氧化铝陶瓷的制备与显微结构
氧化铝陶瓷
氧化铝陶瓷氧化铝陶瓷摘要:本文介绍了氧化铝陶瓷的结构、制备、性能及用途。
关键字:氧化铝陶瓷、Al2O3正文:一、氧化物陶瓷简介按照传统的分类方法,陶瓷可分为普通陶瓷和特种陶瓷(精细陶瓷),这两类陶瓷间没有严格的界限,有的陶瓷品种可以一种多用。
工业Al2O3,是由铝矾土(Al2O·3H20)和硬水铝石制备的,对于纯度要求高的Al2O3,一般用化学方法来制备。
电熔刚玉即是用上述原料加碳在电弧炉内于2000—2400℃熔融而制得,也称人造刚玉。
Al2O3有许多同质异晶体,目前已知的有10多种,主要有3种晶型,即Al2O3 、Al2O3 、Al2O3 。
其结构不同性质也不同,在1300℃以上的高温时几乎完全转化为Al2O3。
Al2O3属尖晶石型(立方)结构,氧原子呈立方密堆积,铝原子填充在间隙中,在高温下不稳定,力学性能、电学性能差,在自然界中不存在。
由于结构疏松,因此,也可用它来制造某些特殊用途的多孔材料。
Al2O3是一种Al2O3含量很高的多铝酸盐矿物。
它的化学组成可以近似地用RO·6 Al2O3和R2O·11 Al2O3来表示(RO指碱上金属氧化物,R2O指碱金属氧化物),其结构由碱金属或碱土金属离子如[NaO]-层和[Al11O12]+类型尖晶石单元交叠堆积而成。
氧离子排列成立方密堆积,Na+完全包含在垂直于c轴的松散堆积平面内,在这个平面内可以很快扩散,呈现离子型导电现象。
Al2O3属三方晶系,单位晶胞是一个尖的菱面体,在自然界只存在Al2O3,如天然刚玉、红宝石、蓝宝石等矿物。
Al2O3结构最紧密、活性低、高温稳定。
它是三种形态中最稳定的晶型,电学性能最好,具有良好的机械和电学性能,一般氧化铝陶瓷都由Al2O3来制取。
二、氧化铝陶瓷的制造工艺氧化铝陶瓷是一种以Al2O3为主晶相的陶瓷材料,其氧化铝含量一般在75%~99%之间。
习惯上以配料中氧化铝的含量进行分类,氧化铝含量在75%左右的为"75瓷”,含量在99%的为“99瓷”等。
99氧化铝陶瓷参数
99氧化铝陶瓷是一种高纯度、高硬度的材料,具有高熔点、高沸点、化学稳定性好等特点。
其参数主要包括以下几项:1. 化学成分:氧化铝陶瓷的主要成分是α-Al2O3,此外,还含有少量的硅酸盐、氯离子等杂质。
2. 密度:氧化铝陶瓷的密度约为3.9-4.0g/cm3,不同生产工艺下密度会有所不同。
3. 莫氏硬度:氧化铝陶瓷的莫氏硬度约为9,仅次于金刚石,具有很高的耐磨性。
4. 显微结构:氧化铝陶瓷的显微结构可以分为隐晶质和微晶结构,其中微晶结构又可以分为等轴状和板状。
5. 机械强度:氧化铝陶瓷的机械强度很高,可以高达300MPa以上。
6. 热学性能:氧化铝陶瓷的热导率较低,约为5.8W/(m·K),但在高温下热导率会有所增加。
氧化铝陶瓷的线膨胀系数较小,约为4×10^-6/℃,在高温下也很稳定。
7. 使用温度:氧化铝陶瓷可以在高达1600℃的高温下使用,具有良好的耐高温性能。
在制备过程中,制备工艺和配方对氧化铝陶瓷的性能影响很大。
其中,烧结工艺包括一次高温烧结和二次烧结。
一次高温烧结是通过一定的保温时间来促进晶粒生长,二次烧结是对已生成相进行优化处理,以提高材料的致密度和减小气孔率。
通过这些工艺,可以制备出性能优良的氧化铝陶瓷材料。
在应用方面,氧化铝陶瓷具有高硬度、高强度、耐腐蚀、抗氧化等特点,被广泛应用于机械、电子、通信、医疗等领域。
特别是在电子领域,氧化铝陶瓷作为电子基材,可以制作出高频、高温、高压、高绝缘等特殊电子元件,是制作高频绝缘电阻器、微波绝缘材料、半导体器件的外壳、谐振器、滤波器等不可缺少的材料。
同时,氧化铝陶瓷也广泛应用于军工、航天航空等领域。
需要注意的是,氧化铝陶瓷是一种脆性材料,在应用时需要注意避免过度冲击和弯曲。
此外,氧化铝陶瓷的生产和应用过程中要注意环保和安全问题,遵守相关规定和标准。
总之,99氧化铝陶瓷是一种具有优良性能的材料,其参数和制备工艺都很重要,需要综合考虑才能获得性能优良的产品。
细晶氧化铝陶瓷基板的流延成型和显微结构控制研究
第42卷第9期2023年9月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.9September,2023细晶氧化铝陶瓷基板的流延成型和显微结构控制研究邓佳威1,熊新锐1,徐协文1,刘㊀鹏1,杨现锋1,谢志鹏2(1.长沙理工大学材料科学与工程学院,长沙㊀410004;2.清华大学材料学院新型陶瓷与精细工艺国家重点实验室,北京㊀100083)摘要:采用砂磨工艺获得了亚微米氧化铝复合粉体,用于制备微晶氧化铝陶瓷基板,研究了浆料组成对浆料流变学性质㊁生坯密度㊁生坯应力-应变行为的影响,以及烧结制度对平均晶粒尺寸和基板抗弯强度的影响㊂结果表明,固相含量㊁R 值(增塑剂和黏结剂的质量比)和分散剂用量等关键因素决定了流延浆料的流变学性质㊂R 值增大导致生坯强度和密度降低,提高固相含量有利于增加最大可流延厚度,优化工艺条件下可制备0.16~1.20mm 的坯片㊂当烧结温度为1550ħ㊁升温速率为2.5ħ/min㊁保温时间为60min 时,制备的陶瓷基板平均晶粒尺寸为1.1μm 左右,晶粒尺寸分布均匀,抗弯强度达到(440ʃ25)MPa㊂关键词:氧化铝;陶瓷基板;流延成型;晶粒尺寸;烧结制度中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)09-3306-09Tape Casting and Microstructure Controlling of Fine Grained Al 2O 3Ceramic SubstrateDENG Jiawei 1,XIONG Xinrui 1,XU Xiewen 1,LIU Peng 1,YANG Xianfeng 1,XIE Zhipeng 2(1.School of Materials Science and Engineering,Changsha University of Science &Technology,Changsha 410004,China;2.State Key Laboratory of New Ceramic and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100083,China)Abstract :The submicron Al 2O 3composite powder was obtained by sand milling process,which was used to prepare fine grained Al 2O 3ceramic substrates.The effect of slurry composition on rheological properties of slurry,bulk density and stress-strain behavior of green tape was investigated,and the influence of sintering schedule on average grain size and flexural strength of ceramic substrate was also studied.The results show that key factors such as solid content,R value (mass ratio of plasticizer to binder)and dispersant dosage determine the rheological properties of slurry.The increase of R value leads to the reduction of tensile strength and density of green tape,and the increase of solid content is beneficial to increase the possible maximum casting thickness.Under the optimized process conditions,0.16~1.20mm green sheets can be prepared.At a sintering temperature of 1550ħ,a heating rate of 2.5ħ/min and a holding time of 60min,the average grain size of the prepared ceramic substrate is about 1.1μm,the grain size distribution is uniform,and the flexural strengthreaches (440ʃ25)MPa.Key words :Al 2O 3;ceramic substrate;tape casting;grain size;sintering schedule 收稿日期:2023-05-11;修订日期:2023-05-29基金项目:国家自然科学基金(52172063);江西省重点研发计划(20232BBE50029)作者简介:邓佳威(1994 ),男,硕士研究生㊂主要从事工程陶瓷材料方面的研究㊂E-mail:180****6393@通信作者:杨现锋,博士,教授㊂E-mail:yangxfcsut@0㊀引㊀言氧化铝陶瓷具有原料来源丰富㊁价格低廉㊁绝缘性高㊁耐热冲击㊁抗化学腐蚀及机械强度高等优点,是一种综合性能优异的陶瓷基片材料,占陶瓷基片材料总量的80%以上㊂国内电子封装领域的氧化铝基板年需求量超过100万平方米㊂在功率器件㊁5G 通信㊁压力传感器等领域,高性能96(Al 2O 3质量分数约为96%)和第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3307㊀99(Al 2O 3质量分数达到99%)氧化铝陶瓷基板得到了广泛应用㊂为适应器件高功率㊁高密度封装和长寿命的要求,氧化铝基板需要具备更高的热导率㊁抗弯强度㊁介电常数㊁可靠性以及更低的介质损耗[1-2]㊂陶瓷基板的流延成型主要采用有机流延浆料或水系流延浆料体系㊂有机流延浆料采用二元或三元共沸溶剂体系,具有挥发速度快㊁浆料稳定㊁坯体缺陷尺寸小以及与其他有机添加剂相容性好等优点,在氧化铝基板的工业化生产中得到广泛应用㊂但有机流延体系所用的有机溶剂对人体和环境有害,对尾气处理要求高,限制了其进一步应用㊂水系流延体系使用水代替有机溶剂,虽然克服了有机流延体系的环境危害问题,但是存在水与有机添加剂相容性较差的问题,流延浆料极易发生沉降,并且由于水中羟基含量较高,粉体团聚现象明显㊂此外,由于水的挥发速度较慢,干燥过程中容易发生干裂和翘曲现象[3-4]㊂细晶化是提高氧化铝基板性能的主要途径,细晶氧化铝陶瓷的显微结构更均匀,机械性能和可靠性显著提升[5-6]㊂氧化铝粉体的颗粒大小和粒度分布是影响氧化铝陶瓷显微结构的首要因素,粒度分布窄的亚微米氧化铝粉体有利于制备细晶氧化铝陶瓷[7-8]㊂此外,采用纳米级的烧结助剂或者采用新型的烧结助剂也是降低烧结温度和控制氧化铝晶粒尺寸的主要途径[9-10]㊂影响氧化铝陶瓷晶粒大小的另外一个决定性因素是烧结制度,研究者一般采用低温烧结或者二步烧结㊁放电等离子体烧结㊁震荡压力烧结等特种烧结技术来抑制氧化铝晶粒长大,从而获得细晶结构[11-15]㊂然而,这些研究主要关注单一影响因素对氧化铝陶瓷显微结构的影响,而高性能细晶氧化铝陶瓷基板的制备需要建立粉体特征㊁浆料流变学性质㊁烧结制度和力学性能之间的关联㊂本文采用砂磨+喷雾干燥工艺,获得粒度分布集中的亚微米氧化铝粉体并使助烧剂均匀分散,然后研究了有机溶剂组成对浆料流变学性质和成型性能的影响;重点通过优化烧结制度获得微晶化显微结构并分析了烧结制度对基片抗弯强度的影响,采用透射电子显微镜分析了烧结助剂的分布与存在形式,旨在为高性能氧化铝陶瓷基板的材料设计和工艺优化提供参考㊂1㊀实㊀验1.1㊀原㊀料采用Alteo 公司的氧化铝粉体(P662LSB),D 50为3.4μm㊂流延成型采用有机溶剂体系,包括无水乙醇(国药集团药业股份有限公司)㊁乙酸乙酯(国药集团药业股份有限公司)和乙酸丁酯(国药集团药业股份有限公司)㊂有机黏结剂采用聚乙烯醇缩丁醛(PVB,国药集团药业股份有限公司)㊂增塑剂采用邻苯二甲酸二丁酯(DBP,国药集团药业股份有限公司)㊂烧结助剂为CaCO 3(上海亮江钛白化工制品有限公司,D 50为300nm)㊁纳米SiO 2(江苏天行新材料有限公司,D 50为60nm)㊁纳米MgO(宣城晶瑞新材料有限公司,D 50为100nm)㊂分散剂为蓖麻油(CHO)和三油酸甘油酯(GTO)㊂按照Al 2O 396%+CaO 1%+MgO 1%+SiO 22%的质量比在砂磨机(长沙西丽纳米研磨科技有限公司,XL-1L,0.8mm 锆球,转速1200r /min)中研磨40min,得到的浆料通过喷雾干燥制得原料粉体㊂氧化铝粉体和砂磨后粉体的粒度分布㊁颗粒形貌分别如图1㊁2所示㊂砂磨后,原料粉体的D 50为0.8μm㊂图1㊀砂磨处理前后粉体的粒度分布曲线Fig.1㊀Particle size distribution of powder before and after sand milling3308㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图2㊀砂磨处理前后粉体的SEM照片Fig.2㊀SEM images of powder before and after sand milling1.2㊀试验过程将原料粉体和溶剂在行星球磨机中混合120min,转速为600r/min,然后加入黏结剂和增塑剂继续混合120min,转速为600r/min,最后将转速降至300r/min混合30min得到流延成型用的浆料㊂得到的浆料在真空除泡机(TPJ,北京东方泰阳科技有限公司)上除泡,除泡后在流延成型机(LYJ-253-3,北京东方泰阳科技有限公司)上流延得到生坯片㊂将生坯片裁剪后放入排胶炉中排胶,然后在马弗炉中进行常压烧结㊂排胶制度为:在0~200ħ以0.5ħ/min的速率升温,在200~600ħ以1ħ/min的速率升温,达到600ħ后保温120min㊂1.3㊀测试与表征采用排水法测试材料的体积密度㊂采用电脑式伺服拉压力试验机(PT-1176,东莞市宝大仪器有限公司)测试流延生坯片(13mmˑ1.4mmˑ2.0mm)的拉伸强度和应力-应变曲线㊂切割烧结后的基片,得到13mmˑ1.0mmˑ2.0mm的样品,测试基片材料的三点抗弯强度㊂采用旋转流变仪(DHR-2,TA,美国)测试浆料的流变学性质㊂对陶瓷基本表面进行抛光研磨后,在马弗炉中进行热腐蚀处理(1200ħˑ0.5h),然后使用场发射扫描电子显微镜(Hitachi,S4800,日本)观察晶粒形貌并采用ImageproPlus软件统计测量晶粒平均尺寸㊂采用透射电子显微镜(Tecnai,F30,日本)分析表征晶界结构和助烧剂元素的分布状况㊂2㊀结果与讨论2.1㊀浆料组成对浆料流变学性质的影响浆料黏度是陶瓷粉体-液相分散体系内部复杂相互作用的综合反映,是影响流延坯片质量的重要参数㊂本文研究了固相含量㊁R值和分散剂含量对浆料黏度的影响,剪切黏度随剪切速率的变化曲线如图3所示㊂流延成型过程中,剪切速率可以通过膜带速率和刀口高度之比进行估算㊂对于本研究制备的浆料,当剪切速率在1~3s-1时,表观黏度-剪切速率曲线陡峭,剪切速率轻微变化就会导致黏度剧烈变化,对流延过程产生不利影响㊂固相含量是影响流延浆料黏度的首要因素㊂由图3(a)可知,当固相含量由26%(体积分数)增大到28%时,浆料黏度显著增大㊂图3(b)为不同R值时剪切黏度随剪切速率的变化㊂由图可知,随着R值增大,浆料黏度显著降低㊂这是因为增塑剂小分子插入黏结剂聚乙烯醇缩丁醛(PVB)高分子链之间,增加了长链的距离,起到了润滑作用从而降低了黏度㊂图3(c)分别采用了蓖麻油(CHO)㊁三油酸甘油酯(GTO)和CHO与GTO的混合分散剂(质量比1ʒ1),考察了不同分散剂对浆料流变学性质的影响,可以发现GTO的引入可以显著降低浆料的黏度㊂但当单独采用GTO时,由于GTO的引入量较高,GTO在润湿粉体表面的同时,显著减弱了粉体颗粒之间的粘合力,导致生坯容易出现开裂缺陷㊂因此本研究采用GTO和CHO复合分散剂[16]㊂2.2㊀坯片流延成型本研究接着探讨了R值对流延生坯拉伸强度㊁体积密度和应力-应变行为的影响,结果如图4所示㊂由图4(a)可知,随着R值增大,生坯片的拉伸强度呈下降趋势,这是由于在黏结剂和增塑剂总量不变的情况第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3309㊀下,R 值增大意味着黏结剂PVB 降低,而黏结剂PVB 是生坯强度的主要决定因素㊂此外,R 值增大,生坯片的密度也明显下降,这是因为增塑剂DBP 的密度低于黏结剂PVB,添加总质量不变的情况下,R 值增大,增塑剂和黏结剂的体积增加,生坯片的密度下降㊂图4(b)为各R 值下坯片的应力-应变曲线㊂结果表明R 值为60时,生坯片可以承受更大的应变而不断裂,展现了更好的柔韧性㊂图3㊀浆料组成对流变学行为的影响Fig.3㊀Influence of suspension composition on rheologybehavior 图4㊀R 值对生坯性能的影响Fig.4㊀Influence of R value on properties of greentape 图5㊀不同固相含量浆料的最大流延厚度及干燥收缩Fig.5㊀Maximum tape thickness and drying shrinkage of suspension with different solid content 在基片的流延成型中,一般通过调节浆料的黏度来满足不同厚度基片的制备㊂本文对比研究了不同固相含量能够流延成型的最大基片厚度及其对应的干燥收缩,结果如图5所示㊂随着固相含量的增加,浆料黏度增加,可以成型的基片最大厚度变大㊂当固相含量为22%时,最大厚度约为0.6mm,对应收缩率接近75%;固相含量为28%时,可以制备得到完好的基片生坯,其厚度约为1.4mm,对应收缩率约为55%㊂以流延刀口高度2.5mm 为例,不同固相含量流片坯片外观如图6所示㊂当固相含量较低(22%和24%)时,由于浆料黏度较低,无法保持较厚液膜的稳定摊平,液膜厚度不一致㊂另外溶剂含量高,干燥收缩大,会导致干燥后的坯片出现开裂㊂当固相含量为30%时,浆料黏度过高,无法完成流延㊂对于固相含量3310㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷26%和28%的浆料,黏度适中,可以得到外观质量好㊁无明显缺陷的坯片㊂但是,高黏度浆料中容易裹挟气泡,干燥过程中可能导致坯片表面出现针孔,需要通过添加消泡剂或者改善球磨和除泡工艺以消除此类缺陷㊂图7所示为优化工艺条件下得到的0.16~1.20mm 生坯片㊂图6㊀不同固相含量浆料的坯片照片(刀口厚度2.5mm)Fig.6㊀Green blank made from suspension with different solid content (blade height:2.5mm)图7㊀不同厚度的生坯片Fig.7㊀Green blank with different thickness 2.3㊀烧结制度对基板显微结构和抗弯强度的影响氧化铝陶瓷基板的致密度㊁晶粒尺寸及均匀性直接影响基板的强度㊁韧性和可靠性㊂烧结过程中氧化铝晶粒的生长对温度非常敏感,易快速生长或各向异性生长㊂本文研究了烧结温度㊁保温时间和升温速率三个关键因素对氧化铝陶瓷基板显微结构的影响㊂图8为不同烧结温度下的基板的断片显微结构及晶粒尺寸分布统计㊂当烧结温度为1530和1550ħ㊁保温时间为60min㊁升温速率为2ħ/min 时,平均晶粒尺寸约1.1μm,晶粒尺寸分布均匀㊂当烧结温度为1570ħ时,出现了明显的异常长大,平均晶粒尺寸超过3.4μm㊂烧结基板的体积密度测试结果表明,当烧结温度为1530ħ时,基片的密度为95%,烧结温度为1550ħ时,相对密度达到98%㊂因此,选择烧结温度为1550ħ,分别研究保温时间和升温速率对基片显微结构的影响㊂图9为不同保温时间和升温速率下的断面SEM 照片及晶粒尺寸分布㊂由图9(a)㊁(b)可知,延长保温时间会明显导致晶粒长大和晶粒尺寸分布不均匀㊂当保温时间为120min 时,平均晶粒尺寸超过3μm㊂由图9(c)可知,当升温速率降低至1ħ/min 时,平均晶粒尺寸增大到3.39μm㊂因此,降低升温速率也不利于抑制氧化铝晶粒的长大㊂助烧剂在氧化铝陶瓷的烧结过程中扮演着重要角色,本文采用透射电子显微镜表征了晶界结构和助烧剂元素的分布状态,如图10所示㊂由图10(a)可知,两个氧化铝晶粒之间的相邻晶界和三角晶界处存在非结晶的玻璃相区域㊂图10(b)所示区域的元素分布如图10(c)~(f)所示㊂对比发现,Ca 和Mg 元素主要富集在三角晶界处形成玻璃相㊂Mg 元素均匀分布在样品中,没有参与玻璃相的形成㊂图10(f)中显示的ZrO 2颗粒由砂磨介质磨损引入,ZrO 2颗粒的引入能够起到应力诱导相变增韧的效果㊂图11所示为烧结制度对基板抗弯强度的影响㊂对比分析可知,抗弯强度的变化与晶粒平均尺寸的变化规律呈明显的相关性,平均晶粒细小的基板对应较高的抗弯强度㊂在烧结温度为1550ħ㊁升温速率为第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3311㊀2ħ/min㊁保温时间为60min 时,抗弯强度达到(440ʃ25)MPa,达到同类产品的先进水平㊂图12为该条件下制备的80mm ˑ80mm ˑ1.0mm 陶瓷基板,外观平整,无明显翘曲和变形㊂图8㊀不同温度下烧结基板的断面SEM 照片和晶粒尺寸分布Fig.8㊀SEM images and grain size distribution of fracture surface of substrate sintered at differenttemperatures3312㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图9㊀不同保温时间和升温速率下烧结基板的断面SEM 照片和晶粒尺寸分布Fig.9㊀SEM images and grain size distribution of fracture surface of substrate sintered at different holding time and heatingrate 图10㊀氧化铝基板晶界区域结构的TEM 照片和断面元素分布Fig.10㊀TEM images and element distribution of grain boundary structure in Al 2O 3substrate第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3313㊀图11㊀烧结温度㊁保温时间和升温速率对陶瓷基板抗弯强度的影响Fig.11㊀Influences of sintering temperature,holding time and heating rate on flexural strength of ceramicsubstrate 图12㊀氧化铝陶瓷基板照片(80mm ˑ80mm ˑ1.0mm)Fig.12㊀Image of Al 2O 3ceramic substrate (80mm ˑ80mm ˑ1.0mm)3㊀结㊀论1)采用砂磨方法制备得到的亚微米复合粉体D 50为0.8μm,采用PVB 作为黏结剂,DBP 作为增塑剂,GTO 和CHO 作为复合分散剂,制备了最高固相体积分数为28%的适合流延成型的浆料,通过优化工艺制备了0.16~1.20mm 的坯片㊂R 值增大导致生坯强度和密度降低,合适的R 值为60㊂2)烧结基板的平均晶粒尺寸与烧结温度㊁保温时间和升温速率等参数紧密相关㊂在烧结温度为1550ħ㊁升温速率为2ħ/min㊁保温时间为60min 时,制备的陶瓷基板平均晶粒尺寸在1.1μm 左右,晶粒尺寸分布均匀,抗弯强度达到(440ʃ25)MPa㊂参考文献[1]㊀MA M,WANG Y,NAVARRO-CÍA M,et al.The dielectric properties of some ceramic substrate materials at terahertz frequencies[J].Journalof the European Ceramic Society,2019,39(14):4424-4428.[2]㊀VALDEZ-NAVA Z,KENFAUI D,LOCATELLI M L,et al.Ceramic substrates for high voltage power electronics:past,present and future[C]//2019IEEE International Workshop on Integrated Power Packaging (IWIPP),Toulouse,France,2019.[3]㊀KRISHNAN P P R,VIJAYAN S,WILSON P,et al.Aqueous tape casting of alumina using natural rubber latex binder [J ].CeramicsInternational,2019,45(15):18543-18550.[4]㊀吕子彬,海㊀韵,吕金玉,等.陶瓷基片流延成型用浆料研究进展[J].武汉理工大学学报,2021,43(6):7-14.LYU Z B,HAI Y,LYU J Y,et al.Research of slurry in ceramic substrate casting[J].Journal of Wuhan University of Technology,2021,43(6):7-14(in Chinese).[5]㊀KAMBALE K R,MAHAJAN A,BUTEE S P.Effect of grain size on the properties of ceramics[J].Metal Powder Report,2019,73(3):130-136.[6]㊀TENG X,LIU H,HUANG C.Effect of Al 2O 3particle size on the mechanical properties of alumina-based ceramics[J].Materials Science &3314㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷Engineering A,2007,452(5):545-551.[7]㊀LEE H M,HUANG C Y,WANG C J.Forming and sintering behaviors of commercialα-Al2O3powders with different particle size distribution andagglomeration[J].Journal of Materials Processing Tech,2009,209(2):714-722.[8]㊀李建忠,张㊀勇,徐大余.氧化铝粉体性能对流延法生产陶瓷基板的影响[J].硅酸盐通报,2011,30(2):345-347+366.LI J Z,ZHANG Y,XU D Y.Influence of alumina raw materials on ceramic slices fabricated by tape casting[J].Bulletin of the Chinese Ceramic Society,2011,30(2):345-347+366(in Chinese).[9]㊀KZAB C,RHA B,GDAB C,et al.Effects of fine grains and sintering additives on stereolithography additive manufactured Al2O3ceramic[J].Ceramics International,2020,47(2):2303-2310.[10]㊀YANG Y,MA M,ZHANG F,et al.Low-temperature sintering of Al2O3ceramics doped with4CuO-TiO2-2Nb2O5composite oxide sintering aid[J].Journal of the European Ceramic Society,2020,40(15):5504-5510.[11]㊀KATARÍNA B A,B D G,PETER V B,et al.Grain growth suppression in alumina via doping and two-step sintering[J].CeramicsInternational,2015,41(9):11975-11983.[12]㊀GAO L,HONG J S,MIYAMOTO H,et al.Bending strength and microstructure of Al2O3ceramics densified by spark plasma sintering[J].Journal of the European Ceramic Society,2000,20(12):2149-2152.[13]㊀HAN Y,LI S,ZHU T,et al.Enhanced properties of pure alumina ceramics by oscillatory pressure sintering[J].Ceramics International,2017,44(5):5238-5241.[14]㊀LI J,YE Y,LI J,et al.Densification and grain growth of Al2O3nanoceramics during pressure less sintering[J].Journal of the AmericanCeramic Society,2010,89(1):139-143.[15]㊀侯清健,游㊀韬,王子鸣,等.烧结升温速率对低温共烧陶瓷基板性能的影响[J].硅酸盐通报,2022,41(3):1039-1043.HOU Q J,YOU T,WANG Z M,et al.Effect of sintering heating rate on properties of low temperature co-fired ceramic substrate[J].Bulletin of the Chinese Ceramic Society,2022,41(3):1039-1043(in Chinese).[16]㊀吕子彬,郭恩霞,海㊀韵,等.分散剂对低温共烧陶瓷流延浆料流变性能的影响[J].硅酸盐通报,2022,41(11):3979-3989.LYU Z B,GUO E X,HAI Y,et al.Effects of dispersants on rheological properties of LTCC casting slurry[J].Bulletin of the Chinese Ceramic Society,2022,41(11):3979-3989(in Chinese).。
氧化铝陶瓷材料的制备与性能研究
氧化铝陶瓷材料的制备与性能研究氧化铝陶瓷是一种广泛应用于高温、高压、耐蚀、绝缘等领域的工程陶瓷材料,它拥有良好的物理性能和化学稳定性,在航空航天、核工业、电子器件等领域都有着广泛的应用。
在这篇文章中,本文将介绍氧化铝陶瓷材料的制备与性能研究。
1. 氧化铝陶瓷的制备方法氧化铝陶瓷主要通过粉末冶金工艺制备,综合考虑生产成本、工艺难度、产品性能等因素,目前广泛采用压力成型烧结方法进行制备。
主要包括以下几个步骤:(1)原料制备。
氧化铝陶瓷的原料主要由氧化铝粉末、稳定剂和助烧剂组成。
稳定剂主要用于调节陶瓷晶格结构,提高其物理性能和化学稳定性;助烧剂则主要用于促进氧化铝陶瓷的烧结过程,使其达到最终的致密化程度。
(2)混合制备。
将氧化铝、稳定剂和助烧剂等原料混合均匀,通常采用机械混合或湿法混合等不同的混合工艺,确保原料的均匀分散。
(3)压制成形。
将混合好的原料进行成形,包括干压成形、注塑成形、压制成形等多种不同的成形工艺。
通常根据产品的形状、尺寸和生产工艺等因素进行选用。
(4)烧结处理。
将成形好的氧化铝陶瓷进行烧结处理,主要通过高温、高压等条件使其致密化。
目前常用的烧结工艺主要包括钨丝热烧结、等离子烧结等方法,在烧结过程中,需要控制温度、压力和保温时间等因素,以确保成品的物理性能和化学稳定性。
2. 氧化铝陶瓷的性能研究氧化铝陶瓷具有优良的物理性能和化学稳定性,具备高温、高压、耐蚀、绝缘等优异的性能特点。
目前,研究人员主要从以下几个方面进行了深入的探讨和研究。
(1)物理性能研究。
氧化铝陶瓷的物理性能研究主要涉及到其密度、硬度、强度、断裂韧性等方面的测定,以及其热膨胀系数、比热容、导热系数等热学性能的测定。
研究发现,氧化铝陶瓷具备高硬度、高强度、高韧性等特点,并且具有较低的热膨胀系数和较高的比热容,这些物理性能优势使得氧化铝陶瓷成为了高温、高压等恶劣条件下的理想工程材料。
(2)表面性能研究。
氧化铝陶瓷的表面性能研究主要涉及到其耐腐蚀性、耐磨性、耐热性等方面的探讨。
氧化铝陶瓷片生产过程
氧化铝陶瓷片生产过程以氧化铝陶瓷片生产过程为标题,下面将详细介绍氧化铝陶瓷片的生产过程。
一、原料的准备氧化铝陶瓷片的主要原料是氧化铝粉末。
首先,需要选用高纯度的氧化铝粉末作为原料。
氧化铝粉末一般通过矿石提取、化学合成或者纳米材料制备等方法得到。
为了确保产品质量,需要对原料进行严格的筛选和检测。
二、粉末的成型氧化铝粉末通过成型工艺制备成具有一定形状和尺寸的陶瓷片。
常用的成型方法有压制成型、注塑成型和浇铸成型等。
其中,压制成型是最常见的方法。
该方法将氧化铝粉末放入模具中,然后加压,使粉末颗粒之间产生结合力。
成型后的陶瓷片形状和尺寸稳定,能够满足不同产品的要求。
三、陶瓷片的烧结成型后的陶瓷片需要进行烧结,以提高其致密度和力学性能。
烧结是将陶瓷片在高温下进行加热,使其颗粒之间发生结晶和扩散,从而形成致密的结构。
烧结的温度一般在氧化铝的熔点以上进行,通常为1500°C至1800°C之间。
在烧结过程中,陶瓷片会发生尺寸变化,因此需要控制烧结温度和时间,以确保陶瓷片的尺寸稳定。
四、表面处理烧结后的陶瓷片表面可能存在一些不平整或粗糙的问题,因此需要进行表面处理,以提高其光洁度和平整度。
常用的表面处理方法有抛光、研磨和涂层等。
抛光是通过摩擦和磨削的方式,将陶瓷片表面的粗糙部分去除,从而获得光滑的表面。
研磨是利用研磨工具对陶瓷片表面进行磨削,以去除表面的凹凸不平。
涂层是在陶瓷片表面涂覆一层保护性涂层,以增加其机械强度和耐磨性。
五、产品的检验与包装生产出的氧化铝陶瓷片需要进行质量检验,以确保其符合产品要求。
常用的检验项目包括外观检查、尺寸测量、密度测试和力学性能测试等。
检验合格后,产品才能进行包装。
常见的包装方式有塑料袋包装、泡沫箱包装和木箱包装等。
包装完毕后,产品进行标识和贴标签,方便后续存储和运输。
氧化铝陶瓷片的生产过程包括原料的准备、粉末的成型、陶瓷片的烧结、表面处理、产品的检验与包装等环节。
以MnO2-TiO2-MgO为添加剂注浆成型低温烧结Al2O3陶瓷
以MnO2-TiO2-MgO为添加剂注浆成型低温烧结Al2O3陶瓷采用注浆成型方法,通过加入MnO2-TiO2-MgO复相添加剂,在1350℃空气气氛中常压烧结,获得了相对密度最大为95.7%的氧化铝陶瓷。
研究了MnO2-TiO2-MgO复相添加剂对氧化铝陶瓷显微结构与力学性能的影响。
在添加质量分数为3%MnO2,0.5%MgO的情况下,比较添加不同质量分数的TiO2(1.0~3.0%)对氧化铝陶瓷烧结性能的影响。
通过对比发现,该复相添加剂能有效降低氧化铝陶瓷的烧结温度,在同一温度下,随着TiO2的增加,烧结体密度也随之增加,强度也有明显差别。
结果表明,1350℃下Al2O3+0.5%MgO+3%MnO2+1.5%TiO2体系烧结效果最好,断口为沿晶断裂,无明显气孔,晶粒分布均匀,平均粒径为2μm,无晶粒异常长大现象。
烧结体密度达到3.80g/cm^3,抗弯强度为243MPa。
结果表明,添加TiO2 5%、在1300oC时的常压烧结密度可达到理论值的97%.固定CuO(0.4%)和TiO2(4%)的添加量、改变TiO2(0--32%)和CuO(0--3.2%)的添加量(质量分数, 下同), 研究了CuO--TiO2复合助剂对氧化铝陶瓷烧结性能、微观结构、物相组成以及烧结激活能的影响, 以揭示复合助剂的低温烧结机理。
结果表明, 在1150--1200℃TiO2固溶入Al2O3生成Al2Ti7O15相, 并生成大量正离子空位提高了扩散系数, 从而以固相反应烧结的作用机理促进了氧化铝陶瓷的致密化; TiO2在Al2O3中的极限固溶度为2%--4%, 超过固溶极限的TiO2对陶瓷烧结没有促进作用; 添加适量的CuO(0.4%)可将TiO2在Al2O3中的固溶温度降低到1100℃以下, 并以液相润湿作用促进氧化铝陶瓷的致密烧结。
陶瓷烧结激活能的计算结果定量地印证了上述烧结机理; 当在Al2O3中添加4%的TiO2和2.4%的CuO,可将烧结激活能降低到54.15 kJ ? mol-1。
以冰为模板制备氧化铝多孔陶瓷及其结构特征
mi o t cueo epo u t so s re ys a nn lcrnmirs o e ( E . h e u ss o a ei a e l c sr tr fh rd cswa b ev d b c n igee t co c p S M) T e rs l h w t tc ni a r u t o t h i s d
别 的模 板 , 不需 要 如煅 烧 、 学 刻蚀 等 去除 模 板 的 也 化
到刚玉粉 一水玻璃的混合液 。 将上述两种配方 的混合液注入 自制的模具 中 , 放 入 L J 1D真 空冷 冻干燥 机 中于 一 0 G 一0 3 ℃下冷冻 2h 4 。将冻结的刚玉粉 一 水玻璃混合物真空干燥至彻 底, 得到与成型模具形状相似 的多孔氧化铝坯体 。将 该坯体放入高温箱式电炉 中以 l ℃/ i 的升温速率 0 mn
por nosr t ed c rm i s .Am .Cea .S . ousna tucur e a c .J rm oc,20 0,9 1 3
制 备氧 化铝 多孔 陶 瓷 , 过控 制 浆体 的 浓度 或粘 度可 通
以设计多孔结构和层状结构的复合微观结构 。
() 2 9 - 5 2 9: 4 9 2 0
以冰 为模 板 制 备 氧化 铝 多孑 陶 瓷及 其 结 构 特 征 L
氧化铝陶瓷制作工艺
氧化铝陶瓷制作工艺氧化铝陶瓷是一种具有高强度、高硬度、高稳定性和高化学稳定性的特殊陶瓷材料。
其制作工艺包括原料制备、成型、烧结和后处理。
以下是详细的制作工艺过程。
1. 原料制备氧化铝陶瓷的主要原料是高纯度氧化铝,其纯度要求高达99.99%以上。
其次还需要一些助剂,如结合剂、流变剂和添加剂等。
在原料制备中,首先将高纯度氧化铝粉末加入到一定比例的溶液中,调整其PH值和比例,使之成为可流动的泥浆状物质。
然后将助剂加入其中,进行充分混合和静置。
2. 成型氧化铝陶瓷的成型方式有多种,包括注塑成型、挤出成型和压制成型等。
其中,注塑成型是最为常用的成型方式。
在注塑成型过程中,先将制备好的氧化铝泥浆注入注塑机中,经过一定的压力和形状模具的作用,使之成形。
形成的坯料亦称为瓷坯,是之后烧结的主要原料。
3. 烧结瓷坯在烧结过程中,需将其加热到相应的高温下,使其颗粒间的空隙逐渐消失,颗粒间发生熔合,形成致密的陶瓷结构。
烧结温度一般在1500℃以上,而烧结时间则根据实际需要进行调整。
在烧结过程中,温度升高时,会逐渐发生晶粒长大和结晶化的过程,从而提高氧化铝陶瓷的密度、结晶度和力学性质。
4. 后处理烧结后的氧化铝陶瓷需要进行后处理,以达到期望的性能和外观效果。
后处理包括去毛刺、打磨、抛光、阳极氧化等。
去毛刺是一项必要过程,可去除瓷坯表面的毛刺和毛发,使其表面更加光滑。
打磨和抛光则可将瓷坯表面的粗糙度和凹凸不平处处理,使之表面更加平滑细腻。
而阳极氧化则是为了提高氧化铝陶瓷的耐腐蚀性和色泽度。
总的来说,氧化铝陶瓷的制作工艺不仅要求原料的纯度和质量,还需要严格控制成型、烧结和后处理等各个环节的工艺参数。
只有如此,才能生产出高品质的氧化铝陶瓷产品。
氧化铝陶瓷制作工艺简介
无机非金属材料工艺学无机非金属材料工艺学第三次作业班级:材料科学与工程2班(非金属)姓名:伍洋婷学号:2012111010762015年4月7日氧化铝陶瓷生产技术工艺简介氧化铝陶瓷的低温烧结技术氧化铝陶瓷是一种以Al2O3为主要原料,以刚玉(α—Al2O3)为主晶相的陶瓷材料。
一、通过提高Al2O3粉体的细度与活性降低瓷体烧结温度。
目前,制备超细活化易烧结Al2O3粉体的方法分为二大类,一类是机械法,另一类是化学法。
机械法是用机械外力作用使Al2O3粉体颗粒细化,常用的粉碎工艺有球磨粉碎、振磨粉碎、砂磨粉碎、气流粉碎等等。
通过机械粉碎方法来提高粉料的比表面积,尽管是有效的,但有一定限度,通常只能使粉料的平均粒径小至1μm左右或更细一点,而且有粒径分布范围较宽,容易带入杂质的缺点。
近年来,采用湿化学法制造超细高纯Al2O3粉体发展较快,其中较为成熟的是溶胶—凝胶法。
由于溶胶高度稳定,因而可将多种金属离子均匀、稳定地分布于胶体中,通过进一步脱水形成均匀的凝胶(无定形体),再经过合适的处理便可获得活性极高的超微粉混合氧化物或均一的固溶体。
目前此法大致有以下3种工艺流程。
(1)形成金属氧有机基络合物溶胶→水解并缩合成含羟基的三度空间高分子结构→溶胶蒸发脱水成凝胶→低温煅烧成活性氧化物粉料。
(2)含有不同金属离子的酸盐溶液和有机胶混合成溶液→溶胶蒸发脱水成凝胶→低温煅烧成粉体。
(3)含有不同金属离子的溶胶直接淬火、沉积或加热成凝胶→低温煅烧成粉体。
湿化学法制备的Al2O3粉体粒径可达到纳米级,粒径分布范围窄,化学纯度高,晶体缺陷多。
因此化学法粉体的表面能与活性比机械法粉体要高得多。
采用这种超细Al2O3粉体作原料不仅能明显降低氧化铝瓷的烧结温度(可降150℃—300℃),而且可以获得微晶高强的高铝瓷材料。
表二是日本住友化学有限公司生产的易烧结Al2O3粉料理化指标。
二、通过瓷料配方设计掺杂降低瓷体烧结温度氧化铝陶瓷的烧结温度主要由其化学组成中Al2O3的含量来决定,Al2O3含量越高,瓷料的烧结温度越高,除此之外,还与瓷料组成系统、各组成配比以及添加物种类有关。
95氧化铝陶瓷坯体的制备与测试分析
《无机材料测试技术综合性实验》95氧化铝陶瓷坯体的制备与测试分析学院:材料科学与工程学院班级:10级无机非金属材料4班******学号:************指导老师:***实验时间:2010年5月95氧化铝陶瓷坯体的制备与测试分析摘要:本文采用凝胶注模成形制备的95%氧化铝陶瓷坯体。
影响95%氧化铝陶瓷性能的原因错综复杂,与生产厂家在陶瓷生产工艺过程中的控制能力有密切关系。
具体的说与原料选择加工、组成的配制、坯料的成型方法,烧结的温度、保温时间、烧结气氛和炉窑类型及质量都有很大关系。
为了研究加入添加剂对成形后坯体的性能的影响,我们组测试分析的是在凝胶注模成形的过程中加入40:1的添加剂形成的95氧化铝陶瓷坯体。
关键词:95氧化铝陶瓷坯体;凝胶注模;40:1添加剂1.前言氧化铝陶瓷因具有机械强度高、硬度大、高温绝缘电阻高、高频介电损耗小、耐化学腐蚀性和导热性良好等一系列优良性能,已被广泛应用于机械、石油、化工、纺织、电子以及冶金等各个行业[1,2]。
但是,由于立方晶结构的氧化铝的离子键性,使之熔点达2050℃,导致氧化铝陶瓷的烧结温度普遍较高。
从企业的实际情况看,Al2O3含量85% 的高铝瓷烧成温度约为1500 ~1550℃,90 瓷烧结温度一般在1550 ~1600℃,95 瓷为1600 ~1650℃,99 瓷在1750℃以上[3]。
95 氧化铝陶瓷由于具有机械强度高,绝缘电阻大,硬度大,耐磨、耐腐蚀及耐高温等特性,因此被广泛应用于纺织、煤矿、石油、化工、电力及建筑等各个行业[4]。
由于其广泛的工业应用和性价比高等优点,因而成为被研究最多的陶瓷材料之一。
然而,氧化铝陶瓷难于成型高质量、形状复杂的陶瓷材料,并且其烧成后加工成本也很高[5]。
凝胶注模盛开工艺自美国橡树岭国家重点实验室于20世纪90年代初发明以来,一起是材料学领域研究的重点。
(表1.1为凝胶注模与传统工艺比较)国内十多年前就对此工艺高度关注,清华大学黄勇课题组开展了大量卓有成效的研究工作。
氧化铝陶瓷的制备及其微观结构研究
氧化铝陶瓷的制备及其微观结构研究氧化铝陶瓷是一种种类非常广泛的陶瓷材料,其在工业、生活和科研领域都有着广泛应用。
本文将从氧化铝陶瓷的制备入手,探讨其微观结构以及研究现状。
一、氧化铝陶瓷的制备氧化铝陶瓷可以通过多种方法制备,其中最常见的是烧结法。
该方法是将氧化铝粉末与一定量的添加剂混合后,加入适量的有机粘结剂,成型后进行烘干,再经过高温烧结而制得。
此外,还有常压干燥成型法、等离子喷雾法和热压缩成型法等常见制备方法。
在制备过程中,添加剂对氧化铝陶瓷的性能有着重要的影响。
例如,二氧化硅、钙钛矿和氧化锆等添加剂可以提高氧化铝陶瓷的强度和硬度;钇和铈等稀土元素则可以改善其耐高温性能和化学稳定性。
此外,加入碳微粉、碳化硅或碳化硼等还可以提高氧化铝陶瓷的热导率等特性。
二、氧化铝陶瓷的微观结构氧化铝陶瓷具有非常丰富的微观结构,其中最常见的是晶粒和孔隙。
其晶粒大小范围从几纳米到数微米不等,而孔隙则可以分为宏孔、中孔和微孔三种类型。
其中,宏孔是指孔径大于100纳米的孔隙,中孔的孔径在2-50纳米之间,而微孔的孔径小于2纳米。
此外,在氧化铝陶瓷中还存在一些重要的微观结构,如晶界、颗粒界面和内部脆性缺陷等。
晶界是晶粒之间的界面,其中存在大量缺陷位错,会对氧化铝的力学性能有着重要的影响。
颗粒界面是由于颗粒之间聚集而形成的界面,其存在会影响氧化铝陶瓷的致密性和均匀性。
内部脆性缺陷包括裂纹、铸造缺陷和孪晶等,会弱化氧化铝陶瓷的力学性能和耐腐蚀性。
三、氧化铝陶瓷的研究现状目前,国内外学者们对氧化铝陶瓷的研究领域主要包括以下几个方面。
首先是陶瓷材料的稳定性和可靠性。
研究者们通过研究氧化铝陶瓷的微观结构、缺陷机制和加工成型方法等,探究其稳定性和可靠性。
例如,美国科罗拉多大学的研究人员说明,加入少量的氧化铟和氧化钇可以显著改进氧化铝陶瓷材料的稳定性和耐久性。
其次是制备方法和工艺研究。
科学家们对氧化铝陶瓷的制备方法进行研究,探索最优的制备工艺,寻找制备氧化铝陶瓷的新方法和新技术。
氧化铝陶瓷
氧化铝陶瓷
氧化铝陶瓷是一种高性能陶瓷材料,也称为氧化铝陶瓷材料。
它是由高纯度氧化铝粉末通过压制、成型、烧结等工艺制成的一种非金属材料。
氧化铝陶瓷具有高硬度、高强度、高耐磨性、高耐腐蚀性、高耐高温性、绝缘性能好等优良的物理性能和化学性能。
因此,氧化铝陶瓷被广泛应用于航空航天、机械工业、电子电器、化学工业等领域。
氧化铝陶瓷的制备过程一般包括以下几个步骤:首先将高纯度氧化铝粉末与其他添加剂混合均匀,然后通过压制或注塑成型,最后进行高温烧结处理。
在烧结过程中,氧化铝粉末会逐渐结合成致密坚硬的结构,形成具有优良物理性能和化学性能的氧化铝陶瓷。
氧化铝陶瓷的应用领域非常广泛,例如在航空航天领域中,氧化铝陶瓷可以用于制造发动机涡轮叶片、航空仪器仪表、空气滤清器等;在机械工业中,氧化铝陶瓷可以用于制造轴承、轴瓦、机床刀具、磨料等;在电子电器领域中,氧化铝陶瓷可以用于制造电子器件、热敏电阻器、微波陶瓷等;在化学工业中,氧化铝陶瓷可以用于制造化学反应器、催化剂载体等。
氧化铝陶瓷的烧结..
氧化铝陶瓷的烧结摘要:随着科学技术与制造技术日新月异的发展,氧化铝陶瓷在现代工业中得到了深入的发展和广泛的应用。
本文就氧化铝陶瓷的烧结展开论述。
主要涉及原料颗粒和烧结助剂两方面,以获得性能良好的陶瓷材料,对满足工业生产和社会需求有非常重要的意义。
关键词:氧化铝;原料颗粒;烧结助剂;1 引言在科学技术和物质文明高度发达的现代社会中,人类赖以制成各种工业产品的材料实在千差万别,但总体包括起来,无非金属、有机物及陶瓷三大类[1]。
氧化铝陶瓷是目前世界上生产量最大、应用面最广的陶瓷材料之一,具有机械强度高、电阻率高、电绝缘性好、硬度和熔点高、抗腐蚀性好、化学稳定性优良等性能,而且在一定条件下具有良好的光学性和离子导电性。
基于Al2O3陶瓷的一系列优良性能,其广泛应用于机械、电子电力、化工、医学、建筑以及其它的高科技领域[2]。
在氧化铝陶瓷的生产过程中, 无论是原料制备、成型、烧结还是冷加工, 每个环节都是不容忽视的。
目前氧化铝陶瓷制备主要采用烧结工艺[3],坯体烧结后,制品的显微结构及其内在性能发生了根本的改变,很难通过其它办法进行补救。
因此,深入研究氧化铝陶瓷的烧结技术及影响因素,合理选择理想的烧结制度确保产品的性能、分析烧结机理、研究添加剂工作机理等对氧化铝陶瓷生产极有帮助,为氧化铝陶瓷的更广泛应用提供理论依据,为服务生产和社会需要非常重要。
2 氧化铝陶瓷简介Al2O3是新型陶瓷制品中使用最为广泛的原料之一,具有一系列优良的性能[4]。
Al2O3陶瓷通常以配料或瓷体中的Al2O3的含量来分类,目前分为高纯型与普通型两种。
高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料。
由于其烧结温度高达1650℃~1990℃,透射波长为1μm~6μm,一般制成熔融玻璃以取代铂坩埚,利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。
普通型氧化铝陶瓷系Al2O3按含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。
【精品文章】氧化铝透明陶瓷的制备技术要点
氧化铝透明陶瓷的制备技术要点
氧化铝(半)透明陶瓷对可见光和红外光具有良好的透过性,同时也具有高温强度大、耐热性好、耐腐蚀性强及电阻率大等特点,可应用于高压钠灯、金属卤化物灯等高强度气体放电灯的放电管、微波集成电路基片、矫治牙齿用透明陶瓷托槽以及透红外窗口材料等。
科研工作者发现,通过提高氧化铝的纯度、致密度以及合理的调控显微结构,可以显著提高氧化铝陶瓷的透光性。
下文将影响氧化铝陶瓷透明性的因素及氧化铝陶瓷的制备技术要点做一个简单的总结。
一、影响氧化铝陶瓷透明性的因素
透明陶瓷的一个关键性能在于其透光度。
当光通过某一介质时,由于介质的吸收、表面反射、散射和折射等效应会使光线损失,光强衰减(可以简单的理解成,透明度差的材料,光线损失相对较多)。
这些衰减除了与材料的基本化学组成有外,还取决于此材料的显微组织结构。
下面将对影响陶瓷透光度的因素做个小总结。
1、陶瓷的气孔率
透明陶瓷的制备过程实质上就是在烧结过程中完全排除显微气孔的致密化过程,材料中的气孔尺寸、数量、种类都会对陶瓷材料的透明性产生显著影响。
气孔率的微小变化可显著改变材料透光率。
举个例子,有研究表明,陶瓷体中的闭口气孔率从0.25%变为0.85%时,透明度降低33%。
尽管这可能是在某种特定情况下的结果,但从某些程度上我们可以看出气孔率对陶瓷透明度的影响是会很直接暴力的体现。
又有研究数据表明,气孔体积占3%。
al2o3陶瓷制备流程
al2o3陶瓷制备流程Al2O3陶瓷制备流程一、概述Al2O3陶瓷,即氧化铝陶瓷,是一种具有高温稳定性、高硬度和耐腐蚀性的陶瓷材料。
它在工业领域中广泛应用于耐火材料、电子元件、磨料和涂层等领域。
本文将介绍Al2O3陶瓷的制备流程。
二、原料准备制备Al2O3陶瓷的原料主要有氧化铝粉和添加剂。
氧化铝粉通常采用高纯度的氧化铝粉末,添加剂可根据具体需求选择,如镁、钇等元素的氧化物。
原料的选择和质量对最终产品的性能有着重要影响。
三、混合和研磨将氧化铝粉和添加剂按一定比例混合,以确保均匀分布。
然后,将混合后的粉末放入球磨机中进行研磨处理。
研磨的目的是使粉末颗粒更加细小均匀,增加反应活性。
四、成型研磨后的粉末通过成型工艺形成所需的形状。
常用的成型方法有压制成型和注塑成型。
压制成型是将粉末放入模具中,施加压力使其形成固体坯体。
注塑成型则是将粉末与有机溶剂混合,通过注塑机注射到模具中,形成绿胚。
五、烧结绿胚经过成型后,需要进行烧结处理。
烧结是将绿胚置于高温下进行加热,使粉末颗粒之间发生结合,形成致密的陶瓷材料。
烧结温度和时间的选择需根据原料和产品要求进行确定。
六、表面处理烧结后的Al2O3陶瓷可能会存在表面不光滑或有缺陷的情况,因此需要进行表面处理。
常见的表面处理方法有抛光、研磨和镀膜等。
表面处理可以提高陶瓷的光洁度和机械性能,满足特定的应用需求。
七、性能测试制备完成的Al2O3陶瓷需要进行性能测试,以确保其符合要求。
常用的性能测试项目包括硬度测试、抗压强度测试、热稳定性测试和化学稳定性测试等。
通过这些测试,可以评估陶瓷材料的质量和性能。
八、应用领域Al2O3陶瓷的优良性能使其在许多领域有广泛应用。
在耐火材料领域,Al2O3陶瓷可用于制作高温炉具、耐火砖和耐火涂层等。
在电子元件领域,Al2O3陶瓷可用于制作绝缘体、电容器和电子陶瓷等。
此外,Al2O3陶瓷还可用作磨料、切削工具和涂层材料等。
九、总结Al2O3陶瓷的制备流程主要包括原料准备、混合和研磨、成型、烧结、表面处理和性能测试等步骤。
原位生长片状晶增韧氧化铝陶瓷的制备与显微结构
Z HU o g-h n RONG h u n , HANG . n -in ,ONG a -a g Yn cag , So Z 1 g qa g S i Xiog n
( _f mui n e i , i sH i nf n 50 7 hn ; 1i a s U ir t J mui eog a g140 ,C i v sy a l i a
n wd ra d sn e ig a 0 ℃ f r rs u e e sy h es ne ig b h vo n c o t c u e d v lp n e esu id h e r- ap o e n i tr t15 0 n o h p e s rl sl .T it r e a i ra dmi rsr t r e e o me t r td e .T e 2 n u w
氧化铝陶瓷具有硬度高 、 耐高温 、 耐磨 、 电绝缘 、 抗氧化 、 力学 性能 良好 、 料蕴 藏 丰 富 、 格低 廉 等 原 价铝 陶瓷 的工 艺 法提 供 了有力 的证 明 。
1 试 验方 法 1 1 试验材料 .
许多优点, 是应用最早 、 最广泛 的精细 陶瓷 。氧 j 化 铝 的显 微组 织通 常为等 轴状 晶粒 , 断裂韧 性较 低 , 通常 只有 3MP . 】 am 。材料 的显徽结 构和 性 能之
原 位 生 长片 状 晶增 韧 氧化 铝 陶瓷 的制 备 与显 微 结构
朱永 长 荣 守范 , , 张敬 强 宋 晓 刚 ,
(. 1佳木 斯 大学 , 黑龙 江 佳木 斯
摘
140 2 哈 尔滨 理 工大 学 , 507; . 黑龙 江 哈 尔滨
104 ) 500
.
要 : A: 3中加入复合添加剂 , 1 0 a— 1 O 在 0℃ , h条件 下无压烧 结, 5 2 制备 出原位生长片状晶增韧的氧
氧化铝陶瓷的制备与显微结构
氧化铝陶瓷的制备与显微结构张全贺051002131摘要:a—A1:O3中加入复合添加剂,在1 500℃,2 h条件下无压烧结,制备出原位生长片状晶增韧的氧化铝陶瓷。
烧结行为和显微结构研究表明:在1 500℃下烧结时,获得板片状晶粒。
加入CaF2和CaF2复合添加剂时,生长的晶粒呈现片状,大小均匀,断裂韧性达到4.3 M Pa/m ;加入CaF2和高岭土复合添加剂时,由片状晶粒形成Al203陶瓷基体中,弥散分布着粗大的板块状晶粒,有效的提高了Al2 03陶瓷的致密度,相对密度达到96.8 g/cm 。
关键词:氧化铝;片状晶;原位生长;添加剂1 引言氧化铝陶瓷具有硬度高、耐高温、耐磨、电绝缘、抗氧化、力学性能良好、原料蕴藏丰富、价格低廉等许多优点,是应用最早、最广泛的精细陶瓷。
氧化铝显微组织通常为等轴状晶粒,断裂韧性较低,通常只有3 M Pa/m 。
材料的显徽结构和性能之间具有内在联系,如果把显微结构控制在理想的状态,就能使材料具备所希望的性能,Evans预言,如果A12O3,基体中按体积含有大于lO%的柱状晶或含有2O%的板状晶,陶瓷材料的韧性将得到大大的提高.2 试验方法2.1 试验材料:将工业A12O3粉经过预烧转变为A12O3后,放人玛瑙罐内进行球磨,玛瑙球、氧化铝和无水乙醇的体积比为3:1:8,球磨时间为48 h,然后在8o℃下于燥。
将A12O3和高岭土分别湿磨,放人100 ml烧杯,进行低温干燥后,过200目筛待用。
按照配料表1,将物料配好后倒人塑料瓶内,按玛瑙球、氧化铝和无水乙醇的体积比为2:1:4进行湿混后,取出干燥。
采用120 M Pa于压成型后放人高温梯度炉内,烧结温度为1 500℃,保温2h。
2.2 检测方法:试样经研磨抛光后用氢氟酸水溶液腐蚀,,利用HV一120型维氏硬度仪压痕,加载载荷为5 kg,保压时间10 S。
采用日本奥林巴斯GX71金相显微镜上观察压痕,由压痕法(Indentation Method)测定断裂韧性值。
92黄色氧化铝陶瓷的研制及其显微结构分析
92黄色氧化铝陶瓷的研制及其显微结构分析1 引言
近年来, 黄色氧化铝陶瓷由于具有热品质、电气绝缘性和耐磨性等优点, 在航空航天、机械制造和其它领域中得到广泛的应用。
因此, 黄色氧化铝陶瓷的研究成为当前研究的热点。
本文主要介绍了黄色氧化铝陶瓷的研制以及显微结构分析。
2 研制
黄色氧化铝陶瓷的研制主要采用低温气相法和电解法。
低温气相法可以在atmosphere下获得较高纯度的黄色氧化铝陶瓷,但生产成本较高。
而电解法则是一种以水热法制备黄色氧化铝陶瓷的一种方法。
电解法所得黄色氧化铝陶瓷的不良微粒控制能力更强,生产成本也较低。
3 显微结构分析
采用电子扫描显微镜对黄色氧化铝陶瓷进行了显微结构分析。
结果表明黄色氧化铝陶瓷具有均匀的结晶体结构,晶粒形状细小,分布均匀,没有明显的脱粒现象。
同时,微观参数测试显示,在适宜的烧成条件下,以及加入适量的MgO作为稳定剂,具有优良的抗拉强度和韧性,尤其是黄色氧化铝陶瓷的绝缘性能显著提高。
4 结论
本文研究了黄色氧化铝陶瓷的研制以及显微结构分析。
结果表明,黄色氧化铝陶瓷具有均匀的结晶体结构,晶粒形状细小,分布均匀,
而且具有优良的抗拉强度、热导率和绝缘性能。
本文的研究可以为黄
色氧化铝陶瓷的应用提供参考,在实际应用中可以更好地满足需求。
(工艺技术)氧化铝陶瓷制作工艺简介
氧化铝陶瓷制作工艺简介氧化铝陶瓷目前分为高纯型与普通型两种。
高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。
普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。
其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。
其制作工艺如下:一粉体制备:将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。
粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。
采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。
采用热压工艺成型的粉体原料则不需加入粘结剂。
若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。
此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。
欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。
近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。
喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。
颗粒级配比理想等条件,以获得较大素坯密度。
二成型方法:氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。
氧化铝陶瓷的制备实验指导书
结构陶瓷的制备通常由所需起始物料的细粉,加入一定的结合剂,根据合适的配比混合后,选择适当的成型方法,制成坯体。
坯体经干燥处理后,进行烧结而得到。
坯体经烧结后,宏观上的反映为坯体有一定程度的收缩,强度增大,体积密度上升,气孔率下降,物理性能得到提高。
实验目的:1.选用氧化铝粉体,通过干法成型,制备氧化铝陶瓷。
2.选用合适的烧结助剂,促进氧化铝陶瓷的烧结,加深对陶瓷烧结的理解。
3.熟悉陶瓷常用物理性能的测试方法实验原理:氧化物粉体经成型后得到的生坯,颗粒间只有点接触,强度很很低,但通过烧结,虽在烧结时既无外力又无化学反应,但能使点接触的颗粒紧密结成坚硬而强度很高的瓷体,其驱动力为粉体具有较高的表面能。
但纯氧化铝陶瓷的烧结需要的温度很高,为在较低的温度下完成烧结,需要向体系中加入一定的助烧剂,使其能在相对较低的温度下出现液相而实现液相烧结。
本实验中,采用向氧化铝粉体中加入适量的二氧化硅粉体以促进烧结,而达到氧化铝陶瓷烧结的目的。
实验仪器:天平、烧杯、压力机、模具、游标卡尺、电炉等实验步骤:1.配料。
将氧化铝、氧化锆粉体按80:20的质量比例混合均匀,并外加入5%的水起结合作用。
2.制样。
称取适量混合好的粉体,倒入模具内,压制成型。
并量尺寸,计算生坯的体积密度。
3.干燥。
将成型好的生坯充分干燥。
4.烧结。
将干燥后的生坯置于电炉内,在1600℃的条件下保温3小时。
5.检测。
测量烧后试样的尺寸,计算其体积密度。
计算烧结前后线变化率。
1.实验目的2.实验仪器3.实验数据记录及数据处理起始物料的配比;结合剂的加入量;烧结前后试样的体积密度及质量变化;烧结前后的线变化率。
4.思考题:1)助烧剂的作用机理是什么?2)常用体积密度的测试方法有哪几种?实验二 氧化铝陶瓷材料力学性能的检测为了有效而合理的利用材料,必须对材料的性能充分的了解。
材料的性能包括物理性能、化学性能、机械性能和工艺性能等方面。
物理性能包括密度、熔点、导热性、导电性、光学性能、磁性等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
氧化铝陶瓷的制备与显微结构
张全贺
051002131
摘要:a—A1:O3中加入复合添加剂,在1 500℃,2 h条件下无压烧结,制备出原位生长片状晶增韧的氧化铝陶瓷。
烧结行为和显微结构研究表明:在1 500℃下烧结时,获得板片状晶粒。
加入CaF2和CaF2复合添加剂时,生长的晶粒呈现片状,大小均匀,断裂韧性达到4.3 M Pa/m ;加入CaF2和高岭土复合添加剂时,由片状晶粒形成Al203陶瓷基体中,弥散分布着粗大的板块状晶粒,有效的提高了Al2 03陶瓷的致密度,相对密度达到96.8 g/cm 。
关键词:氧化铝;片状晶;原位生长;添加剂
1 引言
氧化铝陶瓷具有硬度高、耐高温、耐磨、电绝缘、抗氧化、力学性能良好、原料蕴藏丰富、价格低廉等许多优点,是应用最早、最广泛的精细陶瓷。
氧化铝显微组织通常为等轴状晶粒,断裂韧性较低,通常只有3 M Pa/m 。
材料的显徽结构和性能之间具有内在联系,如果把显微结构控制在理想的状态,就能使材料具备所希望的性能,Evans预言,如果A12O3,基体中按体积含有大于lO%的柱状晶或含有2O%的板状晶,陶瓷材料的韧性将得到大大的提高.
2 试验方法
2.1 试验材料:将工业A12O3粉经过预烧转变为A12O3后,放人玛瑙罐内进行球磨,玛瑙球、氧化铝和无水乙醇的体积比为3:1:8,球磨时间为48 h,然后在8o℃下于燥。
将A12O3和高岭土分别湿磨,放人100 ml烧杯,进行低温干燥后,过200目筛待用。
按照配料表1,将物料配好后倒人塑料瓶内,按玛瑙球、氧化铝和无水乙醇的体积比为2:1:4进行湿混后,取出干燥。
采用120 M Pa于压成型后放人高温梯度炉内,烧结温度为1 500℃,保温2h。
2.2 检测方法:试样经研磨抛光后用氢氟酸水溶液腐蚀,,利用HV一120型维氏硬度仪压痕,加载载荷为5 kg,保压时间10 S。
采用日本奥林巴斯GX71金相显微镜上观察压痕,由压痕法(Indentation Method)测定断裂韧性值。
将抛光试样或原始试样取断口进行喷金,在JSM一6360LV扫描电子显微镜中观察断口显微组织形貌,利用美国EDAX的FALCON60S能谱仪进行材料微区成分分析。
采用阿基米德法测定试样的实际密度并计算出相对密度。
3 试验结果与讨论
3.1材料的性能:图1是在实验温度温度1 500℃下,不同种类的添加剂所得的各组试样的不同相对密度。
可以看出,所使用的添加剂都能够明显的提高陶瓷的相对密度。
当加入3.0%的SiO2时,获得的材料具有最大的断裂韧f生直,通过压痕法进行计算的值为4.3 M Pa/m 。
,说明SiO2 和CaF2 的相互作用能够有效的提高A1 0 陶瓷的力学性能。
提高的途径主要是通过SiO2 促进A1 0 晶粒原位异向长大,发育成片状晶所致。
随着SiO2 的质量分数的增加,A1 0 陶瓷的力学性能开始下降,而相对密度却明显增加,这主要与A1 0 陶瓷的显微组织的变化密切相关,由于添加剂量的增加,基体中的片状晶继续生长,虽然提I了陶瓷的相对密度,但大量片状晶开始变成板状晶,因此恶化了材料的断裂韧性性能当加入9.0%的高岭土时,相对密度达到96.8%的最大值,说明高岭土和CaF2复合添加能够的提高A1 0 陶瓷的密度值,但这一过程在促进晶粒原位异向生长,生成大量的片状晶的同时,使得局部的晶粒异常长大倾向严重,发育成较为粗大板块状。
局部粗大板块状晶的明显增多,在提高材料致密度的同时使材料的力学性能显著下降。
通过性能曲线的对比说明,两种添加剂都能够促进Al2O3晶粒原位异向生长,提高陶瓷材料的致密度。
当加入一定量的SiO2和CaF2时,致密度的增加较为明显,但是力学韧度却下降明显。
3.2显微结构分析:图2分别为加入SiO2和高岭土的Al2O3陶瓷的显微结构及断口形貌。
从图a和图c中可以看出,加入SiO2的纤维组织,Al2O3晶粒呈现出片状,而且从尺寸上看,相对大小也较均匀,而以高岭土为添加剂的图片中分析,Al2O3晶粒呈现出块状,局部还有粗大的板状晶,尺寸明显大于机体其它区域的显微组织。
对于板状晶和片状晶的定义,Song等人对晶粒的形貌进行了量化,板状晶是指长>100μm,纵横比>5的异常长大晶粒,平行于长轴方向的平滑晶界称为扁平晶界,片状晶粒相对于板状晶而言较小,一般为10µm,也具有扁平晶。
从试验过程来看,添加SiO2的陶瓷材料,均出现大量的片状晶。
随之加入质量分数的增加,片状晶纵、横方向的值都有所增加,逐渐呈现出板块形貌,且组织尺寸、形貌分布较为均匀,这主要与烧结过程中,SiO2的加入导致晶界液相的逐渐增加,从结晶学的角度讲,氧化铝晶粒只有在受到界面反应速率控制时,才有可能异向生长,适量的SiO2量能够有效的促进界面反应的发生,超过3.0%时,诱导晶粒的进一步生长。
当以高岭土做为添加剂时,随着烧结温度的逐渐升高,由于高岭土中存在其它的低熔点物质,这样在较低的烧结温度下,便在粉体颗粒间出现少量的液相,不均匀分布的液相则在粉体中形成湿的或干燥的界面区域,而在湿的微小区域内,首先有一部分AI:O 晶粒开始生长。
当到达正常的烧结温度时,添加剂在烧结过程形成较多液相,弥散在A1:O 陶瓷晶粒的周围,大面积的烧结行为才得以开始,而局部的已经发育的晶粒进一步生长,因此,最后形成了局部具有粗大板块状晶的陶瓷基体组织,这样的组织分布虽然有利于陶瓷的烧结,提高致密度,但局部粗大的板状晶却严重的恶化了材料的力学性能。
3.3裂纹扩展途径:由压痕法(Indentation Method)获得的裂纹扩展形态是陶瓷增韧机制的微观表征。
从图3可看出裂纹在扩展过程中发生了弯曲、偏转,导致裂纹在基体中扩展的路径延长,同时有的晶粒局部断裂,还有“撬掘”现象的发生。
从图3a)可以看出,裂纹在扩展时,发生了偏转、弯曲,从而消耗了断裂过程中更多的能量。
在裂纹扩展时,裂纹主要沿着晶界进行,对于加入SiO2添加剂的A12O3陶瓷材料来说,基体中较小的片状晶无疑增加了这种裂纹的行程,从而使得该条件下的Al2O3 陶瓷具有相对较高的力学性能。
在图3b)中,高岭土的加入,使其有着粗大的板块状晶粒,由于这样的晶粒的产生,使得裂纹更为顺畅的沿晶界而行,扩展行程也相对缩短,最终导致局部存在粗大板块状的晶粒的陶瓷性能变差。
在图3c)中,个别的粗大板块状的晶粒的尖角处,发生局部断裂,虽然对增韧有益,但这种现象较少,因此,并不能发挥较为有效的增韧作用。
图3d)中,局部出现“撬掘”现象,可以增加材料断裂时,裂纹界面之间的摩擦,
消耗一定的能量,也有益于增韧,但是这种“撬掘”主要由晶界相组成,而非是由晶粒自身拨出造成,作用不是很明显。
3 结论
1)两种添加剂都能够促进A12O3,陶瓷的烧结,而且能够促进AI2O3,晶粒原位异向生长成板状晶,提高了陶瓷材料的致密度。
2)加入一定量的Si02添加剂,AI2O3晶粒呈现出片状,性能较好,断裂韧性最大时达到4。
3 M Pa /m,随着加入量的增加,片状逐渐发育成板块状,分布较为均匀,提高致密度的同时,力学性能下降。
3)加入高岭土添加剂,在片状晶的基体中,局部[6]弥散分布着粗大板块状晶粒,虽然有效的提高了材料的致密度,但性能较差。
此时AI2O3,陶瓷的最高的相对密度值为96.8%。
参考文献
【1】尹衍升,张德景.氧化铝陶瓷及其复合材料IM].北京:化学工业出版社,2001.【2】曲远方.功能陶瓷及应用[MI.北京:化学工业出版社,2003.
【3】M V斯温,郭景坤等译.材料科学与技术丛书——陶瓷的结构与功能嗍.北京科学出版社,1998.
【4】】王昕.a--Ah03的晶体结构与价电子结构田.中国有色金属学报,2002,12:18-23.
【5】网陆佩文.无机材料科学基础[M].武汉:武汉工业大学出版社。
1996.【6】张孝文,薛万荣,杨兆雄.固体材料结构基础[M].北京:中国建筑工业出版社。
1980.
【7】李世普.特种陶瓷工艺学口川.武汉:武汉工业大学出版社,1990.【8】.吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响.兵器材料科学与工程,2002,25(1):68—72.。