 的函数2y mx m =+−是正比例函数,则m= ,该函数的解析式为 .17.如图,在△ABC 中,∠ACB=90°,∠B=25°,CD ⊥AB 于D ,则∠ACD= .18.若一个正方体的棱长为3(21)a +,则这个正方体的体积为 .19.已知A 、B 是数轴上的两点,AB=2. 若点B 表示-1,那么点A 表示 .20. 用“<”、“=”或“>”把下列每组中的两数连接起来.(1) 0 -5 ;-8 -7;(3)− 2.25839641721.如图,数轴上点A、B 表示的数分别是,.三、解答题22.如图,张斌家居住的甲楼 AB 面向正北,现计划在他家居住的楼前修建一座乙楼 CD,楼高约为 l8m,两楼之间的距离为 21m,已知冬天的太阳高度最低时,太阳光线与水平线的夹角为 30°.(1)试求乙楼 CD 的影子落在甲楼 AB 上的高 BE 的长;(2)若让乙楼的影子刚好不影响甲楼,则两楼之间的距离至少应是多少?23.如图,测得一商场自动扶梯的长为20米,该自动扶梯到达的高度h是5米,问自动扶梯与地面所成的角θ是多少度(精确到1′)?24.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?25.已知二次函数y =ax2 +bx-1的图象经过点 (2,-1),且这个函数有最小值-3 ,求这个函数的关系式.y =2x2 -4x-1.26.已知二次函数y =-x 2+mx +n,当x =2时,y =4,当x =-1时,y =-2,求当x =1时,y 的值.当x =1时,y 的值为4.27.如图在△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于点F ,交AC 的平行线BG 于点G ,DE ⊥GF ,交AB 于点E ,连结EG ,EF .(1)求证:BG=CF ;(2)请你判断BE+CF 与EF 的大小关系,并证明你的结论.28.先化简2(21)(31)(31)5(1)x x x x x −−+−+−,再选取一个你喜欢的数代替x 求值.29.如图所示是在镜子中看到的某时刻时钟的情况,请问此时实际是几点钟?G F E D C B A30.已知a、b互为相反数,c、d互为倒数,m的绝对值是 2,求()+−⋅+的值.a b c d m【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.B3.B4.D5.C6.D7.B8.A9.D10.B11.A二、填空题12.(1)21;(2)41 13.24°14.2700(1)288x +=15.916.2,y=2217.25°18.9(21)a +19.1 或-320.>,<,=21.-2. 5,2三、解答题22.(1)tan 30o CG GE =,21CG ==(18BE DG ==−m(2)tan 30o CD DF =18DF=,∴DF =答:(1)乙搂落在甲楼上的影子长(18−m ;(2)两楼之间的距离至少是 m . 23.θ≈14°29′.24.解:(1)根据题意,得S=x x ⋅−2260=-x 2+30x ,自变量x 的取之范围是0<x<30.(2)∵a=-1<0,∴S 有最大值,∴x=)1(2302−⨯−=−a b =15, )1(4304422−⨯−=−=a b ac S 最大=225, ∴当x=15时 S 最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米. 25.26.27.(1)提示:△BGD ≌△CFD ,则BG =CF .(2)BE +CF>EF .由EG =EF ,BG =CF ,BG +BE>EG ,得出BE +CF>EF . 28.92x −+;29.3:2530.1 或-3。

江苏省扬州市2019-2020学年中考一诊数学试题含解析

江苏省扬州市2019-2020学年中考一诊数学试题含解析

江苏省扬州市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是().A.AD AEDB EC=B.AB ACAD AE=C.AC ECAB DB=D.AD DEDB BC=2.数轴上分别有A、B、C三个点,对应的实数分别为a、b、c且满足,|a|>|c|,b•c<0,则原点的位置()A.点A的左侧B.点A点B之间C.点B点C之间D.点C的右侧3.下列大学的校徽图案是轴对称图形的是()A.B.C.D.4.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查5.方程=的解为( )A.x=3 B.x=4 C.x=5 D.x=﹣56.如图,已知△ABC中,∠C=90°,2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2-2B.32C.3-1D.17.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(3,2) B.(4,1) C.(4,3) D.(4,23)8.下列分式中,最简分式是()A.2211xx-+B.211xx+-C.2222x xy yx xy-+-D.236212xx-+9.如图,在△ABC中,AB=AC,点D是边AC上一点,BC=BD=AD,则∠A的大小是().A.36°B.54°C.72°D.30°10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm 23 23.5 24 24.5 25销售量/双 1 3 3 6 2则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,2411.tan45º的值为()A.12B.1 C.22D212.如图,在△ABC 中,分别以点A 和点C为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.14.当x = __________时,二次函数226y x x =-+ 有最小值___________.15.如图,点A 、B 、C 、D 在⊙O 上,O 点在∠D 的内部,四边形OABC 为平行四边形,则∠OAD+∠OCD=▲ °.16.如图,菱形ABCD 的边8AB =,60B ∠=︒,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APDQ 沿直线PQ 折叠,A 的对应点为A ',当CA '的长度最小时,CQ 的长为__________.17.解不等式组1121x x x -+-⎧⎨≥-⎩f ①②请结合题意填空,完成本题的解答. (Ⅰ)解不等式①,得 ; (Ⅱ)解不等式②,得 ;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.18.如图,小明想用图中所示的扇形纸片围成一个圆锥,已知扇形的半径为5cm,弧长是6πcm,那么围成的圆锥的高度是cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.20.(6分)先化简,后求值:22321113x x xx x-++⋅---,其中21x=+.21.(6分)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元) 3 4 5 6 7 8 10销售员人数(单位:人) 1 3 2 1 1 1 1 (1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?22.(8分)如图,在菱形ABCD中,BAD∠=α,点E在对角线BD上. 将线段CE绕点C顺时针旋转α,得到CF,连接DF.(1)求证:BE=DF;(2)连接AC,若EB=EC ,求证:AC CF⊥.23.(8分)在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C处(如图),然后沿BC方向走到D处,这时目测旗杆顶部A与竹竿顶部E恰好在同一直线上,又测得C、D两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.24.(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.25.(10分)如图,已知抛物线经过点A(﹣1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P做x轴的垂线l交抛物线于点Q,交直线BD于点M.(1)求该抛物线所表示的二次函数的表达式;(2)已知点F(0,12),当点P在x轴上运动时,试求m为何值时,四边形DMQF是平行四边形?(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.26.(12分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?27.(12分)如图,在矩形ABCD中,AB=1DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD 的延长线于点F,设DA=1.求线段EC的长;求图中阴影部分的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D 【解析】 【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 2.C 【解析】 分析:根据题中所给条件结合A 、B 、C 三点的相对位置进行分析判断即可. 详解:A 选项中,若原点在点A 的左侧,则a c <,这与已知不符,故不能选A ;B 选项中,若原点在A 、B 之间,则b>0,c>0,这与b·c<0不符,故不能选B ;C 选项中,若原点在B 、C 之间,则a c >且b·c<0,与已知条件一致,故可以选C ;D 选项中,若原点在点C 右侧,则b<0,c<0,这与b·c<0不符,故不能选D. 故选C.点睛:理解“数轴上原点右边的点表示的数是正数,原点表示的是0,原点左边的点表示的数是负数,距离原点越远的点所表示的数的绝对值越大”是正确解答本题的关键. 3.B 【解析】 【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】解:A 、不是轴对称图形,故本选项错误; B 、是轴对称图形,故本选项正确; C 、不是轴对称图形,故本选项错误; D 、不是轴对称图形,故本选项错误. 故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.D【解析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.5.C【解析】方程两边同乘(x-1)(x+3),得x+3-2(x-1)=0,解得:x=5,检验:当x=5时,(x-1)(x+3)≠0,所以x=5是原方程的解,故选C.6.C【解析】【分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=3AB′=3,∴BC′=BD-C′D=3-1.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键. 7.D【解析】【分析】由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到OD′=22AD OA'-=23,于是得到结论.【详解】解:∵AD′=AD=4,AO=12AB=1,∴OD′=22AD OA'-=23,∵C′D′=4,C′D′∥AB,∴C′(4,23),故选:D.【点睛】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.8.A【解析】试题分析:选项A为最简分式;选项B化简可得原式==;选项C化简可得原式==;选项D化简可得原式==,故答案选A.考点:最简分式.9.A【解析】【分析】由BD=BC=AD可知,△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x,又由AB=AC 可知,△ABC为等腰三角形,则∠ABC=∠C=2x.在△ABC中,用内角和定理列方程求解.【详解】解:∵BD=BC=AD,∴△ABD,△BCD为等腰三角形,设∠A=∠ABD=x,则∠C=∠CDB=2x.又∵AB=AC,∴△ABC为等腰三角形,∴∠ABC=∠C=2x.在△ABC中,∠A+∠ABC+∠C=180°,即x+2x+2x=180°,解得:x=36°,即∠A=36°.故选A.【点睛】本题考查了等腰三角形的性质.关键是利用等腰三角形的底角相等,外角的性质,内角和定理,列方程求解.10.A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.11.B【解析】【分析】【详解】解:根据特殊角的三角函数值可得tan45º=1,故选B.【点睛】本题考查特殊角的三角函数值.12.B【解析】【分析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC ,AE=EC=6cm ,∵AB+AD+BD=13cm ,∴AB+BD+DC=13cm ,∴△ABC 的周长=AB+BD+BC+AC=13+6=19cm ,故选B .【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】【详解】 ∵骑车的学生所占的百分比是126360×100%=35%, ∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.14.1 5【解析】二次函数配方,得:2(1)5y x =-+,所以,当x =1时,y 有最小值5,故答案为1,5.15.1.【解析】试题分析:∵四边形OABC 为平行四边形,∴∠AOC=∠B ,∠OAB=∠OCB ,∠OAB+∠B=180°.∵四边形ABCD 是圆的内接四边形,∴∠D+∠B=180°.又∠D =12∠AOC ,∴3∠D=180°,解得∠D=1°.∴∠OAB=∠OCB=180°-∠B=1°.∴∠OAD+∠OCD=31°-(∠D+∠B+∠OAB+∠OCB )=31°-(1°+120°+1°+1°)=1°.故答案为1°.考点:①平行四边形的性质;②圆内接四边形的性质.16.7【解析】如图所示,过点C 作CH AB ⊥,交AB 于点H .在菱形ABCD 中,∵8AB BC ==,且60B ∠=︒,所以ABC V 为等边三角形, 3sin sin 60843CH CB B CB ∴=⋅∠=⋅︒=⨯=. 根据“等腰三角形三线合一”可得 18422AB AH HB ===⨯=,因为3BP =,所以1HP HB BP =-=. 在Rt CHP △中,根据勾股定理可得,2222(43)17CP CH HP =+=+=.因为梯形APQD 沿直线PQ 折叠,点A 的对应点为A ',根据翻折的性质可得,点A '在以点P 为圆心,PA 为半径的弧上,则点A '在PC 上时,CA '的长度最小,此时APQ CPQ =∠∠,因为AB CD ∥. 所以CQP APQ =∠∠,所以CQP CPQ ∠=∠,所以7CQ CP ==.点睛:A′为四边形ADQP 沿PQ 翻折得到,由题目中可知AP 长为定值,即A′点在以P 为圆心、AP 为半径的圆上,当C 、A′、P 在同一条直线时CA′取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ 的长度即可.17.详见解析.【解析】【分析】先根据不等式的性质求出每个不等式的解集,再在数轴上表示出来,根据数轴找出不等式组公共部分即可.【详解】(Ⅰ)解不等式①,得:x <1;(Ⅱ)解不等式②,得:x≥﹣1;(Ⅲ)把不等式①和②的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:﹣1≤x <1,故答案为:x <1、x≥﹣1、﹣1≤x <1.【点睛】本题考查了解一元一次不等式组的概念.18.4【解析】【分析】已知弧长即已知围成的圆锥的底面半径的长是6πcm ,这样就求出底面圆的半径.扇形的半径为5cm 就是圆锥的母线长是5cm .就可以根据勾股定理求出圆锥的高.【详解】设底面圆的半径是r ,则2πr=6π,∴r=3cm ,∴圆锥的高.故答案为4.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.见解析【解析】【分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可.【详解】解:∵CE ∥DF∴∠ECA=∠FDB ,在△ECA 和△FDB 中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【点睛】 本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.20.21x -【解析】 分析:先把分值分母因式分解后约分,再进行通分得到原式=21x -,然后把x 的值代入计算即可. 详解:原式=311x x x -+-()()•213x x ()+-﹣1=11x x +-﹣11x x -- =21x - 当x=2+1时,原式=211+-=2. 点睛:本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值. 21.(1)平均数5.6(万元);众数是4(万元);中位数是5(万元);(2)今年每个销售人员统一的销售标准应是5万元.【解析】【分析】(1)根据平均数公式求得平均数,根据次数出现最多的数确定众数,按从小到大顺序排列好后求得中位数.(2)根据平均数,中位数,众数的意义回答.【详解】解:(1)平均数=(3×1+4×3+5×2+6×1+7×1+8×1+10×1)=5.6(万元);出现次数最多的是4万元,所以众数是4(万元);因为第五,第六个数均是5万元,所以中位数是5(万元).(2)今年每个销售人员统一的销售标准应是5万元.理由如下:若规定平均数5.6万元为标准,则多数人无法或不可能超额完成,会挫伤员工的积极性;若规定众数4万元为标准,则大多数人不必努力就可以超额完成,不利于提高年销售额;若规定中位数5万元为标准,则大多数人能完成或超额完成,少数人经过努力也能完成.因此把5万元定为标准比较合理.【点睛】本题考查的知识点是众数、平均数以及中位数,解题的关键是熟练的掌握众数、平均数以及中位数. 22.证明见解析【解析】【分析】(1)根据菱形的性质可得BC=DC ,BAD BCD α∠∠==,再根据ECF α∠=,从而可得 BCD ECF ∠∠=,继而得BCE ∠=DCF ∠,由旋转的性质可得CE =CF ,证明BEC V ≌DFC V ,即可证得BE =DF ;(2)根据菱形的对角线的性质可得ACB ACD ∠∠=,AC BD ⊥,从而得ACB+EBC 90∠∠=︒,由EB=EC ,可得EBC=BCE ∠∠,由(1)可知,可推得DCF+ACD EBC ACB 90∠∠∠∠=+=︒,即可得ACF 90∠=︒,问题得证.【详解】(1)∵四边形ABCD 是菱形,∴BC=DC ,BAD BCD α∠∠==,∵ECF α∠=,∴ BCD ECF ∠∠=,∴BCE=DCF ∠∠,∵线段CF 由线段CE 绕点C 顺时针旋转得到,∴CE=CF ,在BEC V 和DFC V 中,BC DC BCE DCF CE CF =⎧⎪∠=∠⎨⎪=⎩,,,∴BEC V ≌()DFC SAS V ,∴BE=DF ;(2)∵四边形ABCD 是菱形,∴ACB ACD ∠∠=,AC BD ⊥,∴ACB+EBC 90∠∠=︒,∵EB=EC ,∴EBC=BCE ∠∠,由(1)可知,EBC=DCF ∠∠,∴DCF+ACD EBC ACB 90∠∠∠∠=+=︒,∴ACF 90∠=︒,∴AC CF ⊥.【点睛】本题考查了旋转的性质、菱形的性质、全等三角形的判定与性质等,熟练掌握和应用相关的性质与定理是解题的关键.23.这种测量方法可行,旗杆的高为21.1米.【解析】分析:根据已知得出过F 作FG ⊥AB 于G ,交CE 于H ,利用相似三角形的判定得出△AGF ∽△EHF ,再利用相似三角形的性质得出即可.详解:这种测量方法可行.理由如下:设旗杆高AB=x .过F 作FG ⊥AB 于G ,交CE 于H (如图).所以△AGF ∽△EHF .因为FD=1.1,GF=27+3=30,HF=3,所以EH=3.1﹣1.1=2,AG=x ﹣1.1.由△AGF ∽△EHF , 得AG GF EH HF=, 即 1.53023x -=, 所以x ﹣1.1=20,解得x=21.1(米)答:旗杆的高为21.1米.点睛:此题主要考查了相似三角形的判定与性质,根据已知得出△AGF ∽△EHF 是解题关键. 24.(1)D (2,2);(2)22,0M a ⎛⎫-⎪⎝⎭;(3)12 【解析】【分析】(1)令x=0求出A 的坐标,根据顶点坐标公式或配方法求出顶点B 的坐标、对称轴直线,根据点A 与点D 关于对称轴对称,确定D 点坐标.(2)根据点B 、D 的坐标用待定系数法求出直线BD 的解析式,令y=0,即可求得M 点的坐标.(3)根据点A 、B 的坐标用待定系数法求出直线AB 的解析式,求直线OD 的解析式,进而求出交点N 的坐标,得到ON 的长.过A 点作AE ⊥OD ,可证△AOE 为等腰直角三角形,根据OA=2,可求得AE 、OE 的长,表示出EN 的长.根据tan ∠OMB=tan ∠ONA ,得到比例式,代入数值即可求得a 的值.【详解】(1)当x=0时,2y =,∴A 点的坐标为(0,2)∵()222212y ax ax a x a =-+=-+-∴顶点B 的坐标为:(1,2-a ),对称轴为x= 1,∵点A 与点D 关于对称轴对称∴D 点的坐标为:(2,2)(2)设直线BD 的解析式为:y=kx+b把B (1,2-a )D (2,2)代入得:2{22a k bk b -=+=+ ,解得:{22k ab a ==-∴直线BD 的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=22a -∴M 点的坐标为:22,0a ⎛⎫- ⎪⎝⎭(3)由D(2,2)可得:直线OD 解析式为:y=x设直线AB 的解析式为y=mx+n,代入A(0,2)B (1,2-a )可得:2{2n m n a =+=- 解得:{2m an =-=∴直线AB 的解析式为y= -ax+2联立成方程组:{2y x y ax ==-+ ,解得:21{21x a y a =+=+ ∴N 点的坐标为:(2211a a ++,)21a +) 过A 点作AE ⊥OD 于E 点,则△AOE 为等腰直角三角形.∵OA=2∴,21a +)12(1a a -+) ∵M 22,0a ⎛⎫- ⎪⎝⎭,C(1,0), B (1,2-a ) ∴MC=2221a a a---=,BE=2-a ∵∠OMB=∠ONA∴tan ∠OMB=tan ∠ONA ∴AE BE EN CM =,即2211a a a a a -=--⎫⎪+⎭解得:a=1a 1=-∵抛物线开口向下,故a<0,∴a=1+a 1=-【点睛】本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.25.(1)y=﹣12x2+32x+2;(2)m=﹣1或m=3时,四边形DMQF是平行四边形;(3)点Q的坐标为(3,2)或(﹣1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.【解析】【分析】分析:(1)待定系数法求解可得;(2)先利用待定系数法求出直线BD解析式为y=12x-2,则Q(m,-12m2+32m+2)、M(m,12m-2),由QM∥DF且四边形DMQF是平行四边形知QM=DF,据此列出关于m的方程,解之可得;(3)易知∠ODB=∠QMB,故分①∠DOB=∠MBQ=90°,利用△DOB∽△MBQ得12DO MBOB BQ==,再证△MBQ∽△BPQ得BM BPBQ PQ=,即214132222mm m-=-++,解之即可得此时m的值;②∠BQM=90°,此时点Q与点A重合,△BOD∽△BQM′,易得点Q坐标.详解:(1)由抛物线过点A(-1,0)、B(4,0)可设解析式为y=a(x+1)(x-4),将点C(0,2)代入,得:-4a=2,解得:a=-12,则抛物线解析式为y=-12(x+1)(x-4)=-12x2+32x+2;(2)由题意知点D坐标为(0,-2),设直线BD解析式为y=kx+b,将B(4,0)、D(0,-2)代入,得:402k bb+⎧⎨-⎩==,解得:122kb⎧⎪⎨⎪-⎩==,∴直线BD解析式为y=12x-2,∵QM⊥x轴,P(m,0),∴Q(m,-12m2+32m+2)、M(m,12m-2),则QM=-12m2+32m+2-(12m-2)=-12m2+m+4,∵F(0,12)、D(0,-2),∴DF=52,∵QM∥DF,∴当-12m2+m+4=52时,四边形DMQF是平行四边形,解得:m=-1(舍)或m=3,即m=3时,四边形DMQF是平行四边形;(3)如图所示:∵QM∥DF,∴∠ODB=∠QMB,分以下两种情况:①当∠DOB=∠MBQ=90°时,△DOB∽△MBQ,则21=42 DO MBOB BQ==,∵∠MBQ=90°,∴∠MBP+∠PBQ=90°,∵∠MPB=∠BPQ=90°,∴∠MBP+∠BMP=90°,∴∠BMP=∠PBQ,∴△MBQ∽△BPQ,∴BM BPBQ PQ=,即214132222mm m-=-++,解得:m1=3、m2=4,当m=4时,点P、Q、M均与点B重合,不能构成三角形,舍去,∴m=3,点Q的坐标为(3,2);②当∠BQM=90°时,此时点Q与点A重合,△BOD∽△BQM′,此时m=-1,点Q的坐标为(-1,0);综上,点Q的坐标为(3,2)或(-1,0)时,以点B、Q、M为顶点的三角形与△BOD相似.点睛:本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、平行四边形的判定与性质、相似三角形的判定与性质及分类讨论思想的运用.【详解】请在此输入详解!26.(1)见解析;(2)A;(3)800人.【解析】【分析】(1)用A组人数除以它所占的百分比求出样本容量,利用360°乘以对应的百分比即可求得扇形圆心角的度数,再求得时间是8天的人数,从而补全扇形统计图和条形统计图;(2)根据众数的定义即可求解;(3)利用总人数2000乘以对应的百分比即可求解.【详解】解:(1)∵被调查的学生人数为24÷40%=60人,∴D类别人数为60﹣(24+12+15+3)=6人,则D类别的百分比为×100%=10%,补全图形如下:(2)所抽查学生参加社会实践活动天数的众数是A ,故答案为:A ;(3)估计参加社会实践“活动天数不少于7天”的学生大约有2000×(25%+10%+5%)=800人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)423-;(1)8233π- 【解析】【分析】(1)根据矩形的性质得出AB=AE=4,进而利用勾股定理得出DE 的长,即可得出答案;(1)利用锐角三角函数关系得出∠DAE=60°,进而求出图中阴影部分的面积为:FAE DAE S S 扇形∆-,求出即可.【详解】解:(1)∵在矩形ABCD 中,AB=1DA ,DA=1,∴AB=AE=4,∴2223AE AD -= ,∴3(1)∵sin ∠DEA=12AD AE = , ∴∠DEA=30°,∴∠EAB=30°,∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =904130482232336023603πππ⨯⨯-⨯⨯=-.【点睛】此题主要考查了扇形的面积计算以及勾股定理和锐角三角函数关系等知识,根据已知得出DE的长是解题关键.。

扬州市初三中考数学第一次模拟试题【含答案】

扬州市初三中考数学第一次模拟试题【含答案】

扬州市初三中考数学第一次模拟试题【含答案】一、选择题(每小题3分,计30分)1.若a是绝对值最小的有理数,b是最大的负整数,c是倒数等于它本身的自然数,则代数式a﹣b+c的值为()A.0 B.1 C.2 D.32.如图是一个全封闭的物体,则它的俯视图是()A.B.C.D.3.若点A(1,a)和点B(4,b)在直线y=﹣x+m上,则a与b的大小关系是()A.a>b B.a<bC.a=b D.与m的值有关4.一副三角板如图摆放,边DE∥AB,则∠1=()A.135°B.120°C.115°D.105°5.不等式9﹣3x<x﹣3的解集在数轴上表示正确的是()A.B.C.D.等于()6.如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+,则S△ABCA.B.C.D.7.一次函数图象经过A(1,1),B(﹣1,m)两点,且与直线y=2x﹣3无交点,则下列与点B(﹣1,m)关于y轴对称的点是()A.(﹣1,3)B.(﹣1,﹣3)C.(1,3)D.(1,﹣3)8.如图所示,在矩形ABCD中,AB=6,BC=8,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则DE的长是()A.5 B.C.D.9.已知:⊙O为△ABC的外接圆,AB=AC,E是AB的中点,连OE,OE=,BC=8,则⊙O 的半径为()A.3 B.C.D.510.二次函数y=ax2﹣4ax+2(a≠0)的图象与y轴交于点A,且过点B(3,6)若点B关于二次函数对称轴的对称点为点C,那么tan∠CBA的值是()A.B.C.2 D.二、填空题(每小题3分,计12分)11.因式分解:x2﹣y2﹣2x+2y=.12.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是.13.如图,点B是双曲线y=(k≠0)上的一点,点A在x轴上,且AB=2,OB⊥AB,若∠BAO=60°,则k=.14.如图,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,AE⊥BC于点E,若AE=17,BC=8,CD=6,则四边形ABCD的面积为.三、解答题15.(5分)计算;﹣tan30°+(π﹣1)0+16.(5分)解方程: +﹣=1.17.(5分)如图,在四边形ABCD中,AB=AD.在BC上求作一点P使△ABP≌△ADP.(要求:用尺规作图,不写作法,保留作图痕迹)18.(5分)如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19.(7分)为了解某中学去年中招体育考试中女生“一分钟跳绳”项目的成绩情况,从中抽取部分女生的成绩,绘制出如图所示的频数分布直方图(从左到右依次为第一到第六小组,每小组含最小值,不含最大值)和扇形统计图,请根据下列统计图中提供的信息解决下列问题:(1)本次抽取的女生总人数为,第六小组人数占总人数的百分比为,请补全频数分布直方图;(2)题中样本数据的中位数落在第组内;(3)若“一分钟跳绳”不低于130次的成绩为优秀,这个学校九年级共有女生560人,请估计该校九年级女生“一分钟跳绳”成绩的优秀人数.20.(7分)如图,河对岸有一路灯杆AB,在灯光下,小亮在点D处测得自己的影长DF=3m,沿BD方向从D后退4米到G处,测得自己的影长GH=5,如果小亮的身高为1.7m,求路灯杆AB的高度.21.(7分)一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y(千米)与行驶时间x(小时)的对应关系如图所示:(1)甲乙两地的距离是千米;(2)两车行驶多长时间相距300千米?(3)求出两车相遇后y与x之间的函数关系式.22.(7分)有2部不同的电影A、B,甲、乙、丙3人分别从中任意选择1部观看.(1)求甲选择A部电影的概率;(2)求甲、乙、丙3人选择同1部电影的概率(请用画树状图的方法给出分析过程,并求出结果).23.(8分)如图,已知⊙O是以AB为直径的△ABC的外接圆,过点A作⊙O的切线交OC的延长线于点D,交BC的延长线于点E.(1)求证:∠DAC=∠DCE;(2)若AB=2,sin∠D=,求AE的长.24.(10分)如图,抛物线y=x2+bx+c与x轴交于点A(﹣1,0)、B两点,与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)已知点P(m,n)在抛物线上,当﹣2≤m<3时,直接写n的取值范围;(3)抛物线的对称轴与x轴交于点M,点D与点C关于点M对称,试问在该抛物线上是否存在点P,使△ABP与△ABD全等?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.25.(12分)问题提出;(1)如图1,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P为BC上的动点,CP=时,△APE的周长最小.(2)如图2,矩形ABCD,AB=4,BC=8,点E为CD的中点,点P、点Q为BC上的动点,且PQ=2,当四边形APQE的周长最小时,请确定点P的位置(即BP的长)问题解决;(3)如图3,某公园计划在一片足够大的等边三角形水域内部(不包括边界)点P处修一个凉亭,设计要求PA长为100米,同时点M,N分别是水域AB,AC边上的动点,连接P、M、N的水上浮桥周长最小时,四边形AMPN的面积最大,请你帮忙算算此时四边形AMPN面积的最大值是多少?参考答案一、选择题1.解:根据题意得:a=0,b=﹣1,c=1,则a﹣b+c=0﹣(﹣1)+1=2,故选:C.2.解:从上面观察可得到:.故选:D.3.解:因为k=﹣1<0,所以在函数y=﹣x+m中,y随x的增大而减小.∵1<4,∴a>b.故选:A.4.解:∵DE∥AB,∴∠D+∠DAB=180°,又∵∠D=45°,∠BAC=30°,∴∠1=180°﹣∠D﹣∠BAC=105°,故选:D.5.解:移项,得:﹣3x﹣x<﹣3﹣9,合并同类项,得:﹣4x<﹣12,系数化为1,得:x>3,将不等式的解集表示如下:故选:B.6.解:∵BC=4,AD=2,∴BD=CD=2,∴AD=BD,AD=CD,∴∠B=∠BAD,∠C=∠CAD,∴∠BAD+∠CAD=180°÷2=90°,即△ABC是直角三角形,设AB=x,则AC=3+﹣x,根据勾股定理得x2+(3+﹣x)2=42,解得x=3或,∴AB=3或,AC=或3,=×3×=.∴S△ABC故选:D.7.解:∵一次函数图象与直线y=2x﹣3无交点,∴设一次函数的解析式为y=2x+b,把A(1,1)代入得1=2+b,∴b=﹣1,∴一次函数的解析式为y=2x﹣1,把B(﹣1,m)代入得m=﹣3,∴B(﹣1,﹣3),∴点B(﹣1,m)关于y轴对称的点是(1,﹣3),故选:D.8.解:∵AB=6,BC=8,∴AC=10(勾股定理);∴AO=AC=5,∵EO⊥AC,∴∠AOE=∠ADC=90°,又∵∠EAO=∠CAD,∴△AEO∽△ACD,∴,即,解得,AE=;∴DE=8﹣,故选:C.9.解:如图,作直径AD,连接BD;∵AB=AC,∴=,∴AD⊥BC,BE=CE=4;∵OE⊥AB,∴AE=BE,而OA=OB,∴OE为△ABD的中位线,∴BD=2OE=5;由勾股定理得:DF2=BD2﹣BF2=52﹣42,∴DF=3;∵AD为⊙O的直径,∴∠ABD=90°,由射影定理得:BD2=DF•AD,而BD=5,DE=3,∴AD=,⊙O半径=.故选:C.10.解:∵y=ax2﹣4ax+2,∴对称轴为直线x=﹣=2,A(0,2),∵点B(3,6)关于二次函数对称轴的对称点为点C,∴C(1,6),∴BC∥x轴,∴∠ADB=90°,∴tan∠CBA===,故选:B.二、填空题11.解:x2﹣y2﹣2x+2y=(x2﹣y2)﹣(2x﹣2y)=(x+y)(x﹣y)﹣2(x﹣y)=(x﹣y)(x+y﹣2).故答案为:(x﹣y)(x+y﹣2).12.解:∵BA=BD,∴∠A=∠BDA,设∠A=∠BDA=x,∠ABD=∠ECD=y,则有,解得x=85°,故答案为85°.13.解:∵AB=2,0A⊥OB,∠ABO=60°,∴OA=AB÷cos60°=4,作AD⊥OB于点D,∴AD=AB×sin60°=,BD=AB×cos60°=1,∴OD=OA﹣BD=3,∴点B的坐标为(3,),∵B 是双曲线y =上一点, ∴k =xy =3. 故答案为:3.14.解:如图,过点A 作AF ⊥CD 交CD 的延长线于F ,连接AC ,则∠ADF +∠ADC =180°, ∵∠ABC +∠ADC =180°, ∴∠ABC =∠ADF , ∵在△ABE 和△ADF 中,∴△ABE ≌△ADF (AAS ), ∴AF =AE =17,∴S 四边形ABCD =S △ABC +S △ACD =×8×17+×6×17=119 故答案为:119 三、解答题 15.解:原式=﹣+1+﹣1=.16.解:方程两边同乘(x +2)(x ﹣2)得 x ﹣2+4x ﹣2(x +2)=x 2﹣4, 整理,得x 2﹣3x +2=0, 解这个方程得x 1=1,x 2=2, 经检验,x 2=2是增根,舍去, 所以,原方程的根是x =1. 17.解:如图所示,点P 即为所求.18.证明:如图,连结PB.∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP=45°.∵在△CBP和△CDP中,,∴△CBP≌△CDP(SAS).∴DP=BP.∵PM⊥AB,PN⊥BC,∠MBN=90°∴四边形BNPM是矩形.∴BP=MN.∴DP=MN.19.解:(1)本次抽取的女生总人数是:10÷20%=50(人),第四小组的人数为:50﹣4﹣10﹣16﹣6﹣4=10(人),第六小组人数占总人数的百分比是:×100%=8%.补全图形如下:故答案是:50人、8%;(2)因为总人数为50,所以中位数是第25、26个数据的平均数,而第25、26个数据都落在第三组,所以中位数落在第三组,故答案为:三;(3)随机抽取的样本中,不低于130次的有20人,则总体560人中优秀的有560×=224(人),答:估计该校九年级女生“一分钟跳绳”成绩的优秀人数为224人.20.解:∵CD⊥BF,AB⊥BF,∴CD∥AB,∴△CDF∽△ABF,∴=,同理可得=,∴=,∴=,解得BD=6,∴=,解得AB=5.1.答:路灯杆AB高5.1m.21.解:(1)由图象得:甲乙两地相距600千米;故答案为:600;(2)由题意得:慢车总用时10小时,∴慢车速度为(千米/小时);设快车速度为x千米/小时,由图象得:60×4+4x=600,解得:x=90,∴快车速度为90千米/小时;设出发x小时后,两车相距300千米.①当两车没有相遇时,由题意得:60x+90x=600﹣300,解得:x=2;②当两车相遇后,由题意得:60x+90x=600+300,解得:x=6;即两车2或6小时时,两车相距300千米;(3)由图象得:(小时),60×400(千米),时间为小时时快车已到达甲地,此时慢车走了400千米,∴两车相遇后y与x的函数关系式为y=.22.解:(1)甲选择A部电影的概率=;(2)画树状图为:共有8种等可能的结果数,其中甲、乙、丙3人选择同1部电影的结果数为2,所以甲、乙、丙3人选择同1部电影的概率==.23.解:(1)∵AD是圆O的切线,∴∠DAB=90°.∵AB是圆O的直径,∴∠ACB=90°.∵∠DAC+∠CAB=90°,∠CAB+∠ABC=90°,∴∠DAC=∠B.∵OC=OB,∴∠B=∠OCB.又∵∠DCE=∠OCB.∴∠DAC=∠DCE.(2)∵AB=2,∴AO=1.∵sin∠D=,∴OD=3,DC=2.在Rt△DAO中,由勾股定理得AD==2.∵∠DAC=∠DCE,∠D=∠D,∴△DEC∽△DCA.∴,即.解得:DE=.∴AE=AD﹣DE=.24.解:(1)将点C坐标代入函数表达式得:y=x2+bx﹣3,将点A的坐标代入上式并解得:b=﹣2,故抛物线的表达式为:y=x2﹣2x﹣3;(2)令y=x2﹣2x﹣3=0,则x=3或﹣1,即点B(3,0),函数的对称轴为x=1,m=﹣2时,n=4+4﹣3=5,m<3,函数的最小值为顶点纵坐标的值:﹣4,故﹣4≤n≤5;(3)点D与点C(0,﹣3)关于点M对称,则点D(2,3),在x轴上方的P不存在,点P只可能在x轴的下方,如下图当点P在对称轴右侧时,点P为点D关于x轴的对称点,此时△ABP与△ABD全等,即点P(2,﹣3);同理点C(P′)也满足△ABP′与△ABD全等,即点P′(0,﹣3);故点P的坐标为(0,﹣3)或(2,﹣3).25.解:(1):∵四边形ABCD是矩形,∴∠D=90°=∠ABC,AB=CD=4,BC=AD=8,∵E为CD中点,∴DE=CE=2,在Rt△ADE中,由勾股定理得:AE===2,即△APE的边AE的长一定,要△APE的周长最小,只要AP+PE最小即可,延长AB到M,使BM=AB=4,则A和M关于BC对称,连接EM交BC于P,此时AP+EP的值最小,∵四边形ABCD是矩形,∴AB∥CD,∴△ECP∽△MBP,∴∴∴CP=故答案为:(2)点A向右平移2个单位到M,点E关于BC的对称点F,连接MF,交BC于Q,此时MQ+EQ最小,∵PQ=3,DE=CE=2,AE=2,∴要使四边形APQE的周长最小,只要AP+EQ最小就行,即AP+EQ=MQ+EQ,过M作MN⊥BC于N,∴MN∥CD∴△MNQ∽△FCQ,∴∴∴NQ=4∴BP=BQ﹣PQ=4+2﹣2=4(3)如图,作点P关于AB的对称点G,作点P关于AC的对称点H,连接GH,交AB,AC 于点M,N,此时△PMN的周长最小.∴AP=AG=AH=100米,∠GAM=∠PAM,∠HAN=∠PAN,∵∠PAM+∠PAN=60°,∴∠GAH =120°,且AG =AH , ∴∠AGH =∠AHG =30°, 过点A 作AO ⊥GH , ∴AO =50米,HO =GO =50米,∴GH =100米,∴S △AGH =GH ×AO =2500平方米, ∵S 四边形AMPN =S △AGM +S △ANH =S △AGH ﹣S △AMN , ∴S △AMN 的值最小时,S 四边形AMPN 的值最大, ∴MN =GM =NH =时∴S 四边形AMPN =S △AGH ﹣S △AMN =2500﹣=平方米.中学数学一模模拟试卷一、单项选择题(本大题共12个小题,每小题3分,共36分) 1.(3分)下列实数为无理数的是( ) A .B .C .D .02.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为( ) A .3.56×106人 B .35.6×105人 C .3.6×105人D .0.356×107人3.(3分)下列各式正确的是( ) A .(a 2)3=a 5 B .2a 2+2a 3=2a 5C .D .(x ﹣1)(x +1)=x 2﹣14.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是( )A.B.C.D.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣210.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.512.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于.三、解答题(本大题共8个小题,第19、20题每小题6分,第21、22题每小题6分,第23、24题每小题6分,第25、26题每小题6分,共66分,解答时写出必要的文字说明、证明过程或演算步骤)19.(6分)计算:﹣2sin45°+||﹣()﹣2+()0.20.(6分)先化简,然后从﹣2≤a≤2的范围内选取一个你认为合适的整数作为a的值代入求值.21.(8分)某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调查.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调查得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,一共抽取了名学生;(2)补全条形统计图;(3)估计全校所有学生中有多少人乘坐公交车上学?(4)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的,求小明在上学路上到第二个路口时第二次遇到红灯的概率,(请用“画树状图”或“列表”的方法写出分析过程)22.(8分)如图,在△ABC中,CD平分∠ACB,CD的垂直平分线分别交AC、DC、BC于点E、F、G,连接DE、DG.(1)求证:四边形DGCE是菱形;(2)若∠DGB=60°,GC=4,求菱形DGCE的面积.23.(9分)某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件.(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.24.(9分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H连接C.过弧BD上一点,过E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE (1)求证:EG是⊙O的切线;(2)求证:GF2=GD•GC;(3)延长AB交GE的延长线于点M.若tan G=,HC=4,求EM的值.25.(10分)如图1,在平面直角坐标系中,已知△ABC,∠ABC=90°,∠ACB=30°,顶点A在第二象限,B,C两点在x轴的负半轴上(点C在点B的右侧),BC=2,△ACD 与△ABC关于AC所在的直线对称.(1)当OC=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OC的长;(3)如图2,将第(2)题中的四边形ABCD向左平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交千点P,问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.26.(10分)在平面直角坐标系中,若点A、C同时在某函数的图象上(点A在点C的左侧),以AC为对角线作矩形ABCD,若矩形ABCD的各边都分别与坐标轴乘直,则称矩形ABCD 为该函数图象的“雅垂矩形”,如图1,矩形ABCD为直线l的“雅垂矩形”(1)若某正比例函数图象的“雅垂矩形”的两邻边比为1:4,则下列函数:①y=4x;②y=﹣4x;③y=2x;④y=x中,符合条件的是(只填写序号)(2)若二次函数y=x2﹣2x图象的“雅垂矩形”ABCD的顶点C的横坐标是顶点A横坐标的3倍,设顶点A的横坐标为m(0<m<0.5),矩形ABCD的周长为L,求L的最大值.(3)若二次函数y=x2﹣2nx的图象的“雅垂矩形”ABCD的顶点A、C的横坐标分别为﹣2,1,分别作点A、C关于此二次函数图象对称轴的对称点A、C,连接A'C',是否存在这样的一个n,使得线段A'C'将矩形ABCD两部分图形的面积比为2:7的两部分?若存在,请求出n的值;若不存在,请说明理由.参考答案与试题解析一、单项选择题(本大题共12个小题,每小题3分,共36分)1.(3分)下列实数为无理数的是()A.B.C.D.0【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=2是整数,是有理数,故选项不符合题意;B、是分数,是有理数,故选项不符合题意;C、是无理数,故选项符合题意;D、0是整数,是有理数,故选项不符合题意.故选:C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)2019年“五一”小长假有四天假期,长沙市共接待游客356万人次,称为新晋“网红城市”,356万人用科学记数法表示为()A.3.56×106人B.35.6×105人C.3.6×105人D.0.356×107人【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:356万=3.56×106.故选:A.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列各式正确的是()A.(a2)3=a5B.2a2+2a3=2a5C.D.(x﹣1)(x+1)=x2﹣1【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不符合题意;B、原式不能合并,不符合题意;C、原式=a3,不符合题意;D、原式=x2﹣1,符合题意,故选:D.【点评】此题考查了平方差公式,合并同类项,以及幂的乘方与积的乘方,熟练掌握公式及法则是解本题的关键.4.(3分)下列手机屏幕手势解锁图案中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(3分)在下列说法中不正确的是()A.两条对角线互相垂直的矩形是正方形B.两条对角线相等的菱形是正方形C.两条对角线垂直且相等的平行四边形是正方形D.两条对角线垂直且相等的四边形是正方形【分析】根据既是矩形又是菱形的四边形是正方形进行判断.【解答】解:A、两条对角线互相垂直的矩形是正方形,故选项不符合题意;B、两条对角线相等的菱形是正方形,故选项不符合题意;C、两条对角线垂直且相等的平行四边形是正方形,故选项不符合题意;D、应是两条对角线垂直且相等的平行四边形是正方形,故选项符合题意.故选:D.【点评】本题考查了正方形的判定,通过这道题可以掌握正方形和矩形,菱形的关系.6.(3分)如图是一个由6个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是3个小正方形,第二层右边2个小正方形,第三层右边2个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】求出不等式组的解集,表示在数轴上即可.【解答】解:不等式组整理得:,∴不等式组的解集为x<1,故选:A.【点评】此题考查了解一元一次方程组,熟练掌握运算法则是解本题的关键.8.(3分)已知一次函数y=(3﹣a)x+3,如果y随自变量x的增大而增大,那么a的取值范围为()A.a<3B.a>3C.a<﹣3D.a>﹣3.【分析】先根据一次函数的性质得出关于a的不等式,再解不等式即可求出a的取值范围.【解答】解:∵一次函数y=(3﹣a)x+3,函数值y随自变量x的增大而增大,∴3﹣a>0,解得a<3.故选:A.【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数的增减性是解答此题的关键.9.(3分)将抛物线y=5x2先向右平移3个单位,再向上平移2个单位后,所得的抛物线的解析式为()A.y=5(x+3)2+2B.y=5(x+3)2﹣2C.y=5(x﹣3)2+2D.y=5(x﹣3)2﹣2【分析】根据向右平移横坐标加,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【解答】解:∵y=5x2先向右平移3个单位,再向上平移2个单位后的顶点坐标为(3,2),∴所得的抛物线的解析式为y=5(x﹣3)2+2.故选:C.【点评】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式求解更简便.10.(3分)如图,已知CA、CB分别与⊙O相切于A、B两点,D是⊙O上的一点,连接AD、BD,若∠C=56°,则∠D等于()A.72°B.68°C.64°D.62°【分析】连接OA,OB.根据圆周角定理和四边形内角和定理求解即可.【解答】解:连接OA,OB,∵CA、CB切⊙O于点A、B,∴∠CAO=∠CBO=90°,∵∠C=56°,∴∠AOB=360°﹣∠CAO﹣∠CBO﹣∠C=360°﹣90°﹣90°﹣56°=124°.由圆周角定理知,∠D=∠AOB=62°,故选:D.【点评】本题考查了切线的性质、圆周角定理、以及四边形的内角和为360度.熟练掌握:圆心与切点的连线垂直切线;过圆心垂直于切线的直线必过切点;过圆外一点引圆的两条切线,切线长相等等知识是解题的关键.11.(3分)如图,考古队在A处测得古塔BC顶端C的仰角为45°,斜坡AD长10米,坡度i=3:4,BD长12米,请问古塔BC的高度为()米.A.25.5B.26C.28.5D.20.5【分析】作AE⊥BC,AF⊥BD,由i=3:4,可设AF=3x,DF=4x,结合AD=10,利用勾股定理可求得x的值,解直角三角形即可得到结论.【解答】解:如图,过点A作AE⊥BC于点E,过点A作AF⊥BD,交BD延长线于点F,由i=3:4,可设AF=3x,DF=4x,∵AD=10,∴9x2+16x2=100,解得:x=2(负值舍去),则AF=BE=6,DF=8,∴AE=DF+BD=8+12=20,∵∠CAE=45°,∴CE=AE=20,则BC=CE+BE=20+6=26,故选:B.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题,解题的关键是能根据题意构造直角三角形并结合图形利用三角函数解直角三角形.12.(3分)如图,在边长为1的正方形ABCD中,动点F、E分别以相同的速度从D、C两点同时出发向C、B运动(任何一个点到达即停止),BF、AE交于点P,连接CP,则线段CP的最小值为()A.B.C.D.【分析】首先判断出△ABE≌△BCF,即可判断出∠BAE=∠CBF,再根据∠BAE+∠BEA =90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值为多少.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故选:A.【点评】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP的长度最小.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3分)分解因式:3a2﹣12=3(a+2)(a﹣2).【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3a2﹣12=3(a+2)(a﹣2).【点评】本题考查了提公因式法,公式法分解因式,提取公因式后要继续利用平方差公式进行因式分解,分解因式要彻底,直到不能再分解为止.14.(3分)如图,在平面直角坐标系中,正方形OABC与正方形ODEF是位似图形,点O 为位似中心.位似比为2:3,点B、E在第一象限,若点A的坐标为(1,0),则点E 的坐标是(,).【分析】由题意可得OA:OD=2:3,又由点A的坐标为(1,0),即可求得OD的长,又由正方形的性质,即可求得E点的坐标.【解答】解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为2:3,∴OA:OD=2:3,∵点A的坐标为(1,0),即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:(,).故答案是:(,).【点评】此题考查了位似变换的性质与正方形的性质,注意理解位似变换与相似比的定义是解此题的关键.15.(3分)在不透明的盒子中装有6个黑色棋子和若干个白色棋子,每个棋子除颜色外都相同.任意摸出一个棋子,摸到黑色棋子的概率是,则白色棋子的个数是24.【分析】设盒子中白色棋子有x个,根据概率公式列出关于x的方程,解之可得.【解答】解:设盒子中白色棋子有x个,根据题意,得:=,解得:x=24,经检验:x=24是原分式方程的解,所以白色棋子有24个,故答案为:24.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,如图所示,则该扇形薄纸板的圆心角为216°.【分析】利用勾股定理计算出母线长=15,设该扇形薄纸板的圆心角为n°,利用弧长公式得到2π•9=,解得n=216.【解答】解:母线长==15,设该扇形薄纸板的圆心角为n°,所以2π•9=,解得n=216,即该扇形薄纸板的圆心角为216°.故答案为216°.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.17.(3分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c>0的解集为﹣5<x<3.【分析】先根据抛物线的对称性得到A点坐标(3,0),由y=ax2+bx+c>0得函数值为正数,即抛物线在x轴上方,然后找出对应的自变量的取值范围即可得到不等式ax2+bx+c >0的解集.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.【点评】此题主要考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,本题锻炼了学生数形结合的思想方法.18.(3分)如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD=27,则三角形ACD的面积等于45.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

则弦 AB 的长为( )
A.6 B.8 C. 5 2
D. 5 3
7.如图,A、B、C 是小正方形的顶点,且每个小正方形的边长为 1,则 tan BAC 的值为( )
1
A. 1
B.1
C. 3
D. 32a , a )是反比例函数 y k ( k 0 )与⊙O 的一个交点,图中阴影部分的面积为 5π, x
5
5 3 3
②当
50<x≤130
时, W

x
3 5
x
168
1 5
x 80


2 5
x
1102

4840
∴W


3 x 5
245 2 3
12005 3
0

x

50

2 5
x
1102
24.(本题 10 分)某校为创建“书香校园”,购置了一批图书,已知购买科普类图书花费 10000 元,购买 文学类图书花费 9000 元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵 5 元,且购买科 普类图书的数量与购买文学类图书的数量相等.求科普类图书平均每本的价格.
5
25.(本题 10 分)如图,点 A、B、C 在⊙O 上,AB 为直径,∠BAC 的平分线交⊙O 于点 D,作 DE⊥AC 分 别交AC、AB 的延长线与点 E、F. (1)求证:EF 是⊙0 的切线; (2)若 AE=6,OA=4,求弧 BD、线段 DF、线段 BF 所围成的阴影部分图形面积(结果保留π)
18.如图,点 D 是等边△ABC 的边 BC 上的一个动点,连结 AD,将射线 DA 绕点 D 顺时针旋转 60°交 AC 于点 E,若 AB=4.则 AE 的最小值是__________.
3
三、解答题(本大题共 10 小题,共 96 分.解答时应写出必要的文字说明或演算步骤)
19.(本题 8 分)
23.(本题 10 分)如图,在△ABC 中,AD 是边 BC 上的中线,E 是 AD 的中点,过点 A 作 BC 的平行线 AF 交 BE 的延长线于点 F,连接 CF. (1)求证:AF=DB ; (2)若 CA⊥AB,点 D 运动到 BC 中点,试判断四边形 ADCF 的形状,并证明你的结论.

42

8 3
∴S 阴影=S△ODF-S 扇形 OBD= 8 3 8 3
26、(1)90°;(2) 3 2
700 x 50
27、(1)
y2


1 5
x

8050

x

130
11
(2)①当 0≤x≤50 时,W x 3 x 168 70 3 x 245 2 12005
∴EF 是⊙O 的切线;
(2)设 OF=x,
∵OD⊥EF,DE⊥AC,
∴OD//AE
∴△ODF∽AEF
OF


OD
FA AE
∴ x 4 x4 6
∴x=8
∴DF= 4 3 ,∠DOF=60°
∴S△ODF= 1 DF OD 1 4 3 4 8 3
2
2
S
扇形
OBD=
60 360
扬州市文津中学2019届中考第一次模拟试卷
九年级数学
2019.04
一、选择题(本大题共 8 小题,每小题 3 分,共 24 分)
1.下列整数中,比 小的数是( )
A.-3
B.0 C.1 D.-4
2.下列运算中,正确的是( )
A. x2 x3 x5
B. x2 y 3 x6 y
11.因式分解, a3 ab2 ____________.
12.图 1 是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则, 代表一种自然和谐美,图 2 是从图 1 冰裂纹窗格图案中提取的由五条线段组成的阴影,则∠1+∠2+∠3+ ∠4+∠5=_______°.
则反比例函数的解析式为( )
A. y 4 x
B. y 5 x
C. y 10 x
D. y 8 x
二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 9.中国高铁被誉为“新四大发明,”截止 2018 年底中国高铁铁路营业额里程已达 29000 公里,请将 29000, 用科学计数法表示__________. 10.如图,数轴上有 O、A、B 三点,点 O 对应原点,点 A 对应的数为-1,若 OB=3OA,则点 B 对应的数为_________.
A.39
B.40
C.41
D.42
5.如图,直线 l1 ∥ l2 ,将一直角三角尺按如图所示放置,使得直角顶点在直线 l1 上,两直角边分别与直线 l1 、
l2 相交形成锐角∠1、∠2 且∠1=25°,则∠2 的度数为( )
A.25°
B.75°
C.65°
D.55°
6.如图,已知⊙O 的半径为 5,弦 AB、CD 所对的圆心角分别是∠AOB、∠COD,若∠AOB+∠COD=180°,弦 CD=6,
∴△AFE≌△DBE(AAS), ∴AF=BD, (2)四边形 ADCF 是菱形, 证明:AF∥BC,AF=DC, ∴四边形 ADCF 是平行四边形, ∵AC⊥AB,AD 是斜边 BC 的中线,
∴AD= BC=DC,
∴平行四边形 ADCF 是菱形.
24、解:设科普类图书平均每本的价格为 x 元,则文学类图书平均每本的价格为(x﹣5)元,
(3)设 AP 为 x ,四边形 EFGP 的面积为 S ,求出 S 与 x 的函数关系式.
8
2019 年文津学校九年级(下)第一次模拟数学学科试卷
1~8:DABCCBBD
9、2.9×104 10、3 11、a(a+b)(a-b) 12、360° 13、小明 14、(1,1)
15、 12 5
16、 y 3 x 4 3
7
28.(本题 12 分)如图所示,现有一张边长为 1 的正方形纸片,点 P 为正方形 AD 边上的一点(不与点 A、 点 D 重合)将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,PG 交 DC 于 H,折痕为 EF,连接 BP、BH. (1)求证:∠APB=∠BPH; (2)当点 P 在边 AD 上移动时,∠PBH 的大小是否改变?如不改变,请求出它的度数,并说明你的理由;
17、18
18、3
19、(1) 4 2 3 ;(2) x 1 x
20、 5 x 4 ,∵x 为整数,∴x 取-1,0,1
4
3
21、(1)160,54;
(2)
(3) 32 600 120 (名) 160
答:该校七年级 600 名学生中,估计最喜欢“影视观赏”的学生人数为 120 名。
y1


3 5
x
168
,生产成本
y2
(元)与产量
x (kg)之间的函数图像如图中折线 ABC 所示.
(1)求生产成本 y2 (元)与产量 x (kg)之间的函数关系式;
(2)求日利润为 w (元)与产量 x (kg)之间的函数关系式;
(3)当产量为多少 kg 时,这种产品获得的日利润最大?最大日利润为多少元?
22、(1) 1 ; 2
(2)
9
共有 4 种等可能的结果数,其中王丽和朱红两人都选择看 A 部电影《流浪地球》的结果为 1,
1
所以王丽和朱红两人都选择看 A 部电影《流浪地球》的概率为 。
4
23、(1)证明:∵AF∥BC, ∴∠AFE=∠DBE, ∵E 是 AD 的中点,AD 是 BC 边上的中线, ∴AE=DE,BD=CD, 在△AFE 和△DBE 中
4
22.(本题 8 分)今年春节期间,影院同时上映两部电影 A:《流浪地球》和 B:《飞驰人生》深受观众喜 爱,王丽和朱红两人约定分别从中任意选择 1 部观看。 (1)王丽选择观看 A 部电影《流浪地球》的概率是______; (2)请用画树状图或列表的方法求王丽和朱红两人都选择观看 A 部电影《流浪地球》的概率。
16.如图,在平面直角坐标系中,菱形 OABC 的一个顶点在原点 O 处,且∠AOC=60°,点 C 的坐标是(0,4), 则直线 AC 的解析式是__________.
17.如图,Rt△ABC 中,∠ACB=90°,点 E 是重心,点 D 在斜边 AB 上,CD 过点 E,作 EF∥AB 交 CB 于点 F, 若 EF=6,则 AB 的长为__________.
2
13.为迎接宝应县中小学生诗词大赛,某校举办了五次选拔赛,在这五次选拔赛中,小明五次成绩的平均数 是 90,方差是 2,小强五次成绩的平均数也是 90,方差是 14.8,应推荐______参赛.
14.抛物线 y 2x2 4x 3 的顶点坐标是_________.
15.如图,菱形 ABCD 的周长为 20,对角线 AC 与 BD 相交于点 0,AC=8,OE⊥BC,垂足为点 E,则 OE=___________.
2
(2)探究:如图 3,已知△ABC 为直角三角形,斜边 BC=5,AB=3,准内心 P 在 AC 边上(不与点 A、C 重 合),求 PA 的长。
6
27.(本题 12 分)绿色生态农场并销售某种有机产品,每日最多生产 130kg,假设生产出的产品能全部售出,,
每千克的售价
y1 (元)与产量
x
(kg)之间满足一次函数关系
(1)计算: tan 30 2 20190 12
(2)化简: 1
x
1 1

相关文档
最新文档