贵州省贵阳市2017-2018学年八年级(下)期末数学试卷(含答案)
2017-2018学年第二学期期末八年级数学试题(含答案)
2017—2018学年度第二学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分.1.若x 是任意实数,下列各式中一定有意义的是 A.x B.2x C. 2x - D .12-x2.有下列二次根式:(1)12;(2)5.1;(3)23;(4)32.其中能与6合并的是 A .(1)和(2) B .(2)和(3) C .(1)和(3) D .(2)和(4)3.下列各组数中不能作为直角三角形的三边长的是A.5 ,5,10B. 9,12,17C. 7,24,25D. 0.6,0.8,14.在下列命题中,该命题的逆命题成立的是A .线段垂直平分线上的点到这条线段两个端点的距离相等B. 等边三角形是锐角三角形C. 如果两个角是直角,那么它们相等D. 如果两个实数相等,那么它们的平方相等5.顺次连接四边形各边中点得到的四边形一定是A.平行四边形B. 矩形C.菱形D.正方形 6.在□ABCD 中,AB =3,BC =4,当□ABCD 的面积最大时,下列结论中正确的有①AC =5; ②∠A +∠C =180°; ③AC ⊥BD ; ④AC =B D .A. ①②③B. ①②④C. ②③④D. ①③④7.如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为GH .若BE ∶EC =2∶1,则线段CH 的长是 A.3C.5D.6 8.下列式子中表示y 是x 的正比例函数的是A. 2x y = B. 22y x =C.2y x = D.22y x = 9.某油箱容量为60 L 的汽车,加满汽油后行驶了100 km 时,油箱中的汽油大约消耗了15,如果加满汽油后汽车行驶的路程为x km ,油箱中剩油量为y L ,那么y 与x 之间的函数解析式和自变量的取值范围分别是A. y =0.12x ,x >0B. y =60-0.12x ,x >0C. y =0.12x ,0≤x ≤500D. y =60-0.12x ,0≤x ≤50010.下列关于函数32y x =-+的表述中错误的是A. 函数32y x =-+的图象是一条经过点(0,2)的直线B. 函数32y x =-+的图象经过第一、二、四象限C. 函数32y x =-+的y 随x 的增大而增大D. 函数32y x =-+的图象可以由直线3y x =-向上平移2个单位长度而得到11.在期末考试中,某班的数学平均成绩为85分,方差为13.2,如果每名学生都多考5分,下列说法正确的是A.平均分不变,方差不变B. 平均分变大,方差不变C.平均分不变,方差变大D. 平均分变大,方差变大12.若一组数据1x ,2x ,…,n x 的方差是0,则 A.这组数据的中位数为0 B. 1x =2x =…=n x =0 C. 1x =2x =…=n x D. x =0第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.如果a 是7的小数部分,那么代数式542++a a 的值是 .14.已知一个等边三角形的边长是6,则这个三角形的面积是 .15.晨光中学规定学生的学期体育成绩满分为100,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次是95,90,85.则小桐这学期的体育成绩是 .16.一组数据7,4,x ,8的平均数为5,则这组数据的中位数是 .17.已知直线6y x =-交x 轴于点A ,与直线y kx =(k>0)交于点B ,若以坐标原点O 及 点A 、B 为顶点的三角形的面积是12,则k = .18.直线3y kx =+经过点A (2,1),则不等式3kx +≥0的解集是 .19.以方程236x y -=的解为坐标(x ,y )的所有点组成的图形是函数 的图象.20.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC =8,OE ⊥BC ,垂足为点E ,若菱形ABCD 的面积是24,则OE = ___. 21.如图,在正方形ABCD 的外侧,作等边三角形DCE ,则∠AEB = .22.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为 .三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程.23.计算:(1)23)6229(27168÷---; (2))2520)(5052()52(2-+--.24.要从甲、乙两名射击运动员中挑选一人参加全国比赛,在最近的5次选拔赛中,他们的成绩如下(单位:环):甲:7 , 8 , 6 , 8 , 9 ; 乙:9 , 7 , 5 , 8 , 6.(1)求甲运动员这5次选拔赛成绩的中位数和众数分别是多少?(2)求乙运动员这5次选拔赛成绩的平均数和方差;(3)若已知甲运动员的选拔赛成绩的方差为 1.04,为了保证稳定发挥,应选哪位运动员参加比赛?25.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为点D ,AN 是△ABC 外角∠CAM 的平分线,CE ⊥AN ,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)当△ABC 满足什么条件时,四边形ADCE 是一个正方形?并给出证明.A C D EB O (第20题图) (第21题图) ACDE B (第22题图)F A C D E B PN A C D E B M (第25题图) (第26题图)26.有一科技小组进行了机器人行走性能试验,在试验场地有A 、B 、C 三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A 、B 两点同时同向出发,历时7分钟同时到达C 点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y (米)与他们的行走时间x (分钟)之间的函数图象,请结合图象,回答下列问题:(1)A 、B 两点之间的距离是 米,A 、C 两点之间的距离是 米;若线段FG ∥x 轴,则此段时间中甲机器人的速度为 米/分;(2)若前3分钟甲机器人的速度保持不变,求线段EF 所在直线的函数解析式.27.如图,△ACB 和△ECD 都是等腰直角三角形,CA =CB ,CE =CD ,并且△ACB 的顶点B 在△ECD 的斜边DE 上,连接AE .(1)求证:AE =BD ;(2)若BD =3,BE =15,求BC 的长.28.如图,将矩形ABCD 置于平面直角坐标系中,其中AD 边在x 轴上,点D 的坐标是(-3,0),点B 的坐标是(1,2),过点A 作直线AE ∥OB 交y 轴于点E .(1)求直线AE 的函数解析式;(2)现将直线AE 沿射线AD 的方向以每秒1个单位长度的速度平移,设平移t 秒时该直线能被矩形ABCD 的边截出线段,则t 的取值范围是 ;(3)在(2)的条件下,求t 取何值时,该线段与矩形的边及线段OB 所围成的四边形恰为菱形?并说明理由.(第28题图) A E xO D C B y A C D E B (第27题图)2017—2018学年第二学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.8 ; 14. 15.88.5 ; 16.5.5; 17.2;18.x ≤3; 19.223y x =-; 20. 2.4 ; 21.30°; 22三、解答题:(共74分)23. (1)23)6229(27168÷---=(3- ………………………………………………4分=3; ………………………………………………5分(2))2520)(5052()52(2-+--=72050--() ………………………………………………9分=37-. ………………………………………………10分4分6分 7分9分 10分11分12分∴∠CAD =12CAB ∠, ………………………………………………2分 ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =12CAM ∠, ………………………………………………3分∴∠DAE =∠CAD +∠CAE =12×180°=90°, ……………………5分 又∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =∠DAE =90°, …………………………………6分 ∴四边形ADCE 为矩形. ………………………………………7分(2)当△ABC 满足∠BAC =90°时,四边形ADCE 是正方形. …………9分 证明:∵AB =AC ,AD ⊥BC ,∴DC =BD , ………………………………………10分又∠BAC =90°∴DC =AD . (11)分由(1)知四边形ADCE 为矩形,∴矩形ADCE 是正方形. ………………………………………12分26. 解:(1)70;490;60; ………………………………………6分(2)由图象可知,前3分钟甲机器人的速度为60+70÷2=95(米/分) ………………………………………7分 ∵(3-2)×(95﹣60)=35,∴点F 的坐标为(3,35), ………………………………………9分 又点E 的坐标为(2,0),设线段EF 所在直线的函数解析式为y =kx +b ,则335,20,k b k b +=⎧⎨+=⎩………………………………………11分 解得 35,70.k b =⎧⎨=-⎩………………………………………12分 ∴线段EF 所在直线的函数解析式为y =35x ﹣70. …………………………13分27. (1)证明:∵∠BCA =∠DCE =90°,∴∠BCA -∠BCE =∠DCE -∠BCE ,即∠ACE =∠DCB , …………………………………2分 又CA =CB ,CE =CD ,∴△ACE ≌△BCD , …………………………………4分 ∴AE =BD ; …………………………………5分(2)∵△ECD 都是等腰直角三角形,∴∠CE D =∠D =45°, …………………………………6分 ∵△ACE ≌△BCD ,∴∠CEA =∠D =45°,8分 ∴∠BEA =∠CED +∠CEA =90°, …………………………………9分又∴22231518AB AE BE =+=+=, …………………………………11分 ∵△ACB 是等腰直角三角形,CA =CB ,∴22222AB AC BC BC =+=, …………………………………12分∴2218BC =, ∴BC =3. …………………………………13分28.解:(1)∵点B 的坐标是(1,2),∴OA =1,AB =2,点A 的坐标是(1,0), …………………………………3分 ∵由题意知,AB ∥OE ,AE ∥OB ,∴四边形ABOE 是平行四边形, …………………………………4分 ∴OE =AB =2,∴点E 的坐标是(0,-2), …………………………………5分 设直线AE 的函数解析式为y =kx +b ,则 0,2,k b b +=⎧⎨=-⎩ ………………………………………6分 解得 2,2.k b =⎧⎨=-⎩ ………………………………………7分∴线段AE所在直线的函数解析式为y=2x﹣2. ………………………………8分(2)0<t <5;………………………………………10分(3)当t 1时,所围成的四边形恰为菱形.…………………………12分理由:∵∠OAB=90°,OA=1,AB=2,∴13分设t 与AD、BC分别交于点E、F,根据题意可知,此时OE OB,且OB∥EF,OE∥BF,∴四边形FBOE是菱形,即t OB所围成的四边形恰为菱形.…………………………14分。
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)不等式x<1的解集是()A.x<B.x>C.x>3D.x<33.(3分)如图,在▱ABCD中,∠C=50°,∠BDC=55°,则∠ADB的度数是()A.10°B.75°C.35°D.15°4.(3分)要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣15.(3分)把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)6.(3分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,则阴影部分面积是()A.12B.10C.8D.67.(3分)如图,在△ABC中,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则△ABD的周长是()A.7B.8C.9D.108.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.C.D.10.(3分)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE=1,则AC的长度是()A.5B.4C.3D.2二、填空题:每小題4分,共16分.11.(4分)分式的值为零,则x的值是.12.(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD为平行四边形(不添加任何辅助线).13.(4分)若不等式组的解集是x>2,则m的值是.14.(4分)如图,在等腰直角△ABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角△DCE,使点E和A位于CD两侧.点D从点A到点B的运动过程中,△DCE周长的最小值是.三、解答题:本大题7小题,共54分.15.(10分)(1)先化简,再求值:(﹣),其中a=3;(2)三个数4,1﹣a,5﹣3a在数轴上从左到右依次排列,求a的取值范围.16.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:△DFM≌△BEN;(2)四边形AMCN是平行四边形吗?请说明理由.17.(6分)在平面直角坐标系中,△ABC的位置如图所示,点A,B,C的坐标分别为(﹣3,﹣3),(﹣1,﹣1),(0,﹣2),根据下面要求完成解答.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使P A2+PC2的值最小,直接写出点P的坐标.18.(7分)在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?19.(6分)如图是两个全等的直角三角形(△ABC和△DEC)摆放成的图形,其中∠ACB =∠DCE=90°,∠A=∠D=30°,点B落在DE边上,AB与CD相交于点F.若BC =4,求这两个直角三角形重叠部分△BCF的周长.20.(8分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:品种项目单价(元/尾)养殖费用(元/尾)普通鱼种0.51红色鱼种11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元(1)写出y(元)与x(尾)之间的函数关系式;(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?21.(7分)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=°(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.。
贵州省贵阳市2017-2018学年八年级(下)期末数学试卷
贵州省贵阳市2017-2018学年八年级(下)期末数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在括号内填上正确选项的字母,每小题3分,共30分)1.在平面内,下列图案中,能通过图平移得到的是()A.B.C.D.2.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2 B.x<2 C.x>2 D.x≤23.如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于()A.2 B.3 C.4 D.54.将分式方程化为整式方程,方程两边可以同时乘()A.x﹣2 B.x C.2(x﹣2)D.x(x﹣2)5.如图,在▱ABCD中,下列结论不一定成立的是()A.∠1=∠2 B.AD=DC C.∠ADC=∠CBA D.OA=OC6.若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10 B.7或10 C.4 D.7或47.一次函数y=kx+b的图象如图所示,则一元一次不等式kx+b<0的解集为()A.x<2 B.x>2 C.x<0 D.x>08.如图,在Rt△ABC中,∠ACB=90°,CD,CE分别是斜边上的高和中线,∠B=30°,CE=4,则CD的长为()A.2B.4 C.2D.9.已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定10.如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D落在△ABC 的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共20分)11.计算的结果为.12.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入个小球时有水溢出.13.如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为cm.14.如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是度.15.如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是.三、解答题(共8小题,满分50分)16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小颖的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小颖的作法正确.”请回答:小颖的作图依据是.17.(6分)解不等式组:,并写出它的所有整数解.18.(8分)如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.(1)求证AD=ED;(2)若AC=AB,DE=3,求AC的长.19.(6分)某中学需要添置一批教学仪器,方案一:到厂家购买,每件原价40元,恰逢厂家促销活动八折出售;方案二学校自己制作,每件20元,另外需要制作工具的租用费600元;设该学校需要购买仪器x件,方案一与方案二的费用分别为y1和y2(元)(1)请分别求出y1,y2关于x的函数表达式;(2)若学校需要购买仪器30~60(含30和60)件,问采用哪种方案更划算?请说明理由.20.(7分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.21.(6分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).(1)在图①中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况即可)(2)在图②中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形;(3)在图③中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.22.(7分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.23.(6分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.参考答案一、选择题1.B.2.D.3.C.4.D.5.B.6.C.7.B.8.C.9.B.10.C.二、填空题11.x﹣112.10.13.13.14.3515.2.三、解答题16.解:如图,∵由作图可知,AC=BC,AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.17.解:,∵解不等式①得:x>﹣4,解不等式②得:x<1,∴原不等式组的解集为:﹣4<x<2,∴不等式组的整数解是:﹣3,﹣2,﹣1、0.18.证明:(1)∵AE是∠BAC的角平分线∴∠DAE=∠BAE∵DE∥AB∴∠DEA=∠EAB∴∠DAE=∠DEA∴AD=DE(2)∵AB=AC,AE是∠BAC的角平分线∴AE⊥BC∴∠C+∠CAE=90°,∠CED+∠DEA=90°∴∠C=∠CED∴DE=CD且DE=3∴AD=DE=CD=3∴AC=619.解:(1)由题意,可得:y1=40×0.8x=32x,y2=20x+600;(2)当32x=20x+600时,解得:x=50,此时y1=y2,即x=50时,两种方案都一样,当32x>20x+600时,解得:x>50,此时y1>y2,即50<x≤60时,方案二划算,当32x<20x+600时,解得:x<50,此时y1<y2,即30≤x<50时,方案一划算.20.(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)如图,作CH⊥AB于H.∵四边形ABCD是平行四边形,∴AD=BC=6,AD∥BC,∴∠B=180°﹣∠DAB=60°,∴CH=BC•sin60°=3,=•AB•CH=×12×3=18∴S△ABC21.解:(1)如图①所示:(2)如图②所示:(3)如图③所示:22.解:设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,由题意得:+3=,解得:x=100,经检验:x=100是原方程的解,则3×100=300(km/h);答:高铁列车平均速度为300km/h.23.解:(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴,得,即m的值是56,n的值是17.。
2017-2018年第二学期八年级数学期末试卷(参考答案)
∴ BC AC 2 AB 2 32 42 5 ……8 分
作 AH⊥BC
则 1 BC AH 1 AC AB
2
2
∴5AH=3×4
八年级数学 第 3 页(共 8 页)
∴AH= 12 ……9 分 5
∴ S菱形ADCF
DC AH
5 12 25
6
答:菱形 ADCF 的面积是 6.……10 分
∴点 D’在直线 y=x-3 上运动,当 OD’⊥直线 y=x-3 时,OD’最小,此时∆OBD’是等腰直
角三角形,……9 分
作 D’H⊥x 轴,垂足为 H,则 OH=HD’=HB= 3 ……10 分 2
∴4-m= 3 , m 5 ……11 分
2
2
∴D 点坐标( 5 , 1 )……12 分 22
∵四边形 ABCD 是正方形,
∴∠ABK=∠ABC=∠ADC=∠BAD=90°,AB=AD
在∆AKB 和∆AFD 中
BE
C
图2
AB AD ABK ADF KB DF
∴∆AKB≌∆AFD……1 分 ∴AK=AF,∠KAB=∠FAD ∵2∠EAF=∠ADC=90° ∴∠EAF=45° ∴∠BAK+∠BAE=∠DAF+∠BAE=45° 即∠KAE=∠FAE 在∆AKE 和∆AFE 中
说明:此题可用平行线等积变换,即△ABF 的面积与△ACF 的面积相等,或连接 DF 等。
五.解答题(本题共 3 小题,其中 24 题 11 分,25、26 题各 12 分,共 35 分)
24.(1)1,16;……2 分
(2)∵四边形 ABCD 是正方形
D
C
∴AB=AD,∠ADB=∠ABD=45°
【最新】2017-2018学年人教版八年级(下册)期末数学考试卷及答案
一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()一、选择题:(本大题共10小题,每小题2分,共20分.在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(2分)下列是最简二次根式的为()来源:]A.B.C.D.(a>0)2.(2分)下列四组线段中,能组成直角三角形的是()A.a=1,b=2,c=3 B.a=2,b=3,c=4 C.a=2,b=4,c=5 D.a=3,b=4,c=5 3.(2分)在平面直角坐标系中,下列函数的图象经过原点的是()A.y=﹣2x+1 B.y= C.y=4x D.y=x2+54.(2分)某快递公司快递员张海六月第三周投放快递物品件数为:有1天是41件,有2天是35件,有4天是37件,这周里张海日平均投递物品件数为()A.36件B.37件C.38件D.38.5件5.(2分)一次函数y=﹣3x+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2分)如图,在?ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC 边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm7.(2分)若代数式有意义,则实数x的取值范围是()A.x>1 B.x≠2 C.x≥1且x≠2 D.x≥﹣1且x≠28.(2分)从下列条件中选择一个条件添加后,还不能判定平行四边形ABCD是菱形,则这个条件是()A.AC⊥BD B.AC=BD C.AB=BC D.AD=CD9.(2分)已知=5﹣x,则x的取值范围是()。
2017-2018学年 八年级(下)期末数学试卷(有答案和解析)
2017-2018学年八年级(下)期末数学试卷一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效.1.式子在实数范围内有意义,则x的取值范围是()A.x≥0B.x<0C.x≤2D.x≥22.已知直角三角形的两条直角边的长分别为1,,则斜边长为()A.1B.C.2D.33.下列计算正确的是()A.B.3﹣=3C.D.=4.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3B.a=﹣1C.a=1D.a=25.四边形ABCD中,已知AB∥CD,下列条件不能判定四边形ABCD为平行四边形的是()A.AB=CD B.AD=BC C.AD∥BC D.∠A+∠B=1806.匀速地向如图所示容器内注水,最后将容器注满.在注水过程中,水面高度h随时间t变化情况的大致函数图象(图中OABC为一折线)是()A.(1)B.(2)C.(3)D.无法确定7.如图,在△ABC中,AB=10,BC=6,点D为AB上一点,BC=BD,BE⊥CD于点E,点F为AC的中点,连接EF,则EF的长为()A.1B.2C.3D.48.某居民今年1至6月份(共6个月)的月平均用水量5t,其中1至5月份月用水量(单位:t)统计如图所示,根据表中信息,该户今年1至6月份用水量的中位数和众数分别是()A.4,5B.4.5,6C.5,6D.5.5,69.如图,过点A0(1,0)作x轴的垂线,交直线l:y=2x于B1,在x轴上取点A1,使OA1=OB1,过点A1作x轴的垂线,交直线l于B2,在x轴上取点A2,使OA2=OB2,过点A2作x轴的垂线,交直线l于B3,…,这样依次作图,则点B8的纵坐标为()A.()7B.2()7C.2()8D.()910.在平面直角坐标系中,一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成的图象可以表示为函数y=|x﹣1|,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.计算=,(﹣)2=,3﹣=.12.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为.13.如图,在平行四边形ABCD中,AC⊥BC,AD=AC=2,则BD的长为.14.将一次函数y=﹣x+1沿x轴方向向右平移3个单位长度得到的直线解析式为.15.“五一”期间,小红到某景区登山游玩,小红上山时间x(分钟)与走过的路程y(米)之间的函数关系如图所示,在小红出发的同时另一名游客小卉正在距离山底60米处沿相同线路上山,若小红上山过程中与小卉恰好有两次相遇,则小卉上山平均速度v(米/分钟)的取值范围是.16.如图,在矩形ABCD中,AB=5,AD=9,点P为AD边上点,沿BP折叠△ABP,点A的对应点为E,若点E到矩形两条较长边的距离之比为1:4,则AP的长为.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.(8分)计算:(1)﹣+(2)(+3)(﹣2)18.(8分)如图,已知▱ABCD的对角线AC,BD相交于O,点E,F分别是OA,OC的中点,求证:BE=DF.19.(8分)已知y是x的一次函数,如表列出了部分y与x的对应值,求m的值.20.(8分)运动服装店销售某品牌S号,M号,L号,XL号,XXL号五种不同型号服装,随机统计该品牌运动服装一周的销售情况并绘制如图所示不完整统计图.(1)L号运动服一周的销售所占百分比为.(2)请补全条形统计图;(3)服装店老板打算再次购进该品牌服饰共600件,根据各种型号的销售情况,你认为购进XL 号约多少件比较合适,请计算说明.21.(8分)如图,在矩形ABCD中,AF平分∠BAD交BC于E,交DC延长线于F,点G为EF 的中点,连结DG.(1)求证:BC=DF;(2)连BD,求BD:DG的值.22.(10分)某移动通信公司推出了如下两种移动电话计费方式,说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.23.(10分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).24.(12分)如图,直线y=2x+6交x轴于A,交y轴于B.(1)直接写出A(,),B(,);(2)如图1,点E为直线y=x+2上一点,点F为直线y=x上一点,若以A,B,E,F为顶点的四边形是平行四边形,求点E,F的坐标(3)如图2,点C(m,n)为线段AB上一动点,D(﹣7m,0)在x轴上,连接CD,点M为CD的中点,求点M的纵坐标y和横坐标x之间的函数关系式,并直接写出在点C移动过程中点M的运动路径长.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、单项选择题(共10小题,每小题3分,30分)本题共10小题,每小题均给出A,B,C,D 四个选项,有且只有一个答案是正确的,请將正确答案的代号填在答题卡上,填在试题卷上无效. 1.【分析】由二次根式的性质可以得到x﹣2≥0,由此即可求解.【解答】解:依题意得x﹣2≥0,∴x≥2.故选:D.【点评】此题主要考查了二次根式有意义的条件,根据被开方数是非负数即可解决问题.2.【分析】根据勾股定理进行计算,即可求得结果.【解答】解:直角三角形的两条直角边的长分别为1,,则斜边长=;故选:C.【点评】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.3.【分析】根据二次根式的运算法则逐一计算可得.【解答】解:A、、不是同类二次根式,不能合并,此选项错误;B、3﹣=2,此选项错误;C、×=,此选项错误;D、=,此选项正确;故选:D.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.4.【分析】把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【解答】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选:C.【点评】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.5.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、C、D均符合是平行四边形的条件,B则不能判定是平行四边形.故选:B.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.6.【分析】根据题意和图形可以判断哪个函数图象符合实际,从而可以解答本题.【解答】解:由图形可得,从开始到下面的圆柱注满这个过程中,h随时间t的变化比较快,从最下面的圆柱注满到中间圆柱注满这个过程中,h随时间t的变化比较缓慢,从中间圆柱注满到最上面的圆柱注满这个过程中,h随时间t的变化最快,故(1)中函数图象符合题意,故选:A.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.【分析】根据等腰三角形的性质求出CE=ED,根据三角形中位线定理解答.【解答】解:BD=BC=6,∴AD=AB﹣BD=4,∵BC=BD,BE⊥CD,∴CE=ED,又CF=FA,∴EF=AD=2,故选:B.【点评】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.8.【分析】先根据平均数的定义求出6月份的用水量,再根据中位数和众数的定义求解可得.【解答】解:根据题意知6月份的用水量为5×6﹣(3+6+4+5+6)=6(t),∴1至6月份用水量从小到大排列为:3、4、5、6、6、6,则该户今年1至6月份用水量的中位数为=5.5、众数为6,故选:D.【点评】本题主要考查众数和中位数,解题的关键是根据平均数定义求出6月份用水量及众数和中位数的定义.9.【分析】根据一次函数图象上点的坐标特征和等腰三角形的性质即可得到结论.【解答】解:∵A0(1,0),∴OA0=1,∴点B1的横坐标为1,∵B1,B2、B3、…、B8在直线y=2x的图象上,∴B1纵坐标为2,∴OA1=OB1=,∴A1(,0),∴B2点的纵坐标为2,于是得到B3的纵坐标为2()2…∴B8的纵坐标为2()7故选:B.【点评】本题考查了一次函数图象上点的坐标特征、等腰直角三角形的性质,解题的关键是找出B n的坐标的变化规律.10.【分析】分三种情形讨论求解即可解决问题;【解答】解:对于函数y=|x﹣a|,最小值为a+5.情形1:a+5=0,a=﹣5,∴y=|x+5|,此时x=﹣5时,y有最小值,不符合题意.情形2:x=﹣1时,有最小值,此时函数y=x﹣a,由题意:﹣1﹣a=a+5,得到a=﹣3.∴y=|x+3|,符合题意.情形3:当x=2时,有最小值,此时函数y=﹣x+a,由题意:﹣2+a=a+5,方程无解,此种情形不存在,综上所述,a=﹣3.故选:A.【点评】本题考查两直线相交或平行问题,一次函数的性质等知识,解题的关键是学会用分类讨论的思想解决问题,属于中考常考题型.二、填空愿:(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置11.【分析】根据二次根式的性质化简和(﹣)2,利用二次根式的加减法计算3﹣.【解答】解:=2,(﹣)2=6,3﹣=2.故答案为2,6,2.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.12.【分析】根据加权平均数的计算公式计算可得.【解答】解:该校篮球队队员的平均年龄为=13.7(岁),故答案为:13.7.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义和计算公式.13.【分析】设AC与BD的交点为O,根据平行四边形的性质,可得AO=CO=1,BO=DO,根据勾股定理可得BO=,即可求BD的长.【解答】解:设AC与BD的交点为O∵四边形ABCD是平行四边形∴AD=BC=2,AD∥BCAO=CO=1,BO=DO∵AC⊥BC∴BO==∴BD=2故答案为2【点评】本题考查了平行四边形的性质,关键是灵活运用平行四边形的性质解决问题.14.【分析】平移后的直线的解析式的k不变,设出相应的直线解析式,从原直线解析式上找一个点,然后找到向右平移3个单位,代入设出的直线解析式,即可求得b,也就求得了所求的直线解析式.【解答】解:可设新直线解析式为y=﹣x+b,∵原直线y=﹣x+1经过点(0,1),∴向右平移3个单位,(3,1),代入新直线解析式得:b=,∴新直线解析式为:y=﹣x+.故答案为:y=﹣x+.【点评】此题主要考查了一次函数图象与几何变换,用到的知识点为:平移不改变直线解析式中的k,关键是得到平移后经过的一个具体点.15.【分析】利用极限值法找出小卉走过的路程y与小红上山时间x之间的函数图象经过的点的坐标,由点的坐标利用待定系数法可求出y与x之间的函数关系式,再结合函数图象,即可找出小卉上山平均速度v(米/分钟)的取值范围.【解答】解:设小卉走过的路程y与小红上山时间x之间的函数关系式为y=kx+b(k≠0).将(0,60)、(30,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=8x+60;将(0,60)、(70,480)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=6x+60;将(0,60)、(50,300)代入y=kx+b,得:,解得:,∴此种情况下,y关于x的函数关系式为y=4.8x+60.观察图形,可知:小卉上山平均速度v(米/分钟)的取值范围是6<v<8或v=4.8.故答案为:6<v<8或v=4.8【点评】本题考查了一次函数的应用以及待定系数法求出一次函数解析式,根据点的坐标,利用待定系数法求出一次函数解析式是解题的关键.16.【分析】分点E在矩形内部,EM:EN=1:4,或EM:EN=4:1,点E在矩形外部,EN:EM =1:4,三种情况讨论,根据折叠的性质和勾股定理可求AP的长度.【解答】解:过点E作ME⊥AD,延长ME交BC与N,∵四边形ABCD是矩形∴AD∥BC,且ME⊥DA∴EN⊥BC且∠A=90°=∠ABC=90°∴四边形ABNM是矩形∴AB=MN=5,AM=BN若ME:EN=1:4,如图1∵ME:EN=1:4,MN=5∴ME=1,EN=4∵折叠∴BE=AB=5,AP=PE在Rt△BEN中,BN==3∴AM=3在Rt△PME中,PE2=ME2+PM2AP2=(3﹣AP)2+1解得AP=若ME:EN=4:1,则EN=1,ME=4,如图2在Rt△BEN中,BN==2∴AM =2在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(2﹣AP )2+16解得AP =若点E 在矩形外,如图∵EN :EM =1:4∴EN =,EM =在Rt △BEN 中,BN ==∴AM =在Rt △PME 中,PE 2=ME 2+PM 2AP 2=(AP ﹣)2+()2解得:AP =5故答案为,,5 【点评】本题考查了折叠问题,矩形的性质,勾股定理,利用分类思想解决问题是本题的关键.三、解答题:〔共8小题,72分)小下列各题需要在答题卡指定的位置写出文字说明、证明过程、演算步骤或画出图形17.【分析】(1)先把各二次根式化简为最简二次根式,然后合并即可;(2)利用多项式乘法公式展开,然后合并即可.【解答】解:(1)原式=3﹣2+=;(2)原式=5﹣2+3﹣6=﹣1.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.【分析】据平行四边形的性质对角线互相平分得出OA=OC,OB=OD,利用中点的意义得出OE=OF,从而利用平行四边形的判定定理“对角线互相平分的四边形是平行四边形”判定BFDE 是平行四边形,从而得出BE=DF.【解答】证明:连接BF、DE,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵E、F分别是OA、OC的中点,∴OE=OA,OF=OC,∴OE=OF,∴四边形BFDE是平行四边形,∴BE∥DF.【点评】本题考查了平行四边形的基本性质和判定定理的运用.性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.19.【分析】利用待定系数法即可解决问题;【解答】解:设一次函数的解析式为y=kx+b,则有,解得,∴一次函数的解析式为y=2x﹣3,当x=﹣1时,m=﹣5.【点评】本题考查一次函数图象上的点的特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.20.【分析】(1)利用百分比之和为1,计算即可;(2)求出M、L的件数,画出条形图即可;(3)利用不要告诉总体的思想解决问题即可;【解答】解:(1)L号运动服一周的销售所占百分比为1﹣16%﹣8%﹣30%﹣26%=20%.故答案为20%.(2)总数=13÷26%=50,M有50×30%=15,L有50×20%=10,条形统计图如图所示:(3)购进XL号约600×16%=96(件)比较合适.【点评】本题考查了频数分布直方图、扇形统计图和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【分析】(1)根据矩形的性质解答即可;(2)根据全等三角形的判定和性质以及等腰直角三角形的性质解答即可.【解答】证明:(1)∵四边形ABCD为矩形,∴AD=BC,∠BAD=∠ADC=90°,∵AF平分∠BAD,∴∠DAF=45°,∴AD=DF,∴BC=DF;(2)连接CG,BG,∵点G为EF的中点,∴GF=CG,∴∠F=∠BCG=45°,在△BCG与△DFG中,∴△BCG≌△DFG(SAS),∴BG=DG,∠CBG=∠FDG,∴△BDG为等腰直角三角形,∴BD=DG,∴BD:DG=:1.【点评】此题考查矩形的性质,关键是根据矩形的性质和全等三角形的判定和性质解答.22.【分析】(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【解答】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用相同,当600<t≤1400时方式二省钱,当t>1400时,方式一省钱;综上所述,当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【点评】本题考查了一次函数的应用,难度中等.得到两种计费方式的关系式是解决本题的关键,注意在列式时应保证单位的统一.23.【分析】(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【解答】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴=,∴=,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S=BD×MN=×6×2=12;四边形BMDN(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴==﹣1.故答案为:﹣1.【点评】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.24.【分析】(1)利用待定系数法即可解决问题;(2)因为A,B,E,F为顶点的四边形是平行四边形,推出AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),再利用待定系数法求出m即可;(3)求出点M的坐标(用m表示),即可解决问题,利用特殊位置求出点M的坐标,可以解决点C移动过程中点M的运动路径长;【解答】解:(1)对于直线y=2x+6,令x=0,得到y=6,令y=0,得到x=﹣3,∴A(﹣3,0),B(0,6),故答案为﹣3,0,0,6;(2)∵A,B,E,F为顶点的四边形是平行四边形,∴AB=EF,AB∥EF,设E(m,m+2),则F(m+3,m+8)或(m﹣3,m﹣4),把F(m+3,m+8)代入y=x,得到m+8=(m+3),解得m=﹣13,∴E(﹣13,﹣11),F(﹣10,﹣5),把F(m﹣3,m﹣4)代入y=x中,m﹣4=(m﹣3),解得m=5,∴E(5,7),F(2,1),当AB为对角线时,设E(m,m+2),则F(m﹣3,6﹣m),把F(﹣m﹣3,4﹣m)代入y=x中,4﹣m=(﹣m﹣3),解得m=11,∴E(11,13),F(﹣14,﹣7).(3)∵C(m,n)在直线y=2x+6上,∴n=2m+6,∴C(m,2m+6),∵D(﹣7m,0),CM=MD,∴M(﹣3m,m+3),令x=﹣3m,y=m+3,∴y=﹣x+3,当点C与A重合时,m=﹣3,可得M(9,0),当点C与B重合时,m=0,可得M(0,3),∴点C移动过程中点M的运动路径长为:=3.【点评】本题考查一次函数综合题、平行四边形的判定和性质、中点坐标公式、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会利用特殊位置寻找点的运动轨迹,属于中考压轴题.。
2017-2018学年八年级(下)期末数学试卷含答案
2017-2018学年八年级(下)期末数学试卷一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a33.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.164.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠15.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.6.一次函数y=kx+b(k≠0)的图象如图所示,当y>0时,x的取值范围是()A.x<0 B.x>0 C.x<2 D.x>27.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.409.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为度.12.当x=时,分式的值为零.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为cm.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a b.(填“>”“<”或“=”号)17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是.18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.2017-2018学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题10个小题,每小题3分,共30分.请将答案填在表格中)1.在下图所示的四个汽车标志图案中,属于轴对称图案的有()A.1个 B.2个 C.3个 D.4个【考点】轴对称图形.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:图1是轴对称图形,符合题意;图2不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意;图3是轴对称图形,符合题意;图4不是轴对称图形,找不到任何这样的一条直线使一个图形沿一条直线对折,直线两旁的部分能互相重合,不符合题意.共2个轴对称图案.故选B.2.下列计算结果正确的是()A.x•x2=x2B.(x5)3=x8C.(ab)3=a3b3D.a6÷a2=a3【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、x•x2=x2同底数幂的乘法,底数不变指数相加,故本选项错误;B、(x5)3=x15,幂的乘方,底数不变指数相乘,故本选项错误.C、(ab)3=a3b3,故本选项正确;D、a6÷a2=a3同底数幂的除法,底数不变指数相减,故本选项错误.故选C.3.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n 的方差是()A.2 B.4 C.8 D.16【考点】方差.【分析】设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,代入方差的公式S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],计算即可.【解答】解:设一组数据a1,a2,…,a n的平均数为,方差是s2=2,则另一组数据2a1,2a2,…,2a n的平均数为′=2,方差是s′2,∵S2= [(a1﹣)2+(a2﹣)2+…+(a n﹣)2],∴S′2= [(2a1﹣2)2+(2a2﹣2)2+…+(2a n﹣2)2]= [4(a1﹣)2+4(a2﹣)2+…+4(a n﹣)2]=4S2=4×2=8.故选C.4.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【考点】分式有意义的条件;二次根式有意义的条件.【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.5.如图,EF 过矩形ABCD 对角线的交点O ,且分别交AB 、CD 于E 、F ,那么阴影部分的面积是矩形ABCD 的面积的( )A .B .C .D .【考点】矩形的性质. 【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .6.一次函数y=kx +b (k ≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .x <0B .x >0C .x <2D .x >2【考点】一次函数的图象.【分析】根据函数图象与x 轴的交点坐标可直接解答.从函数图象的角度看,就是确定直线y=kx+b<0的解集,就是图象在x轴下方部分所有的点的横坐标所构成的集合.【解答】解:因为直线y=kx+b与x轴的交点坐标为(2,0),由函数的图象可知当y>0时,x的取值范围是x<2.故选:C.7.在下列命题中,是真命题的是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分的四边形是平行四边形D.两条对角线互相垂直且相等的四边形是正方形【考点】正方形的判定;平行四边形的判定;菱形的判定;矩形的判定.【分析】本题要求熟练掌握平行四边形、菱形、矩形、正方形的基本判定性质.【解答】解:A、两条对角线相等的平行四边形是矩形,故选项A错误;B、两条对角线互相垂直的平行四边形是菱形,故选项B错误;C、根据平行四边形的判定定理可知两条平行线相互平分的四边形是平行四边形,为真命题,故选项C是正确的;D、两条对角线互相垂直且相等的平行四边形是正方形,故选项D错误;故选C.8.用大小相同的小三角形摆成如图所示的图案,按照这样的规律摆放,则第12个图案中共有小三角形的个数是()A.34 B.35 C.37 D.40【考点】规律型:图形的变化类.【分析】观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;由此代入n=12求得答案即可.【解答】解:观察图形可知,第1个图形共有三角形5+2个;第2个图形共有三角形5+3×2﹣1个;第3个图形共有三角形5+3×3﹣1个;第4个图形共有三角形5+3×4﹣1个;…;则第n个图形共有三角形5+3n﹣1=3n+4个;当n=12时,共有小三角形的个数是3×12+4=40.故选:D.9.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD折叠,使它落在斜边AB上且与AE重合,则CD等于()A.2cm B.3cm C.4cm D.5cm【考点】翻折变换(折叠问题).【分析】根据翻折的性质可知:AC=AE=6,CD=DE,设CD=DE=x,在RT△DEB中利用勾股定理解决.【解答】解:在RT△ABC中,∵AC=6,BC=8,∴AB===10,△ADE是由△ACD翻折,∴AC=AE=6,EB=AB﹣AE=10﹣6=4,设CD=DE=x,在RT△DEB中,∵DEDE2+EB2=DB2,∴x2+42=(8﹣x)2∴x=3,∴CD=3.故选B.10.体育课上,20人一组进行足球比赛,每人射点球5次,已知某一组的进球总数为49个,进球情况记录如下表,其中进2个球的有x人,进3个球的有y 人,若(x,y)恰好是两条直线的交点坐标,则这两条直线的解析式是()A.y=x+9与y=x+B.y=﹣x+9与y=x+C.y=﹣x+9与y=﹣x+D.y=x+9与y=﹣x+【考点】一次函数与二元一次方程(组).【分析】根据一共20个人,进球49个列出关于x、y的方程即可得到答案.【解答】解:根据进球总数为49个得:2x+3y=49﹣5﹣3×4﹣2×5=22,整理得:y=﹣x+,∵20人一组进行足球比赛,∴1+5+x+y+3+2=20,整理得:y=﹣x+9.故选:C.二、填空题(本题共8个小题,每个小题3分,共24分)11.如图是某中学某班的班徽设计图案,其形状可以近似看做为正五边形,则每一个内角为108度.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,而正五边形的每个外角都相等,即可求得外角的度数,再根据外角与内角互补即可求得内角的度数.【解答】解:正五边形的外角是:360÷5=72°,则内角的度数是:180°﹣72°=108°.故答案为:108.12.当x=2时,分式的值为零.【考点】分式的值为零的条件.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:由分子x2﹣4=0⇒x=±2;而x=2时,分母x+2=2+2=4≠0,x=﹣2时分母x+2=0,分式没有意义.所以x=2.故答案为:2.13.如图,▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若AE=3,则CF=3.【考点】平行四边形的性质.【分析】根据平行四边形的性质得出AD=BC,AD∥BC,求出四边形BEDF是平行四边形,根据平行四边形的性质得出DE=BF,求出AE=CF,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∵BE∥DF,∴四边形BEDF是平行四边形,∴DE=BF,∴AD﹣DE=BC﹣BF,∴AE=CF,∵AE=3,∴CF=3,故答案为:3.14.如图,△ABC中,AB=AC=10,BC=12,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的面积是12.【考点】勾股定理;等腰三角形的性质.【分析】首先利用勾股定理求出AE的长,即可求出△ABC的面积,然后证明DE 是△ABC的中位线,进而求出△BDE的面积.【解答】解:∵△ABC中,AB=AC,AE平分∠BAC交BC于点E,∴AE⊥BC,且BE=CE,∴AE==8,=×BC×AE=×12×8=48,∴S△ABC∵点D为AB的中点,∴DE是△ABC的中位线,∴DE∥AC,且DE=AC,∴==,=S△ABC=×48=12.∴S△BDE故答案为:12.15.如图,菱形ABCD的周长为16cm,BC的垂直平分线EF经过点A,则对角线BD长为4cm.【考点】菱形的性质;线段垂直平分线的性质.【分析】首先连接AC,由BC的垂直平分线EF经过点A,根据线段垂直平分线的性质,可得AC的长,由菱形的性质,可求得AC=AB=4cm,然后由勾股定理,求得OB的长,继而求得答案.【解答】解:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=AC=2cm,∴OB==2cm,∴BD=2OB=4cm.故答案为:4.16.已知点A(﹣5,a),B(4,b)在直线y=﹣3x+2上,则a>b.(填“>”“<”或“=”号)【考点】一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,再比较出﹣5与4的大小即可解答.【解答】解:∵直线y=﹣3x+2中,k=﹣3<0,∴此函数是减函数,∵﹣5<4,∴a>b.故答案为:>.17.忻州市玉米研究所对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s甲2=0.002,s乙2=0.03,则产量稳定的是甲.【考点】方差.【分析】由s甲2=0.002、s乙2=0.03,可得到s甲2<s乙2,根据方差的意义得到甲的波动小,比较稳定.【解答】:∵s甲2=0.002、s乙2=0.03,∴s甲2<s乙2,∴甲比乙的产量稳定.故答案为:甲18.如图,已知一条直线经过点A(0,2)、点B(1,0),将这条直线向左平移与x轴、y轴分别交与点C、点D.若DB=DC,则直线CD的函数解析式为y=﹣2x﹣2.【考点】一次函数图象与几何变换.【分析】先求出直线AB的解析式,再根据平移的性质求直线CD的解析式.【解答】解:设直线AB的解析式为y=kx+b,把A(0,2)、点B(1,0)代入,得,解得,故直线AB的解析式为y=﹣2x+2;将这直线向左平移与x轴负半轴、y轴负半轴分别交于点C、点D,使DB=DC,∴DO垂直平分BC,∴OC=OB,∵直线CD由直线AB平移而成,∴CD=AB,∴点D的坐标为(0,﹣2),∵平移后的图形与原图形平行,∴平移以后的函数解析式为:y=﹣2x﹣2.故答案为:y=﹣2x﹣2.三、解答题(本题共6个小题,共66分)19.计算(1)(﹣1)2017﹣+12×2﹣2(2)解分式方程:﹣1=.【考点】解分式方程;实数的运算;负整数指数幂.【分析】(1)l原式利用乘方的意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=﹣1﹣3+3=﹣1;(2)方程两边同乘(x+2)(x﹣2)得x(x+2)﹣(x+2)(x﹣2)=8,解得:x=2,检验:当x=2时(x+2)(x﹣2)=0,则x=2不是原方程的解,原方程无解.20.已知,如图,Rt△ABC中,∠ABC=90°.(1)利用直尺和圆规按要求完成作图(保留作图痕迹);①作线段AC的垂直平分线,交AC于点M;②连接BM,在BM的延长线上取一点D,使MD=MB,连接AD、CD.(2)试判断(1)中四边形ABCD的形状,并说明理由.【考点】作图—复杂作图;矩形的判定.【分析】(1)①利用线段垂直平分线的作法得出即可;②利用射线的作法得出D点位置;(2)利用直角三角形斜边与其边上中线的关系进而得出AM=MC=BM=DM,进而得出答案.【解答】解:(1)①如图所示:M点即为所求;②如图所示:四边形ABCD即为所求;(2)矩形,理由:∵Rt△ABC中,∠ABC=90°,BM是AC边上的中线,∴BM=AC,∵BM=DM,AM=MC∴AM=MC=BM=DM,∴四边形ABCD是矩形.21.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是30元;(2)这次调查获取的样本数据的中位数是50元;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有250人.【考点】条形统计图;用样本估计总体;中位数;众数.【分析】(1)众数就是出现次数最多的数,据此即可判断;(2)中位数就是大小处于中间位置的数,根据定义判断;(3)求得调查的总人数,然后利用1000乘以本学期计划购买课外书花费50元的学生所占的比例即可求解.【解答】解:(1)众数是:30元,故答案是:30元;(2)中位数是:50元,故答案是:50元;(3)调查的总人数是:6+12+10+8+4=40(人),则估计本学期计划购买课外书花费50元的学生有:1000×=250(人).故答案是:250.22.某游泳池有水4000m3,先放水清洗池子.同时,工作人员记录放水的时间x(单位:分钟)与池内水量y(单位:m3)的对应变化的情况,如下表:(1)根据上表提供的信息,当放水到第80分钟时,池内有水多少m3?(2)请你用函数解析式表示y与x的关系,并写出自变量x的取值范围.【考点】一次函数的应用.【分析】(1)观察不难发现,每10分钟放水250m3,然后根据此规律求解即可;(2)设函数关系式为y=kx+b,然后取两组数,利用待定系数法一次函数解析式求解即可.【解答】解:(1)由图表可知,每10分钟放水250m3,所以,第80分钟时,池内有水4000﹣8×250=2000m3;答:池内有水2000m3.(2)设函数关系式为y=kx+b,∵x=20时,y=3500,x=40时,y=3000,∴,解得:,所以,y=﹣25x+4000(0≤x≤160).23.已知:如图,E是正方形ABCD的对角线BD上一点,EF⊥BC,EG⊥CD,垂足分别是F、G.求证:AE=FG.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】根据题意我们不难得出四边形GEFC是个矩形,因此它的对角线相等.如果连接EC,那么EC=FG,要证明AE=FG,只要证明EC=AE即可.证明AE=EC就要通过全等三角形来实现.三角形ABE和BEC中,有∠ABD=∠CBD,有AB=BC,有一组公共边BE,因此构成了全等三角形判定中的SAS,因此两三角形全等,得AE=EC,即AE=GF.【解答】证明:连接EC.∵四边形ABCD是正方形,EF⊥BC,EG⊥CD,∴∠GCF=∠CFE=∠CGE=90°,∴四边形EFCG为矩形.∴FG=CE.又BD为正方形ABCD的对角线,∴∠ABE=∠CBE.在△ABE和△CBE中,,∴△ABE≌△CBE(SAS).∴AE=EC.∴AE=FG.24.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?【考点】一次函数的应用.【分析】(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可;(2)根据每天获取利润为14400元,则y=14400,求出即可;(3)根据每天获取利润不低于15600元即y≥15600,求出即可.【解答】解:(1)根据题意得出:y=12x×100+10(10﹣x)×180=﹣600x+18000;(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;(3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4,则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.25.△ABC和△DEF都是边长为6cm的等边三角形,且A、D、B、F在同一直线上,连接CD、BF.(1)求证:四边形BCDE是平行四边形;(2)若AD=2cm,△ABC沿着AF的方向以每秒1cm的速度运动,设△ABC运动的时间为t秒.(a)当t为何值时,平行四边形BCDE是菱形?说明理由;(b)平行四边形BCDE有可能是矩形吗?若有可能,求出t的值,并求出矩形的面积;若不可能,说明理由.【考点】四边形综合题.【分析】(1)由△ABC和△DEF是两个边长为6cm的等边三角形,得出BC=DF,由∠ACD=∠FDE=60°,得出BC∥DE,证出四边形BCDE是平行四边形;(2)(a)根据有一组邻边相等的四边形是菱形即可得到结论;(b)根据有一个角是直角的平行四边形是矩形即可得到结论.【解答】(1)证明:∵△ABC和△DEF是两个边长为6cm的等边三角形,∴BC=DE,∠ABC=∠FDE=60°,∴BC∥DE,∴四边形BCDE是平行四边形;(2)解:(a)当t=2秒时,▱BCDE是菱形,此时A与D重合,∴CD=DE,∴▱ADEC是菱形;(b)若平行四边形BCDE是矩形,则∠CDE=90°,如图所示:∴∠CDB=90°﹣60°=30°同理∠DCA=30°=∠CDB,∴AC=AD,同理FB=EF,∴F与B重合,∴t=(6+2)÷1=8秒,∴当t=8秒时,平行四边形BCDE是矩形.。
2017-2018年八年级下期末数学试卷有答案
2017-2018学年度八年级第二学期期末试卷(试卷满分120分,答题时间90分钟)一、精心选一选:(每小题2分,共24分)在下列各题的四个备选答案中,只有一个是正确的,请把正确答案的代号写在题后的括号内。
1、下列计算正确的是( )A. BC. D.3+2、小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..的是( ) A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米3、如图1,矩形ABCD 中,AB=3,AD=1,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 的坐标为( )A 、(2,0)B 、1,0) C 、1,0) D 、)4、某校开展“节约每一滴水”活动,为了了解开展活动的一个月以来节约用水的病况,从八年级的400名) A. 130m 3 B. 135m 3 C. 6.5m 3 D. 260m 36、如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行( )A .8米B .10米C .12米D .14米7、为了参加我市组织的“我爱家乡美”系列活动,某校准备从九年级四个班中选出一个班的7名学生组建舞蹈队,要求各班选出的学生身高较为整齐,且平均身高约为1.6m.根据各班选出的学生,测量其身高,计算得到的数据如右表所示,学校应选择( )A.九(1)班B. 九(2)班C. 九(3)班D. 九(4)班 8、根据下表中一次函数的自变量x 与函数y 的对应值,可得p 的值为( )StA OStB OStCOStOD AC BPx -2 0 1 y3pA 9、如图,在矩形ABCD 中,AB=2,BC=4,对角线AC 的垂直平分线分别交AD 、AC 于点E 、O ,连接CE ,则CE 的长为( )A. 3B.3.5C.2.5D.2.810、如图,函数y=2x 和y=ax+4的图象相交于点A (m ,3),则不等式2x <ax+4的解集为( )A .23<xB . x <3C .23>xD . x >311、如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为( )A .2B .4C .4D .812、如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B 再沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,S 与t 的大致图象是( )二、细心填一填:(每小题3分,共24分)13、请写出一个图形经过一、三象限的正比例函数的解析式 . 14、一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ .15、张老师想对同学们的打字能力进行测试,他将全班同学分成5组.经统计,这5个小组平均每分钟打字的个数如下:100,80,x ,90,90.已知这组数据的众数与平均数相等,那么这组数据的中位数是 .ADO16、在植树节当天,某校一个班同学分成10个小组参加植树造林活动,10个小组植树的株数见下表:则这10个小组植树株数的方差是____________. 17、如图,已知菱形ABCD 的对角线AC .BD 的长分别为6cm 、8cm ,AE⊥BC 于点E ,则AE 的长是___________18、若整数x 满足|x|≤3,则使为整数的x 的值是(只需填一个).19、如图,已知一条直线经过点A (0,2)、点B (1,0),将这条直线向左平移与x 轴、y 轴分别交与点C 、点D .若DB=DC ,则直线CD 的函数解析式为 .20、如图,在平面直角坐标系中,△ABC 的两个顶点A ,B 的坐标分别为(﹣2,0),(﹣1,0),BC ⊥x 轴,将△ABC 以y 轴为对称轴作轴对称变换,得到△A ′B ′C ′(A 和A ′,B 和B ′,C 和C ′分别是对应顶点),直线y=x+b 经过点A ,C ′,则点C ′的坐标是 .三、耐心解一解(本大题共72分)21、计算:(第1、2小题每小题5分,第3小题8分共18分)(1)(2)(﹣)﹣﹣|﹣3|(3)29x y -+|x -y -3|互为相反数,则x +y 的值为多少?植树株数(株)5 6 7 小组个数 3 4 322、(10分.)如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.(1)求证:△ADC △ECD;(2)若BD=CD,求证四边形ADCE是矩形.23、(12分)甲、乙两人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离y(千米)与x(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,y与x之间的函数关系式,并写出自变量x的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?24.(10分)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?盏,这两种台灯的进价、售价如表所示:(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?26、(12分)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.2017~2018学年度八年级第二学期期中试卷答案一、精心选一选:1、C .2、B3、C.4、A.5、C6、B .7、C .8、A9、C. 10、A 11、B 12、C 二、细心填一填:13、y=x (答案不唯一).14、m >﹣2.15、90. 16、0.6 17、AE=cm ,18、﹣2或3 19、y=﹣2x ﹣2 20、(1,3)三、耐心解一解(本大题共72分)21、(1)(2)﹣6.(3)因为|x -y -3|,|x -y -3|=0 所以⎩⎨⎧=--=+-03092y x y x 所以⎩⎨⎧==1215y x ,所以27=+y x .22、证明:(1)∵△ABC 是等腰三角形 ∴∠B=∠ACB. AB=AC 又四边形ABDE 是平行四边形 ∴∠B=∠EDC AB=DE ∴∠ACB=∠EDC, AC=DE.DC=DC ∴△ADC ≅△ECD ; (2)∵AB=AC,BD=CD. ∴AD ⊥BC. ∴∠ADC=90°∵四边形ABDE 是平行四边形 ∴AE 平行且等于BD 即AE 平行且等于DC.∴四边形ADCE 是平行四边形. ∴四边形ADCE 是矩形.23、解(1)设y kx b =+,根据题意得 301.590k b k b +=⎧⎨+=⎩,解得60180k b =-⎧⎨=⎩60180(1.53).y x x =-+≤≤ (2)当2x =时,60218060y =-⨯+= ∴骑摩托车的速度为60230÷=(千米/时)÷=(小时)∴乙从A地到B地用时为9030324、补全表格如下:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7 7 4 0乙7 7.5 5.4 1甲、乙射击成绩折线图(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出;(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲乙的平均成绩相同,乙只有第5次射击比第四次射击少命中1环,且命中1次10环,而甲第2次比第1次、第4次比第3次,第5次比第4次命中环数都低,且命中10环的次数为0次,即随着比赛的进行,乙的射击成绩越来越好.25、解:(1)设商场应购进A型台灯x盏,则B型台灯为(100﹣x)盏,根据题意得,30x+50(100﹣x)=3500,解得x=75,所以,100﹣75=25,答:应购进A型台灯75盏,B型台灯25盏;(2)设商场销售完这批台灯可获利y元,则y=(45﹣30)x+(75﹣50)(100﹣x),=15x+2000﹣20x,=﹣5x+2000,∵B型台灯的进货数量不超过A型台灯数量的3倍,∴100﹣x≤3x,∴x≥25,∵k=﹣5<0,∴x=25时,y取得最大值,为﹣5×25+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元.∴,∴直线MN的解析式为y=﹣x+6;x+6∴设P(a,﹣a+6)1②当PC=BC时,a2+(﹣a+6﹣6)2=64,,则,)(,(﹣,则﹣,∴(,﹣综上所述,符合条件的点P有:P1(4,3),P2(﹣,)P3(,),P4(,。
人教版初中数学八年级下册期末试题(2017-2018学年贵州省黔东南州
2017-2018学年贵州省黔东南州八年级(下)期末数学试卷一、选择题:(每小题4分,共40分)1.(4分)下列式子中属于最简二次根式的是()A.B.C.D.2.(4分)一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.103.(4分)正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个函数的图象必经过点()A.(﹣1,2)B.(1,2)C.(2,1)D.(﹣2,1)4.(4分)某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是()A.4B.3.5C.5D.35.(4分)下列计算正确的是()A.+=B.÷=C.2×3=6D.﹣2=﹣6.(4分)如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是()A.25cm B.20cm C.28cm D.30cm7.(4分)如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13B.5C.11D.38.(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是()A.a<b<c B.c<a<b C.a<c<b D.b<a<c9.(4分)如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是()A.B.C.D.10.(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F.若AB=10,BC=3,则△EBF的面积是()A.4B.5C.6D.7二、填空题:(每小题4分,共32分)11.(4分)若二次根式有意义,则x的取值范围是.12.(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是(填“甲”或“乙”).13.(4分)已知等腰三角形的两条中位线的长分别为2和3,则此等腰三角形的周长为.14.(4分)实数a,b在数轴上对应点的位置如图所示,化简|b|+=.15.(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为m.16.(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为.17.(4分)如图,折线A﹣B﹣C是我市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象,某人支付车费15.6元,则出租车走了km.18.(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为.三、解答题:(7个小题,共78分)19.(10分)计算:(﹣1)2018+﹣×+(2+)(2﹣)20.(10分)如图,∠AOB=30°,OP=6,OD=2,PC=PD,求OC的长.21.(12分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.(1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?(2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?(3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?22.(10分)如图,甲、乙两船同时从A港口出发,甲船以每小时30海里的速度向西偏北32°的方向航行2小时到达C岛,乙船以每小时40海里的速度航行2小时到B岛,已知B、C两岛相距100海里,求乙船航行的方向.23.(12分)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.24.(12分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:(1)求y1与y2的函数关系式;(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?25.(12分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,请判断△ABC的形状;(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.2017-2018学年贵州省黔东南州八年级(下)期末数学试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.(4分)下列式子中属于最简二次根式的是()A.B.C.D.【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(4分)一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,∴S△=×3×4=6.故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.3.(4分)正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个函数的图象必经过点()A.(﹣1,2)B.(1,2)C.(2,1)D.(﹣2,1)【分析】先把点(2,﹣1),代入正比例函数y=kx(k≠0),求出k的值,故可得出此函数的解析式,再把各点代入此函数的解析式进行检验即可.【解答】解:∵正比例函数y=kx(k≠0)的图象经过点(2,﹣1),∴﹣1=2k,解得k=﹣,∴正比例函数的解析式为y=﹣x.A、∵当x=﹣1时,y=≠2,∴此点不在正比例函数的图象上,故本选项错误;B、∵当x=1时,y=﹣≠2,∴此点不在正比例函数的图象上,故本选项错误;C、当x=2时,y=﹣1≠1,∴此点不在正比例函数的图象上,故本选项错误;D、当x=﹣2时,y=1,∴此点在正比例函数的图象上,故本选项正确.故选:D.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了待定系数法求正比例函数的解析式.4.(4分)某校对八年级6个班学生平均一周的课外阅读时间进行了统计,分别为(单位:h):4、4、3.5、5、5、4,这组数据的众数是()A.4B.3.5C.5D.3【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:在这一组数据中4出现了3次,次数最多,故众数是4.故选:A.【点评】本题考查了众数的定义,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.5.(4分)下列计算正确的是()A.+=B.÷=C.2×3=6D.﹣2=﹣【分析】直接利用二次根式混合运算法则计算得出答案.【解答】解:A、+,无法计算,故此选项错误;B、÷=,故此选项错误;C、2×3=18,故此选项错误;D、﹣2=﹣,正确.故选:D.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.6.(4分)如图,平行四边形ABCD中,AE平分∠BAD,若CE=4cm,AD=5cm,则平行四边形ABCD的周长是()A.25cm B.20cm C.28cm D.30cm【分析】只要证明AD=DE=5cm,即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5cm,CD=AB,∴∠EAB=∠AED,∵∠EAB=∠EAD,∴∠DEA=∠DAE,∴AD=DE=5cm,∵EC=4cm,∴AB=DC=9cm,∴四边形ABCD的周长=2(5+9)=28(cm),故选:C.【点评】本题考查平行四边形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.(4分)如图,已知Rt△ABC中,∠ABC=90°,分别以AB、BC、AC为直径作半圆,面积分别记S1,S2,S3,若S1=4,S2=9,则S3的值为()A.13B.5C.11D.3【分析】由扇形的面积公式可知S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC 中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;【解答】解:∵S1=•π•AC2,S2=•π•BC2,S3=•π•AB2,在Rt△ABC中,由勾股定理得AC2+BC2=AB2,即S1+S2=S3;∵S1=4,S2=9,∴S3=13.故选:A.【点评】本题考查勾股定理的应用,难度适中,解题关键是对勾股定理的熟练掌握及灵活运用,记住S1+S2=S3;8.(4分)一次函数y=kx+m的图象如图所示,若点(0,a),(﹣2,b),(1,c)都在函数的图象上,则下列判断正确的是()A.a<b<c B.c<a<b C.a<c<b D.b<a<c【分析】由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.【解答】解:由图可得,y随x的增大而减小,∵﹣2<0<1,∴c<a<b,故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.9.(4分)如图,在菱形ABCD中,一动点P从点B出发,沿着B→C→D→A的方向匀速运动,最后到达点A,则点P在匀速运动过程中,△APB的面积y随时间x变化的图象大致是()A.B.C.D.【分析】分析动点P在BC、CD、DA上时,△APB的面积y随x的变化而形成变化趋势即可.【解答】解:当点P沿BC运动时,△APB的面积y随时间x变化而增加,当点P到CD上时,△APB的面积y保持不变,当P到AD上时,△APB的面积y随时间x增大而减少到0.故选:D.【点评】本题为动点问题的图象探究题,考查了函数问题中函数随自变量变化而变化的关系,解答时注意动点到达临界点前后函数图象的变化.10.(4分)以矩形ABCD两对角线的交点O为原点建立平面直角坐标系,且x轴过BC中点,y轴过CD中点,y=x﹣2与边AB、BC分别交于点E、F.若AB=10,BC=3,则△EBF的面积是()A.4B.5C.6D.7【分析】根据题意得:B(5,﹣),可得E的纵坐标为﹣,F的横坐标为5.代入解析式y=x﹣2可求E,F坐标.则可求△EBF的面积.【解答】解:∵x轴过BC中点,y轴过CD中点,AB=10,BC=3∴B(5,﹣)∴E的纵坐标为﹣,F的横坐标为5.∵y=x﹣2与边AB、BC分别交于点E、F.∴当x=5时,y=.当y=﹣时,x=1.∴E(1,﹣),F(5,)∴BE=4,BF=2∴S△BEF==4故选:A.【点评】本题考查了一次函数图象上点的坐标特征,矩形的性质,关键是找到E,F两点坐标.二、填空题:(每小题4分,共32分)11.(4分)若二次根式有意义,则x的取值范围是x≥1.【分析】根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.【解答】解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.【点评】此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.12.(4分)甲、乙两名射击手的100次测试的平均成绩都是9环,方差分别是S2甲=0.8,S2乙=0.35,则成绩比较稳定的是乙(填“甲”或“乙”).【分析】根据方差的定义,方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙的平均成绩都是9环,方差分别是S甲2=0.8,S乙2=0.35,∴S甲2>S乙2,∴成绩比较稳定的是乙;故答案为:乙.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.(4分)已知等腰三角形的两条中位线的长分别为2和3,则此等腰三角形的周长为14或16.【分析】因为三角形中位线的长度是相对应边长的一半,所以此三角形有一条边为4,一条为6;那么就有两种情况,或腰为4,或腰为6,再分别去求三角形的周长.【解答】解:∵等腰三角形的两条中位线长分别为2和3,∴等腰三角形的两边长为4,6,当腰为6时,则三边长为6,6,4;周长为16;当腰为4时,则三边长为4,4,6;周长为14;故答案为:14或16.【点评】此题涉及到三角形中位线与其三边的关系,解答此题时要注意分类讨论,不要漏解.14.(4分)实数a,b在数轴上对应点的位置如图所示,化简|b|+=﹣a.【分析】根据各点在坐标系中的位置判断出其符号及绝对值的大小,再根据绝对值的性质把原式进行化简即可.【解答】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,所以原式=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为:﹣a.【点评】本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.15.(4分)如图,一架15m长的梯子AB斜靠在一竖直的墙OA上,这时梯子的顶端A离地面距离OA为12m,如果梯子顶端A沿墙下滑3m至C点,那么梯子底端B向外移至D点,则BD的长为3m.【分析】先根据勾股定理求出OB的长,再在Rt△COD中求出OD的长,进而可得出结论.【解答】解:在Rt△ABO中,∵AB=15m,AO=12m,∴OB===9m.同理,在Rt△COD中,DO===12m,∴BD=OD﹣OB=12﹣9=3(m).故答案是:3.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.16.(4分)一次函数y=kx+b(k≠0,k,b为常数)的图象如图所示,则关于x的不等式kx+b<0的解集为x>2.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b<0的解集.【解答】解:函数y=kx+b的图象经过点(2,0),并且函数值y随x的增大而减小,所以当x>2时,函数值小于0,即关于x的不等式kx+b<0的解集是x>2.故答案为x>2.【点评】此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.17.(4分)如图,折线A﹣B﹣C是我市区出租车所收费用y(元)与出租车行驶路程x(km)之间的函数关系图象,某人支付车费15.6元,则出租车走了10km.【分析】根据函数图象中的数据可以求得BC段对应的函数解析式,然后令y=15.6求出相应的x的值,即可解答本题.【解答】解:设BC段对应的函数解析式为y=kx+b,,得,∴BC段对应的函数解析式为y=1.2x+3.6,当y=15.8时,15.6=1.2x+3.6,解得,x=10,故答案为:10.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.(4分)如图是由6个形状大小完全相同菱形组成的网格,若菱形的边长为1,一个内角(∠O)为60°,△ABC的各顶点都在格点上,则BC边上的高为.【分析】如图,连接EA、EC,先证明∠AEC=90°,E、C、B共线,求出AE即可;【解答】解:如图,连接EA,EC,∵菱形的边长为1,由题意得∠AEF=30°,∠BEF=60°,AE=,∴∠AEC=90°,∵∠ACE=∠ACG=∠BCG=60°,∴∠ECB=180°,∴E、C、B共线,∴AE即为△ACB的BC边上的高,∴AE=,故答案为.【点评】本题考查菱形的性质,特殊三角形边角关系等知识,解题的关键是添加辅助线构造直角三角形解决问题,属于中考常考题型.三、解答题:(7个小题,共78分)19.(10分)计算:(﹣1)2018+﹣×+(2+)(2﹣)【分析】先计算乘方、利用性质2、二次根式的乘法、平方差公式计算,再计算加减可得.【解答】解:原式=1+3﹣+4﹣3=4﹣3+4﹣3=2.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则及平方差公式.20.(10分)如图,∠AOB=30°,OP=6,OD=2,PC=PD,求OC的长.【分析】首先过点P作PE⊥OB于点E,利用直角三角形中30°所对边等于斜边的一半得出OE的长,再利用等腰三角形的性质求出EC的长.【解答】解:过点P作PE⊥OB于点E,∵∠AOB=30°,PE⊥OB,OP=6,∴OE=OP=3,∵OD=2,PC=PD,∴CE=DE=,∴OC=4.【点评】此题主要考查了直角三角形中30°所对边等于斜边的一半得出OD的长以及等腰三角形的性质,得出OD的长是解题关键.21.(12分)某校为了解学生“体育课外活动”的锻炼效果,在期末结束时,随机从学校1200名学生中抽取了部分学生的体育测试成绩绘制了条形统计图,请根据统计图提供的信息,回答下列问题.(1)这次抽样调查共抽取了多少名学生的体育测试成绩进行统计?(2)随机抽取的这部分学生中男生体育成绩的众数是多少?女生体育成绩的中位数是多少?(3)若将不低于40分的成绩评为优秀,请估计这1200名学生中成绩为优秀的学生大约是多少?【分析】(1)将条形图中各分数的人数相加即可得;(2)根据众数和中位数的定义求解可得;(3)总人数乘以样本中优秀人数所占比例可得.【解答】解:(1)抽取的学生总人数为5+7+10+15+15+12+13+10+8+5=100(人);(2)由条形图知随机抽取的这部分学生中男生体育成绩的众数40分,∵女生总人数为7+15+12+10+5=49,其中位数为第25个数据,∴女生体育成绩的中位数是40分;(3)估计这1200名学生中成绩为优秀的学生大约是1200×=756(人).【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.除此之外,本题也考查了平均数、中位数、众数的认识.22.(10分)如图,甲、乙两船同时从A港口出发,甲船以每小时30海里的速度向西偏北32°的方向航行2小时到达C岛,乙船以每小时40海里的速度航行2小时到B岛,已知B、C两岛相距100海里,求乙船航行的方向.【分析】首先计算出甲乙两船的路程,再根据勾股定理逆定理可证明∠BAC=90°,然后再根据C岛在A西偏北32°方向,可得B岛在A东偏北58°方向.【解答】解:由题意得:甲2小时的路程=30×2=60海里,乙2小时的路程=40×2=80海里,且BC=100海里,(3分)∵AC2+AB2=602+802=10000,BC2=1002=10000,∴AC2+AB2=BC2,(7分)∴∠BAC=90°,∵C岛在A西偏北32°方向,∴B岛在A东偏北58°方向.∴乙船航行的方向是东偏北58°方向.(10分)【点评】此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23.(12分)如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB=∠CBD.求证:四边形ABCD是平行四边形.【分析】首先利用平行线的性质与判定方法得出∠DAE=∠BCF,进而利用AAS得出△ADE ≌△CBF,即可得出AD BC,即可得出答案.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.【点评】此题主要考查了全等三角形的判定与性质以及平行四边形的判定,正确得出△ADE ≌△CBF(AAS)是解题关键.24.(12分)某服装店为了鼓励营业员多销售服装,在原来的支付月薪方式(y1):每月底薪600元,每售出一件服装另支付4元的提成,推出第二种支付月薪的方式(y2),如图所示,设x(件)是一个月内营业员销售服装的数量,y(元)是营业员收入的月薪,请结合图形解答下列问题:(1)求y1与y2的函数关系式;(2)该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的?(3)如果你是营业员,你会如何选择支付薪水的方式?为什么?【分析】(1)根据题意可以直接写出y1与y2的函数关系式;(2)根据题意和函数图象可以得到该服装店新推出的第二种付薪方式是怎样向营业员支付薪水的;(3)根据(1)中的函数解析式可以解答本题.【解答】解:(1)由题意可得,y1与x的函数解析式为:y1=4x+600,y2与x的函数解析式为:y2=x=8x,即y1与x的函数解析式为y1=4x+600,y2与x的函数解析式为:y2=8x;(2)由题意可得,该服装店新推出的第二种付薪方式是,没有底薪,每售出一件服装可得提成8元;(3)当售出的衣服少于150件时,选择第一次支付月薪方式,当售出的衣服为150件时,两种支付月薪方式一样,当售出的衣服多于150件时,选择第二种支付月薪方式,理由:令4x+600=8x,解得,x=150,∴当售出的衣服少于150件时,选择第一次支付月薪方式,当售出的衣服为150件时,两种支付月薪方式一样,当售出的衣服多于150件时,选择第二种支付月薪方式.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.25.(12分)如图,在平面直角坐标系中,直线y=﹣x+3与x轴交于点C与直线AD交于点A(1,2),点D的坐标为(0,1)(1)求直线AD的解析式;(2)直线AD与x轴交于点B,请判断△ABC的形状;(3)在直线AD上是否存在一点E,使得4S△BOD=S△ACE,若存在求出点E的坐标,若不存在说明理由.【分析】(1)利用待定系数法,即可得到直线AD的解析式;(2)依据点的坐标求得AB=2,AC=2,BC=4,即可得到AB2+AC2=16=BC2,进而得出△ABC是等腰直角三角形;(3)依据4S△BOD=S△ACE,即可得到AE=,分两种情况进行讨论:①点E在直线AC 的右侧,②点E在直线AC的左侧,分别依据AD=AE=,即可得到点E的坐标.【解答】解:(1)直线AD的解析式为y=kx+b,∵直线AD经过点A(1,2),点D(0,1),∴,解得,∴直线AD的解析式为y=x+1;(2)∵y=x+1中,当y=0时,x=﹣1;y=﹣x+3中,当y=0时,x=3,∴直线AD与x轴交于B(﹣1,0),直线AC与x轴交于C(3,0),∵点A(1,2),∴AB=2,AC=2,BC=4,∵AB2+AC2=16=BC2,∴∠BAC=90°,∴△ABC是等腰直角三角形;(3)存在,AC=2,S△BOD=×1×1=,∵△ABC是等腰直角三角形,∴∠CAE=90°,∵S△ACE=AE×AC,4S△BOD=S△ACE,∴4×=×AE×2,解得AE=,①如图,当点E在直线AC的右侧时,过E作EF⊥y轴于F,∵AD=AE=,∠EDF=45°,∴EF=DF=2,OF=2+1=3,∴E(2,3);②当点E在直线AC的左侧时,∵AD=AE =,∴点E与点D重合,即E(0,1),综上所述,当点E的坐标为(2,3)或(0,1)时,4S△BOD=S△ACE.【点评】本题主要考查了两直线相交问题,待定系数法求一次函数解析式的运用,解题时注意:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.第21页(共21页)。
贵州省贵阳市2017-2018学年八年级(下)期末数学试卷
贵州省贵阳市 2017-2018 学年八年级(下)期末数学试卷、选择题(以下每小题均有 A 、B 、C 、D 四个选项,其中只有一个选项正确,请在括号内填上正 确选项的字母,每小题 3 分,共 30 分)1.在平面内,下列图案中,能通过图平移得到的是(2.一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为(6.若等腰三角形的周长为 18cm ,其中一边长为 4cm ,则该等腰三角形的底边长为( )A .10B .7或 10C .4D .7或 47.一次函数 y = kx+b 的图象如图所示,则一元一次不等式 kx+b <0 的解集为( )C .x >2D .x ≤23.如图,在 ? ABCD 中, AD = 8,点 E ,F 分别是 AB , AC 的中点,则 EF 等于( B .3 C .4 D .4.将分式方程 化为整式方程,方程两边可以同时乘(C .2(x ﹣2) D .x (x ﹣2) B .AD =DCC .∠ ADC =∠ CBA D . OA = OC A .B .C .D .A . x ≥ 2B .x <2 A .2 A . x ﹣2B .xA .∠ 1=∠ 2定成立的是(9.已知 a ,b ,c 是三角形的三边,那么代数式( a ﹣b )2﹣c 2的值( )10.如图,在 Rt △ABC 中(AB >2BC ),∠C =90°,以 BC 为边作等腰△ BCD ,使点 D 落在△ ABC二、填空题(每小题 4分,共 20 分)11.计算的结果为 .12.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入 个小球时有水溢出.C .x <0D .x >08.如图,在 Rt △ABC 中,∠ ACB =90°,CD ,CE 分别是斜边上的高和中线,∠B =30°,CE = 4,则 CD 的长为(A .2B .4C .2D .A .大于零B .小于零C .等于零D .不能确定B .3个C .4个D .5个B .x >2 A .2个13.如图,在周长为26cm 的? ABCD 中,AB ≠ AD ,AC ,BD 相交于点O,OE⊥AC 交AD 于E.则△ CDE 的周长为cm.14.如图,将长方形ABCD 绕点 A 顺时针旋转到长方形AB ′C′D′的位置,旋转角为α(0°< α< 90°),若∠ 1=125°,则∠ α的大小是度.15.如图,线段AB 的长为 4 ,P 为线段AB 上的一个动点,△ PAD 和△ PBC 都是等腰直角三角形,且∠ ADP =∠ PCB=90°,则CD 长的最小值是.三、解答题(共8小题,满分50 分)16.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB 的垂直平分线.小颖的作法如下:如图,①分别以点 A 和点 B 为圆心,大于AB 的长为半径作弧,两弧相交于点C;② 再分别以点 A 和点 B 为圆心,大于AB 的长为半径(不同于① 中的半径)作弧,两弧相交于点D ;③ 作直线CD.所以直线CD 就是所求作的垂直平分线.老师说:“小颖的作法正确.”请回答:小颖的作图依据是18.( 8分)如图,在△ ABC 中, AE 是∠ BAC 的角平分线,交 BC 于点 E ,DE ∥AB 交AC 于点D .1)求证 AD = ED ;2)若 AC =AB ,DE =3,求 AC 的长.19.(6 分)某中学需要添置一批教学仪器,方案一:到厂家购买,每件原价活动八折出售;方案二学校自己制作,每件 20 元,另外需要制作工具的租用费 600 元;设该学 校需要购买仪器 x 件,方案一与方案二的费用分别为 y 1 和 y 2(元)1)请分别求出 y 1, y 2关于 x 的函数表达式;2)若学校需要购买仪器 30~ 60(含 30 和 60)件,问采用哪种方案更划算?请说明理由. 20.( 7分)如图,在平行四边形 ABCD 中,点E ,F 分别是 AB , CD 的中点. ( 1)求证:四边形 AEFD 是平行四边形;(2)若∠ DAB =120°,AB =12,AD =6,求△ ABC 的面积.21.(6 分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).( 1)在图 ① 中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况 即可)( 2)在图 ② 中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形; ( 3)在图 ③ 中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.17.(6 分)解不等式组:,并写出它的所有整数解.40 元,恰逢厂家促销22.(7 分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450 千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了 3 小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的 3 倍,求高铁列车的平均行驶速度.23.(6 分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“ 123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的 6 位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.32(1)根据上述方法,当x=21,y=7 时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27 时可以得到其中一个密码为242834,求m、n 的值.参考答案、选择题1.B.2.D.3.C.4.D.5.B.6.C.7.B.8.C.9.B.10.C.二、填空题11.x﹣112.10.13.13.14.3515. 2 .三、解答题16.解:如图,∵由作图可知,AC=BC,AD=BD ,∴直线CD 就是线段AB 的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.17.解:,∵解不等式①得:x>﹣4,解不等式②得:x<1,∴原不等式组的解集为:﹣4< x< 2,∴不等式组的整数解是:﹣3,﹣2,﹣1、0.18.证明:(1)∵ AE 是∠BAC 的角平分线∴∠ DAE=∠ BAE∵DE∥ AB∴∠ DEA=∠ EAB∴∠ DAE=∠ DEA∴AD=DE(2)∵ AB=AC,AE是∠ BAC 的角平分线∴AE⊥BC∴∠ C+∠ CAE=90°,∠ CED +∠ DEA=90°∴∠ C=∠ CED∴DE=CD 且DE= 3∴AD=DE=CD=3∴AC=619.解:(1)由题意,可得:y1=40× 0.8x=32x,y2=20x+600;(2)当32x=20x+600 时,解得:x=50,此时y1=y2,即x=50 时,两种方案都一样,当32x> 20x+600 时,解得:x>50,此时y1>y2,即50< x≤60 时,方案二划算,当32x< 20x+600 时,解得:x<50,此时y1<y2,即30≤x< 50 时,方案一划算.20.(1)证明:如图.∵四边形ABCD 是平行四边形,∴AB∥ CD 且AB=CD,∵点E, F 分别是AB,CD 的中点,∴AE=AB,DF =CD.∴ AE=DF ,∴四边形AEFD 是平行四边形;(2)如图,作CH ⊥AB 于H.∴AD=BC=6,AD∥ BC,∴∠ B=180°﹣∠ DAB =60 ∴ CH=BC?sin60°= 3 ,∴ S△ABC=?AB?CH =×12×3 =1821.解:(1)如图①所示:(2)如图②所示:(3)如图③所示:22.解:设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,由题意得:+3=,解得:x=100,经检验:x=100 是原方程的解,则3× 100=300(km/h);答:高铁列车平均速度为300km/h.3 2 2 223.解:(1)x ﹣xy =x(x ﹣y )=x(x+y)(x﹣y),当x=21,y=7 时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814 、211428 ;32(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27 时可以得到其中一个密码为242834 ,∴27+p=24,27+q=28,27+r =34,解得,p=﹣3,q=1,r =7,32 ∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),3 2 3 2∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴ ,得,即m的值是56,n 的值是17.。
贵州省黔南州2017-2018学年八年级数学下学期期末试题新人教版
贵州省黔南州2017-2018学年八年级数学下学期期末试题2017——2018学年第二学期八年级期末联考答案一.选择题(共12个小题,每个小题3分,共36分)1. A ;2. D ;3. C ;4. D ;5. C ;6. B ;7. B ; 8. C ; 9. C ; 10. A ; 11. D ; 12. C二. 填空题(共6个小题,每小题3分,共18分)13. 6y x =-; 14. 2a ≤; 15.;(-6,5)或(2,5)或(0,-7);16. B ; 17. 754 18. 3; 三. 解答题(共46分) 19(本题共6分,每小题3分) 解:(1) 原式=43÷3-22×23+26 ………………………………(2分,每做对2个给1分)=4-6+26=4+6 ………………………………………………………(3分)(2)原式=22(118)(811)(11)(8)1183-+=-=-= 20.(本小题3分)解:()22222211101212101012109a a a aa a ⎛⎫+=+ ⎪⎝⎭++=+++=+ 21(本题共8分)解:(1)乙队的五场比赛成绩的折线图,如图2中所示.(2)==90, ==90. (3)甲的方差=41.2,(4)正确的有①②④,故答案为①②④.22. (本题共6分)解:(1)y=x+2………………………………………………………………………………(3分) (2)将点代入求出43-=k (1分) 因为-43×1≠-1,故两直线不垂直。
…………(3分) 23.(本题共8分)24.(本题共6分)解(1)∵ A (8,0)∴ OA =8,………………………………………………………………………(1分) S =12OA •|y P |=12×8×(﹣x +10)=﹣4x +40,(0<x <10).……………………(3分) (2)当S =24时,则﹣4x +40=24,解得x =4, ………………………………(1分) 当x =4时,y =﹣4+10=6, …………………………………………………………(2分) ∴ 当△ OPA 的面积为24时,点P 的坐标为(4,6).…………………………(3分)25.(本题共9分)解:(1)设三人间有a 间,双人间有b 间.根据题意得………………………………(1分)……………………………………………………(2分)………………………………………………(3分)………………………………(4分)………………………………(1分)……………………………………………………………………………………(2分)……………………………………………………………………………………(3分)………………………………………………………………………(4分)解得 .答:租住了三人间8间,双人间13间.(2)根据题意得y=100x+150(50﹣x )=﹣50x+7500,(0≤x ≤50).(3)因为﹣50<0,所以y 随x 的增大而减小.故当x 取满足3x 、502x 为整数且3x 最大时, 即x=48时,住宿费用最低.此时y=﹣50×48+7500=5100<6300.答:一天6300元的住宿费不是最低;若48人入住三人间,则费用最低,为5100元.。
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷
2018-2019学年贵州省贵阳市八年级(下)期末数学试卷一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.(3分)下面四个手机应用图标中,属于中心对称图形的是()A.B.C.D.2.(3分)不等式x<1的解集是()A.x<B.x>C.x>3 D.x<33.(3分)如图,在▱ABCD中,∠C=50°,∠BDC=55°,则∠ADB的度数是()A.10°B.75°C.35°D.15°4.(3分)要使分式有意义,则x的取值范围是()A.x=1 B.x≠1 C.x=﹣1 D.x≠﹣15.(3分)把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)6.(3分)如图,长方形ABCD的长为6,宽为4,将长方形先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,则阴影部分面积是()A.12 B.10 C.8 D.67.(3分)如图,在△ABC中,分别以点A,C为圆心,大于AC长为半径画弧,两弧相交于点M,N,作直线MN交BC于点D,连接AD.若AB=3,BC=4,则△ABD的周长是()A.7 B.8 C.9 D.108.(3分)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)9.(3分)利用函数y=ax+b的图象解得ax+b<0的解集是x<﹣2,则y=ax+b的图象是()A.B.C.D.10.(3分)如图,在△ABC中,D是BC边的中点,AE是∠BAC的角平分线,AE⊥CE于点E,连接DE.若AB=7,DE =1,则AC的长度是()A.5 B.4 C.3 D.2二、填空题:每小題4分,共16分.11.(4分)分式的值为零,则x的值是.12.(4分)如图,在四边形ABCD中,对角线AC、BD交于点O,AD∥BC,请添加一个条件:,使四边形ABCD 为平行四边形(不添加任何辅助线).13.(4分)若不等式组的解集是x>2,则m的值是.14.(4分)如图,在等腰直角△ABC中,∠ACB=90°,BC=2,D是AB上一个动点,以DC为斜边作等腰直角△DCE,使点E和A位于CD两侧.点D从点A到点B的运动过程中,△DCE周长的最小值是.三、解答题:本大题7小题,共54分.15.(10分)(1)先化简,再求值:(﹣),其中a=3;(2)三个数4,1﹣a,5﹣3a在数轴上从左到右依次排列,求a的取值范围.16.(10分)如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF,连接EF,分别交AD,BC于点M,N,连接AN,CM.(1)求证:△DFM≌△BEN;(2)四边形AMCN是平行四边形吗?请说明理由.17.(6分)在平面直角坐标系中,△ABC的位置如图所示,点A,B,C的坐标分别为(﹣3,﹣3),(﹣1,﹣1),(0,﹣2),根据下面要求完成解答.(1)作△ABC关于点C成中心对称的△A1B1C1;(2)将△A1B1C1向右平移4个单位,作出平移后的△A2B2C2;(3)在x轴上求作一点P,使PA2+PC2的值最小,直接写出点P的坐标.18.(7分)在“626”国际禁毒日到来之际,为了普及禁毒知识,提高市民禁毒意识,某区发放了一批“关爱生命,拒绝毒品”的宣传资料.据统计,甲小区共收到宣传资料350份,乙小区共收到宣传资料100份,甲小区住户比乙小区住户的3倍多25户,若两小区每户平均收到资料的数量相同.求这两小区各有多少户住户?19.(6分)如图是两个全等的直角三角形(△ABC和△DEC)摆放成的图形,其中∠ACB=∠DCE=90°,∠A=∠D =30°,点B落在DE边上,AB与CD相交于点F.若BC=4,求这两个直角三角形重叠部分△BCF的周长.20.(8分)王大伯计划在自家的鱼塘里投放普通鱼苗和红色鱼苗,需要购买这两种鱼苗2000尾,购买这两种鱼苗的相关信息如下表:品种项目单价(元/尾)养殖费用(元/尾)普通鱼种1红色鱼种11设购买普通鱼苗x尾,养殖这些鱼苗的总费用为y元(1)写出y(元)与x(尾)之间的函数关系式;(2)如果购买每种鱼苗不少于600尾,在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是多少?21.(7分)如图,在△ABC中,AB=AC,∠A=2α,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.(1)∠EDB=°(用含α的式子表示)(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转180°﹣2α,与AC边交于点N.①根据条件补全图形;②写出DM与DN的数量关系并证明;③用等式表示线段BM、CN与BC之间的数量关系,(用含α的锐角三角函数表示)并写出解题思路.2018-2019学年贵州省贵阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在答题卡相应位置作答,每小题3分,共30分.1.【解答】解:A、图形不是中心对称图形;B、图形是中心对称图形;C、图形不是中心对称图形;D、图形不是中心对称图形,故选:B.2.【解答】解:不等式x<1,解得:x<3,故选:D.3.【解答】解:∵∠C=50°,∠BDC=55°,∴∠CBD=180°﹣∠C﹣∠BDC=180°﹣50°﹣55°=75°,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADB=∠CBD=75°;故选:B.4.【解答】解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.5.【解答】解:a2﹣a=a(a﹣1).故选:A.6.【解答】解:∵长方形ABCD先向上平移2个单位,再向右平移2个单位得到长方形A′B′C′D′,∴AB∥A′B′,BC∥B′C′,∴A′B′⊥BC,延长A′B′交BC于F,AD交A′B′于E,CD交B′C′于G,∴FB′=2,AE=2,易得四边形ABFE、四边形BEDG都为矩形,∴DE=AD﹣AE=6﹣2=4,B′E=EF﹣B′F=AB﹣B′F=4﹣2=2,∴阴影部分面积=4×2=8.故选:C.7.【解答】解:由作法得MN垂直平分AC,如图,∴DA=DC,∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=3+4=7.故选:A.8.【解答】解:第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选:D.9.【解答】解:∵不等式ax+b<0的解集是x<﹣2,∴当x<﹣2时,函数y=ax+b的函数值为负数,即直线y=ax+b的图象在x轴下方.故选:C.10.【解答】解:延长CE,交AB于点F.∵AE平分∠BAC,AE⊥CE,∴∠EAF=∠EAC,∠AEF=∠AEC,在△EAF与△EAC中,,∴△EAF≌△EAC(ASA),∴AF=AC,EF=EC,又∵D是BC中点,∴BD=CD,∴DE是△BCF的中位线,∴BF=2DE=2.∴AC=AF=AB﹣BF=7﹣2=5;故选:A.二、填空题:每小題4分,共16分.11.【解答】解:∵分式的值为零,∴x2﹣3x=0,且x≠0,解得:x=3.故答案为:3.12.【解答】解;当AD∥BC,AD=BC时,四边形ABCD为平行四边形.故答案为:AD=BC(答案不唯一).13.【解答】解:,解不等式①得:x>,不等式②的解集为x>m,∵不等式组的解集为x>2,∴m=2.故答案为2.14.【解答】解:∵△DCE是等腰直角三角形,∴DE=CE=CD,∴△DCE周长=CD+CE+DE=(1+)CD,当CD的值最小时,△DCE周长的值最小,∴当CD⊥AB时,CD的值最小,∵在等腰直角△ABC中,∠ACB=90°,BC=2,∴AB=BC=2,∴CD=AB=,∴△DCE周长的最小值是2+,故答案为:2+.三、解答题:本大题7小题,共54分.15.【解答】解:(1)(﹣)+==﹣,当a=3时,代入得:原式==﹣;(2)根据题意得:,解①得:a<﹣3,解②得:a<2,∴原不等式组的解集是:a<﹣3,∴a的取值范围是:a<﹣3.16.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB∥CD,∴∠BAD=∠ADF,∠EBC=∠BCD,∠E=∠F,∴∠ADF=∠EBC,在△DFM和△BEN中∴△DFM≌△BEN(ASA);(2)解:四边形AMCN是平行四边形,理由是:∵由(1)知△DFM≌△BEN,∴DM=BN,∵四边形ABCD是平行四边形,∴AD=BC,且AD∥BC,∴AD﹣DM=BC﹣BN,∴AM=CN,AM∥CN,∴四边形AMCN是平行四边形.17.【解答】解:(1)如图,△A1B1C1为所作,点C1的坐标为(﹣1,2);(2)如图,△A2B2C2为所作,点C2的坐标为(﹣3,﹣2).(3)设P(t,0),PA2+PC2=(t+3)2+32+t2+22=2t2+6t+24=2(t+)2+,当t=﹣时,PA2+PC2的值最小,此时P点坐标为(﹣,0).18.【解答】解:设乙小区住户为x户,根据题意得:=,解得:x=50,经检验x=50是原方程的解,∴甲小区住户3×50+25=175,答:甲小区住户有175户,乙小区住户有50户.19.【解答】解:∵Rt△ABC≌Rt△DEC,∠A=∠D=30°,∴BC=EC,∠ABC=∠E=60°,∴△BCE是等边三角形,∴∠DCB=90°﹣60°=30°,又∵∠ABC=60°,∴∠BFC=90°,又∵BC=4,在Rt△BCF中,∴BF=BC=2,CF==2,∴△BCF的周长是4+2+2=6+2.20.【解答】解:(1)设购买普通鱼苗x尾,则红色鱼苗为(2000﹣x)尾,y=(+1)x+(1+1)(2000﹣x)=﹣+4000,即y(元)与x(尾)之间的函数关系式是y=﹣+4000;(2)∵购买每种鱼苗不少于600尾,∴,得600≤x≤1400,∵y=﹣+4000,∴当x=1400时,y取得最小值,此时y=3300,即在总鱼苗2000尾不变的条件下,养殖这些鱼苗的最低费用是3300元.21.【解答】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠A)=90°﹣α,而DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣∠B=90°﹣(90°﹣α)=α;故答案为α;(2)①如图,②DM=DN.理由如下:∵AB=AC,BD=DC∴DA平分∠BAC,∵DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∠MED=∠NFD=90°,∵∠A=2α∴∠EDF=180°﹣2α,∵∠MDN=180°﹣2α,∴∠MDE=∠NDF,在△MDE和△NDF中,∴△MDE≌△NDF,∴DM=DN;③数量关系:BM+CN=BC•sinα.证明思路为:先由△MDE≌△NDF可得EM=FN,再证明△BDE≌△CDF得BE=CF,所以BM+CN=BE+EM+CF﹣FN=2BE,接着在Rt△BDE可得BE=BD sinα,从而有BM+CN=BC•sinα.。
2017-2018学年贵州省遵义市八年级(下)期末数学试卷(解析版)
2017-2018学年贵州省遵义市八年级(下)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.(3分)下面的希腊字母中,是轴对称图形的是()A.B.C.D.2.(3分)下列各组数,可以作为直角三角形的三边长的是()A.4,5,6B.7,24,25C.4,6,8D.1,,3 3.(3分)下列各二次根式中是最简二次根式的是()A.B.C.D.4.(3分)函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤15.(3分)下列运算正确的是()A.2a2•a3=26B.+=C.(x﹣y)2=x2﹣y2D.3a2b﹣a2b=2a2b6.(3分)抢微信红包已成为中国传统节日人们最喜爱的祝福方式,今年端午节期间,某人在自己的微信群中发出红包,一共有10名好友抢到红包,抢到红包的金额情况如下表:则10名好友抢到金额的众数、中位数分别是()A.4.60 4.65B.4.60 4.675C.4.80 4.75D.4.70 4.607.(3分)对于函数y=﹣2x+1,下列说法正确的是()A.它的图象必经过(﹣1,﹣1)B.它的图象经过一、二、三象限C.当x>时,y<0D.y随x增大而增大8.(3分)如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是()A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC9.(3分)如图,△ABC中,AB=AC=13,AD=12,D、E分别为BC、AC的中点,连接DE,则△CDE的周长为()A.12B.14C.16D.1810.(3分)2018年4月中旬至下旬是我市初中毕业生的学业体育考试,在女子800米耐力测试中,某考点同时起跑的甲、乙两名同学所跑的路程(米)与所用时间(秒)之间的函数如图所示,图象分别为线段OA和折线OBCD,下列说法正确的是()A.甲同学的速度随时间增大而增大B.乙同学的平均速度比甲同学的平均速度大C.甲比乙提前40秒到达终点D.在起跑50秒至180秒时,乙同学在甲同学后面11.(3分)如图,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.过点D作DG∥BE,交BC于点G,连接FG交BD于点O.若AB=3,AD=4,则FG的长为()A.B.C.D.12.(3分)在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,1).延长CB交x轴于点A1,作第1个正方形A1B1C1C;延长C1B1交x轴于点A2,作第2个正方形A2B2C2C1,…,按此规律进行下去,第n个正方形时(n ≥1),∁n的坐标为()A.(2n+1,2n)B.(2n+1﹣1,2n+1)C.(2n+1,2n+1)D.(2n+1﹣1,2n)二、填空题(本题共6小题,每小题4分,共24分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上)13.(4分)已知正比例函数y=kx的图象经过(﹣2,4),则当x=1时,函数y的值为.14.(4分)已知x=﹣1,y=+1,则代数式x2y+xy2的值为.15.(4分)已知一次函数y=kx+b(k、b是常数,且k≠0),x与y的部分对应值如下表所示,那么不等式kx+b<0的解集是.16.(4分)《九章算术》记载:“今有竹高一丈,末折抵地,去根四尺,问折者高几何?”译文:有一根直立的竹竿原高1丈(1丈=10尺),竹竿从某处折断,竹梢触地面离竹竿底部4尺,问竹竿折断处离地面尺?17.(4分)如图,菱形ABCD对角线AC,BD交于点O,∠BAD=60°,点E是AD的中点,OE=4,则菱形ABCD的面积.18.(4分)如图,在平行四边形ABCD中,E是AB边上一点,Q是CE中点,连接BQ并延长交CD于F,连接AF与DE相交于点P.若S△APD=3,S△BQC=5,则图中阴影部分的面积为.三、解答题(本大题共8小题,共90分.答题请用05毫米黑色墨水签字笔或钢笔直接答在答题卡的相应位置上解答时应写出必要的文字说明、证明过程或演算步骤.)19.(8分)计算:()﹣1+(﹣1)+|1﹣|20.(10分)先化简,再求值:(+)÷,其中x,y满足+|y ﹣|=0.21.(10分)为了帮助贫困留守儿童,弘扬扶贫济困的传统美德,某校团委在学校举行“送温暖,献爱心”捐款活动,全校2000名学生都积极参与了该次活动,为了解捐款情况,随机调查了该校部分学生的捐款金额,并用得到的数据绘制出如下统计图1和图2,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为,图1中m的值是.(2)求本次调查获取的样本数据的平均数;(3)根据样本数据,估计该校本次活动捐款金额超过20元的学生人数.22.(12分)如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.23.(12分)某校举行“承传统文化,我的中国梦”诵读比赛,购买一些奖品进行奖励,奖品设为特别奖和优秀奖两类.已知购买一个特别奖奖品的单价比购买一个优秀奖奖品的单价多5元.用100元购买特别奖奖品的数量与用90元购买优秀奖奖品的数量相同.(1)求特别奖奖品、优秀奖奖品的单价分别是多少元;(2)若学校购买优秀奖奖品数量是特别奖奖品数量的2倍少5个,且该学校购买两种奖品的总费用不超过2575元,那么该学校最多可购买多少个特别奖奖品.24.(12分)“云”中漫步﹣﹣﹣贵州迎来大数据时代,大数据给人们生活带了很多便利.为方便人们出行,一种新型的打车方式受到人们的欢迎,该打车方式的费用收取是按照行驶的路程进行分段计费(如下表)小王用该打车方式出行,图中折线是小王打车所付车费y(元)与路程x(千米)之间的函数关系.请根据图表信息,解决下列问题:(1)若小王打车的路程为2.6千米,那么所付的车费应为元;(2)求计费二所付车费y(元)与路程x(千米)之间的函数关系式;(3)已知小王打车的路程为8千米,所付车费为19元,求计费三每千米比计费二每千米要多付多少元.25.(12分)如图,已知点P为∠ACB平分线上的一点,∠ACB=60°,PD⊥CA于D,PE ⊥CB于E.点M是线段CP上的动点(不与两端点C、P重合),连接DM,EM.(1)求证:DM=ME;(2)当点M运动到线段CP的什么位置时,四边形PDME为菱形,请说明理由.26.(14分)已知,如图,在平面直角坐标系xoy中,直线l1:y=x+3分别交x轴、y轴于点A、B两点,直线l2:y=﹣3x过原点且与直线l1相交于C,点P为y轴上一动点.(1)求点C的坐标;(2)在平面坐标系中是否存在点M,使以A、O、C、M为顶点的四边形为平行四边形.若存在,求出点M的坐标;若不存在,请说明理由;(3)当P A+PC的值最小时,求此时点P的坐标,并求P A+PC的最小值.2017-2018学年贵州省遵义市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.【解答】解:观察图象可知D是轴对称图形.故选:D.2.【解答】解:A、∵42+52=41≠62,∴不能构成直角三角形,故本小题错误;B、72+242=625=252,∴能构成直角三角形,故本小题正确;C、42+62=52≠82,∴不能构成直角三角形,故本小题错误;D、12+2=3≠32,∴不能构成直角三角形,故本小题错误.故选:B.3.【解答】解:A、=2,不是最简二次根式;B、=2,不是最简二次根式;C、是最简二次根式;D、=3,不是最简二次根式;故选:C.4.【解答】解:根据题意得x﹣1>0,解得x>1.故选:B.5.【解答】解:A、2a2•a3=25,故此选项错误;B、+,无法计算,故此选项错误;C、(x﹣y)2=x2﹣2xy+y2,故此选项错误;D、3a2b﹣a2b=2a2b,正确.故选:D.6.【解答】解:由表可知4.60元出现的次数最多,所以众数为4.60元,∵第5、6个数据为4.65、4.65,∴中位数为4.65元,故选:A.7.【解答】解:A、将(﹣1,﹣1)代入y=﹣2x+1中得左边=﹣1;右边=﹣2×(﹣1)+1=3,左边≠右边,错;B、根据一次函数的性质,经过一、二、四象限,错;C、直线y=﹣2x+1与x轴的交点为(,0),当x>时,y<0,正确;D、根据一次函数的性质,﹣2<0,y随x的增大而增减小,错.故选:C.8.【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;C、不能判定四边形ABCD是平行四边形,故此选项符合题意;D、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:C.9.【解答】解:∵AB=AC=13,BD=CD,AE=EC,∴AD⊥BC,DE=AB=,EC=AC=,在Rt△ADC中,CD==5,∴△EDC的周长=++5=18,故选:D.10.【解答】解:OA的倾斜程度不变,则甲的速度不变,故A错误;甲的速度=800÷180,乙的速度=800÷220,故此,甲同学的平均速度比乙同学的平均速度大,故B错误;220﹣180=40,故C正确;由函数图象可知在起跑50秒至180秒时,两人之间的距离先变小后增加,故D错误.故选:C.11.【解答】解:由折叠的性质可知:∠DBC=∠DBE,又∵AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;∵AB=3,AD=4,∴BD=5.∴OB=BD=.设DF=BF=x,∴AF=AD﹣DF=4﹣x.∴在直角△ABF中,AB2+AF2=BF2,即32+(4﹣x)2=x2,解得x=,即BF=,∴FO===,∴FG=2FO=.故选:D.12.【解答】解:如图:作CE⊥y轴,C1E1⊥y轴,CF⊥x轴,C1F1⊥x轴∵A(1,0),D(0,1)∴AO=DO,AD=∴∠DAO=∠ADO=45°∵ABCD是正方形∴AD=CD=AB=BC=,∠CDA=∠DAB=∠ABC=∠DCB=90°∴∠BAA1=45=∠CDE∴∠EDC=45°=∠BA1A∴CD=DE=1,AB=A1B=∴OE=2,A1C=2∴C(1,2)同理可求C1 (3,4),C2 (7,8)…∁n(2n+1﹣1,2 n+1)故选:B.二、填空题(本题共6小题,每小题4分,共24分.答题请用0.5毫米黑色墨水的签字笔或钢笔直接答在答题卡的相应位置上)13.【解答】解:∵正比例函数y=kx的图象经过点(﹣2,4),∴4=﹣2k,∴k=﹣2,∴正比例函数的解析式为y=﹣2x,把x=1代入y=﹣2x,得y=﹣2,故答案为:﹣2.14.【解答】解:当x=﹣1,y=+1时,原式=xy(x+y)=(﹣1)(+1)(﹣1++1)=(2﹣1)×2=2,故答案为:215.【解答】解:把(﹣1,2),(0,1)代入y=kx+b得:,解得:k=﹣1,b=1,∴y=﹣x+1,由表可知与X轴交于(1,0),k=﹣1<0,图象经过一二四象限,∴不等式kx+b<0的解集是x>1.16.【解答】解:设折断处离地面的高度OA是x尺,根据题意可得:x2+42=(10﹣x)2,解得:x=4.2,答:折断处离地面的高度OA是4.2尺.故答案为:4.2.17.【解答】解:∵四边形ABCD是菱形,∴AB=AD,OB=OD,∵∠BAD=60°,∴△ABD是等边三角形,∵AE=DE,OB=OD,∴AB=2OE=8,∴S菱形ABCD=2•S△ABD=2××82=32.故答案为32.18.【解答】解:∵四边形ABCD是平行四边形∴AB∥CD,AB=CD∴=∵Q是CE中点∴EQ=CQ∴BE=CF,FQ=BQ∴AE=DF且AE∥DF∴四边形AEFD是平行四边形∴S△PEF=S△APD=3∵FQ=BQ∴S△FQC=S△BQC=5∴S△BCF=10∵BE∥CF,BE=CF∴四边形BEFC是平行四边形∴S△BEF=S△BCF=10∴S阴影=13故答案为13三、解答题(本大题共8小题,共90分.答题请用05毫米黑色墨水签字笔或钢笔直接答在答题卡的相应位置上解答时应写出必要的文字说明、证明过程或演算步骤.)19.【解答】解:原式=2+2﹣+﹣1=3.20.【解答】解:原式=[+]×=(﹣)×=×=,∵+|y﹣|=0,∴x﹣1=0,y﹣=0,解得:x=1,y=,故原式===.21.【解答】解:(1)本次接受随机抽样调查的学生人数为10÷20%=50人,m%=×100%=32%,即m=32,故答案为:50、32;(2)捐30元的人数为50×16%=8人,本次调查获取的样本数据的平均数为×(4×5+16×10+15×12+10×20+8×30)=16(元).(3)2000×16%=320(人),答:估计该校捐款20元以上的学生人数有320人.22.【解答】(1)解:∵AO⊥OD,AO=4m,AB=5m,∴OB==3m,∵梯子的顶端A沿墙下滑1m至C点,∴OC=AO﹣AC=3m,∵CD=AB=5m,∴由勾股定理得:OD=4m,∴BD=OD﹣OB=4m﹣3m=1m;(2)解:CE与BE的大小关系是CE=BE,证明:连接CB,由(1)知:AO=DO=4m,AB=CD=5m,∵∠AOB=∠DOC=90°∴在Rt△AOB和Rt△DOC中∴Rt△AOB≌Rt△DOC(HL),∴∠ABO=∠DCO,OC=OB,∴∠OCB=∠OBC,∴∠ABO﹣∠OBC=∠DCO﹣∠OCB,∴∠EBC=∠ECB,∴CE=BE.23.【解答】解:(1)设优秀奖奖品的单价为x元/个,则特别奖奖品的单价为(x+5)元/个,根据题意得:=,解得:x=45,经检验,x=45是原分式方程的解,∴x+5=50.答:优秀奖奖品的单价为45元/个,特别奖奖品的单价为50元/个.(2)设该学校购买了m个特别奖奖品,则购买了(2m﹣5)个优秀奖奖品,根据题意得:50m+45(2m﹣5)≤2575,解得:m≤20.答:该学校最多可购买20个特别奖奖品.24.【解答】解:(1)由函数图象可知当0<x≤3时,y=7,∴当小王打车的路程为2.6千米,那么所付的车费应为7元.故答案为:7.(2)设y与x的函数关系式为y=kx+b,则,解得:k=,b=2.5.∴计费二所付车费y(元)与路程x(千米)之间的函数关系式为y=x+2.5.(3)(19﹣10)÷(8﹣5)﹣=.计费三每千米比计费二每千米要多付元.25.【解答】(1)证明:∵点P为∠ACB平分线上的一点,∴∠ACP=∠BCP=30°,∵PD⊥CA于D,PE⊥CB于E,∴PD=PE,在Rt△DCP和Rt△ECP中,∴Rt△DCP≌Rt△ECP,∴CD=CE,在△DCM和△ECM中,∴△DCM≌△ECM,∴DM=ME;(2)解:当点M运动到线段CP的中点时,四边形PDME为菱形.理由如下:∵∠DCP=30°,∴PC=2PD,∠CPD=60°,∵PD=PE,MD=ME,∴当DM=DP时,PD=PE=MD=ME,则四边形DMEP为菱形,此时△PDM为等边三角形,∴PD=PM,∴CM=PM,∴当点M运动到线段CP的中点时,四边形PDME为菱形.26.【解答】解:(1)∵直线l1:y=x+3①与直线l2:y=﹣3x②相交于C,联立①②解得,x=﹣,y=,∴C(﹣,);(2)∵直线y=x+3交x轴于点A,∴A(﹣3,0),由(1)知,C(﹣,),∵以A、O、C、M为顶点的四边形为平行四边形,设M(m,n)如图1,∴①当AC是对角线时,(﹣3﹣)=m,(0+)=n,∴m=﹣,n=,∴M(﹣,),②当OC是对角线时,(0﹣)=(﹣3+m),(0+)=(0+n),∴m=,n=,M1(,),③当OA为对角线时,(0﹣3)=(m﹣),(0+0)=(m+),∴m=﹣,n=﹣.M2(﹣,),(3)如图2,作点A(﹣3,0)关于y轴的对称点A'(3,0),连接CA'交y轴于点P,此时,PC+P A最小,最小值为CA'==,由(1)知,C(﹣,),∵A'(3,0),∴直线A'C的解析式为y=﹣x+,∴P(0,).。
贵州省八年级下学期期末数学试卷
贵州省八年级下学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列各数中无理数有()3.141,,,,,A . 1个B . 2个C . 3个D . 4个2. (2分) (2018八下·江海期末) 若点(3,1)在一次函数y=kx-2(k≠0)的图象上,则k的值是()A . 5B . 4C . 3D . 13. (2分)下列统计量中,不能反映一名学生在九年级第一学期的数学成绩稳定程度的是()A . 方差B . 平均数C . 标准差D . 极差4. (2分)如图,以任意△ABC的边AB和AC向形外作等腰Rt△ABD和等腰Rt△ACE,F、G分别是线段BD和CE的中点,则的值等于()A .B .C .D .5. (2分) (2017八下·抚宁期末) 若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A . 20B . 30C . 40D . 606. (2分)方程(x-4)2=81的解是()A . x=13B . x=-5C . x=13或-5D . 以上都不对7. (2分) (2016九上·临泽开学考) 如图,在四边形ABCD中,∠DAC=∠ACB,要使四边形ABCD成为平行四边形,则应增加的条件不能是()A . AD=BCB . OA=OCC . AB=CDD . ∠ABC+∠BCD=180°8. (2分) (2020九上·兴安盟期末) 已知正比例函数y= mx ( m≠0),y随x的增大而减小,则它和二次函数y=mx2+m 的图象大致是().A .B .C .D .9. (2分) (2021九上·覃塘期末) 如图,在中,是边的中点,于点E,交边于点F,连接,则图中与相似的三角形共有()A . 2个B . 3个C . 4个D . 5个10. (2分) (2017八下·嘉祥期末) 如图,挂在弹簧秤上的长方体铁块浸没在水中,提着弹簧匀速上移,直至铁块浮出水面停留在空中(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)的函数图象大致是()A .B .C .D .二、填空题 (共6题;共6分)11. (1分) (2016九上·济宁期中) 一元二次方程x(x﹣2)=2﹣x的正整数根是________.12. (1分)一组数据﹣1、x、3、1、﹣3的平均数为0,则这组数据的标准差为________.13. (1分)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为________.14. (1分) (2019九上·赣榆期末) 某班45名同学的数学平均分是80分,其中女生有20名,她们的数学平均分为82分,那么这个班男同学的数学平均分为________分15. (1分)(2020·扬州模拟) 无论取任何值,点始终在直线上,在该直线上有一点,若点在轴上方,则的范围是________.16. (1分) (2019八上·通化期末) 如图,四边形ABCD中,点M,N分别在AB,BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B =________°.三、解答题 (共8题;共45分)17. (10分) (2020八上·高新期末) 计算(1)(2)18. (5分)一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个根是0,求m的值.19. (5分)如图,E为矩形ABCD内一点,且EB=EC,求证:AE=ED.20. (5分)已知:平行四边形ABCD中,E、F是BC、AB的中点,DE、DF分别交AB、CB的延长线于H、G;(1)求证:BH =AB;(2)若四边形ABCD为菱形,试判断∠G与∠H的大小关系,并证明你的结论.21. (5分)某中学高一年级的一研究性学习小组为了解本年级1300名学生每学期参加社会实践活动的时间,随机对该年级100名学生进行了调查,结果如下表:时间(天)45678910111213人数248101422161284(1)在这个统计中,众数是多少?中位数是多少?(2)补全下面的频率分布表和频率分布直方图:分组频数频率3.5~5.560.065.5~7.5180.187.5~9.536 0.369.5~11.5280.2811.5~13.5120.12合计100 1.00(3)请你估算这所学校该年级的学生中,每学期参加社会实践活动时间不少于9天的大约有多少人?22. (5分)如图1,长为60km的某段线路AB上有甲、乙两车,分别从南站A和北站B同时出发相向而行,到达B、A后立刻返回到出发站停止,速度均为30km/h,设甲车,乙车距南站A的路程分别为y甲, y乙(km)行驶时间为t(h).(1)图2已画出y甲与t的函数图象,其中a= , b= ,c= .(2)分别写出0≤t≤2及2<t≤4时,y乙与时间t之间的函数关系式.(3)在图2中补画y乙与t之间的函数图象,并观察图象得出在整个行驶过程中两车相遇的次数.23. (5分)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC 于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.24. (5分)(2017·河西模拟) 在每个小正方形的边长为1的网格中,等腰直角三角形ACB与ECD的顶点都在网格点上,点N、M分别为线段AB、DE上的动点,且BN=EM.(Ⅰ)如图①,当BN= 时,计算CN+CM的值等于(Ⅱ)当CN+CM取得最小值时,请在如图②所示的网格中,用无刻度的直尺,画出线段CN和CM,并简要说明点M和点N的位置是如何找到的(不要求证明).参考答案一、选择题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共8题;共45分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:。
贵阳市八年级下学期数学期末试卷
贵阳市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共38分)1. (4分) (2017七下·承德期末) 如果a>b,那么不等式组的解集是()A . x<aB . x<bC . b<x<aD . 无解2. (4分)如图,观察下列图形,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个3. (4分)正八边形的内角和等于()A . 720°B . 1080°C . 1440°D . 1880°4. (4分) (2017八上·北海期末) 不等式(1﹣a) x>2变形后得到成立,则a的取值()A . a>0B . a<0C . a>1D . a<15. (4分)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于()A . 3cmB . 4cmC . 2.5cmD . 2cm6. (4分) (2019八下·顺德月考) 下列式子不能因式分解的是()A . x2-1B . 2x2+xC . -x2-9D . x2-4x+47. (4分)下列说法中,正确的是()A . 两条对角线相等的四边形是平行四边形B . 两条对角线相等且互相垂直的四边形是矩形C . 两条对角线互相垂直平分的四边形是菱形D . 两条对角线互相垂直、平分而且相等的四边形是菱形8. (2分) (2017八下·金堂期末) 如图,直线y=x+b与直线y=kx+6交于点P(1,3),则关于x的不等式x+b>kx+6的解集是().A .B .C .D .9. (4分)(2011·扬州) 如图,在Rt△ABC 中,∠ACB=90°,∠A=30°,BC=2.将△ABC绕点C按顺时针方向旋转n度后得到△EDC,此时点D在AB边上,斜边DE交AC边于点F,则n的大小和图中阴影部分的面积分别为()A . 30,2B . 60,2C . 60,D . 60,10. (4分) (2017八下·徐州期中) 如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB于E,在线段AB上,连接EF、CF.则下列结论:①∠BCD=2∠DCF;②∠ECF=∠CEF;③S△BEC=2S△CEF;④∠DFE=3∠AEF,其中一定正确的是()A . ②④B . ①②④C . ①②③④D . ②③④二、填空题 (共6题;共24分)11. (4分)把多项式2x2y﹣4xy2+2y3分解因式的结果是________12. (4分)每个命题都是由________和________两部分组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贵州省贵阳市2017-2018学年八年级(下)期末数学试卷一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在括号内填上正确选项的字母,每小题3分,共30分)1.(3分)在平面内,下列图案中,能通过图平移得到的是()A.B.C.D.2.(3分)一个一元一次不等式的解集在数轴上表示如图所示,则该不等式的解集为()A.x≥2B.x<2C.x>2D.x≤23.(3分)如图,在▱ABCD中,AD=8,点E,F分别是AB,AC的中点,则EF等于()A.2B.3C.4D.54.(3分)将分式方程化为整式方程,方程两边可以同时乘()A.x﹣2B.x C.2(x﹣2)D.x(x﹣2)5.(3分)如图,在▱ABCD中,下列结论不一定成立的是()A.∠1=∠2B.AD=DC C.∠ADC=∠CBA D.OA=OC6.(3分)若等腰三角形的周长为18cm,其中一边长为4cm,则该等腰三角形的底边长为()A.10B.7或10C.4D.7或47.(3分)一次函数y=kx+b的图象如图所示,则一元一次不等式kx+b<0的解集为()A.x<2B.x>2C.x<0D.x>08.(3分)如图,在Rt△ABC中,∠ACB=90°,CD,CE分别是斜边上的高和中线,∠B=30°,CE=4,则CD的长为()A.2B.4C.2D.9.(3分)已知a,b,c是三角形的三边,那么代数式(a﹣b)2﹣c2的值()A.大于零B.小于零C.等于零D.不能确定10.(3分)如图,在Rt△ABC中(AB>2BC),∠C=90°,以BC为边作等腰△BCD,使点D 落在△ABC的边上,则点D的位置有()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共20分)11.(4分)计算的结果为.12.(4分)小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入个小球时有水溢出.13.(4分)如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD 于E.则△CDE的周长为cm.14.(4分)如图,将长方形ABCD绕点A顺时针旋转到长方形AB′C′D′的位置,旋转角为α(0°<α<90°),若∠1=125°,则∠α的大小是度.15.(4分)如图,线段AB的长为4,P为线段AB上的一个动点,△PAD和△PBC都是等腰直角三角形,且∠ADP=∠PCB=90°,则CD长的最小值是.三、解答题(共8小题,满分50分)16.(4分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小颖的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小颖的作法正确.”请回答:小颖的作图依据是.17.(6分)解不等式组:,并写出它的所有整数解.18.(8分)如图,在△ABC中,AE是∠BAC的角平分线,交BC于点E,DE∥AB交AC于点D.(1)求证AD=ED;(2)若AC=AB,DE=3,求AC的长.19.(6分)某中学需要添置一批教学仪器,方案一:到厂家购买,每件原价40元,恰逢厂家促销活动八折出售;方案二学校自己制作,每件20元,另外需要制作工具的租用费600元;设该学校需要购买仪器x件,方案一与方案二的费用分别为y1和y2(元)(1)请分别求出y1,y2关于x的函数表达式;(2)若学校需要购买仪器30~60(含30和60)件,问采用哪种方案更划算?请说明理由.20.(7分)如图,在平行四边形ABCD中,点E,F分别是AB,CD的中点.(1)求证:四边形AEFD是平行四边形;(2)若∠DAB=120°,AB=12,AD=6,求△ABC的面积.21.(6分)如图,网格中的图形是由五个小正方形组成的,根据下列要求画图(涂上阴影).(1)在图①中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴;(画一种情况即可)(2)在图②中,添加一块小正方形,使之成为中心对称图形,但不是轴对称图形;(3)在图③中,添加一块小正方形,使之成为既是中心对称图形又是轴对称图形.22.(7分)贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.23.(6分)在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分.而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的6位数密码就很有必要了.有一种用“因式分解法产生的密码,方便记忆,其原理是:将一个多项式分解因式,如多项式:x3+2x2﹣x﹣2因式分解的结果为(x﹣1)(x+1)(x+2),当x=18时,x﹣1=17,x+1=19,x+2=20,此时可以得到数字密码171920.(1)根据上述方法,当x=21,y=7时,对于多项式x3﹣xy2分解因式后可以形成哪些数字密码?(写出两个)(2)若多项式x3+(m﹣3n)x2﹣nx﹣21因式分解后,利用本题的方法,当x=27时可以得到其中一个密码为242834,求m、n的值.参考答案与试题解析一、选择题(以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请在括号内填上正确选项的字母,每小题3分,共30分)1.【解答】解:能通过图甲平移得到的是B,故选:B.2.【解答】解:不等式的解集是x≤2,故选:D.3.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=8,∵AE=EB,AF=FC,∴EF=BC=4,故选:C.4.【解答】解:将分式方程化为整式方程,方程两边可以同时乘x(x﹣2).故选:D.5.【解答】解:∵四边形ABCD是平行四边形,∴∠ADC=∠CBA,OA=OC,AD∥BC,∴∠1=∠2.故A、C、D正确,故选:B.6.【解答】解:当4cm为底边长时,腰长为(18﹣4)÷2=7(cm),当4cm为腰长时,底边长为18﹣4×2=10(cm),∵4+4<10,∴当4cm为腰长时,不能组成三角形,∴该等腰三角形的底边长为4cm,故选:C.7.【解答】解:根据图示知:一次函数y=kx+b的图象与x轴的交点为(2,0),且y随x的增大而减小;即当x≥2时函数值y的范围是y≤0;因而当不等式kx+b<0时,x的取值范围是x>2.一元一次不等式kx+b<0的解集为x>2.故选:B.8.【解答】解:∵如图,在Rt△ABC中,∠ACB=90°,CE是斜边上的中线,CE=4,∴AB=2CE=8.∵∠B=30°,∴∠A=60°,AC=AB=4.∵CD是斜边上的高,∴CD=AC sin60°=4×=2.故选:C.9.【解答】解:∵(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c),a,b,c是三角形的三边,∴a+c﹣b>0,a﹣b﹣c<0,∴(a﹣b)2﹣c2的值是负数.故选:B.10.【解答】解:①以点B为圆心,BC长度为半径作圆,交AB于点D1;②以点C为圆心,BC长度为半径作圆,分别交AB、BC于点D2、D3;③作BC的垂直平分线,交AB于点D4.∵AB>2BC,∴点D1、D2、D4均不重合.故选:C.二、填空题(每小题4分,共20分)11.【解答】解:原式==x﹣1故答案为:x﹣112.【解答】解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.方法2:由题意可得每添加一个球,水面上升2cm,设至少放入x个小球时有水溢出,则2x+30>49,解得x>9.5,即至少放入10个小球时有水溢出.故答案为:10.13.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,OA=OC,∵▱ABCD的周长为26cm,∴AD+DC=13cm,又∵OE⊥AC,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=13cm;故答案为13.14.【解答】解:∵ABCD是长方形∴∠B=∠D'=90°=∠B'AD'根据四边形内角和为360°∴∠BAD'=55°,∴∠α=90°﹣∠BAD'=35°故答案为3515.【解答】解:设AP=x,BP=4﹣x,△ABC,△BCD′均为等腰直角三角形,则DP=x,CP=(4﹣x),∵∠APD=45°,∠BPC=45°,∴∠DPC=90°,∴CD2=PD2+CP2=x2+(4﹣x)2=x2﹣4x+16∴当x=2时,DC取最小值.∴CD==2.故答案为:2.三、解答题(共8小题,满分50分)16.【解答】解:如图,∵由作图可知,AC=BC,AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.17.【解答】解:,∵解不等式①得:x>﹣4,解不等式②得:x<1,∴原不等式组的解集为:﹣4<x<2,∴不等式组的整数解是:﹣3,﹣2,﹣1、0.18.【解答】证明:(1)∵AE是∠BAC的角平分线∴∠DAE=∠BAE∵DE∥AB∴∠DEA=∠EAB∴∠DAE=∠DEA∴AD=DE(2)∵AB=AC,AE是∠BAC的角平分线∴AE⊥BC∴∠C+∠CAE=90°,∠CED+∠DEA=90°∴∠C=∠CED∴DE=CD且DE=3∴AD=DE=CD=3∴AC=619.【解答】解:(1)由题意,可得:y1=40×0.8x=32x,y2=20x+600;(2)当32x=20x+600时,解得:x=50,此时y1=y2,即x=50时,两种方案都一样,当32x>20x+600时,解得:x>50,此时y1>y2,即50<x≤60时,方案二划算,当32x<20x+600时,解得:x<50,此时y1<y2,即30≤x<50时,方案一划算.20.【解答】(1)证明:如图.∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,∵点E,F分别是AB,CD的中点,∴AE=AB,DF=CD.∴AE=DF,∴四边形AEFD是平行四边形;(2)如图,作CH⊥AB于H.∵四边形ABCD是平行四边形,∴AD=BC=6,AD∥BC,∴∠B=180°﹣∠DAB=60°,∴CH=BC•sin60°=3,=•AB•CH=×12×3=18∴S△ABC21.【解答】解:(1)如图①所示:(2)如图②所示:(3)如图③所示:22.【解答】解:设原特快列车平均速度为xkm/h,则高铁列车平均速度为2.8xkm/h,由题意得:+3=,解得:x=100,经检验:x=100是原方程的解,则3×100=300(km/h);答:高铁列车平均速度为300km/h.23.【解答】解:(1)x3﹣xy2=x(x2﹣y2)=x(x+y)(x﹣y),当x=21,y=7时,x+y=28,x﹣y=14,∴可以形成的数字密码是:212814、211428;(2)设x3+(m﹣3n)x2﹣nx﹣21=(x+p)(x+q)(x+r),∵当x=27时可以得到其中一个密码为242834,∴27+p=24,27+q=28,27+r=34,解得,p=﹣3,q=1,r=7,∴x3+(m﹣3n)x2﹣nx﹣21=(x﹣3)(x+1)(x+7),∴x3+(m﹣3n)x2﹣nx﹣21=x3+5x2﹣17x﹣21,∴,得,即m的值是56,n的值是17.。