二次根式教学课件
二次根式及其性质课件
![二次根式及其性质课件](https://img.taocdn.com/s3/m/c1eb3619b207e87101f69e3143323968001cf476.png)
1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)
![最新人教版八年级数学下册第16章二次根式全套课件PPT(完美版)](https://img.taocdn.com/s3/m/35e6a8d9b0717fd5360cdc94.png)
A≥0且B≠0.
A 1有意义的条件:
B
巩固练习
2. x取何值时,下列二次根式有意义?
(1) x 1
x≥1
(4) 1 x x>0
(2) 3x
x≤0
(5) x3
x≥0
(3) 4x2
x为全体实数
(6) 1 x2 x≠0
(7)
x 1 x3
(
x
2)0
(8)
x 2 (9) x2 1
x
∴当x=1时, x2 2x 1 在实数范围内有意义. (2)∵无论x为任何实数,-x2-2x-3=-(x+1)2-2<0, ∴无论x为任何实数, x2 2x 3 在实数范围内都无意义.
归纳小结:被开方数是多项式时,需要对组成多项式的项 进行恰当分组凑成含完全平方的形式,再进行分析讨论.
探究新知
归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
两个必备特征
①外貌特征:含有“ ” ②内在特征:被开方数a ≥0
探究新知
素养考点 1 利用二次根式的定义识别二次根式
例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14 ; (2)81; (3) - 0.8 ;(4)-3x (x 0)
(1) 32
是
(2) -12 不是
(3)3 8
(4)4 a2
不是
不是
(5) - m (m 0) 是
(8) - x2 1
不是
(6) 2a 1 不是
(9)4 2
是
(7) a2 2a 3
是
1
八年级数学下册教学课件-二次根式的性质
![八年级数学下册教学课件-二次根式的性质](https://img.taocdn.com/s3/m/cc3e9076bf1e650e52ea551810a6f524ccbfcb22.png)
【详解】
1
2) 9 + −4 + (−1)0 − (2)−1
(1)原式=3 2 + 2 − 4 + 7 − 3=4 2
(2)原式=3+4+1-2=6.
02
练一练
4.实数a,b在数轴上对应点的位置如图所示,化简|| + ( − )2 的结果是(
A.−2 +
B.2 −
C.−
D.
a
=﹣|b|
=﹣b.
0
b
课后回顾
01
理解二次根式性质的探索过程
02
掌握二次根式的性质
03
通过二次根式性质进行计算
演示完毕
从取值范围看
a≥0
a取任何实数
从运算结果看
a
|a|
意义
表示一个非负数a
的算术平方根的平方
表示一个实数 a
的平方的算术平方根
02
练一练
计算:
1) 16
2)
3)
=
(−5)2 =
3.14 −
42 =4
52 =5
2
= |3.14 − |=π-3.14
02
练一练
1.若 ( − 2)2 =2﹣a,则a的取值范围是(
探索与思考
计算:
1) 22
=
2) 0.12 =
3)
4)
2 2
−
5
02
=
2
0.1
2
=
5
0
二次根式的性质二
α2
= a =
a(a≥0)
-a(a<0)
即任意一个数的平方的算术平方根等于它本身的绝对值 .
2.7二次根式(第2课时)课件(共16张PPT)
![2.7二次根式(第2课时)课件(共16张PPT)](https://img.taocdn.com/s3/m/54de16cfba4cf7ec4afe04a1b0717fd5360cb2a8.png)
第2课时
山东星火国际传媒集团
学习目标
山东星火国际传媒集团
1.理解最简二次根式的定义. 2.会利用积的算术平方根的性质化简二次根式. 3.理解商的算术平方根的性质,能够应用二次根式的性质化简二次根
式.
温故知新
山东星火国际传媒集团
1.什么叫二次根式?
一般地,形如 a(a≥0)的式子叫做二次根式.
(2) 4a 2b3 4 • a b2 b
2ab b.
山东星火国际传媒集团
想一想:
(4) (9) (4) (9)
成立吗?为什么?
ab a • b (a 0, b 0)
所以 (4) (9)
36 6.
非
负
数
山东星火国际传媒集团
【跟踪训练】
•4、享受阅读快乐,提高生活质量。2022/3/32022/3/32022/3/32022/3/3
谢谢观赏
You made my day!
我们,还在路上……
•2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独
立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/32022/3/32022/3/33/3/2022
•3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/32022/3/3March 3, 2022
山东星火国际传媒集团
4.如图,在Rt△ABC中,∠C=90°,AC=10 cm,
A
BC=20 cm.求AB的长.
【解析】因为AB2 AC2 BC2 , B
C
所以AB AC2 BC2
二次根式(第1课时)北师大数学八年级上册PPT课件
![二次根式(第1课时)北师大数学八年级上册PPT课件](https://img.taocdn.com/s3/m/40dde7f685254b35eefdc8d376eeaeaad1f316ab.png)
探究新知
素养考点 1 利用二次根式的定义识别二次根式 例1 下列各式中,哪些是二次根式?哪些不是?
(1) 14; (2)81; (3) - 0.8;(4) -3x (x 0)
(5) m (m,n异号,n 0)(6) x2 ;4 (7) 3 15
n
分析: 是否含二 是 被开方数是 是 二次
探究新知 知识点 1
二次根式的概念
5, 11, 7.2, 49 , (c b)(c b)(其中b 24, c 25) 121
这些式子有什么共同特征? ①根指数都为2; ②被开方数为非负数.
探究新知
一般地,我们把形如 a (a 0) 的式子叫做二次根式. “ ”称为二次根号.
提示:a可以是数,也可以是式. ①外貌特征:含有“ ”
巩固练习
变式训练
判断下列各式是否为最简二次根式?
(1) 12 ( ×) (3) 3 ( √ ) × (5) ab2 ( )
(2) 4.5 ( × ) × (4) 1 ( )
2
× (6) 2x2 8x 8( )
连接中考
1. 下列式子中,为最简二次根式的是( B )
A. 1
2
B. 2 C. 4
D. 12
当x≥2时,
在实数范围内有意义.
思考 当x是怎样的实数时,下列各式在实数范围内有意义?
1
(1) x 1
解:由题意得x-1>0, 所以x>1.
探究新知
(2) x 3
x 1
解:因为被开方数需大于或等于零, 所以x+3≥0,即x≥-3. 因为分母不能等于零, 所以x-1≠0,即x≠1. 所以x≥-3 且x≠1.
初中数学二次根式 PPT课件 图文
![初中数学二次根式 PPT课件 图文](https://img.taocdn.com/s3/m/daf7bc616bd97f192379e97c.png)
2 2 当x=3-
答案:2
时,原式=(3- -3)2=2.
【方法技巧】二次根式的混合运算,首先要搞清楚运算的顺序,其次是认真观察式子 的结构特点,能利用运算律或公式的,要优先考虑使用运算律或公式,简化运算.在有 理数范围内成立的运算律、运算法则、公式及因式分解、约分、通分等方法对二次 根式同样适用.
根式即可.
【自主解答】 (2 3 )2 - 2 4 5 26 - 26 5 .
答案:5
【母题变式】(改变条件)(2015·临沂中考)计算: (3 2 - 1 )(3 - 2 1 ).
提示:找出公式中的a,b的值,代入平方差公式计算,再 应用完全平方式计算:因为
(32- 1)(3- 21)
(2)由题意可知,x-3≥0,且3-x≥0, ∴x-3=0,解得,x=3,∴y=2,∴xy=32=9. 答案:9
【名师点津】二次根式有无意义的条件需注意的两个问题 (1)如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的 被开方数都必须是非负数.
(2)如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为 零.
=________.
8 8.(2015·成都中考)计算:
4cos 45°+(-3)2.
-(2015-π )0-
2 2 【解析】原式=2 -1-2 +9=8.
【变式训练】(2015·泸州中考)计算:
8 ×sin 45°-20150+2-1.
【解析】原式=
222112113. 2 2 22
谢谢! 学妹给我打电话,说她又换工作了,这次是销售。电话里,她絮絮叨叨说着一年多来工作上的不如意,她说工作一点都不开心,找不到半点成就感。 末了,她问我:学姐,为什么想 找一份
二次根式PPT课件
![二次根式PPT课件](https://img.taocdn.com/s3/m/a8ffd75500f69e3143323968011ca300a7c3f64d.png)
(3) x 12 x 1 .
(2) 12 1 1.
(3)当x≤1时, x 12 x 1 x 1 1 x.
新知导入 课程讲授 随堂练习 课堂小结
二次根式的简单性质
练一练: 若 x y 1 (y 3)2 0 ,则x-y的值为 ( C )
A.1
B.-1
我们知道,负数没有平方根.因此,在实数范围内开平方时,被开方 数只能是正数或0.
新知导入 课程讲授 随堂练习 课堂小结
CONTENTS
2
新知导入 课程讲授 随堂练习 课堂小结
二次根式的概念
问题1.1 用带根号的式子填空,看看写出的结果有什么特点: (1)面积为3的正方形的边长为___3___,面积为S 的正方形的边长
h
那么t为 ______5 _____.
新知导入 课程讲授 随堂练习 课堂小结
二次根式的概念
问题1.2
观察得到的代数式: 3 ,
S,
130 ,
h ,
你认为它们有哪些
25
共同特点?
130
1.这些式子分别表示3,S,2
,
h 5
的算术平方根.
2.这些式子的根指数都为2,且被开方数为非负数.
新知导入 课程讲授 随堂练习 课堂小结
2
(2)
2 3
;
解:(1)
2
3 3.
(2)
2 2 2
3
. 3
(3)当a+b≥0时,
ab
2
a b.
(3)
ab
2
a b 0 .
新知导入 课程讲授 随堂练习 课堂小结
二次根式的简单性质
例4 计算: (1)1.52 ;
(2) 12 ;
15.1 二次根式 - 第1课时课件(共17张PPT)
![15.1 二次根式 - 第1课时课件(共17张PPT)](https://img.taocdn.com/s3/m/dfbcb3a205a1b0717fd5360cba1aa81144318ffc.png)
知识点1 二次根式的概念
一起究
1.(1)2,18,(2)非负数m,p+q,t2-1的算术平方根又是怎样表示的?
2.学校要修建一个占地面积为S ㎡的圆形喷水池,它的半径应为多少米?如果在这个圆形喷水池的外围增加一个占地面积为a ㎡的环形绿化带,那么所成的大圆的半径应为多少米?
一般地,我们把形如 的式子叫做二次根式.
15.1 二次根式第1课时
第十五章 二次根式
学习目标
1.了解二次根式的概念.2.能根据二次根式的意义确定被开方数中字母的取值范围.3.掌握二次根式的双重非负性及其应用.
学习重难点
掌握二次根式的概念.
难点
重点
掌握二次根式的双重非负性及其应用.
复习巩固
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.正数a的算术平方根是
二次根式特征
1.外貌特征:含有“ ”.2.内在特征:被开方数3.内在特征:a可以是数,也可以是含有字母的式子.
知识点2 二次根式的几个性质
例题解析
例1 化简:
随堂练习
C
A
A
3.下列计算正确的是( ).
拓展提升
D
3.做一个面积为300 cm3的长方形镜框,使它长与宽的比为3:2.镜框的宽应为多少厘米?
归纳小结
二次根式
定义
性质
同学们再见!
授课老师:
时间:2024年9月15日
二次根式的性质课件
![二次根式的性质课件](https://img.taocdn.com/s3/m/4e7bae52fe00bed5b9f3f90f76c66137ee064fb9.png)
求解$sqrt{2x + 1} + sqrt{x - 2} leq 5$。同样先确定定 义域,再利用二次根式的性质和不等式的解法进行求解。
实践操作
给出一些具体的一元二次不等式问题,让学生尝试利用二 次根式的性质进行求解,并引导学生总结求解过程中的注 意事项和技巧。
05
二次根式在函数图像和性质中应 用
06
总结回顾与拓展延伸
关键知识点总结回顾
• 二次根式的定义:$\sqrt{a}$($a \geq 0$)是一个二次根式 ,其中$a$是被开方数,$\sqrt{}$是根号。
关键知识点总结回顾
二次根式的性质 $sqrt{a^2} = |a|$($a$为任意实数)
$(sqrt{a})^2 = a$($a geq 0$)
04
解
$sqrt{12} + sqrt{27} = sqrt{4 times 3} + sqrt{9 times 3} = 2sqrt{3} + 3sqrt{3} = 5sqrt{3}$。
06
解
$x^2 - y^2 = (x + y)(x - y) = [(sqrt{3} + 1) + (sqrt{3} - 1)][(sqrt{3} + 1) - (sqrt{3} - 1)] = (2sqrt{3})(2) = 4sqrt{3}$。
二次函数图像和性质回顾
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
二次函数的图像是一条抛物线,对称 轴为 $x = -frac{b}{2a}$,顶点坐标 为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
《二次根式》PPT课件 (共31张PPT)
![《二次根式》PPT课件 (共31张PPT)](https://img.taocdn.com/s3/m/9c72fc56783e0912a2162a88.png)
练习:
x取何值时,下列二次根式有意义?
(1) x 1
x 1 (2) 3x
x0
(3) 4 x
2 x为全体实数
(5) x
3
x0
1 a< 2
1 (4) x
x0
1 (7) 1 2a
1 (6) x0 2 x 3 x (8) | x | 4
求二次根式中字母的取值范围的基本依据: ①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。
2 2
x=5,y=11
(2 x - y)
2011
=- 1
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
1、( a) =a (a 0)
2
2、( a )=|a| =
2
a (a>0) 0 (a=0)
-a (a<0)
( a ) 与 a 有区别吗?
2
2
( a) 与 a
1:从运算顺序来看,
2
2
a
a
2
2
先开方,后平方
先平方,后开方
2.从取值范围来看, 2 a≥0 a
a
2
a取任何实数
3.从运算结果来看:
①被开方数大于等于零; ②分母中有字母时,要保证分母不为零。 ③多个条件组合时,应用不等式组求解
二次根式的双重非负性
a 吵0, a 0.
二次根式的性质
《二次根式的性质(第1课时)》教学课件
![《二次根式的性质(第1课时)》教学课件](https://img.taocdn.com/s3/m/dacb7d10f6ec4afe04a1b0717fd5360cba1a8d3d.png)
=
(a<0)
(2)会利用二次根式的性质进行计算和化简.
作业
习题7.2 知识技能.
高效上好每节课·快乐上好每天学
结束
3、二次根式的性质有哪些?
二次根式的双重非负性:
高效上好每节课·快乐上好每天学
学习目标
1、经历二次根式的性质:
①
a2
|
a
|
a(a 0) a(a 0)
②
ab
a b (a 0, b 0)
的发现过程,体验归纳,猜想的思想方法.
2、会灵活运用上述两个性质进行计算和化简二
次根式.
高效上好每节课·快乐上好每天学
2.从取值范围来看,
2
a
a≥0
a2 先平方,后开方 a2 a取任何实数
3.从运算结果来看:
2
a
=a
a2 =∣a∣ =
a (a≥ 0) -a (a<0)
高效上好每节课·快乐上好每天学
运用这条性质可以把能开尽方的被 开方数开出根号外
例1 化简:
(1) 36
(2) 9 4
解: (1) 36 62 6;
(2) 9 ( 3)2 3 4 22
高效上好每节课·快乐上好每天学
填一填:(可用计算器)
1 4 9 ___6_____, 4 9 ___6_____; 2 16 25 ___2_0____, 16 25 ___2_0____;
3 2 3与 2 3是否相等?你是怎样验 证的?
高效上好每节课·快乐上好每天学
7.2 二次根式的性质
第1课时
高效上好每节课·快乐上好每天学
目 Contents 录
01 旧知回顾 02 学习目标
人教版八年级数学下册《二次根式》PPT课件
![人教版八年级数学下册《二次根式》PPT课件](https://img.taocdn.com/s3/m/46534c7982c4bb4cf7ec4afe04a1b0717ed5b319.png)
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、
《最简二次根式》二次根式PPT课件
![《最简二次根式》二次根式PPT课件](https://img.taocdn.com/s3/m/cdd4a2660622192e453610661ed9ad51f11d5455.png)
2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4
人教版八年级下数学16.1二次根式优质课件
![人教版八年级下数学16.1二次根式优质课件](https://img.taocdn.com/s3/m/4097e533a417866fb94a8e04.png)
x
x≤0, 1≤0,
解得x≥1 或x≤0
即当x≥1 或x≤0时, x x 1有意义.
课堂检测
拓广探索题
体会解题思想后,试着解答:当x为何值时, x 2 有意义?
2x 1
解:由题意得
x 2 ≥0, 2x 1
则
2xx21≥>00,,或
x 2≤0, 2x 1<0,
解得x≥2或x<
1 2
,
即当x≥2或x<
为_____0_.
课堂检测
基础巩固题
4.(1)若式子
x 1 2
在实数范围内有意义,则x的取值
范围是__x_≥_1___;
(2)若式子
1 x2
x
在实数范围内有意义,则x的
取值范围是_x__≥_0_且__x_≠_2__.
课堂检测
基础巩固题
5.(1)若二次根式
m2 m2 m 2
有意义,求m的取值范围.
A.x>3
B.x<3
C.x≥3
D.x≠3
x 1 2.(2019•黄石)若式子 x 2 在实数范围内有意义,则x的取
值范围是( A )
A.x≥1且x≠2 B.x≤1
C.x>1且x≠2 D.x<1
巩固练习
连接中考
3.(2018•苏州)若 x 2 在实数范围内有意义,则x的取值
范围在数轴上表示正确的是( D )
A.
B.
C.
D.
课堂检测
基础巩固题
1.下面的式子是二次根式的是( A )
A. a2 1 B. 3 33 C.
D.-1 a
1 2
2.(2018•达州)二次根式 2x 4中的x的取值范围是( D )
A.x<﹣2 B.x≤﹣2 C.x>﹣2 D.x≥﹣2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式教学课件
二次根式教学课件
二次根式教学课件
一、教学内容与学情分析
1.本课在教材、新课标中的地位与作用
本课内容是二次根式章节的复习课,是学生在学完新人教版八年级教材下册第十六章后的一个总结复习。
二次根式是初中数学知识体系与结构中一个不可或缺的部分,是中考直接考查的一个重点内容。
本课复习内容的教学将让学习更为系统地认识二次根式,并在学习新知的基础上得到一个升华。
同时也是为了学生能够在下一张勾股定理以及九年级的解直角三角形学习中打下一些有效的基础。
关于二次根式在《数学课程标准》中提出要求:
1.了解二次根式的概念及其加、减、乘、除运算法则;
2.会用它们进行有关实数的简单四则运算(不要求分母有理化);
在本章内容新授过程中,教师更多的关注了学生对概念及运算法则的讲解,对方法、技巧、能力等各方面并没有对学生作出更高的要求,同时学生本身在学习新课知识时,也是一种模糊的感觉。
对课程标准提出的第2点:会用它们进行有关实数的简单四则运算并不能很有效的完成。
而本节复习课的教学将给学生一个巩固提高的机会,让大多数学生能加深对二次根式的运算的理解,同时更是为学生掌握更多的学习方法、学习技巧,提高学生的能力提供机会。
彻底地贯彻课
程标准所提出的要求,完成九年级学生应完成的任务。
2.本课知识点与前后知识点的联系
本课内容是综合性复习,所讲知识点学生基本都熟悉,只不过是没有真正的理解透彻,甚至有些学生可能都已经有部分渐渐淡忘。
本节内容的教学其实从本质上讲就是为学生理清知识点,建立一个完整的知识体系与结构。
把已学知识系统、全面地呈现在学生的面前,同时也是为了让学生能够对二次根式的理解与运算真正落实到位作出努力。
其实,本课内容的教学不单单是为了复习巩固,更重要的是让学生对本章的知识在初中数学教材中明确地位与作用,让学生感受本章知识的重要性,为即将学习后面的知识做好铺垫工作。
3.学生已有的知识基础
由于新课内容结束离综合性复习时间较长,可以说大多数学生对本章的知识并不是非常熟悉,但学生已具备的知识基础从理论上讲应该是完全具备的,只不过需要一个回顾的过程。
同时,随着知识面的拓广以及一些章节中对二次根式的应用,逐步让学生对二次根式这一章的内容也有了更多的认识。
在复习时,学生应该说还是很易于接受的。
4.学生学习新知的障碍
在学生已有的知识基础上,本节课的教学其实更主要的是经历回顾、理解、巩固的过程。
本节教学内容的新知并不是真正的“新的知识点、新的知识技能、新的知识能力”,而是一种对已学知识的一种
重新加工处理的能力,从已学的知识上提炼出更精粹的东西来。
这也正是学生在这方面的缺憾,需要教师的有效引导与分析。
这更是学生的主要障碍。
二、目标的设定及重难点
1.目标的准确与完整
知识目标:
(1)能够有效回顾本章的重要基础知识;
(2)二次根式的计算与化简;
情感目标:
(1)对章节内容的总体把握,全面分析;
(2)体会对问题的解决办法的优化处理;
能力目标:
(1)提高学生善于处理问题的能力;
(2)培养学生构建知识体系,形成知识系统的能力;
2.重点、难点确立及依据
二次根式的计算与化简是新授时的'重点,更也是复习课上的重点。
前面的公式、运算法则等都是为了这些计算与化简服务的,学生真正体现所学的基础知识应就是在解决这些问题上。
故此,本课教学内容的重点设定为:
二次根式的计算与化简;
伴随着重点内容的出现,学生的问题也得以体现。
要熟练地解决二次根式的计算与化简问题,需要学生真正理解所要求的基础知识,
并灵活的运用基础知识解决问题。
继而重新回归到重点内容上。
然而这些都是学生的困难之处。
也就是说本课的重点内容就是难点内容。
3.重、难点突破方法
本课内容的重点也就是难点,突破的方法都在于如何有效地理解二次根式的模型,以及如何运用基础的知识去解决较为复杂的问题。
而这些都在基础的回顾上让学生得以重新的认识,所以,突破的方法之一就来源于学生对已学知识的掌握程度,另外,通过对比以前所学的知识可以让学生进行方法的探索以及能力的培养,这正是重难点突破的方法之二。
三、教法设计
自主复习基础知识(整理知识点)、复习测评→→合作探究→→达标训练→堂清检测
四.学法设计
1.学生学习本课知识应采取的方法
由于本课是复习课,更多的情况之下学生参与课堂的比例很大。
所以,在课堂上,学生学生应积极参与课堂,通过对比新授与复习之间的不同,在课堂上形成新的认识,教师更是注重对学生系统分析问题的能力的培养。
2.培养学生能力采用的方法
复习课是对学生所学知识的一个升华的阶段,在本节课上应着重关注前后学习方法,问题的思考方式的对比,让学生主动的讲,主动的暴露更多的问题才能让学生获得真正的技能,真正的提高学生的能
力。
3.学生主题作用体现的方法与手段
合作交流(师生交流、生生交流)是解决本课内容所采取的一个必要环节,敢于质疑更是解决本课内容的关键所在。
在整个教学中学生的主体地位得到进一步的确立,教师只是通过问题的形式以及组织课堂活动的形式将学生的思维联系在一起,而学生在课堂上无疑是一个真正的主宰者。
五、教学过程
①基础回顾与测评:将本章的基础知识都以一些常见的基础问题的形式展现,便于学生理解更便于学生对二次根式的模型的真正理解;
②整理知识点:一个问题整理一个知识点,让学生能对号入座,便于掌握与分析;
③合作探究:对本章中典型的计算与化简进行专门的探究讲解,突出重点,突破难点;
④达标训练:对所复习的知识点进行巩固训练,已达到进一步掌握;
⑤堂清检测:针对不同的学生,不同的问题进行不同的检测,以确定其对本章所学知识的掌握情况,达到实现面向全体教学的目标;
五、作业设计
1.作业设计目标
根据不同学生掌握新知的程度不同,对作业的完成也有不同的要求。
为此,对于A类学生应能运用新知解决相关程度的问题(巩固提
高第1、2、3、4、5题);而B类学生要求解决相关的基础性问题(巩固提高第1、2题),对与新知相关程度的问题应积极尝试;
2.难易梯度和针对性
学生学习新知掌握的程度不同,对新知进行训练的要求就不同。
但是,作业的目的都应针对本课内容的教学,故本课作业应完成课后第1~5题。
第1、2题是一个基础性的问题,学生大体上应能解决。
而第3~5题是与本课教学相对应的相关程度的问题,A类的学生应能较好的解决,B类学生则要求积极的尝试。