新人教版七年级数学下册期中测试及答案

合集下载

新人教版七年级数学下册期中考试卷及参考答案

新人教版七年级数学下册期中考试卷及参考答案

新人教版七年级数学下册期中考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.计算(-2)1999+(-2)2000等于()A.-23999B.-2C.-21999D.219992.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10103.如图,给出了过直线外一点作已知直线的平行线的方法,其依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,同位角相等4.若x是3的相反数,|y|=4,则x-y的值是()A.-7 B.1 C.-1或7 D.1或-75.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)6.如图,∠1=70°,直线a平移后得到直线b,则∠2-∠3()A .70°B .180°C .110°D .80°7.下列各组线段不能组成三角形的是 ( )A .4cm 、4cm 、5cmB .4cm 、6cm 、11cmC .4cm 、5cm 、6cmD .5cm 、12cm 、13cm8.定义:对于任意数a ,符号[]a 表示不大于a 的最大整数,例如:[]5.8=5,[]10=10,[]=4π--.若[]=6a -,则a 的取值范围是( ).A .6a ≥-B .65a -≤-<C .65a <<--D .76a -≤-<9.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.若不论k 取什么实数,关于x 的方程2136kx a x bk +--=(a 、b 是常数)的解总是x=1,则a+b 的值是( )A .﹣0.5B .0.5C .﹣1.5D .1.5二、填空题(本大题共6小题,每小题3分,共18分)11x -x 的取值范围是_______.2.点P 是直线l 外一点,点A ,B ,C ,D 是直线l 上的点,连接PA ,PB ,PC ,PD .其中只有PA 与l 垂直,若PA =7,PB =8,PC =10,PD =14,则点P 到直线l 的距离是________.3.实数8的立方根是________.4.一大门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若∠BCD=150°,则∠ABC=_______度.5.若不等式组2x b 0{x a 0-≥+≤的解集为3≤x ≤4,则不等式ax+b <0的解集为________.6.若实数a 、b 满足a 2b 40++-=,则2a b=_______. 三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x ﹣1)=15 (2)71132x x -+-=2.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中a=2,b=﹣123.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A (0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B (5001~10000步),C (10001~15000步),D (15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了 位好友.(2)已知A 类好友人数是D 类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、A4、D5、D6、C7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、1x2、73、2.4、1205、x>3 26、1三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、5.3、(1)35°;(2)36°.4、(5a2+3ab)平方米,63平方米5、(1)30;(2)①补图见解析;②120;③70人.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。

新人教版七年级数学下册期中试卷(附答案)

新人教版七年级数学下册期中试卷(附答案)

新人教版七年级数学下册期中试卷(附答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为()A.12 B.7+7C.12或7+7D.以上都不对2.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若244∠=,则1∠的大小为()A.14 B.16 C.90α- D.44α-3.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.已知5x=3,5y=2,则52x﹣3y=()A.34B.1 C.23D.985.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是()A .﹣2B .0C .1D .46.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .15 7.明月从家里骑车去游乐场,若速度为每小时10km ,则可早到8分钟,若速度为每小时8km ,则就会迟到5分钟,设她家到游乐场的路程为xkm ,根据题意可列出方程为( )A .851060860x x -=- B .851060860x x -=+ C .851060860x x +=- D .85108x x +=+ 8.若0ab <且a b >,则函数y ax b =+的图象可能是( )A .B .C .D .9.下列说法不一定成立的是( )A .若a b >,则a c b c +>+B .若a c b c +>+,则a b >C .若a b >,则22ac bc >D .若22ac bc >,则a b >10.如图,宽为50cm 的长方形图案由10个相同的小长方形拼成,其中一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .300cm 2二、填空题(本大题共6小题,每小题3分,共18分)1.一个n 边形的内角和为1080°,则n=________.2.已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________.3.已知|x|=5,|y|=4,且x>y ,则2x +y 的值为____________.4.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为______cm .5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.木工师傅在锯木料时,一般先在木料上画出两个点,然后过这两个点弹出一条墨线,这是因为______________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.已知5a 2+的立方根是3,3a b 1+-的算术平方根是4,c分.(1)求a ,b ,c 的值;(2)求3a b c -+的平方根.3.如图,直线AB ,CD 相交于点O ,OA 平分∠EOC .(1)若∠EOC =70°,求∠BOD 的度数;(2)若∠EOC :∠EOD =2:3,求∠BOD 的度数.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对七年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如下所示:(1)统计表中的a=________,b=___________,c=____________;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校七年级共有1200名学生,请你分析该校七年级学生课外阅读7本及以上的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、D4、D5、C6、C7、C8、A9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、82、-13、6或144、225、2或﹣8.6、两点确定一条直线.三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(1)a=5,b=2,c=3 ;(2)±4.3、(1)35°;(2)36°.4、略.5、(1)a=10,b=0.28,c=50;(2)补图见解析;(3)6.4本;(4)528人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

2022-2023年人教版七年级数学下册期中测试卷及答案【完整版】

2022-2023年人教版七年级数学下册期中测试卷及答案【完整版】

2022-2023年人教版七年级数学下册期中测试卷及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若关于x的不等式组324x ax a<+⎧⎨>-⎩无解,则a的取值范围是()A.a≤﹣3B.a<﹣3C.a>3D.a≥32.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB∥CD的条件为()A.①②③④ B.①②④ C.①③④D.①②③3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.94的值等于()A.32B.32-C.32±D.81165.已知x是整数,当30x-取最小值时,x的值是( ) A.5 B.6 C.7 D.8 6.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠17.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .28.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.若|abc |=-abc ,且abc ≠0,则||||b a c a b c++=( ) A .1或-3 B .-1或-3 C .±1或±3 D .无法判断10.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.2.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.若关于x 、y 的二元一次方程3x ﹣ay=1有一个解是32x y =⎧⎨=⎩,则a=_____. 5.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S 1=4,S 2=9,S 3=8,S 4=10,则S=________.6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解下列方程.(1)910109x x -=- (2)45153x x x +-+=-2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m +++的值.3.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a ,b)是△ABC 的边AC 上任意一点,△ABC 经过平移后得到△A 1B 1C 1,点P 的对应点为P 1(a +6,b -2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1 152 a3 b4 5(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、A4、A5、A6、D7、C8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、5或-72、20°.3、180°4、45、316、5三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)27x =.2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)(4,-2);(2)作图略,(3)6.4、(1)证明略;(2)证明略.5、(1)m 的值是50,a 的值是10,b 的值是20;(2)1150本.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下册《期中检测题》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题2分,共20分)1. 据悉,世界上最小开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×1092. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+43. 下列各式中,不能用平方差公式是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A. 2个B. 3个C. 4个D. 5个5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A B.C. D.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B. 32C. 1D. 27. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 8. 给定下列条件,不能判定三角形是直角三角形的是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A B.C. D.二、填空题(每题3分,共24分)11. 若a+3b ﹣3=0,则3a •27b =_____.12. (a ﹣2018)2+(2020﹣a )2=20,则a ﹣2019=_____.13. 若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度.14. 已知a ,b ,c 是一个三角形的三边长,化简|a+c ﹣b|﹣|b ﹣c+a|﹣|a ﹣b ﹣c|=_____.15. 已知BD 、CE 是△ABC 的高,BD 、CE 所在的直线相交所成的角中有一个角为60°,则∠BAC =_____. 16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.17. 如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.答案与解析一、选择题(每题2分,共20分)1. 据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000009克,用科学记数法表示此数正确的是( )A. 9.0×10﹣8B. 9.0×10﹣9C. 9.0×108D. 0.9×109[答案]A[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:0.00000009=9.0×10﹣8.故选:A.[点睛]本题考查了绝对值小于1的数的科学计数法表示,熟练掌握表示法则是解题的关键.2. 下列运算正确的是( )A. (﹣x﹣y)2=x2﹣2xy+y2B. (﹣2x3)3=﹣6x9C. x•x2=x3D. (x+2)2=x2+4[答案]C[解析][分析]分别根据完全平方公式,积的乘方,同底数幂的乘法等知识进行计算即可求解.[详解]解:A.原式=x2+2xy+y2,计算错误,不合题意;B.原式=﹣8x9,计算错误,不合题意;C.原式=x1+2=x3,计算正确,符合题意;D.原式=x2+4+4x,计算错误,不合题意.故选:C.[解答]本题考查了完全平方公式、积的乘方、同底数幂的乘法等知识,熟知相关法则是解题关键.3. 下列各式中,不能用平方差公式的是( )A. (3x﹣2y)(3x+2y)B. (a+b+c)(a﹣b+c)C. (a﹣b)(﹣b﹣a)D. (﹣x+y)(x﹣y)[答案]D[解析][分析]根据平方差公式的结构特点,两个数的和乘以两个数的差,对各选分析判断即可得解.[详解]解:A、(3x﹣2y)(3x+2y)是3x与2y的和与差的积,符合公式结构,故本选项不符合题意;B、(a+b+c)(a﹣b+c),是(a+c)与b的和与差的积,符合公式结构,故本选项不符合题意;C、(a﹣b)(﹣b﹣a),是﹣b与a的和与差的积,符合公式结构,故本选项不符合题意;D、(﹣x+y)(x﹣y)=﹣(x﹣y)2,不符合公式结构,故本选项符合题意.故选:D.[点睛]此题主要考查平方差公式的结构特点,正确掌握结构是解题关键.4. 下列说法错误的个数( )①过一点有且只有一条直线与已知直线垂直;②不相交的两条直线必平行;③三角形的三条高线交于一点:④直线外一点到已知直线的垂线段叫做这点到直线的距离;⑤过一点有且只有一条直线与已知直线平行.A 2个 B. 3个 C. 4个 D. 5个[答案]D[解析][分析]根据三角形的高、点到直线的距离定义、平行公理、平行线定义进行分析即可.[详解]解:①平面内,过一点有且只有一条直线与已知直线垂直,故原题说法错误;②平面内,不相交的两条直线必平行,故原题说法错误;③三角形的三条高线交于一点,应该是三条高线所在直线交于一点,故原题说法错误:④直线外一点到已知直线的垂线段的长度叫做这点到直线的距离,故原题说法错误;⑤过直线外一点有且只有一条直线与已知直线平行,故原题说法错误.错误的说法有5个,故选:D.[点睛]此题主要考查真假命题的判断,正确理解各相关概念是解题关键.5. 下列图形中,由∠1=∠2能得到AB∥CD的是( )A. B.C D.[答案]B[解析][分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A、∠1=∠2不能判定任何直线平行,故本选项错误;B、∵∠1=∠2,∴AB∥CD,符合平行线判定定理,故本选项正确;C、∵∠1=∠2,∴AC∥BD,故本选项错误;D、∠1=∠2不能判定任何直线平行,故本选项错误.故选:B.[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.6. 如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE,设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=9,则S1﹣S2=( )A. 12B.32C. 1D. 2[答案]B[解析][分析]S△ADF-S△CEF=S△ABE-S△BCD,所以求出三角形ABE的面积和三角形BCD的面积即可,因为AD=2BD,BE=CE,且S△ABC=9,就可以求出三角形ABE的面积和三角形BCD的面积.[详解]∵BE=CE,∴BE=12 BC,∵S△ABC=9,∴S△ABE=12S△ABC=12×9=4.5.∵AD=2BD ,S △ABC =9,∴S △BCD =13S △ABC =13×9=3, ∵S △ABE -S △BCD =(S △ADF +S 四边形BEFD )-(S △CEF +SS 四边形BEFD )=S △ADF -S △CEF ,即S △ADF -S △CEF =S △ABE -S △BCD =4.5-3=1.5.故选B .[点睛]考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.7. 如果(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,那么a 与b 的值是( )A. a =﹣3,b =9B. a =3,b =9C. a =﹣3,b =﹣9D. a =3,b =﹣9 [答案]B[解析][分析]直接利用多项式乘多项式运算法则计算,进而得出a ,b 的值.[详解]解:∵(x 2+ax+b )(x 2﹣3x )的展开式中不含x 2与x 3项,∴原式=x 4﹣3x 3+ax 3﹣3ax 2+bx 2﹣3bx=x 4+(﹣3+a )x 3+(﹣3a+b )x 2﹣3bx ,∴﹣3+a =0,﹣3a+b =0,解得:a =3,b =9.故选:B .[点睛]本题考查整式的乘法、多项式乘多项式的法则,灵活运用这些法则是解题的关键,属于中考常考题型. 8. 给定下列条件,不能判定三角形是直角三角形是( )A. ::2:3:5A B C ∠∠∠=B. A C B ∠-∠=∠C. 2A B C ∠=∠=∠D. 1123A B C ∠=∠=∠ [答案]C[解析][分析]根据三角形的内角和等于180°求出最大角,然后选择即可.[详解]解:A 、最大角∠C=180°÷(2+3+5)×5=90°,是直角三角形,故此选项不符合题意;B 、最大角∠A=∠B+∠C=180°÷2=90°,是直角三角形,故此选项不符合题意;C 、最大角∠A=180°÷(2+2+1)×2=72°,故此选项符合题意;D 、最大角∠C=(1+2+3)×3==90°,故此选项不符合题意;故答案为:C.[点睛]本题考查了由角度大小计算判断直角三角形,掌握三角形的内角和等于180°是解题的关键. 9. 如图,在长方形ABCD 中,点E ,G 、F 分别在边AD 、BC 、AB 上,将△AEF 沿着EF 翻折至△A ′EF ,将四边形EDCG 沿着EG 翻折至ED ′C ′G ,使点D 的对应点D ′落在AE 上,已知∠AFE =70°,则∠BGC ′的度数为( )A. 20°B. 30°C. 40°D. 50°[答案]C[解析][分析] 先求出∠AEF ,再根据翻折变换的性质得到∠A ′EA ,根据平角的定义和翻折变换的性质可求∠A ′EG ,∠DEG ,再根据平行线的性质和角的和差关系即可求解.[详解]解:∵∠AFE =70°,∴∠AEF =20°,由翻折变换的性质得∠A ′EA =40°,∴∠A ′ED =140°,由翻折变换的性质得∠A ′EG =∠DEG =70°,∵A ′E ∥C ′G ,∴∠EGC ′=110°,∵AD ∥BC ,∴∠EGB =70°,∴∠BGC ′=110°﹣70°=40°.故选:C .[点睛]本题考查了翻折的性质,平行线的性质,理解翻折的性质得到相等的角解题关键.10. 如图,在ABC ∆中,AC BC =,若有一动点从出发,沿A C B A →→→匀速运动,则CP 的长度与时间之间的关系用图像表示大致是( )A. B.C. D.[答案]D[解析][分析]该题属于分段函数:点P在边AC上时,s随t的增大而减小;当点P在边BC上时,s随t的增大而增大;当点P在线段BD上时,s随t的增大而减小;当点P在线段AD上时,s随t的增大而增大.[详解]解:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故选:D.[点睛]本题考查了动点问题的函数图象.用图象解决问题时,要理清图象的含义即会识图.二、填空题(每题3分,共24分)11. 若a+3b﹣3=0,则3a•27b=_____.[答案]27[解析][分析]先将原式化为同底,然后利用条件即可求出答案.[详解]解:原式=3a•(33)b=3a+3b,∵a+3b﹣3=0∴a+3b=3,∴原式=33=27,故答案为:27.[点睛]本题考查幂的乘方、同底数幂的乘法,解题的关键是熟练掌握运算法则.12. (a﹣2018)2+(2020﹣a)2=20,则a﹣2019=_____.[答案]±3[解析][分析]将(a﹣2018)、(2020﹣a)分别转化为含有(a﹣2019)的形式,然后利用完全平方公式解答.[详解]解:∵(a﹣2018)2+(2020﹣a)2=[(a﹣2019)+1]2+[(a﹣2019)﹣1]2=2(a﹣2019)2+2=20.∴(a﹣2019)2=9.∴a﹣2019=±3.故答案是:±3.[点睛]此题主要考查求代数式的值,解题关键是根据题意整理式子.13. 若∠A与∠B的两边分别平行,且∠A比∠B的3倍少40°,则∠B=_____度.[答案]55或20[解析][分析]根据平行线性质得出∠A+∠B=180°①,∠A=∠B②,求出∠A=3∠B﹣40°③,把③分别代入①②求出即可.[详解]解:∵∠A与∠B的两边分别平行,∴∠A+∠B=180°①,∠A=∠B②,∵∠A比∠B的3倍少40°,∴∠A=3∠B﹣40°③,把③代入①得:3∠B﹣40°+∠B=180°,∠B=55°,把③代入②得:3∠B﹣40°=∠B,∠B=20°,故答案为:55或20.[点睛]本题考查平行线的性质,解题的关键是掌握由∠A和∠B的两边分别平行,即可得∠A =∠B或∠A+∠B=180°,注意分类讨论思想的应用.14. 已知a,b,c是一个三角形的三边长,化简|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=_____.[答案]a﹣3b+c[解析][分析]根据三角形三边关系得到a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,再去绝对值,合并同类项即可求解.[详解]解:∵a,b,c是一个三角形的三条边长,∴a+c﹣b>0,b﹣c+a>0,a﹣b﹣c<0,|a+c﹣b|﹣|b﹣c+a|﹣|a﹣b﹣c|=a+c﹣b﹣b+c﹣a+a﹣b﹣c=a﹣3b+c,故答案为:a﹣3b+c.[解答]本题考查了三角形三边关系,绝对值的意义,根据三角形三边关系得到三个绝对值内整式的符号是解题关键.15. 已知BD、CE是△ABC的高,BD、CE所在的直线相交所成的角中有一个角为60°,则∠BAC=_____.[答案]60°或120°.[解析][分析]分两种情况:(1)当∠A为锐角时,如图1;(2)当∠A为钝角时,如图2;根据四边形的内角和为360°即可得出结果.[详解]解:分两种情况:(1)当∠A为锐角时,如图1,∵∠DOC=60°,∴∠EOD=120°,∵BD、CE是△ABC的高,∴∠AEC=∠ADB=90°,∴∠A=360°﹣90°﹣90°﹣120°=60°;(2)当∠A为钝角时,如图2,∵∠F=60°,同理:∠ADF=∠AEF=90°,∴∠DAE=360°﹣90°﹣90°﹣60°=120°,∴∠BAC=∠DAE=120°,综上所述,∠BAC的度数为60°或120°,故答案为:60°或120°.[点睛]本题考查了三角形高线的定义,四边形的内角和等知识,掌握相关定理,能分类讨论是解题关键.16. 一个等腰三角形的周长是21,其中两边之差为6,则腰长为_____.[答案]9[解析][分析]分底小于腰和底大于腰两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.[详解]解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=21,解得:x=3,当x=3时,x+6=9,此时等腰三角形的三边为:3,9,9;(2)设底为x,则腰为(x﹣6),由题意得:x+2(x﹣6)=21,解得:x=11,当x=11时,x﹣6=5,11,5,5不能构成三角形,不符合题意;因此,腰为9,故答案为:9.[点睛]本题考查了等腰三角形的定义,三角形的三边关系,根据题意分类讨论,并对答案根据三边关系进行分析取舍是解题关键.17. 如图,AB∥CD,CF平分∠DCG,GE平分∠CGB交FC的延长线于点E,若∠E=34°,则∠B的度数为____________.[答案]68°[解析][分析]如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.[详解]解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E, ∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.[点睛]本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.18. 已知动点P 以每秒2cm 的速度沿图甲的边框按从B →C →D →E →F →A 的路径移动,相应的△ABP 的面积S (cm 2)与时间t (秒)之间的关系如图乙中的图象所示.其中AB =6cm .当t =_____时,△ABP 的面积是15cm 2.[答案]2.5或14.5[解析][分析]根据题意得:动点P 在BC 上运动的时间是4秒,又由动点的速度,可得BC 、AF 的长;再根据三角形的面积公式解答即可.[详解]解:动点P 在BC 上运动时,对应的时间为0到4秒,易得:BC =2cm/秒×4秒=8(cm ); 动点P 在CD 上运动时,对应的时间为4到6秒,易得:CD =2cm/秒×(6﹣4)秒=4(cm );动点P 在DF 上运动时,对应的时间为6到9秒,易得:DE =2cm/秒×(9﹣6)秒=6(cm ),故图甲中的BC 长是8cm ,DE =6cm ,EF =6﹣4=2(cm )∴AF =BC+DE =8+6=14(cm ),∴b =9+(EF+AF )÷2=17, ∴12152AB t ⋅=或()12152AB BC CD DE EF AF t ++++-=, 解得t =2.5或14.5.故答案为:2.5或14.5.[点睛]本题考查了一元一次方程的应用及动点问题,根据题意需要分情况讨论是解题的关键.三、解答题(共7小题,满分76分)19. 计算(1)(﹣a )3•a 2+(﹣2a 4)2÷a 3(2)()-30212019-20182020+-3.14--2π⎛⎫⨯ ⎪⎝⎭.[答案](1)3a5;(2)10.[解析][分析](1)直接利用同底数幂的乘除运算法则以及积的乘方运算法则分别化简得出答案;(2)直接利用乘法公式将原式变形进而得出答案.[详解]解:(1)原式=﹣a5+4a8÷a3=﹣a5+4a5=3a5;(2)原式=20192﹣(2019﹣1)(2019+1)+1+8=20192﹣(20192﹣1)+9=20192﹣20192+1+9=10.[点睛]本题考查了整式的乘法运算,平方差公式,0指数幂,负整数指数幂等知识,熟知相关运算法则是解题关键.20. 先化简,再求值:[(2x﹣y)2﹣(3x+y)(3x﹣y)+5x2]÷(﹣2y),其中x=﹣12,y=1.[答案]﹣y+2x,﹣2[解析][分析]先根据整式的运算法则进行化简,然后将x与y的值代入原式即可求出答案.[详解]解:原式=(4x2﹣4xy+y2﹣9x2+y2+5x2)÷(﹣2y)=(2y2﹣4xy)÷(﹣2y)=﹣y+2x,当x=12-,y=1时,原式=﹣1+2×(12 -)=﹣1﹣1=﹣2.[点睛]本题考查乘法公式的混合运算,熟记完全平方公式和平方差公式是解题的关键,需要注意把乘法公式的结果用括号括起来.21. 如图,在四边形ABCD中,AB//CD,E为BC延长线上一点,AE交CD于点F,∠1=∠2,∠3=∠4,试说明AD//BE.证明:∵∠3=∠4( )且∠4=∠AFD( )∴∠3=∠AFD在△ABC中,∠1+∠B+∠3=180°在△ADF中, =180°∵∠1=∠2,∠3=∠AFD∴∠B=∠D( )∵AB//CD∴∠B=∠DCE( )∴(等量代换)∴AD//BE( )[答案]已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[解析]分析]利用平行线的性质定理和判定定理进行解答即可.[详解]证明:∵∠3=∠4(已知)且∠4=∠AFD(对顶角相等)∴∠3=∠AFD,在△ABC中,∠1+∠B+∠3=180°,在△ADF中,∠2+∠D+∠AFD=180°,∵∠1=∠2,∠3=∠AFD,∴∠B=∠D(等式的性质),∵AB//CD,∴∠B=∠DCE(两直线平行,同位角相等)∴∠D=∠DCE(等量代换),∴AD//BE(内错角相等,两直线平行).故答案为:已知;对顶角相等;∠2+∠D+∠AFD;等式的性质;两直线平行,同位角相等;等量代换;内错角相等,两直线平行.[点睛]本题考查平行线的性质以及判定定理,熟练掌握相关定理是解决此题的关键.22. 如图,在△ABC中,点D在边BC上,点G在边AB上,点E、F在边AC上,∠AGF=∠ABC=70°,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若DE⊥AC,∠2=150°,求∠A的度数.[答案](1)DE∥BF,理由见解析;(2)∠A =50°.[解析][分析](1)依据FG∥CB,即可得出∠1=∠3,再根据∠1+∠2=180°,即可得到∠2+∠3=180°,进而判定DE∥BF.(2)依据三角形外角性质以及三角形内角和定理,即可得到∠A的度数.[详解]解:(1)BF与DE的位置关系为互相平行,理由:∵∠AGF=∠ABC=70°,∴FG∥CB,∴∠1=∠3,又∵∠1+∠2=180°,∴∠2+∠3=180°∴DE∥BF.(2)∵DE⊥AC,∠2=150°,∴∠C=∠2﹣∠CED=150°﹣90°=60°,又∵∠ABC=70°,∴∠A=180°﹣∠ABC﹣∠C=180°﹣70°﹣60°=50°.[点睛]此题主要考查平行线的判定和性质、三角形的内角和定理、三角形的外角性质,熟练进行逻辑推理是解题关键.23. 如图,某市修建了一个大正方形休闲场所,在大正方形内规划了一个正方形活动区,连接绿地到大正方形四边的笔直小路如图所示.已知大正方形休闲场所的边长为6a米,四条小路的长与宽都为b米和b2米.阴影区域铺设草坪,草坪的造价为每平米30元.(1)用含a、b的代数式表示草坪(阴影)面积并化简.(2)若a=10,b=5,计算草坪的造价.[答案](1)24ab-6b2;(2)31500元.[解析][分析](1)根据已知条件,用大正方形的面积减去4个长方形的面积再减去中间小正方形的面积即可求解.(2)把a=10,b=5及草坪的造价为每平米30元代入代数式即可求解.[详解]解:(1)∵阴影部分的面积为:大正方形的面积减去4个长方形的面积再减去中间小正方形的面积,∴草坪(阴影)面积为:6a×6a﹣4×b×12×b﹣(6a﹣2b)2=24ab-6b2.(2)当a=10,b=5时,草坪的造价为:(24×10×5-6×52)×30=31500(元).[点睛]本题考查了整式的应用和求整式的值,根据题意正确列出整式是解题的关键.24. 甲、乙两人在同一平直的道路上同时、同起点、同方向出发,他们分别以不同的速度匀速跑步2400米(甲的速度大于乙的速度),当甲第一次超出乙600米时,甲停下来等候乙.甲、乙两人会合后,两人分别以原来的速度继续跑向终点,先到终点的人在终点休息.在整个跑步过程中,甲、乙两人之间的距离y(米)与乙出发的时间x(秒)之间的关系图象如图所示,根据图象中提供的信息回答问题:(1)A点表示的是;(2)乙出发s时到达终点,a=,b=;(3)甲乙出发s相距150米.[答案](1)甲在600秒时,第一次超出乙600米;(2)1600,1000,1360;(3)150或900或1150或1500.[解析][分析](1)由图象可得:点A表示甲在600秒时,第一次超出乙600米;(2)先求出甲,乙速度,即可求解;(3)分四种情况讨论,由时间=路程÷速度,即可求解.[详解]解:(1)点A表示甲在600秒时,第一次超出乙600米,故答案为:甲在600秒时,第一次超出乙600米;(2)由图形可得乙出发1600s时到达终点,∴乙的速度=24001600=1.5米/秒,∴甲的速度=600600+1.5=2.5秒,∴a=600 2.51.5⨯=1000,∴b=24002.5﹣600+1000=1360,故答案为:1600,1000,1360;(2)刚出发时,1502.5 1.5-=150s,甲在A地时,2.56001501.5⨯-=900s,从A地出发后,1000+150=1150s,甲到终点后,24001501.5-=1500s,综上所述:甲乙出发150s或900s或1150s或1500s时,相距150米.故答案为:150或900或1150或1500.[点睛]此题主要考查根据函数图象的信息解决实际问题,解题关键是读懂函数图象.25. 在△ABC中,∠B,∠C均为锐角且不相等,线段AD,AE分别是△ABC中BC边上的高和△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,则∠DAE的度数.(2)若∠B=α,∠DAE=10°,则∠C=(3)F是射线AE上一动点,G、H分别为线段AB,BE上的点(不与端点重合),将△ABC沿着GH折叠,使点B 落到点F处,如图2所示,其中∠1=∠AGF,∠2=∠EHF,请直接写出∠1,∠2与∠B的数量关系.[答案](1)∠DAE=20°;(2)α﹣20°;(3)∠1+∠2=2∠B[解析][分析](1)三角形根据三角形内角和定理求出∠BAC,再由角平分线性质求得∠BAE,再根据三角形的高和直角三角形的性质求得∠BAD,进而由角的和差关系求得结果;(2)根据直角三角形的性质求得∠BAD,再由角的和差关系求得∠BAE,由角平分线的定义求得∠BAC,最后根据三角形内角和定理求得结果;(3)根据邻补角性质和角平分线定义用∠1、∠2分别表示∠BGH和∠BHG,再由三角形内角和定理得结果.[详解]解:(1)∵∠B=70°,∠C=30°,∴∠BAC=180°﹣70°﹣30°=80°,∵AE平分∠BAC,∴∠BAE=40°,∵AD是△ABC的高,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,∴∠DAE=∠BAE﹣∠BAD=40°﹣20°=20°;(2)∵∠B=α,∠ADB=90°,∴∠BAD=90°﹣α,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=100°﹣α,∵AE平分∠BAC,∴∠BAC=200°﹣2α,∴∠C=180°﹣∠B﹣∠BAC=180°﹣α﹣200°+2α=α﹣20°, 故答案为:α﹣20°;(3)∠1+∠2=2∠B.理由:由折叠知,11,,22BGH BGF BHG BHF ∠=∠∠=∠∵∠BGF=180°﹣∠1,∠BHF=180°﹣∠2,∴∠BGH=90°﹣12∠1,∠BHG=90°﹣122∠,∴∠B=180°﹣∠BGH﹣∠BHG=1112 22∠+∠,即∠1+∠2=2∠B.[点睛]本题考查三角形内角和、邻角补角性质、角平分线、高线、直角三角形相关性质以及折叠图形的特点,熟练掌握相关知识点并运用是解决此题的关键.。

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷及答案(各版本)

2024年最新人教版初一数学(下册)期中考卷一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. 3B. 0C. 1/2D. 1/22. 一个数的绝对值是它本身的数是?A. 正数B. 负数C. 零D. 正数和零3. 下列哪个数是分数?A. 0.5B. 3/4C. 0.333D. 14. 下列哪个数是无理数?A. 3B. 2/3C. √2D. 0.255. 下列哪个数是整数?A. 1/2B. 0.5C. 3D. 0.3336. 下列哪个数是正整数?A. 0B. 1C. 1D. 1/27. 下列哪个数是负整数?A. 0B. 1C. 1D. 1/28. 下列哪个数是奇数?A. 0B. 2C. 3D. 49. 下列哪个数是偶数?A. 1B. 2C. 3D. 410. 下列哪个数是质数?A. 0B. 1C. 2D. 4二、填空题(每题4分,共20分)1. 5的绝对值是______。

2. 2的相反数是______。

3. 3/4的倒数是______。

4. 5的平方是______。

5. 2的立方根是______。

三、解答题(每题10分,共50分)1. 解方程:2x 3 = 7。

2. 解不等式:3x + 4 > 11。

3. 解方程组:x + y = 5, x y = 1。

4. 解不等式组:x > 2, x < 5。

5. 计算下列表达式的值:(3 + 4) × (5 2) ÷ 2。

四、应用题(每题15分,共30分)1. 小明买了5本书,每本书的价格是8元。

他付了50元,应该找回多少元?2. 一个长方形的长是6厘米,宽是4厘米。

求这个长方形的面积。

五、附加题(每题10分,共20分)1. 证明:对于任意实数a,a的平方总是非负的。

2. 解析几何:在平面直角坐标系中,点A(2, 3),点B(5, 1)。

求线段AB的长度。

选择题答案:1. C2. D3. B4. C5. C6. C7. C8. C9. B10. C填空题答案:1. 52. 23. 4/34. 255. 1.2599210498948732(约等于1.26)解答题答案:1. x = 52. x > 33. x = 3, y = 24. 2 < x < 55. 13应用题答案:1. 找回的金额为10元。

最新人教版七年级下册数学《期中测试题》附答案

最新人教版七年级下册数学《期中测试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )︒A. 130B. 140C. 50D. 40 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( ) A . 小于5cm PA = B. 等于5cm PA = C. 大于5cm PA = D. 不确定 4. 下列图形中1∠与2∠是同位角是( )AB. C. D.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±6. –27的立方根与81的平方根之和是 A. 0B. –6C. 0或–6D. 67. 下列命题中,真命题有( ).(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个8. 若点M 的坐标是(a ,b),且a>0,b<0,则点M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( ) A. 1B. 12C. 14D. 12- 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4 B. 3 C. 2 D. 1二、填空题:(每题3分,共30分)11. 如图所示,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .12. 如图,直线a ∥b ,则∠ACB =______13. 比较大小:12π-________1214. 已知|a -5|3b +=0,那么a -b =_______.15. 81的算术平方根是________,25-的相反数是________.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________. 20. 若(5x +2y -12)2+|3x +2y -6|=0,则2x +4y =__________.三、解答题(共60分)21. 计算: (1)3352335(2)|232+(32339718111682⎛⎫--- ⎪⎝⎭22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 23. 在如图的直角坐标系中,将三角形ABC 平移后得到三角形111A B C ,他们的对应点坐标如下表所示: ABC(,0)A a (3,0)B (5,5)C 111A B C △ 1(4,2)A 1(7,)B b1(,)C c d (1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C △面积.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.25. 如图,CD 平分∠ACB ,DE ∥BC ,∠AED =80°,求∠EDC 的度数.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.答案与解析一、选择题:(每题3分,共30分)1. 如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180°【答案】A【解析】【分析】 运用平行线的判定方法进行判定即可.【详解】解:选项A 中,∠1=∠2,只可以判定AC//BD (内错角相等,两直线平行),所以A 错误; 选项B 中,∠3=∠4,可以判定AB//CD (内错角相等,两直线平行),所以正确;选项C 中,∠5=∠B ,AB//CD (内错角相等,两直线平行),所以正确;选项D 中,∠B +∠BDC =180°,可以判定AB//CD (同旁内角互补,两直线平行),所以正确; 故答案为A.【点睛】本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键. 2. 图所示,150∠=︒,34180∠+∠=︒,则 2∠=( )︒A. 130B. 140C. 50D. 40【答案】C【解析】【分析】先由已知与平角定义推出∠3=∠5,利用同位角相等,两直线平行得a ∥b ,在利用平行线的性质即可求出∠2.【详解】根据平角定义得∠4+∠5=180º,又∵34180∠+∠=︒,∴∠3=∠5,∴a ∥b ,∴∠1=∠2,∵∠1=50º,∴∠2=50º,故选择:C .【点睛】本题考查平行线的判定与性质,以及平角定义,掌握平角定义与平行线的判定和性质是解题关键. 3. 点P 是直线l 外一点,A 为垂足,PA l ⊥,且5cm PA =,则点P 到直线l 的距离( )A. 小于5cm PA =B. 等于5cm PA =C. 大于5cm PA =D. 不确定【答案】B【解析】【分析】根据点到直线的距离的定义得出即可.【详解】解:根据点到直线的距离的定义得出P 到直线l 的距离是等于5cm PA =,故选:B .【点睛】本题考查了点到直线的距离的定义,能熟记点到直线的距离的定义的内容是解此题的关键,注意:从直线外一点到这条直线的垂线段的长度,叫点到直线的距离.4. 下列图形中1∠与2∠是同位角的是( ) A. B. C. D.【答案】C同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,据此进行判断即可.【详解】解:A 图不符合同位角定义,故此选项错误;B 图不符合同位角定义,故此选项错误;C 图符合同位角定义,可知答案是C ;D 图不符合同位角定义,故此选项错误.故选:C .【点睛】本题考查了同位角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.5. 某数x 的两个不同的平方根是23a +与15a -,则x 的值是( )A. 11B. 121C. 4D. 11±【答案】B【解析】【分析】利用正数的平方根有两个,它们是互为相反数,列出方程,解方程求出4a =,再求某数即可.【详解】某数x 的两个不同的平方根是23a +与15a -,列方程得:23a ++15a -=0,合并得:3120a -=,解得:4a =,当4a =时,23=24311a +⨯+=,则()223=121x a =+.故选择:B .【点睛】本题考查正数的平方根问题,掌握数的平方根的性质,会用正数两个平方根构造方程是解题关键. 6. –27A. 0B. –6C. 0或–6D. 6 【答案】C根据立方根的定义求得-27的立方根是-3,±3,由此即可得到它们的和.【详解】∵-27的立方根是-3,9的平方根是±3,所以它们的和为0或-6.故选C.【点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.7. 下列命题中,真命题有().(1)有且只有一条直线与已知直线平行,(2)垂直于同一条直线的两条直线互相垂直,(3)两条直线被第三条直线所截,内错角相等,(4)在平面内过一点有且只有一条直线与已知直线垂直.A. 1个B. 2个C. 3个D. 4个【答案】A【解析】【分析】利于平行线的定义、平行公理、平行线的性质及垂直的定义分别判断后即可确定正确的选项.【详解】解:(1)过直线外一点有且只有一条直线与已知直线平行,故错误,是假命题;(2)垂直于同一条直线的两条直线平行,故错误,是假命题;(3)两条平行直线被第三条直线所截,内错角相等,故错误,是假命题;(4)在平面内过一点有且只有一条直线与已知直线垂直,正确,是真命题.故选A.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的定义、平行公理、平行线的性质及垂直的定义等知识,难度不大.8. 若点M的坐标是(a,b),且a>0,b<0,则点M在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】根据各象限内点的坐标符号特征判定,:∵a>0,b<0,∴点M (a ,b )在第四象限,故选D9. 若22x y =⎧⎨=⎩是方程1x my -=的一个解,则m 的值为( ) A. 1 B. 12 C. 14 D. 12- 【答案】B【解析】【分析】 把22x y =⎧⎨=⎩代入1x my -=,得到关于m 的方程,解方程即可得到结论. 【详解】解:把22x y =⎧⎨=⎩代入1x my -=得,2-2m=1, 解得:m=12, 故选:B .【点睛】本题主要考查的是二元一次方程的解,得到关于m 的方程是解题的关键. 10. 若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A. 4B. 3C. 2D. 1【答案】C【解析】由题意得:x=y ,∴4x+3x=14,∴x=2,y=2,把它代入方程kx+(k-1)y=6得2k+2(k-1)=6,解得k=2.故选C . 二、填空题:(每题3分,共30分)11. 如图所示,直线AB ,CD ,EF 相交于点O ,且AB CD ⊥,135∠=︒,则 2∠=________ .【答案】55︒【解析】【分析】根据题意由对顶角相等先求出∠ FOD ,然后根据AB⊥CD ,∠2与∠ FOD 互为余角,求出即可.【详解】∵CD 、EF 相交于点O ,∴∠FOD=∠1=35︒,∵AB⊥CD ,∴∠2=90︒−∠FOD=903555︒-︒=︒,故答案为:55︒.【点睛】本题考察对顶角相等和垂线的定义及性质,熟练掌握基础知识是解题的关键.12. 如图,直线a ∥b ,则∠ACB =______【答案】78°【解析】如图,延长BC 与a 相交,已知a ∥b ,根据两直线平行,内错角相等可得∠1=∠50°;再由三角形的外角的性质可得∠ACB =∠1+28°=50°+28°=78°.点睛:本题主要考查平行线的性质和三角形外角性质,较为简单,属于基础题.13. 比较大小:12π-________12-【答案】<【解析】【分析】利用估值比较法322π>>,再利用不等式的性质3,不等式两边都乘以-1,不等式方向改变2π-<,最后利用不等式性质1,不等式两边都加1,不等号方向不变即可确定大小.【详解】∵322π>3=222<,∴2π>,∴2π-<,∴12π-<1.故答案为:<.【点睛】本题考查无理数的比较大小问题,掌握不等式的性质,会用不等式的性质比较大小,用估值法比较大小是解题关键.14. 已知|a -5|=0,那么a -b =_______.【答案】8【解析】【分析】利用非负数性质得:a-5=0,b+3=0,可求a,b.【详解】因为|a -5|=0,|a -5|≥0≥0,所以,a-5=0,b+3=0,所以,a=5,b=-3.所以,a-b=8.故答案为8点睛】本题考核知识点:非负数性质. 解题关键点:利用非负数性质.15. ________,2________.【答案】 (1). 3; (2).2.【解析】【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.9=3=;= ∴3,∵(222--=-=,∴22,故答案为:2.【点睛】本题考查了算术平方根和相反数的性质,9的算术平方根,熟悉相关性质是解题的关键.16. 若点(1,26)P a a +-在x 轴上,则点P 的坐标为________.【答案】(4,0).【解析】【分析】根据点在x 轴上的特点解答即可.【详解】解:∵点P (a+1,2a-6)x 轴上, ∴2a-6=0,解得,a=3,∴a+1=4∴点P 的坐标是(4,0);故答案为:(4,0).【点睛】本题主要考查了点在x 轴上时纵坐标是0的特点.17. 已知点P(2-a ,3a+6),且点P 到两坐标轴的距离相等,则点P 的坐标是_____. 【答案】(33)P ,或(66)P -, 【解析】【分析】根据点坐标到x 轴的距离即是点的纵坐标的绝对值,点到y 轴距离,即点的横坐标的绝对值,据此解题.【详解】(236)P a a -+,到两坐标轴的距离相等,236a a ∴-=+236a a ∴-=+或236a a -=--解得:1a ∴=-或4a =-当1a =-时,点P 的坐标为(33)P ,当4a =-时,点P 的坐标为(66)P -, 故答案:(33)P ,或(66)P -, 【点睛】本题考查直角坐标系中,各象限点坐标的特征,是重要考点,难度较易,掌握相关知识是解题关键.18. 若方程4x m-n -5y m+n =6是二元一次方程,则m=______,n=______.【答案】 (1). 1 (2). 0【解析】【分析】【详解】解:根据题意,得1{1m n m n -=+= 解,得m=1,n=0.故答案是1,0.考点:二元一次方程的定义.19. 某次足球比赛的记分规则如下:胜一场得3分,平一场得1分, 负一场是0分.某队踢了14场,其中负5场,共得19分.若设胜了x 场,平了y 场,则可列出方程组:_____________.【答案】514319x y x y ++=+=⎧⎨⎩ 【解析】【分析】根据比赛总场数和总分数可得相应的等量关系:胜的场数+平的场数+负的场数=14;胜的积分+平的积分=19,把相关数值代入即可.【详解】∵共踢了14场,其中负5场,∴x+y+5=14;∵胜一场得3分,平一场得1分,负一场是0分,共得19分.∴3x+y=19,故列的方程组为514 319x yx y++=+=⎧⎨⎩,故答案为514 319 x yx y++=+=⎧⎨⎩【点睛】此题考查由实际问题抽象出二元一次方程组,解题关键在于列出方程20. 若(5x+2y-12)2+|3x+2y-6|=0,则2x+4y=__________.【答案】0【解析】【分析】根据非负数的性质列出方程组,求出x、y的值代入所求代数式计算即可.【详解】解:由题意得52120 3260 x yx y+-=⎧⎨+-=⎩两个方程相减得:2x=6,解得x=3.把x=3代入5x+2y-12=0得,5×3+2y-12=0,解得32 y=-把33,2x y==-代入2x+4y得:323402⎛⎫⨯+⨯-=⎪⎝⎭故答案为:0【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,还考查了解二元一次方程组.三、解答题(共60分)21. 计算:(1)(2)|+(31 12 -【答案】(1;(2(3)52 -.【解析】【分析】(1)合并同类项计算即可;(2(3)根据绝对值的性质、开平方及开立方的方法化简计算即可.【详解】解:(1)原式==(2)原式=; (3)原式=313135212424422-+=-++-=-. 【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算法则是解题的关键.22. 解方程: (1)代入法:23328y x x y =-⎧⎨+=⎩(2)加减法:25324x y x y -=⎧⎨+=⎩ 【答案】(1)21x y =⎧⎨=⎩;(2)21x y =⎧⎨=-⎩【解析】【分析】(1)运用代入消元法求解即可;(2)运用加减消元法求解即可.【详解】解:(1)23328y x x y =-⎧⎨+=⎩①② ① 代入②得,32(23)8x x +-=,解得,x=2,把x=2代入①得,y=1,所以,方程组的解为:21x y =⎧⎨=⎩;(2)25 324 x yx y-=⎧⎨+=⎩①②①×2+②得,7x=14解得,x=2把x=2代入①得,4-y=5,解得,y=-1∴方程组的解为:21 xy=⎧⎨=-⎩【点睛】此题主要考查了解二元一次方程组,解二元一次方程组的方法有:代入消元法和加减消元法.23. 在如图的直角坐标系中,将三角形ABC平移后得到三角形111A B C,他们的对应点坐标如下表所示:ABC(,0)A a(3,0)B(5,5)C111A B C△1(4,2)A1(7,)B b1(,)C c d(1)观察表中各对应点坐标变化,写出平移规律:________.(2)在坐标系中画出两个三角形.(3)求出111A B C△面积.【答案】(1)先向上平移2 个单位,再向右平移4个点位.(2)画图见详解(3)7.5.【解析】【分析】(1)由A到A1纵坐标变化,说明向上平移2个单位,由B到B1横坐标变化说明向右平移4个单位,规律即可发现;(2)利用平移的特征先求出A、B1、C1三点坐标,然后在平面直角坐标系中描点A、B、C、A1、B1、C1,再顺次连结AB、BC、CA;A1B1、B1C1、C1A1;则△ABC为原图,△A1B1C1为平移后的图形;(3)先求△A 1B 1C 1的底113A B =,再求底边上的高长为5;利用面积公式求即可.【详解】(1)由A 到A 1纵坐标变化为由0到2,说明向上平移2个单位,由B 到B 1横坐标变化为由3到7说明向右平移4个单位,平移的规律为先向上平移2 个单位,再向右平移4个点位;故答案为:先向上平移2 个单位,再向右平移4个点位.(2)440a a +==,,022b b +==,,549c c +==,,527d d +==,,则A 、B 1、C 1三点坐标分别为()00A ,,()172B ,,()197C ,,如图 描点:A 、B 、C 、A 1、B 1、C 1,连线:顺次连结AB 、BC 、CA ;A 1B 1、B 1C 1、C 1A 1,结论:则△ABC 为原图,△A 1B 1C 1为平移后的图形.(3)11743A B =-=,11A B 边上的高为725-=,111115357.522A B C S ∆=⨯⨯==. 【点睛】本题考查平移规律,画图和三角形面积问题,掌握平移规律发现的方法,画图的步骤与要求,会求钝角三角形的面积是解题关键.24. 如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,35EOC ∠=︒,求AOD ∠的度数.【答案】125°.【解析】【分析】由两直线垂直,求得∠AOE=90°;由∠AOC与∠EOC互余,∠EOC=35°,即可得到∠AOC的度数;再由∠AOD 与∠AOC互补,即可得出∠AOD的度数.【详解】∵EO⊥AB,∴∠AOE=90°,又∵∠EOC=35°,∴∠AOC=∠AOE-∠EOC=90°-35°= 55°,∴∠AOD=180°-∠AOC=180°-55°=125°.【点睛】本题主要考查补角、余角和垂直的定义.解题的关键是熟练利用补角、余角关系求角的度数.25. 如图,CD平分∠ACB,DE∥BC,∠AED=80°,求∠EDC的度数.【答案】40°【解析】【分析】根据平行线的性质可得∠ACB=∠AED=80°,∠EDC=∠BCD,然后根据角平分线的定义可得∠BCD=12∠ACB=40°,从而求出结论.【详解】解:∵DE∥BC,∠AED=80°∴∠ACB=∠AED=80°,∠EDC=∠BCD ∵CD平分∠ACB,∴∠BCD=12∠ACB=40°∴∠EDC=40°【点睛】此题考查的是平行线的性质和角平分线的定义,掌握平行线的性质是解决此题的关键.26. 用白铁皮做罐头盒,每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套,现有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?【答案】需要16张白铁皮做盒身,20张白铁皮做盒底【解析】【分析】可设用x 张制盒身,则(36-x )张制盒底,可使盒身与盒底正好配套,根据等量关系:一个盒身与两个盒底配成一套.列出方程求解即可.【详解】解:设用x 张制盒身,则(36-x )张制盒底,根据题意,得到方程:2×25x =40(36-x ), 解得:x =16,36-x =36-16=20.答:用16张制盒身,20张制盒底,可使盒身与盒底正好配套.【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.27. 在新冠疫情期间,为支援武汉,现将我市大米运往武汉.有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5吨,5辆大货车与6辆小货车一次可以运货35吨.那么3辆大货车与5辆小货车一次可以运货多少吨.【答案】24.5【解析】【分析】本题等量关系比较明显:2辆大车运载吨数+3辆小车运载吨数=15.5;5辆大车运载吨数+6辆小车运载吨数=35,算出1辆大车与1辆小车一次可以运货多少吨后,即可计算出3辆大车与5辆小车一次可以运货多少吨.【详解】设大货车每辆装x 吨,小货车每辆装y 吨,根据题意列出方程组为:2315.55635x y x y +=⎧⎨+=⎩, 解这个方程组得:42.5x y =⎧⎨=⎩,∴3x+5y=24.5.答:3辆大车与5辆小车一次可以运货24.5吨.【点睛】本题考察二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.28. 新冠疫情过后,海伦市第三中学七年级学生将外出进行社会实践活动,从学校出发骑自行车去实践基地,中途因道路施工步行一段路,1.5小时后到达实践基地,他骑车的平均速度是15千米/时,步行的平均速度是5千米/时,路程全长20千米,他骑车和步行各用了多少时间?【答案】骑车用1.25小时,步行用0.25小时.【解析】【分析】首先设他骑车用了x小时,根据骑车时间+步行时间=1.5小时表示出步行时间,再由骑车路程+步行路程=20千米,根据等量关系列出方程组,解方程组即可.【详解】设骑自行车的时间为x小时,步行的时间为y小时,根据题意得:1.5 15520 x yx y+=⎧⎨+=⎩,解得1.250.25 xy=⎧⎨=⎩,答:骑车用1.25小时,步行用0.25小时.【点睛】本题考查二元一次方程组的应用,关键是弄懂题意,根据题目中的等量关系列出方程组.29. 如图,AD∥BC,BE平分∠ABC交AD于点E,BD平分∠EBC.(1)若∠DBC=30°,求∠A的度数;(2)若点F在线段AE上,且7∠DBC-2∠ABF=180°,请问图中是否存在与∠DFB相等的角?若存在,请写出这个角,并说明理由;若不存在,请说明理由.【答案】(1)∠A=60°;(2)存在,∠DFB=∠DBF.【解析】【分析】(1)根据角平分线的定义得到∠EBC=2∠DBC=60°,∠ABC=2∠EBC=120°,根据平行线的性质得到∠A+∠ABC=180°,于是得到结论;(2)设∠DBC=x°,则∠ABC=2∠ABE=(4x)°,根据已知条件得到∠ABF=(72x-90)°,求得∠DBF=(90-12x)°,根据平行线的性质得到∠DFB+∠CBF=180°,于是得到∠DFB=(90-12x)°,即可得到结论.【详解】解:(1)∵BD平分∠EBC,∠DBC=30°,∴∠EBC=2∠DBC=60°.∵BE平分∠ABC,∴∠ABC=2∠EBC=120°.∵AD∥BC,∴∠A+∠ABC=180°,∴∠A=60°.(2)存在∠DFB=∠DBF.理由如下:设∠DBC=x°,则∠ABC=2∠ABE=(4x)°.∵7∠DBC-2∠ABF=180°,∴(7x)°-2∠ABF=180°,∴∠ABF=(72x-90)°,∴∠CBF=∠ABC-∠ABF=(12x+90)°,∠DBF=∠ABC-∠ABF-∠DBC=(90-12 x)°.∵AD∥BC,∴∠DFB+∠CBF=180°,∴∠DFB=(90-12 x)°,∴∠DFB=∠DBF.【点睛】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.。

新人教版七年级数学下册期中测试卷(及答案)

新人教版七年级数学下册期中测试卷(及答案)

新人教版七年级数学下册期中测试卷(及答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知|x|=5,|y|=2,且|x+y|=﹣x﹣y,则x﹣y的值为()A.±3B.±3或±7C.﹣3或7D.﹣3或﹣7 2.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A.32B.3 C.1 D.433.已知|m-2|+(n-1)2=0,则关于x的方程2m+x=n的解是()A.x=-4 B.x=-3 C.x=-2 D.x=-14.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b()A.∠2=∠4 B.∠1+∠4=180° C.∠5=∠4 D.∠1=∠35.已知a b3132==,,则a b3+的值为()A.1 B.2 C.3 D.276.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉字是()A.厉B.害C.了D.我7.如图,两条直线l 1∥l 2,Rt △ACB 中,∠C=90°,AC=BC ,顶点A 、B 分别在l 1和l 2上,∠1=20°,则∠2的度数是( )A .45°B .55°C .65°D .75°8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.如图,直线l 1∥l 2 ,且分别与直线l 交于C,D 两点,把一块含30°角的三角尺按如图所示的位置摆放.若∠1=52°,则∠2的度数为( )A .92°B .98°C .102°D .108°10.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元二、填空题(本大题共6小题,每小题3分,共18分)1.4的算术平方根是________.2.如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B,C 重合),使点C 落在长方形内部的点E 处,若FH 平分∠BFE,则∠GFH 的度数是________.3.若2a b +=,3ab =-,则代数式32232a b a b ab ++的值为__________.4.已知4x =,12y =,且0xy <,则x y 的值等于_________. 5.若x=2是关于x 的方程2x+3m ﹣1=0的解,则m 的值等于_________.6.若323m x --21n y - =5是二元一次方程,则m =________,n =________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)430210x y x y -=⎧⎨-=-⎩ (2)134342x y x y ⎧-=⎪⎨⎪-=⎩2.先化简,再求值:(x +2y )(x ﹣2y )+(20xy 3﹣8x 2y 2)÷4xy ,其中x =2018,y =2019.3.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.(1)如图1,连接CE ,①若CE ∥AB ,求∠BEC 的度数;②若CE 平分∠ACD ,求∠BEC 的度数.(2)若直线CE 垂直于△ABC 的一边,请直接写出∠BEC 的度数.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图1;(2)求图2中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B 两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B 型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、B4、D5、B6、D7、C8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、90°3、-124、8-5、﹣16、2 1三、解答题(本大题共6小题,共72分)1、(1)1010xy=⎧⎨=⎩(2)64xy=⎧⎨=⎩2、(x﹣y)2;1.3、(1)①40°;②30°;(2)50°,130°,10°4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)答案见解析(2)36°(3)4550名6、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
七年级数学下册期中测试卷
题号 一 二 三 总分 16 17 18 19 20 21 22 23 得分
一、选择题.(每空3分,共18分)
1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )
A.130°
B.140°
C.150°
D.160° 2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )
A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )
A .(-1,1)
B .(-2,-1)
C .(-3,1)
D .(1,-2) 4.下列现象属于平移的是( )
A .冷水加热过程中小气泡上升成为大气泡
B 急刹车时汽车在地面上的滑动
C .投篮时的篮球运动
D .随风飘动的树叶在空中的运动 5.下列各数中,是无理数的为( ) A .39 B. 3.14 C. 4 D. 722-
6.若a 2=9, 3b =-2,则a+b=( )
A. -5
B. -11
C. -5 或 -11
D. ±5或±11
得分 评卷人
得分
评卷人
二、填空.(每小题3分,共27分)
7.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:_____________________________________________________________
8.一大门的栏杆如右图所示,BA⊥AE,若CD∥AE,则∠ABC+
∠BCD=____度.
9.如右图,有下列判断:①∠A与∠1是同位角;②∠A与
∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同
位角。

其中正确的是_______(填序号).
10.在数轴上,-2对应的点为A,点B与点A的距离为7,则点B表示的数为_________.
11.绝对值小于7的所有整数有_____________.
12.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A
1B
1
,点
A
1B
1
的坐标分别为(2,a)、(b,3),则a+b=____________.
13.第二象限内的点P(x,y),满足|x|=9,y2=4,则点P的坐标是______.
14.若x3m-3-2y n-1=5 是二元一次方程,则M n=__________
15.平方根节是数学爱好者的节日,这一天的月份和日期的数字正好是当年年份
最后两位数字的平方根,例如2009年的3月3日,2016年的4月4日,请你写出本世
2
3
纪内你喜欢的一个平方根节:_______年_____月_____日.(题中所举例子除外) 70分)
16. 解方程组(8分)
⎩⎨⎧=-=+152y x y x ⎩⎨⎧=-=+6
23432y x y x 17.(6分)如右图,先填空后证明.
已知: ∠1+∠2=180° 求证:a ∥b
证明:∵ ∠1=∠3( ),
∠1+∠2=180°( ) ∴ ∠3+∠2=180°( ) ∴ a ∥b ( ) 请你再写出一种证明方法.
得分 评卷人
得分 评卷人
4
18.(7分)在平面直角坐标系中, △ABC 三个顶点的位置如图(每个小正方形的边长均为1).
(1)请画出△ABC 沿x 轴向平移3个单位长度,再沿y 轴向上平移2个单位长度后的△A ′B ′C ′(其中A ′、B ′、C ′分别是A 、B 、C 的对应点,不写画法)
(2)直接写出A ′、B ′、C ′三点的坐标: A ′(_____,______); B ′(_____,______); C ′(_____,______)。

(3)求△ABC 的面积。

19.
(6分)如图所示,火车站、码头分别位于A ,B 两点,直线a 和b 分别表示铁路与河流.
(1)从火车站到码头怎样走最近,画图并说明理由;
(2)从码头到铁路怎样走最近,画图并说明理由; (3)从火车站到河流怎样走最近,画图并说明理由.
得分 评卷人
得分 评卷人
20. (6分) 计算:
2
3=_____,27.0=_____,20=____,2
6)
(-=_____,2)
4
3
(-=______,
(1)根据计算结果,回答: 2a一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.
(2)利用你总结的规律,计算2
)
14
.3

-
21. (6分)如图,直线AB、CD相交于点O,OF⊥CO,∠AOF
与∠BOD的度数之比为3∶2,求∠AOC的度数.
得分评卷人
得分评卷人
5
22. (8分)
一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两
付运费30元计算,问货主应付运费多少元?
23.(8分)
如图,已知直线1l∥2l,且3l和1l、2l分别交于A、B两点,点P在AB上。

(1)试找出∠1、∠2、∠3之间的关系并说出理由;
(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化?(3)如果点P在A、B两点外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)
A
P
B
1 l
2 l
3
l
1
2
3
6
7
七年级数学第二学期期中试卷参考答案
1-6 ABCBAC
7. 如果两条直线平行于同一条直线 8. 270° 9.略 10. -2+7, -2-7 11. 0, ± 1, ±2 12. 2 13.(-3,2) 14.
9
16
15.略 16. ⎩⎨
⎧==1
2y x

⎨⎧==02
y x
17.对顶角相等;已知;等量代换;同旁内角互补,两直线平行。

证明略 18.(1)图略 (2)A ′(0,5),B ′(-1,3),C (4,0) 19.
20.3,0.7, 0, 6, 4
3
(1) 2a 不一定等于a, 2a =|a |= ⎪
⎩⎪
⎨⎧<->>)
0()0(0)0(a a a a a
(2)π-3.14
21.(1) ∠ 2=115° ∠4=65° (2)相等或互补 (3)120′,60′ 22.36° 23.。

相关文档
最新文档