尼龙工程材料的改性
尼龙增韧改性途径及其进展

尼龙增韧改性途径及其进展聚酰胺(PA)又称尼龙,具有力学强度高、韧性好、耐磨、耐油等优良性能,特别是在吸湿状态下,抗冲击强度极高;但是在干态和低温下的抗冲击强度偏低,吸水率大,影响其制品尺寸的稳定性和电性能。
我国现有PA改性生产企业主要集中在广东和江苏两省,总生产能力3.5万t/a左右,改性产品主要是玻纤增强产品,其次是增强阻燃、增韧等产品。
规模较大的尼龙改性企业有广东金发科技股份公司(1万t/a)、晋伦科技股份公司(5000t/a)、毅兴工程塑料有限公司(5000t/a)、广东利鑫(5000t/a)等。
由于PA的韧性和耐冲击性与温度和吸湿有很大的依赖关系,所以低温及含湿量低时抗冲击强度较低,使其用途受到很大限制。
随着市场经济的发展和竞争日趋激烈,在对材料性能、价格要求越来越高的状况下,与单一聚合物相比,聚合物合金、复合材料更能适应高性能的要求。
近年来,国内外PA发展的重点是对现有品种通过多组分的共聚、共混或加入不同的添加剂等方法,改进PA塑料的冲击性、热变形性、力学性能、阻燃性及成型加工性能。
填充增强改性PA改性中最常用的方法是填充增强,PA主要的增强剂包括玻纤、玻璃微珠、碳纤维和石墨纤维、金属粉末(铝、铁、青铜、锌、铜)、二氧化硅、硅酸盐和液晶聚合物(LCP)等。
其中最常用的增强剂是玻纤,这是因为PA熔体粘度较低,且玻纤与PA亲合性好,当填加较多的玻纤时,仍能保持在良好的加工粘度范围内,且增强效果显著。
在PA6树脂中加入相应的增强剂,不仅可以保持PA6树脂的耐化学性、加工性等固有优点,而且力学性能、耐热性会有大幅度提高,尺寸稳定性等也有明显改善。
PA6中添加芳纶纤维后,具有高强度、高韧性和高耐磨性(低摩擦系数、低磨耗率),耐冲击性能比玻纤和碳纤增强PA6有显著提高。
其主要性能如表1所示。
Allied Signal塑料公司研制开发出CapRonD8272和D8274两个玻璃纤维增强PA6新品级,该两个品级分别含有12%和30%的玻璃纤维,可在160℃高温下使用,用于制作空气管道、支管、油箱等汽车盖下零部件。
尼龙11改性研究进展

变 性 能 的研 究 、 出成 型 的 配 方 与 工 艺 , 及 相 关 产 品 的 应 挤 以
Merba e 等 研 究 发 现 , 丙 烯 腈 橡 胶 改 性 尼 龙 1 ha zd h 用 1
尼 龙 l 改 性 l 增韧 增 强 增 塑
望 了尼 龙 l l改 性 研 究 的 前 景 。
尼 龙 1 是 一 种 具 有 优 良 性 能 的 塑 料 , 聚 酰 胺 的 一 个 1 属
2 1 尼龙 1 . 1与聚烯烃 、 烯烃共 聚物 、 弹性 体等共混 尼龙 1 与聚烯烃 弹性 体共 混制 取合 金 , 1 主要 是为 提 高
维普资讯
周 秀苗 . : 龙 1 等 尼 1改 性 研 究 进 展
5
尼龙 1 1改 性 研 究 进 展 术
周 秀苗 胡 国胜 李 东红
( 北 工学 院 高 分 子研 究 所 , 原 华 太 005 ) 3 0 1
摘要
关键词
综述 尼龙 l l国 内外 研 究现 状 , 绍 尼 龙 l 介 l的增 韧 、 强 、 塑 , 及 特 殊 助 剂 对 尼 龙 l 增 增 以 l改性 的 作 用 , 展 并
LagZ i og等研究 了聚丙烯 ( P / i hz n n h P ) 尼龙 1 二 元共混 1 体系 。P P为非极性材料 , 与尼龙 1 直接 共混形 成不 相容 1 体系 , 其通过接枝 上 改性官 能 团后 , 但 便可 以与 极性 聚合 物 尼龙 1 1共混 。La gZ i og等用丙烯 酸接枝 P i hz n n h P作 为共混 成分 , 当两组分 含量相 同时 , 使得 官能 化共 混体 系在 两相 间 有优 良的分散形 态 及 良好 的粘 接。在研 究兼 容性 对 P / P 尼 龙 1 二元 共混体 系的动 态力学 性能 的 影响 时 , 1 发现 使用 改 性 P P和尼龙 1 1共混 , 对应共混物两 相问不同 的粘 接强度产
尼龙的改性配方

尼龙的改性配方?上述成分混合,挤出或注射成型,拉伸强度为74MPa,缺口冲击强度为0. 05kJ/m, 100℃下吸水率为0. 58% ,具有良好的机械强度和耐热性。
上述混合物用于挤出注射各种包装容器,有良好的低温抗冲击强度和良好的阻气性。
上述混合物造粒,注塑成制品,冲击强度为0.18kJ/m具有良好的耐汽油性。
上述配方可以提高硬度、柔软性和抗磨能力,降低吸水率,使之<1%。
事先把石蜡和增容剂混合好,再加入尼龙中去。
上述成分混合造粒,可用于注塑成型。
上述成分混合均匀,在100份重的上述组分混合物粉末中,添加7~40份重的青铜粉,空心玻璃微珠1~20份重,玻璃纤维或云母粉5~20份重,聚四氟乙烯(或PE)5~20份重,再加入适量的二硫化钼、石墨粉、炭黑,烘干装入金属模具中压制成型,在150~ 270℃温度下20~40min烧结成型,冷却后整理加工,浸油而成制品。
尼龙6玻纤增强磷氮阻燃剂产品说明书一、产品特点:1、外观:白色粉末状磷氮系膨胀型阻燃剂2、环保无卤,符合欧盟ROSH标准3、热稳定性高,分解温度大于300摄氏度,满足PA6加工工艺的要求4、阻燃效果好,以PA6 80份,阻燃剂20-25份,润滑剂EBS(乙二撑双硬脂酸酰胺)0.3份,抗氧剂0.5份,二甲基硅油0.5份,再另外添加玻纤25-30%,可以达到UL94 V-0级。
5、应用建议:(1)开包后建议尽快使用,否则建议使用前120摄氏度烘2小时(2)建议加工前预干燥树脂,使树脂中含水率低于0.5%防止树脂因高温水解而变色(3)建议中段加入阻燃剂,以尽量排出树脂中的水分PA6玻纤增强无卤阻燃剂XL-PA01发布时间:2010-12-08 来源:访问233次PA6玻纤增强无卤阻燃剂XL-PA01一、产品特点:1、本产品为白色粉末状膦氮系阻燃剂,氮磷含量高P≥20%2、环保无卤,符合欧盟ROSH标准,3、热稳定性高,完全满足PA66、PA6的成形加工温度要求,4、阻燃效果优异,添加玻纤20-30%, XL-PA01(%) 18-25份,可轻松达到UL94 V-0级(1.6mm),通过GWIT 775/2mm,具有CTl值(相比起痕指数)约600V的良好电学性能。
尼龙的改性特性以及应用范围

本文摘自再生资源回收-变宝网()尼龙的改性特性以及应用范围由于尼龙具有很多的特性,因此,在汽车、电气设备、机械部构、交通器材、纺织、造纸机械等方面得到广泛应用。
随着汽车的小型化、电子电气设备的高性能化、机械设备轻量化的进程加快,对尼龙的需求将更高更大。
特别是尼龙作为结构性材料,对其强度、耐热性、耐寒性等方面提出了很高的要求。
尼龙的固有缺点也是限制其应用的重要因素,特别是对于PA6、PA66两大品种来说,与PA46、PAl2等品种比具有很强的价格优势,虽某些性能不能满足相关行业发展的要求。
因此,必须针对某一应用领域,通过改性,提高其某些性能,来扩大其应用领域。
主要在以下几方面进行改性:①改善尼龙的吸水性,提高制品的尺寸稳定性。
②提高尼龙的阻燃性,以适应电子、电气、通讯等行业的要求。
③提高尼龙的机械强度,以达到金属材料的强度,取代金属④提高尼龙的抗低温性能,增强其对耐环境应变的能力。
⑤提高尼龙的耐磨性,以适应耐磨要求高的场合。
⑥提高尼龙的抗静电性,以适应矿山及其机械应用的要求。
⑦提高尼龙的耐热性,以适应如汽车发动机等耐高温条件的领域。
⑧降低尼龙的成本,提高产品竞争力。
总之,通过上述改进,实现尼龙复合材料的高性能化与功能化,进而促进相关行业产品向高性能、高质量方向发展。
改性PA产品的最新发展前面提到,玻璃纤维增强PA在20世纪50年代就有研究,但形成产业化是20世纪70年代,自1976年美国杜邦公司开发出超韧PA66后,各国大公司纷纷开发新的改性PA产品,美国、西欧、日本、荷兰、意大利等大力开发增强PA、阻燃PA、填充PA,大量的改性PA 投放市场。
20世纪80年代,相容剂技术开发成功,推动了PA合金的发展,世界各国相继开发出PA/PE、PA/PP、PA/ABS、PA/PC、PA/PBT、PA/PET、PA/PPO、PA/PPS、PA/I.CP(液晶高分子)、PA/PA等上千种合金,广泛用于汽车、机车、电子、电气械、纺织、体育用品、办公用品、家电部件等行业。
尼龙的摩擦学改性研究进展

现凡 是能减少复合材料 磨损量 的填料 在摩擦 过程 中都发 生 了化学反 应 , 而增加 复合材 料磨损量的填料在摩擦过程 中都
没发生化学反应 。大量 的 z 无机化合物 的加人 可增 大复合 n
材料 的磨 损量 。S B h dr . aau 等 在对 比 C O、 a 、 a 2 a C S C F 填 充 P A复合材料 的摩擦学性 能研究 中, 出 C O、 a 指 a C S在减 少 复合材料 的磨 损量 方面 非常有 效 , C F 的加人 增 大 了复 但 a:
王冲 , : 等 尼龙的摩擦学改性研究进展
7 3
尼 龙 的摩 擦 学 改性 研 究进 展
王 冲 魏 刚 闫 光 红 刘 峰
603 1 09) ( 西华 大学材料科学 与工程学 院, 成都
摘要 综述 了近年 来尼龙( A) P 的各种摩擦 学改性 方法及 改性 P A材料 的摩擦 磨损 形式与机 制。从无机 粒子填
及通过填料 的磨 损对 摩擦副改性 。王世博 等 发 现 Z O填 n
充 P 0 0复合材料 的摩擦 磨损性能 比纯 P 0 0有 明显 提 Al 1 Al 1 高 。当 Z O质 量分数 在 3 一8 时 , n % % 复合材 料的摩擦 因数 提 高 , 磨 损 率 降 低 。填 充 适 量 Z O 可 以有 效 地 减 轻 而 n P l1 A 0 0的粘着磨损 , 提高其耐磨性 , 但过 量填充会 导致颗粒
性较大 、 寸稳定 性差 、 尺 热变形温度低 、 干摩擦 时有 较高 的摩 擦因数等缺点 , 不能用作 高速摩擦 副材 料 , 限制 了其应 用领
域的扩大 。目前 , 针对 P A材料 的摩擦学 研究 主要集 中于两 方面 : 一是研究 P A材 料的摩擦磨损机理 , 获得 P A摩 擦学 应用的基本数据 ; 二是 研究 P A材 料 的各种 改性 手段 , 以提 高P A材料 的摩擦学性能 。笔 者综 述了近年来 P A的各种摩 擦 学改性方法及相应的减摩耐磨机理 。 1 无机粒子填 充改性
尼龙改性

尼龙改性认识一、尼龙的种类及特性1.1尼龙的种类尼龙系分子主链的重复结构单元中,含有酰胺基(—CONH—)的一类热塑性树脂,包括脂肪族聚酰胺、脂肪-芳香族聚酰胺及芳香族聚酰胺。
脂肪族聚酰胺品种多、产量大、应用广泛,既可作纤维,也可作塑料。
脂肪-芳香族聚酰胺品种少,产量也小;芳香族聚酰胺常简称为聚芳酰胺,主要用作纤维(芳纶)。
脂肪族尼龙分尼龙6、尼龙66、尼龙1010等。
1.2尼龙的特性尼龙属于聚酰胺,在它的主链上有氨基。
氨基具有极性,会因氢键的作用而相互吸引。
所以尼龙容易结晶,可以制成强度很高的纤维。
聚酰胺为韧性角质状半透明或乳白色结晶性树脂,常制成圆柱状粒料,作塑料用的聚酰胺分子量一般为1.5万~2万。
各种聚酰胺的共同特点是耐燃,抗张强度高(达104MPa),耐磨,电绝缘性好,耐热(在455kPa下热变形温度均在150℃以上),熔点150~250℃,熔融态树脂的流动性高,相对密度1.05~1.15(加入填料可增至1.6),大都无毒。
二、尼龙的现有主要种类及市场概况2.1HTNHTN属于杜邦尼龙家族。
杜邦HTN分为51G、52G、53G和54G四个系列,其中51G、52G和54G是属于6T的改性产品,可归属于半芳香族尼龙PPA,而53G系列因分子中苯环含量较少杜邦把它归为高性能尼龙。
Zytel®HTN51G=PA6T/MPMDT………..PPAZytel®HTN52G=PA6T/66……………….PPAZytel®HTN53G=PA……………………..HPPAZytel®HTN54G=PA6T/XT+PA6T/66…PPA作为老牌尼龙制造商,拥有强劲开发实力的杜邦实现HTN的工业化也比较早,并最先推出高温尼龙的无卤阻燃系列。
杜邦高温尼龙目前在市场上表现平平,后期在无卤规格上可能会有所作为。
2.2 ARLEN™ PA6TARLEN™为日本三井化学公司所开发出的一种耐高温尼龙,是基于对苯二甲酸,己二酸及己二胺的改性尼龙6T,其熔点高达310℃。
尼龙加纤增强改性材料的性能和应用范围

尼龙加纤增强改性材料的应用领域尼龙增强料,你加多少玻纤?一、为什么要加玻纤(GF)呢?尼龙加纤增强材料是用PA6/PA66树脂做为基材再添加一定比例的玻璃纤维改性而成。
由于尼龙本身强度不够,通过加入10--30%的纤维,来提高它的强度。
特别是30%的强度是公认的最合适的比例。
也有加到40-50%的,根据不同产品的具体要求,再加上适当的配方,都能成功。
二、加玻纤增强系列尼龙产品应用范围高强度加玻纤增强产品玻纤添加比例40-50%的增强尼龙材料,主要适用于高强度齿轮、专业设备的高强度零部件制造。
各种精密齿轮:PA66+20%GF,具有高钢性、尺寸稳定、降噪、耐磨、静音、润滑、抗静电等性能。
中强度加玻纤增强产品玻纤添加比例25-35%的增强尼龙材料,主要适用于汽车配件、电动工具外壳、电器风叶、风轮、餐具类、玩具类等中强度零部件制造。
1、汽车配件:汽车PA66+GF材料可应用在发动机进气管、发动机罩盖、汽车底盘、发动机风扇叶、汽车空调蒸发器冷凝器等。
1)发动进气管PA66+30%GF,长期耐温140℃2000小时以上。
2)汽车底盘挡泥板,发动机风扇叶PA66+30GF,需要极好的韧性和强度,以及很低的变形量与尺寸稳定性。
3)汽车空调蒸发器PA66+15%GF+10%滑石粉,需要翘曲好、长期耐热、耐水解、尺寸稳定高、很高的强度和韧性。
2、电子配件各种连接器:这是无卤阻燃PA66+35%GF、PA66+35%GF在各种电子连接器上的应用领域。
电子连接器需要具备高流动性、尺寸稳定性、良好的电气性能,有的还需要阻燃性能,此时唯有改性材料才能完全替代。
3、各种大功率风扇叶以及叶轮:高钢性、高韧性、低翘曲、抗蠕变、耐水解改性PA66+30%GF材料。
4、餐具类:耐高温、食品级、高流动性、增强、PA66+30%GF。
5、玩具领域:玩具枪托、无人机螺旋桨、马达支架玩具一般使用高强度的改性塑料(PA66+30%GF、PA66+30%碳纤)。
尼龙材料简介

尼龙材料简介尼龙(Nylon),中文名聚酰胺,英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—NHCO—的热塑性树脂总称。
其命名由合成单体具体的碳原子数而定。
是美国最大的化学工业公司──杜邦公司著名化学家卡罗瑟斯和他的科研小组发明的。
尼龙系列是最重要的工程塑料。
该产品应用广泛,几乎覆盖每一个领域,是五大工程塑料中应用最广的品种。
尼龙分类:尼龙按生产工艺不同分为挤出和浇铸两种。
挤出尼龙:1:尼龙6(白色):该材料具有最优越的综合性能,包括机械强度、刚度、韧度、机械减震性和耐磨性。
这些特性,再加上良好的电绝缘能力和耐化学性,使尼龙6 成为一种“通用级”材料,用于机械结构零件和可维护零件的制造。
2:尼龙66 (奶油色):与尼龙6 相比较,其机械强度、刚度、耐热和耐磨性,抗蠕变性能更好,但冲击强度和机械减震性能下降,非常适合于自动车床机械加工。
3:尼龙4.6 (红棕色):与普通尼龙相比,尼龙4.6的特点是刚性保存力强,耐蠕变性好,在较宽的温度范围内,更耐热老化,因此,尼龙4.6用于尼龙6、尼龙66、POM 和PET在刚度、抗蠕变、耐热老化、疲劳强度和耐磨性能方面所达不到要求的“较高的温度领域”(80 -150 ℃)4:尼龙66+GF30 (黑色):与纯尼龙66相比,这种尼龙填加30% 玻璃纤维增强,其耐热性、强度、刚度。
耐蠕变性和尺寸稳定性、耐磨等性能方面均有提高,它的最大允许使用温度较高。
5:尼龙66+MOS2 (灰黑色):这种尼龙填加了二硫化钼,与尼龙66相比,其刚性,硬度和尺寸稳定性有所提高,但抗冲击强度有所下降,二硫化钼的晶粒形成效果提高了结晶结构,使材料承载和耐磨性能均有提高。
浇铸尼龙:又称MC 尼龙:英文名称 Monomer casting nylon ,中文称单体浇铸尼龙。
“以塑代钢、性能卓越”,用途极其广泛。
它具有重量轻、强度高、自润滑、耐磨、防腐,绝缘等多种独特性能。
PA材料常见改性方法及应用

PA材料常见改性⽅法及应⽤增强PA,MC尼龙,芳⾹族PA塑料在⽣活中应⽤⼴泛,改性的品种也种类繁多,常见的有增强PA,透明PA,⾼抗冲(超韧)PA,电镀PA,导电PA,阻燃PA,PA与其它聚合物共混物和合⾦等,满⾜不同的特殊要求,作为各种结构材料,⼴泛⽤作⾦属、⽊材等传统材料的替代合⾦等,品。
PA材料改性⽅法玻纤增强PA:玻璃纤维增强PA的成型⼯艺与未增强时⼤致相同,但因流动较增强前差,所以注射压⼒和注射速度要适当提⾼,机筒温度提⾼10-40℃。
耐候PA:在PA中加⼊了碳⿊等吸收紫外线的助剂,这些对PA的⾃润滑性和对⾦属的磨损⼤⼤增强,成型加⼯时会影响下料和磨损机件。
因此,需要采⽤进料能⼒强及耐磨性⾼的螺杆、机筒、过胶头、过胶圈、过胶垫圈组合。
透明PA:具有良好的拉伸强度、耐冲击强度、刚性、耐磨性、耐化学性、表⾯硬度等性能,透光率⾼,与光学玻璃相近,加⼯温度为300--315℃,成型加⼯时,需严格控制机筒温度,熔体温度太⾼会因降解⽽导致制品变⾊,温度太低会因塑化不良⽽影响制品的透明度。
模具温度尽量取低些,模具温度⾼会因结晶⽽使制品的透明度降低。
阻燃PA:⼤部分阻燃剂在⾼温下易分解,释放出酸性物质,对⾦属具有腐蚀作⽤,因此,塑化元件(螺杆、过胶头、过胶圈、过胶垫圈、法兰等)需镀硬鉻处理。
⼯艺⽅⾯,尽量控制机筒温度不能过⾼,注射速度不能太快,以避免因胶料温度过⾼⽽分解引起制品变⾊和⼒学性能下降。
尼龙的⼒学性能、耐磨性、⾃润滑性优良,成型加⼯较好,然⽽在吸⽔率、尺⼨稳定性和电性能上存在缺陷,耐⾼低温⽅⾯的性能也需要提升。
有需求就会有制造,改性尼龙专⽤材料通过填充增强、共混等⽅法得到了很多⽅⾯的提升,就是这样,改性尼龙材料的使⽤范围才不断地扩⼤,愈⽤愈⼴。
改性PA材料的下游应⽤改性尼龙PA以其优异的机械性能、耐热、耐油、耐化学腐蚀、耐⽼化、耐低温等性能,⼴泛⽤于汽车、机车、通讯、电⼦电⽓、机械、兵器、航空航天、办公机器、家电、建筑、体育⽤品等⾏业。
2024年共聚尼龙及改性共聚尼龙(PA)市场前景分析

共聚尼龙及改性共聚尼龙(PA)市场前景分析共聚尼龙及改性共聚尼龙(PA)是一种重要的工程塑料,在各个领域得到广泛应用。
本文将对共聚尼龙及改性共聚尼龙的市场前景进行分析。
1. 市场概述共聚尼龙是一种聚合物材料,具有优异的力学性能、耐化学品腐蚀性能和耐热性能。
它在汽车、电子、航空航天等领域有着广泛的应用。
改性共聚尼龙是在共聚尼龙的基础上添加其他功能性材料进行改性,使其性能得到进一步提升。
2. 市场需求分析2.1 汽车行业共聚尼龙在汽车行业中的应用正在不断扩大。
由于其轻量化、高强度和优异的耐热性能,共聚尼龙可以用于制造汽车零部件,如发动机盖、座椅框架和传动系统组件等。
随着电动汽车的兴起,对共聚尼龙的需求有望进一步增长。
2.2 电子行业共聚尼龙在电子行业中有广泛的应用,如电子设备的外壳、连接器和绝缘材料等。
随着电子产品的不断更新换代,对共聚尼龙的需求也在增加。
2.3 航空航天行业共聚尼龙在航空航天行业中的应用非常重要。
由于其优异的抗冲击性能和耐热性能,共聚尼龙可用于制造飞机零部件,如舱壁、座椅、机翼等。
3. 市场竞争分析共聚尼龙市场高度竞争,存在许多龙头企业和中小型生产商。
一些知名的共聚尼龙制造商包括阿科玛、杜邦和巴斯夫等。
在全球范围内,这些企业都在不断改进产品的性能和质量,以满足市场需求。
4. 市场发展趋势4.1 绿色环保近年来,环保意识的提高使得绿色共聚尼龙的需求逐渐增长。
绿色共聚尼龙是一种可再生塑料,具有较低的碳足迹和环境影响。
4.2 新应用领域共聚尼龙的应用领域正在不断扩展。
例如,在3D打印领域,共聚尼龙的应用潜力巨大。
随着技术的进步,共聚尼龙的新型应用将不断涌现。
5. 市场风险与挑战共聚尼龙市场面临一些风险和挑战。
首先,原材料成本的波动可能对市场造成不利影响。
其次,技术进步和竞争加剧可能使一些企业面临市场份额的丧失。
6. 市场前景展望共聚尼龙及改性共聚尼龙市场的前景看好。
随着各个行业对高性能材料需求的增加,共聚尼龙的市场规模有望持续扩大。
mc尼龙是什么材料

mc尼龙是什么材料MC尼龙是一种高性能工程塑料,其全称为尼龙改性尼龙树脂(Molybdenum Disulfide-filled Nylon)。
MC尼龙是一种改性尼龙,通过在尼龙树脂中添加二硫化钼(Molybdenum Disulfide)等改性剂,使其具有更优异的性能。
MC尼龙具有出色的机械性能、耐磨性和自润滑性能,因此在工程领域得到了广泛的应用。
首先,MC尼龙具有优异的机械性能。
它的拉伸强度和模量都很高,具有较好的抗拉、抗弯和抗压性能,因此可以用于制造各种机械零部件,如齿轮、轴承、轴套等。
此外,MC尼龙的冲击强度和硬度也很高,能够承受较大的冲击载荷和磨损,保证了零部件的使用寿命和可靠性。
其次,MC尼龙具有出色的耐磨性。
在摩擦和磨损环境下,MC尼龙能够保持较好的耐磨性能,不易产生磨损和疲劳裂纹,因此在摩擦副和磨损部件的制造中得到了广泛的应用。
MC尼龙可以用于制造各种耐磨零部件,如轴承、轴套、齿轮等,能够有效延长零部件的使用寿命,降低维护成本。
此外,MC尼龙具有良好的自润滑性能。
由于在尼龙树脂中添加了二硫化钼等固体润滑剂,MC尼龙具有较低的摩擦系数和良好的自润滑性能,能够减少摩擦损失和能量消耗,提高零部件的工作效率和使用寿命。
因此,MC尼龙在需要良好自润滑性能的摩擦副和滑动部件中得到了广泛的应用。
总之,MC尼龙是一种优异的工程塑料材料,具有出色的机械性能、耐磨性和自润滑性能,适用于各种机械零部件和耐磨零部件的制造。
它的应用范围广泛,包括汽车工业、航空航天工业、机械制造业等领域。
相信随着科学技术的不断进步,MC尼龙在工程领域的应用将会更加广泛,为人类的生产生活带来更多的便利和效益。
尼龙工程材料的改性

尼龙工程材料的改性摘要:尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。
它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。
尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。
但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。
因此对尼龙66的改性受到人们的广泛关注。
国外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。
1.尼龙改性的研究进展对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。
本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。
1.1共混改性在尼龙改性研究中,高分子合金是最常用的一种手段。
其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。
国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。
就尼龙合金而言,主要的研究集中在以下几个方面。
1.1.1尼龙与聚烯烃(PO)共混改性聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。
此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。
在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。
PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。
尼龙改性

改性尼龙尼龙的改性与其它塑料的改性原理及性能表现基本相同。
我们公司根据市场的需求,集中围绕PA6、PA66的增强、增韧和阻燃进行研发与生产,并针对不同的用户推出不同型号的产品,使公司销售得以不断开拓,短期内得到迅速发展。
尼龙经改性后,性能出现大幅度的改变,以下作简单比较。
1、尼龙增强后的特性优点:(1)力学性能成倍提高:主要是硬度及刚性成倍提高。
(2)耐热性显著提高:尼龙原料热变形温度为100°C左右,PA6玻纤增强后可达到210°C;PA66玻纤增强后更可达到255°C,显著得到提高。
(3)成型收缩率下降,提高尺寸稳定性。
(4)耐磨擦、磨耗性能增加。
缺点:(1)材料韧性下降,但仍有相当好的抗冲击性及韧性。
(2)材料加工流动性下降。
2、尼龙增韧后的特性:优点:(1)大幅度地提高材料抗冲击强度。
(2)提高材料的耐寒性,使尼龙在低温下仍保持相当好的韧性。
缺点:(1)材料硬度和刚性下降。
(2)材料流动性下降;(3)耐摩擦、磨耗性能降低。
3、尼龙阻燃后的特性:优点:(1)增加了材料的难燃性,由原料的V2级可提升为V1或V2级。
缺点:(1)力学性能普遍下降。
(2)耐摩擦、磨耗性能降低。
加工工艺表格尼龙经过改性后,其注塑加工的工艺条件也有所改变。
由于一般情况下,改性料的流动性都会有所下降,相对来说,加工难度有所增加,加工温度及加工压力等也需相应提高。
以下节选部份材料的加工工艺作参考及对比。
注塑工艺参考对照表(PA6)注塑工艺参考对照表(PA66)改性尼龙性能表格尼龙经改性后,性能产生一定的变化,现用表格显示尼龙在增强、增韧及阻燃后表现出的性能差异。
性能参考对照表(PA6)性能参考对照表(PA66)。
尼龙材质的面料COA测试报告

尼龙材质的面料COA测试报告很多做尼龙检测报告的,对尼龙的检测知识不是太清楚。
尤其有时会卡在检测项目和标准上的选择上,今天就从尼龙的性能及改性开始,开始帮大家分析,希望帮助大家对尼龙检测有一个基本的认识。
当然,尼龙的检测项目和标准也为大家整理出一部分来供大家参考。
一、尼龙检测之性能分析尼龙是一种坚韧的角质半透明或乳白色结晶树脂。
工程塑料的分子量为尼龙,一般为1.万。
尼龙具有高机械强度,高软化点,耐热性,低摩擦系数和耐磨性。
润滑性,减震性和吸音性,耐油性,耐弱酸性,耐碱性和一般溶剂,良好的电绝缘性,自熄性,无毒,无味,耐候性好,可染性差。
缺点是它具有高吸水性,影响尺寸稳定性和电性能,并且纤维增强可以降低树脂的吸水性,使其能够在高温和高湿度下工作。
尼龙与玻璃纤维具有非常好的亲和力。
二、尼龙检测之改性分析因为尼龙可以在脒基和水分子之间形成氢键,所以它比疏水性聚合物如烯烃具有更大的吸水性,导致差的尺寸稳定性和电性能。
同时,它具有低冲击强度,不透明性和在干燥或低温下溶解性差的缺点,这限制了其更广泛的应用。
然而,在尼龙大分子骨架的末端,它含有氨基和竣基,并且在 - 的条件下具有一定的反应性,因此,通过共聚,共混,增强和填充等进行化学和物理改性。
它克服了缺点。
由于吸水性大,产品尺寸和性能的变化,可以改善其性能并获得意想不到的效果,并且适用于生产各种用途的特殊材料。
三、尼龙检测项目分析尼龙常规性能检测项目:全厚度拉伸强度、酒精喷灯燃烧、滚筒燃烧、丙烷巷道燃烧、防静电、氧指数、成槽度、直线度、钢丝粘合强度、接头寿命、接头强度、参考力伸长率、线绳粘合强度、布与顶胶间粘合强度、疲劳寿命、耐低温等;尼龙覆盖层性能检测项目:拉伸强度、断裂伸长率、热空气老化、耐酸碱、磨耗、上下覆盖层剥离强度、层间粘合强度等;四、尼龙检测标准FZ/T -2010 涂胶尼龙手套GB/T -2006 双向拉伸聚酰胺(尼龙)薄膜GB/T -2017 尼龙反应黄R/T -2014 额定电压450/750V及以下聚氯乙烯绝缘尼龙护套电线和电缆/T -201 微电机石墨尼龙垫圈/T 4014.2-2013 潜水电机绕组线第2部分:额定电压450/750V及以下聚乙烯绝缘尼龙护套耐水绕组线/T 4014.4-2013 潜水电机绕组线第4部分:额定电压600/1000V及以下交联聚乙烯绝缘尼龙护套耐水绕组线QB/T 171-1993 双向拉伸尼龙(BONY)/低密度聚乙烯(LDPE)复合膜、袋QB/T 2173-2014 尼龙拉链QB/T 4020-2010 拉链机械上(下)止注塑成型机QB/T 425-2012 窗纱QB/T 426-2012 纱窗通用技术条件QC/T 1043-2016 汽车燃油系统用尼龙管QC/T 201-2017 汽车气制动用尼龙管接头尺寸QC/T 713-2004 塑料(尼龙)用自攻螺钉螺纹SH 149.1-1997 尼龙66盐SH/T 149.2-1997 尼龙66盐灰分的测定SH/T 149.3-1997 尼龙66盐中总挥发碱含量的测定SH/T 149.4-1997 尼龙66盐中假硝酸含量的测定SH/T 149.5-1997 尼龙66盐中假二氨基环己烷含量的测定紫外分光光度法SH/T 149.6-1997 尼龙66盐中硝酸盐含量的测定分光光度法SH/T 149.7-1997 尼龙66盐UV指数的测定紫外分光光度法SN/T 1.3-2007 进出口辐照食品包装及材料卫生标准第3部分:尼龙成型品SN/T 213-2011 食品接触材料高分子材料三聚氰胺-甲醛树脂、尼龙树脂和聚碳酸酯树脂中提取物的测定。
尼龙的改性研究

MC尼龙改性研究进展摘要:铸型(MC)尼龙产品广泛地用于各种机械零件,改性后的铸型尼龙,可克服其自身的缺点,满足工业应用的要求。
本文综述了我国近年来在铸型尼龙改性研究方面的情况并对不同的改性方法做了详细的介绍。
关键词:MC尼龙己内酰胺改性进展铸型尼龙是尼龙材料中的一种,它是在常压下将熔融的原料己内酰胺单体用强碱性的物质作催化剂,与活化剂等助剂一起,直接注入预热到一定温度的模具中,物料在模具中进行快速聚合反应,凝固成固体坯料。
铸型尼龙又称为单体浇注尼龙或MC尼龙。
与普通尼龙相比,铸型尼龙具有独特的特点:首先是生产工艺简单、成本低,不需要复杂的生产设备,工艺过程简短,模具制作容易。
其次,铸型尼龙的分子量在7-10万左右,结晶度可超过50%,密度也较大。
所以,无论在强度、刚度、耐磨损性能和耐化学性能方面,均优于普通尼龙产品。
再有,铸型尼龙成型制品的尺寸不受限制,从理论上讲,只要模具允许,制品的尺寸大小不受限制,而且无方向性。
大型的制品可达几百公斤。
因此,铸型尼龙在工业中大量地替代钢、铜、铝等金属材料制作轴瓦、轴套、齿轮、齿条、蜗轮、滑轮、织机梭子、螺旋桨、各种密封圈等机械零部件。
但未经改性的尼龙在实际应用中存在着耐磨性和自润滑性欠佳、尺寸稳定性和热稳定性不高、对缺口太敏感,其强度和刚度与金属相比还有较大的差距等缺点,限制了尼龙制品的广泛应用。
因此,要使铸型尼龙得到更广泛地应用,需要对其进行改性,以满足实际工业应用的需要。
近年来,许多研究人员对铸型尼龙做了大量的改性研究,通过改性做出了满足各种特殊需要的改性铸型尼龙。
1 MC尼龙的合成机理MC尼龙合成过程是属于阴离子型的催化聚合反应,反应过程如下:(1)内酰胺阴离子形成:在金属钠、氢氧化钠等碱性催化剂作用下,己内酰胺单体生成己内酰胺钠盐,在碱性的反应体系中,离解出活性的内酰胺阴离子。
(2)链增长过程:内酰胺阴离子进一步与单体发生亲核加成反应而开环,形成活性胺阴离子二聚体,活性二聚体迅速与单体发生质子交换,结果又生成酰化二聚体,同时内酰胺阴离子获得再生。
改性MC尼龙材料说明(doc 7页)

改性MC尼龙材料说明(doc 7页)产品说明书(改性MC尼龙管材)2、改性M C尼龙管材生产工艺 (1)3、改性M C尼龙管材性能 (2)4、改性M C尼龙管材用途 (2)5、改性M C尼龙管材规格 (3)6、改性M C尼龙管材的连接 (3)7、几种工程材料的主要性能比较 (5)8、几种常用管材的性能、用途比较 (5)改性MC尼龙管材一、改性MC尼龙材料性能:MC尼龙(铸型尼龙)是一类常用的工程塑料,其材料性能远优于UPVC、HDPE、PP等通用塑料。
该材料高强、轻质、耐磨、耐蚀、耐温、抗老化,具有极大的工程使用价值。
在MC尼龙中加入不同的改性材料,可生产出各种改性MC尼龙,如增强MC尼龙、含油MC尼龙、耐磨MC尼龙等等,其性能更优越,用途更广泛。
本公司()产品所用材料为可MC尼龙和改性MC尼龙,根据产品使用要求在浇铸成型过程中加入改性材料。
其材料性能如下表:材料性能MC尼龙纤维增强MC尼龙抗静电MC尼龙物理性能密度(g/cm3) 1.15 1.20~1.401.2~1.8长期吸水率(%)0.1~0.60.04~0.080.4~0.7摩擦系数0.10~0.35 0.10~0.350.10~0.35热性能熔点(℃)235~250235~250 235~250热变形温度(℃)180~200204~218 215~230线膨胀系数(10-5/℃)5~8 2.5~7 5~8燃烧性(cm/min)自熄自熄~不燃自熄~不燃力学性能拉伸强度(MPa)70~90 120~180 70~90 压缩强度(MPa)90~110100~120 90~110 弯曲强度(MPa)110~120120~150 110~120 弹性模量(GPa)3.5~4.03.5~12.63.5~8.8 断裂伸长率(%)30 8~30 5~10 冲击韧性(简支梁、无缺口) KJ/ m2不断不断40~100电性能表面电阻率(106Ω)9.3×1080.9~900体积电阻率(1013Ω.m)3.0击穿电压(KV/mm) 15.0~23.6化学性能抗老化性改性PA抗老化性能良好,野外使用寿命可达50年。
电线电缆料聚酰胺(尼龙)料的分类与改性

电线电缆料聚酰胺(尼龙)料的分类与改性聚酰胺俗称尼龙(Nylon),英文名称Polyamide(简称PA),是分子主链上含有重复酰胺基团—[NHCO]—的热塑性树脂总称。
包括脂肪族PA,脂肪—芳香族PA和芳香族PA。
其中,脂肪族PA品种多,产量大,应用广泛,其命名由合成单体具体的碳原子数而定。
尼龙的分类聚酰胺(尼龙)1938年在美国被成功的合成,是世界上出现的第一种合成纤维。
聚酰胺(尼龙)的主要品种是尼龙6(聚己内酰胺)和尼龙66(聚己二酸己二胺),占绝对主导地位,其次是尼龙11、尼龙12、尼龙610、尼龙612、尼龙1010、尼龙46、尼龙7、尼龙9、尼龙13,新品种有尼龙6I,尼龙9T和特殊尼龙MXD6(阻隔性树脂)等。
聚酰胺(尼龙)的改性品种数量繁多,如增强尼龙,单体浇铸尼龙(MC尼龙),反应注射成型(RIM)尼龙,芳香族尼龙,透明尼龙,高抗冲(超韧)尼龙,电镀尼龙,导电尼龙,阻燃尼龙,尼龙与其他聚合物共混物和合金等,满足不同特殊要求,广泛用作金属,木材等传统材料代用品,作为各种结构材料。
尼龙是最重要的工程塑料,产量在五大通用工程塑料中居首位。
尼龙的改性由于聚酰胺(尼龙)强极性的特点,吸湿性强,尺寸稳定性差,在生产应用过程中可以通过改性来改善。
下面介绍几种常见的改性尼龙玻璃纤维增强PA在PA加入30%的玻璃纤维,PA的力学性能、尺寸稳定性、耐热性、耐老化性能有明显提高,耐疲劳强度是未增强前的2.5倍。
玻璃纤维增强PA的成型工艺与未增强时大致相同,但因流动较增强前差,所以注射压力和注射速度要适当提高,机筒温度提高10-40℃。
由于玻纤在注塑过程中会沿流动方向取向,引起力学性能和收缩率在取向方向上增强,导致制品变形翘曲,因此,模具设计时,浇口的位置、形状要合理,工艺上可以提高模具的温度,制品取出后放入热水中让其缓慢冷却。
另外,加入玻纤的比例越大,其对注塑机的塑化元件的磨损越大,最好是采用双金属螺杆和机筒。
(整理)尼龙的增韧改性

《聚合物复合材料设计与加工》课程报告题目:尼龙的增韧改性专业:10材料化学姓名:李玉海学号:2010130101025尼龙的增韧改性摘要:尼龙66(PA66)具有良好的力学综合性能,并且耐油、耐磨耗和优良的加工性能,可替代有色金属和其他材料广泛应用于各行业。
但是尼龙66在低温条件下和在干态条件下的冲击性能差,吸水性大,制品的性能和尺寸不稳定等性能缺点。
本文将就其韧性性能进行改善,针对玻璃纤维增强聚酰胺材料韧性差的问题,对聚酰胺/玻璃纤维复合体系的增韧进行了研究,考察了玻璃纤维、改性聚合物对共混材料力学性能的影响。
对PA/聚烯烃、PA/聚烯烃弹性体、不同类型PA合金等几类增韧体系进行了详细介绍。
其中聚烯烃应用范围广泛。
采用聚烯烃增韧与玻璃纤维共混,在保持复合材料拉伸强度和模量的同时,较大地提高了冲击强度,获得了综合力学性能优异的纤维增强聚酰胺材料。
关键词:聚酰胺玻璃纤维增强增韧共混改性1.前言当代高分子材料发展的一个重要方向就是通过对现有聚合物进行物理和化学改性,使其进一步高性能化、结构化和工程化。
尼龙是聚酸胺类树脂的统称,常觅的有尼龙6、尼龙66、尼龙610、尼龙612、尼龙ll、尼龙12、尼龙46、尼龙MXD6、尼龙lUM等,目前产量占主导地位的是尼龙6和尼龙66,占总量的90%以上。
尼龙作为当今第一大工程塑料,大多数品种为结晶型聚合物,大分子链中含有酰胺键(—CO—NH—),能形成氢键,其具有强韧、耐磨、耐冲击、耐疲劳、耐腐蚀等优异的特性,特别是耐磨性和自润滑性能优良,摩擦系数小,因而尼龙在与其他工程塑料的激烈竞争中稳步迅速增长,年消费量已经超过100万吨,年增长率为8%~10%,广泛应用于汽车家用电器及运动器材等零部件的制造。
为适用聚酰胺在不同领域的发展,这就要求聚酰胺具有更高的机械强度,耐热性能。
机械部件,铁路机车用聚酰胺均对PA的力学性能,尺寸稳定性提出了很高的要求。
因此,对尼龙的改性始在必然,采用嵌段、接枝、共混、填充等改性技术和工艺得到关注和发展,使其向多功能发展,应用与更多领域。
尼龙表面的超疏水疏油改性

G-P-P-0-0-04040尼龙表面的超疏水疏油改性郝威,邵正中教育部聚合物分子工程重点实验室,复旦大学先进材料实验室和复旦大学高分子科学系上海200433关键词:酰胺改性多级粗糙度超疏水性超疏水表面具有多方面的应用潜力,例如防水防潮、自清洁和抗生物污损等。
研究发现这种特殊的表面性质源于表面多级粗糙结构以及较低的表面能,故在聚合物表面引入更低尺寸的结构,将提高聚合物表面的超疏水性并拓展其应用范围。
而尼龙(聚酰胺)是一类重要的商业化合成高分子,它的强度、韧性以及耐磨性使它在纺织、薄膜、食品包装以及工程塑料等上都有广泛的应用。
但由于酰胺键强极性的特点,尼龙吸湿性强且尺寸稳定性差。
同时,尼龙表面活性基团较少,所以为了使尼龙具有超疏水性甚至超疏油性,必须要先对尼龙进行表面化学改性,使其表面具有较多的反应基团,再有可能引入多级结构。
本研究拟将尼龙材料表面的酰胺键烷基化或还原,从而得到反应活性基团。
再利用Stöber反应在尼龙上原位生成硅球层或通过静电作用吸附多级硅球,得到较高粗糙度的表面,希望在进一步氟化修饰后,使尼龙表面具有超疏水疏油的性能。
我们利用硼烷-四氢呋喃络合物对尼龙上的酰胺键进行化学还原,从而得到反应活性较高的仲胺基团[1,2]。
其经质子化后带正电,可吸附带负电的硅球,再经过3-氨基丙基三甲氧基硅烷处理可达到多级硅球吸附的目的[3]。
另一种尼龙改性的方法是使酰胺键烷基化,即在叔丁醇钾和二环己烷并18-冠-6醚使尼龙上酰胺键活化,然后再加入3-缩水甘油醚氧基丙基三乙氧基硅烷(GPTES)反应,使得酰胺键接上末端含有大量硅羟基的烷烃梳状链[1,2],再参照Stöber反应原位长二氧化硅纳米薄层。
具有多级粗糙结构的尼龙表面经全氟十二烷基三氯硅烷(Rf-Si)氟化修饰[3],其表面能降低,得到超疏水表面,并经由SEM、TGA以及接触角测试等表征。
硼烷-四氢呋喃对尼龙610纤维改性后吸附硅球的结果如图1所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
尼龙工程材料的改性摘要:尼龙66是由Du pont公司于1935年研制成功的,1939年实现工业化,1956年开始作为工程塑料使用。
它是国际上产量最大,应用最广的工程塑料之一,也是我国主要的尼龙产品。
尼龙66优越的力学性能、耐磨性、自润滑性、耐腐蚀性等使其在汽车部件、机械部件、电子电器、胶粘剂以及包装材料及领域得到了广泛的应用。
但尼龙66在使用过程中还存在许多不足之处,如成型周期长、脱模性能差、尺寸不稳定、易脆断、耐热性差,还有不透明性、溶解性差等。
因此对尼龙66的改性受到人们的广泛关注。
国内外对尼龙改性多集中在共混、填充、共缩聚、接枝共聚等技术领域。
1.尼龙改性的研究进展对尼龙66的改性主要有接枝共聚、共混、增强和添加助剂等方法,使其向多功能方向发展。
本实验主要从快速成型和缩短成型周期的角度出发来改善尼龙66的综合性能,并使其得到更广泛的应用。
1.1共混改性在尼龙改性研究中,高分子合金是最常用的一种手段。
其中尼龙合金在所有工程塑料合金中发展最快,其原因是与周期长、投资大的新PA基础品种的开发相比, 尼龙合金的工艺简单、成本低、使用性能良好,且能满足不同用户对多元化、高性能化和功能化的要求。
国外各大公司均十分重视尼龙合金的开发,很多产品已经商品化并具有一定市场规模。
就尼龙合金而言,主要的研究集中在以下几个方面。
1.1.1尼龙与聚烯烃(PO)共混改性聚酰胺(PA)和聚丙烯(PP)是一对性能不同且使用场合也不一样的聚合物,但通过熔融混合工艺可以克服两者的固有缺点,取其各自的特点,得到所需性能的合金材料。
此类合金可以提高尼龙在低温、干态下的冲击强度和降低吸湿性,特别使尼龙与含有烃基的烯烃弹性体或弹性体接枝共聚物等组成的共混合金可以得到超韧性的尼龙。
在极性的聚酰胺树脂和非极性的聚烯烃树脂共混改性的时候,最重要的一个问题是两者之间的相容性。
PA 和PO 是一对热力学不相容体系,该共混物呈现相分离的双相结构。
根据聚合物共混理论,理想的体系应该是两组分部分既相容,又各自成相,相间存在一界面层,在层中两种聚合物的分子链相互扩散,有明显的浓度梯度。
通过增大共混组分间的相容性,进而增强扩散,使相界面弥散,界面层厚度加大,是获得综合性能优异共混物的重要条件。
顾书英等[1]用熔融接枝法制备了马来酸酐改性聚丙烯(PP-g-MAH),研究了引发剂用量对接枝过程的影响及改性 PP 与 PA 66共混物的性能。
结果表明:改性 PP 与PA 66的相容性很好,从而大大提高了PA66的冲击强度,降低了PA66的吸水性,所以用PP-g-MAH改性PA 66可以得到综合性能优良的聚合物合金。
杨明山[2]系统地研究了尼龙6与化学改性 PP 共混物的改性工艺、组成与性能的关系。
实验结果表明,马来酸酐接枝改性 PP 对尼龙6有较好的改性作用,其中接枝率2 3%的改性PP 改性作用最好。
在尼龙6中加入改性 PP 后,冲击强度得到提高,吸湿性大大降低。
当尼龙6与改性PP 共混比在60∶40~80∶20之间时,可获得综合性能优异的共混材料。
特别重要的是在共混物中含30%左右改性PP时,可获得超韧性材料。
冯绍华等[3]采用聚烯烃(PO)与马来酸酐接枝物(PO-g-MAH)作为相容剂,讨论了PO-g-MAH对PO/PA及PO/ PO-g-MAH/PA6体系的物理机械性能的影响。
结果表明,相容剂对PO/PA6共混体系具有较好的增容作用,提高冲击强度、降低了吸水性、促进分散相细化、提高了界面的键合力、增加了PA6基体的粘度,改善了PA6的加工性。
TEM和SEM对共混体系的形态分析发现,PO接枝物改善了PO在PA中的分散相,分散均匀性提高,界面厚度增加,粘附性变高。
目前PA/PP共混体系主要采用PP与马来酸酐的接枝共聚物(PO-g-MAH)来实现增容,但是近些年的研究发现, PO-g-MAH增容体系的韧性大多低于纯的PA,而PA/ PP-g-MAH体系的冲击强度都高于纯PA,近期PA/ PP合金的研究主要集中在相容剂研究上。
衣康酸接枝PP增容的PA/ PP合金在适宜配比下,其冲击韧性高于纯PA。
由于马来酸酐的毒性较大,沸点较低(202℃)且易升华,熔融接枝时易挥发,损伤人的眼睛等器官,造成操作困难,使得MAH的应用存在一定的局限性。
所以,寻找合适的相容剂是尼龙合金乃至聚合物合金制备的一个瓶颈问题,共混体系中相容性的改善则可明显地使材料获得更优异的综合性能。
1.1.2 尼龙与弹性体共混改性张翠兰[4]采用马来酸酐熔融接枝低密度聚乙烯(LDPE)和乙丙橡胶(EPR),然后再与PA66进行共混的改性方法,着重研究了工艺配方及影响冲击强度的因素。
解决了PE/EPR与PA66相容性差的问题,继而大幅度地提高了PA66的冲击强度。
当共混物中EPR-g-MAH为9%,PE-g-MAH为30%时,共混材料的冲击强度是PA66的335倍,得到韧性较高的PA66/(PE/EPR)-g-MAH共混材料,提高了制品的综合性能,降低了成本,扩大了应用范围。
Wllis等人还采用了(乙烯/甲基丙烯酸/丙烯酸丁酯)共聚物对PA66/PP共混体系增容,也有一定的增容效果[5]。
Holsti 等人用SEBS-g-MA 为PA/PP 增容剂也有一定的效果[6]。
熊茂林等[7]以甲基丙烯酸缩水甘油酯为接枝单体、过氧化二异丙苯为引发剂对三元乙丙橡胶(EPDM)进行熔融接枝。
用FTIR仪对接枝产物进行了表征,分析测试了共混硫化胶的力学性能和微观结构。
结果表明,随着共混体系中接枝EPDM用量的增加,EPDM与尼龙树脂的相容性不断改善,尼龙颗粒作为分散相在EPDM中分散得更加均匀和细致化,共混硫化胶的力学性能得到进一步提高。
尼龙树脂原位生成的短纤维可明显提高共混硫化胶的撕裂强度,同时使其保持了弹性体伸长率高的特性[8]。
1.1.3 尼龙与工程塑料的共混改性1.1.3.1PA/ABSPA6与ABS是不相容的体系,为了改善其相容性,可用接枝法将MAH接枝在ABS 上,制得带有羧酸官能团的接枝共聚物(ABS-g-MAH),然后将ABS-g-MAH加入PA6/ABS中,或直接加入到PA6中,或加入第三组分,如苯乙烯马来酸酐共聚物(SMAH)、线性环氧树脂(Bendfaste)等作相容剂。
选择合适的橡胶相的ABS[9]是增加PA6韧性的关键,一般宜用橡胶含量高、苯乙烯含量低的品种。
清华大学[10]研制的PA/ABS-g-MAH 弹性体M-g-MAH体系在常温下冲击强度超过900J/m,干态时冲击强度达到700 J/m。
尼龙 6与ABS的另一种重要增容剂是苯乙烯一马来酸酐无规共聚物(SMA),添加SMA后的尼龙 6/ABS合金冲击强度可达1140 J/m [11]。
1.1.3.2PA/UHMWPE吉林工业大学中科院长春应化所[12]共同对PA6/UHMWPE -g-MAH共混物进行研究,发现在熔融共混过程中,PA6和HDPE-g-MAH发生化学反应,生成的接枝共聚物对PA6/UHMWPE系有增容作用,共混物的分散性和界面形态以及力学性能明显改善。
DSC分析表明,HDPE-g-MAH使两相间的相互作用增强,对两组分的熔融结晶产生较大的影响, SEM分析表明,相容剂使UHMWPE 分散相颗粒尺寸明显减小(约为2~4μm),较均匀地分散在基体中。
1.1.4IPN尼龙合金利用IPN技术制备的尼龙与有机硅的掺混物,是在尼龙熔融成型中与有机硅发生交联反应,尼龙的结晶相网与有机硅的交联网形成相互贯穿的网络。
这类掺混物的吸水性、尺寸稳定性和耐摩擦性可提高[13]。
以尼龙 66和尼龙 12为主的IPN尼龙,比一般尼龙合金具有更高的冲击韧性和耐热性。
一种商品名为Rimplaste的超高分子量的有机硅尼龙合金,此合金吸水率低,尺寸稳定性好,耐磨性优良,而且还可以加入玻纤或其他的热塑性塑料如聚四氟乙烯进一步提高其耐磨性。
大日本油墨化学公司研制生产了PIC-PPS-PN系列产品,具有140~170℃的长期耐热性能、较好的刚性和成本低的特点。
涂开熙等人[14]利用接枝反应制成的带官能团的接枝GP作相容剂,使PPS与PA66的共混物综合性能有了提高,特别是缺口冲击强度提高幅度更大,还使PA 66的吸水率大大下降,且具有很好的耐磨性。
1.1.5各种尼龙之间的共混改性为了获得高性能价格比的材料,拓宽尼龙材料用途,不同的尼龙品种之间可以通过共混平衡性能。
PA46为高极性胺基基团,其结构内分子链相互缠结,与PA66相近。
其冲击强度高、刚性高、耐疲劳、耐磨耗,内润滑性好,单位强度可与金属相当。
吸水率低于PA6、PA66,因而尺寸稳定性好,制品精度高[15]。
日本合成橡胶公司将质量比为80:20的PA46与PA6进行共混,冲击强度可高达100 J/m [16]。
PA11和PA12是由单一长链单体缩聚而成的高聚物,其韧性极高,常温下缺口冲击不断。
PA11分子中甲基链较长,具有优良的物理力学性能、优异的尺寸稳定性、良好的绝缘性、较强的可塑性。
为了增加PA11/PA6共混物中两相的相容性,提高其力学性能,实验[17]采用添加树形分子作为相容剂。
结果发现,共混物的拉伸强度和断裂伸长率的大幅度提高,缺口冲击强度有所提高,添加量为0 25%时可达最大值,并随着树形分子含量的进一步提高,缺口冲击强度尚有提高的趋势。
目前国内有关各种尼龙之间共混的研究不是很多,我们应在这方面给予更多的关注[18]。
1.2填充改性尼龙采用矿物质、各种纤维等无机物掺混以及纳米技术对塑料改性是目前的一种有效手段。
虽然无机物对PA增韧的效果可能不如用弹性体增韧的效果好,但其在改善PA韧性的同时也改善PA的拉伸强度。
1.2.1 纤维及颗粒增强尼龙碳纤维(CF)具有质轻,拉伸强度高,耐腐蚀等特点。
碳纤维增强PA6复合材料具有更优异的综合性能,因而碳纤维增强尼龙材料近些年发展很快。
碳纤维的加入将影响PA6的结晶行为[19]。
对高含量玻璃纤维PA6复合材料结晶动力学的研究表明,AvrMi指数n值强烈依赖于结晶温度,而纯PA6的n值基本不随结晶温度变化而变化。
吉林化学工业公司研究院[11]将处理的碳纤维与PA66共混,制得PA66/CF共混物。
当CF含量为20%(质量份)时,PA66的冲击强度和拉伸强度都提高2倍,硬度提高1倍以上。
王庭慰等[20]采用硅烷类偶联剂和白油处理云母,填充在尼龙6中表现出良好的力学性能。
通过对偶联剂种类、用量、云母细度,用量和填料种类等变量的研究,发现改性尼龙力学性能的变化规律。
通过4种不同偶联剂对云母的作用,表明硅烷类偶联剂的偶联效果最佳,当云母填充含量为20%时,改性PA6具有较好的力学性能,增强后PA6的拉伸强度提高20%,弯曲强度也有所改善,热变形温度得到明显提高。