全国高考卷理科数学试题及答案

合集下载

2023年高考全国乙卷数学(理科)真题解析

2023年高考全国乙卷数学(理科)真题解析

2023年普通高等学校招生全国统一考试全国乙卷(理科数学)一、选择题1.设252i1i i z +=++,则z =()A.12i -B.12i+ C.2i- D.2i+【答案】B 【解析】【分析】由题意首先计算复数z 的值,然后利用共轭复数的定义确定其共轭复数即可.【详解】由题意可得()252i 2i 2i 2i2i 112i 1i i 11i i 1z +++-=====-++-+-,则12i z =+.故选:B.2.设集合U =R ,集合{}1M x x =<,{}12N x x =-<<,则{}2x x ≥=()A.()U M N ðB.U N Mð C.()U M N ð D.U M N⋃ð【答案】A 【解析】【分析】由题意逐一考查所给的选项运算结果是否为{}|2x x ≥即可.【详解】由题意可得{}|2M N x x =< ,则(){}|2U M N x x =≥ ð,选项A 正确;{}|1U M x x =≥ð,则{}|1U N M x x =>- ð,选项B 错误;{}|11M N x x =-<< ,则(){|1U M N x x ⋂=≤-ð或}1x ≥,选项C 错误;{|1U N x x =≤-ð或}2x ≥,则U M N = ð{|1x x <或}2x ≥,选项D 错误;故选:A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D 【解析】【分析】由题意首先由三视图还原空间几何体,然后由所得的空间几何体的结构特征求解其表面积即可。

【详解】如图所示,在长方体1111ABCD A B C D -中,2AB BC ==,13AA =点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,则,,,O L M N 为所在棱的中点则三视图所对应的几何体为长方体1111ABCD A B C D -去掉长方体11ONIC LMHB -之后所得的几何体:该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形其表面积为:()()()22242321130⨯⨯+⨯⨯-⨯⨯=.故选:D.4.已知e ()e 1xax x f x =-是偶函数,则=a ()A.2- B.1- C.1D.2【答案】D 【解析】【分析】根据偶函数的定义运算求解.【详解】因为()e e 1x ax x f x =-为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x ---⎡⎤--⎣⎦--=-==---,又因为x 不恒为0,可得()1e e 0a x x --=,即()1e e a x x -=,则()1x a x =-,即11a =-,解得2a =.故选:D.5.设O 为平面坐标系的坐标原点,在区域(){}22,14x y x y ≤+≤内随机取一点,记该点为A ,则直线OA 的倾斜角不大于π4的概率为()A.18B.16C.14D.12【答案】C 【解析】【分析】根据题意分析区域的几何意义,结合几何概型运算求解.【详解】因为区域(){}22,|14x y x y ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=,结合对称性可得所求概率π2142π4P ⨯==.故选:C.6.已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫-= ⎪⎝⎭()A.32-B.12-C.12D.2【答案】D【解析】【分析】根据题意分别求出其周期,再根据其最小值求出初相,代入5π12x =-即可得到答案.【详解】因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,所以2πππ2362T =-=,且0ω>,则πT =,2π2w T ==,当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=-,Z k ∈,则5π2π6k ϕ=-,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=- ⎪⎝⎭,则5π5π3sin 1232f ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,故选:D.7.甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有()A.30种B.60种C.120种D.240种【答案】C 【解析】【分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.8.已知圆锥PO O 为底面圆心,P A ,PB 为圆锥的母线,120AOB ∠=︒,若PAB的面积等于)A.π B.C.3πD.【答案】B 【解析】【分析】根据给定条件,利用三角形面积公式求出圆锥的母线长,进而求出圆锥的高,求出体积作答.【详解】在AOB 中,120AOB ∠=o ,而OA OB ==,取AC 中点C ,连接,OC PC ,有,OC AB PC AB ⊥⊥,如图,30ABO = ∠,3232OC AB BC ===,由PAB 的面积为934,得193324PC ⨯⨯=,解得332PC =,于是PO ==,所以圆锥的体积2211ππ33V OA PO =⨯⨯=⨯⨯.故选:B9.已知ABC 为等腰直角三角形,AB 为斜边,ABD △为等边三角形,若二面角C AB D --为150︒,则直线CD 与平面ABC 所成角的正切值为()A.15B.5C.5D.25【答案】C 【解析】【分析】根据给定条件,推导确定线面角,再利用余弦定理、正弦定理求解作答.【详解】取AB 的中点E ,连接,CE DE ,因为ABC 是等腰直角三角形,且AB 为斜边,则有CE AB ⊥,又ABD △是等边三角形,则DE AB ⊥,从而CED ∠为二面角C AB D --的平面角,即150CED ∠= ,显然,,CE DE E CE DE ⋂=⊂平面CDE ,于是AB ⊥平面CDE ,又AB ⊂平面ABC ,因此平面CDE ⊥平面ABC ,显然平面CDE ⋂平面ABC CE =,直线CD ⊂平面CDE ,则直线CD 在平面ABC 内的射影为直线CE ,从而DCE ∠为直线CD 与平面ABC 所成的角,令2AB =,则1,CE DE ==CDE 中,由余弦定理得:CD ===由正弦定理得sin sin DE CDDCE CED=∠∠,即sin DCE ∠==,显然DCE ∠是锐角,cosDCE ∠=所以直线CD 与平面ABC 所成的角的正切为5.故选:C 10.已知等差数列{}n a 的公差为23π,集合{}*cos N n S a n =∈,若{},S a b =,则ab =()A.-1B.12-C.0D.12【答案】B 【解析】【分析】根据给定的等差数列,写出通项公式,再结合余弦型函数的周期及集合只有两个元素分析、推理作答.【详解】依题意,等差数列{}n a 中,112π2π2π(1)()333n a a n n a =+-⋅=+-,显然函数12π2πcos[()]33y n a =+-的周期为3,而N n *∈,即cos n a 最多3个不同取值,又{cos |N }{,}n a n a b *∈=,则在123cos ,cos ,cos a a a 中,123cos cos cos a a a =≠或123cos cos cos a a a ≠=,于是有2πcos cos(3θθ=+,即有2π(2π,Z 3k k θθ++=∈,解得ππ,Z 3k k θ=-∈,所以Z k ∈,2ππ4πππ1cos(πcos[(π)]cos(πcos πcos πcos 333332ab k k k k k =--+=--=--.故选:B11.设A ,B 为双曲线2219y x -=上两点,下列四个点中,可为线段AB 中点的是()A.()1,1 B.()1,2- C.()1,3 D.()1,4--【答案】D 【解析】【分析】根据点差法分析可得9AB k k ⋅=,对于A 、B 、D :通过联立方程判断交点个数,逐项分析判断;对于C :结合双曲线的渐近线分析判断.【详解】设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +-+===+-+,因为,A B 在双曲线上,则221122221919y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减得()2222121209y yx x ---=,所以221222129AB y y k k x x -⋅==-.对于选项A :可得1,9AB k k ==,则:98AB y x =-,联立方程229819y x y x =-⎧⎪⎨-=⎪⎩,消去y 得272272730x x -⨯+=,此时()2272472732880∆=-⨯-⨯⨯=-<,所以直线AB 与双曲线没有交点,故A 错误;对于选项B :可得92,2ABk k =-=-,则95:22AB y x =--,联立方程22952219y x y x ⎧=--⎪⎪⎨⎪-=⎪⎩,消去y 得245245610x x +⨯+=,此时()224544561445160∆=⨯-⨯⨯=-⨯⨯<,所以直线AB 与双曲线没有交点,故B 错误;对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线,所以直线AB 与双曲线没有交点,故C 错误;对于选项D :94,4AB k k ==,则97:44AB y x =-,联立方程22974419y x y x ⎧=-⎪⎪⎨⎪-=⎪⎩,消去y 得2631261930x x +-=,此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;故选:D.12.已知O 的半径为1,直线PA 与O 相切于点A ,直线PB 与O 交于B ,C 两点,D 为BC的中点,若PO =PA PD ⋅的最大值为() A.122B.1222+C.1+D.2+【答案】A 【解析】【分析】由题意作出示意图,然后分类讨论,利用平面向量的数量积定义可得PA PD ⋅1sin 2224πα⎛⎫=-- ⎪⎝⎭,或PA PD ⋅1sin 2224πα⎛⎫=++ ⎪⎝⎭然后结合三角函数的性质即可确定PA PD ⋅的最大值.【详解】如图所示,1,OA OP ==:45APO ∠= ,由勾股定理可得1PA ==当点,A D 位于直线PO 异侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅+ ⎪⎝⎭ 12cos 4παα⎛⎫=+ ⎪⎝⎭22222ααα⎛⎫=- ⎪ ⎪⎝⎭2cos sin cos ααα=-1cos 21sin 222αα+=-12sin 2224πα⎛⎫=-- ⎪⎝⎭04πα≤≤,则2444πππα-≤-≤∴当ππ244α-=-时,PA PD ⋅ 有最大值1.当点,A D 位于直线PO 同侧时,设=,04OPC παα∠≤≤,则:PA PD ⋅ =||||cos 4PA PD πα⎛⎫⋅- ⎪⎝⎭ 12cos 4παα⎛⎫=- ⎪⎝⎭22222ααα⎛⎫=+ ⎪ ⎪⎝⎭2cos sin cos ααα=+1cos 21sin 222αα+=+12sin 2224πα⎛⎫=++ ⎪⎝⎭04πα≤≤,则2442πππα≤+≤∴当242ππα+=时,PA PD ⋅ 有最大值122.综上可得,PA PD⋅ 的最大值为122+.故选:A.【点睛】本题的核心在于能够正确作出示意图,然后将数量积的问题转化为三角函数求最值的问题,考查了学生对于知识的综合掌握程度和灵活处理问题的能力.二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______.【答案】94【解析】【分析】由题意首先求得抛物线的标准方程,然后由抛物线方程可得抛物线的准线方程为54x =-,最后利用点的坐标和准线方程计算点A 到C 的准线的距离即可.【详解】由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =-,点A 到C 的准线的距离为59144⎛⎫--= ⎪⎝⎭.故答案为:94.14.若x ,y 满足约束条件312937x y x y x y -≤-⎧⎪+≤⎨⎪+≥⎩,则2z x y =-的最大值为______.【答案】8【解析】【分析】作出可行域,转化为截距最值讨论即可.【详解】作出可行域如下图所示:2z x y =-,移项得2y x z =-,联立有3129x y x y -=-⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距z -最小,则z 最大,代入得8z =,故答案为:8.15.已知{}n a 为等比数列,24536a a a a a =,9108a a =-,则7a =______.【答案】2-【解析】【分析】根据等比数列公式对24536a a a a a =化简得11a q =,联立9108a a =-求出32q =-,最后得55712a a q q q =⋅==-.【详解】设{}n a 的公比为()0q q ≠,则3252456a q a a q a a a a ==⋅,显然0n a ≠,则24a q =,即321a q q =,则11a q =,因为9108a a =-,则89118a q a q ⋅=-,则()()3315582q q ==-=-,则32q =-,则55712a a q q q =⋅==-,故答案为:2-.16.设()0,1a ∈,若函数()()1xx f x a a =++在()0,∞+上单调递增,则a 的取值范围是______.【答案】51,12⎫-⎪⎪⎣⎭【解析】【分析】原问题等价于()()()ln 1ln 10xx f x a a a a '=+++≥恒成立,据此将所得的不等式进行恒等变形,可得()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭,由右侧函数的单调性可得实数a 的二次不等式,求解二次不等式后可确定实数a 的取值范围.【详解】由函数的解析式可得()()()ln 1ln 10xx f x a a a a '=+++≥在区间()0,∞+上恒成立,则()()1ln 1ln xxa a a a ++≥-,即()1ln ln 1xa a a a +⎛⎫≥- ⎪+⎝⎭在区间()0,∞+上恒成立,故()01ln 1ln 1a a a a +⎛⎫=≥- ⎪+⎝⎭,而()11,2a +∈,故()ln 10a +>,故()ln 1ln 01a a a ⎧+≥-⎨<<⎩即()1101a a a ⎧+≥⎨<<⎩,故112a ≤<,结合题意可得实数a 的取值范围是1,12⎫-⎪⎪⎣⎭.故答案为:1,12⎫-⎪⎪⎣⎭.三、解答题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,i y (1,2,10i =⋅⋅⋅),试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记(1,2,,10)i i i z x y i =-= ,记1z ,2z ,…,10z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).【答案】(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.【解析】【分析】(1)直接利用平均数公式即可计算出,x y ,再得到所有的i z 值,最后计算出方差即可;(2)根据公式计算出的值,和z 比较大小即可.【小问1详解】545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =-=-=,i i i z x y =-的值分别为:9,6,8,8,15,11,19,18,20,12-,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s -+-+-+--+-++-+-+-+-==【小问2详解】由(1)知:11z =,==,故有z ≥所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.18.在ABC 中,已知120BAC ∠=︒,2AB =,1AC =.(1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.【答案】(1)2114;(2)310.【解析】【分析】(1)首先由余弦定理求得边长BC 的值为BC =,然后由余弦定理可得57cos 14B =,最后由同角三角函数基本关系可得sin 14B =;(2)由题意可得4ABD ACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积.【小问1详解】由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =22257cos 214a c b B ac +-===,21sin 14B =.【小问2详解】由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯= ⎪⎝⎭ △△.19.如图,在三棱锥-P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==BP ,AP ,BC 的中点分别为D ,E ,O,AD =,点F 在AC 上,BF AO ⊥.(1)证明://EF 平面ADO ;(2)证明:平面ADO ⊥平面BEF ;(3)求二面角D AO C --的正弦值.【答案】(1)证明见解析;(2)证明见解析;(3)22.【解析】【分析】(1)根据给定条件,证明四边形ODEF 为平行四边形,再利用线面平行的判定推理作答.(2)由(1)的信息,结合勾股定理的逆定理及线面垂直、面面垂直的判定推理作答.(3)由(2)的信息作出并证明二面角的平面角,再结合三角形重心及余弦定理求解作答.【小问1详解】连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=-+ ,12AO BA BC =-+,BF AO ⊥,则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=-+⋅-+=-+=-+= ,解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,, //EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .【小问2详解】由(1)可知//EF OD,则2AO DO ==,得2AD ==,因此222152OD AO AD +==,则OD AO ⊥,有EF AO ⊥,又,AO BF BF EF F ⊥= ,,BF EF ⊂平面BEF ,则有AO ⊥平面BEF ,又AO ⊂平面ADO ,所以平面ADO ⊥平面B EF .【小问3详解】过点O 作//OH BF 交AC 于点H ,设AD BE G = ,由AO BF ⊥,得HO AO ⊥,且13FH AH =,又由(2)知,OD AO ⊥,则DOH ∠为二面角D AO C --的平面角,因为,D E 分别为,PB PA 的中点,因此G 为PAB 的重心,即有11,33DG AD GE BE ==,又1 3FH AH =,即有32DH GF =,2315422cos 62ABD +-∠==PA =,同理得2BE =,于是2223BE EF BF +==,即有BE EF ⊥,则222153223GF ⎛⎛=⨯+= ⎝⎭⎝⎭,从而153GF =,31515232DH =⨯=,在DOH △中,13615,,2222OH BF OD DH ====,于是6315444cos 26322DOH +-∠=-,2sin 2DOH ∠==,所以二面角D AO C --的正弦值为2.20.已知椭圆C :()222210y x a b a b +=>>的离心率为3,点()2,0A -在C 上.(1)求C 的方程;(2)过点()2,3-的直线交C 于点P ,Q 两点,直线AP ,AQ 与y 轴的交点分别为M ,N ,证明:线段MN 的中点为定点.【答案】(1)22194y x +=(2)证明见详解【解析】【分析】(1)根据题意列式求解,,a b c ,进而可得结果;(2)设直线PQ 的方程,进而可求点,M N 的坐标,结合韦达定理验证2M Ny y +为定值即可.【小问1详解】由题意可得222253b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.【小问2详解】由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+-++=->,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=-=++,因为()2,0A -,则直线()11:22y AP y x x =++,令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++-++++===++-+++,所以线段PQ 的中点是定点()0,3.【点睛】方法点睛:求解定值问题的三个步骤(1)由特例得出一个值,此值一般就是定值;(2)证明定值,有时可直接证明定值,有时将问题转化为代数式,可证明该代数式与参数(某些变量)无关;也可令系数等于零,得出定值;(3)得出结论.21.已知函数1()ln(1)f x a x x ⎛⎫=++ ⎪⎝⎭.(1)当1a =-时,求曲线()y f x =在点()()1,1f 处的切线方程;(2)是否存在a ,b ,使得曲线1y f x ⎛⎫= ⎪⎝⎭关于直线x b =对称,若存在,求a ,b 的值,若不存在,说明理由.(3)若()f x 在()0,∞+存在极值,求a 的取值范围.【答案】(1)()ln 2ln 20x y +-=;(2)存在11,22a b ==-满足题意,理由见解析.(3)10,2⎛⎫ ⎪⎝⎭.【解析】【分析】(1)由题意首先求得导函数的解析式,然后由导数的几何意义确定切线的斜率和切点坐标,最后求解切线方程即可;(2)首先求得函数的定义域,由函数的定义域可确定实数b 的值,进一步结合函数的对称性利用特殊值法可得关于实数a 的方程,解方程可得实数a 的值,最后检验所得的,a b 是否正确即可;(3)原问题等价于导函数有变号的零点,据此构造新函数()()()2=1ln 1g x ax x x x +-++,然后对函数求导,利用切线放缩研究导函数的性质,分类讨论0a ≤,12a ≥和102a <<三中情况即可求得实数a 的取值范围.【小问1详解】当1a =-时,()()11ln 1f x x x ⎛⎫=-+⎪⎝⎭,则()()2111ln 111x f x x x x ⎛⎫'=-⨯++-⨯ ⎪+⎝⎭,据此可得()()10,1ln 2f f '==-,函数在()()1,1f 处的切线方程为()0ln 21y x -=--,即()ln 2ln 20x y +-=.【小问2详解】由函数的解析式可得()11ln 1f x a x x ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭,函数的定义域满足1110x x x ++=>,即函数的定义域为()(),10,-∞-⋃+∞,定义域关于直线12x =-对称,由题意可得12b =-,由对称性可知111222f m f m m ⎛⎫⎛⎫⎛⎫-+=--> ⎪ ⎪⎝⎭⎝⎭⎝⎭,取32m =可得()()12f f =-,即()()11ln 22ln2a a +=-,则12a a +=-,解得12a =,经检验11,22a b ==-满足题意,故11,22a b ==-.即存在11,22a b ==-满足题意.【小问3详解】由函数的解析式可得()()2111ln 11f x x a x x x ⎛⎫⎛⎫=-+'++ ⎪ ⎪+⎝⎭⎝⎭,由()f x 在区间()0,∞+存在极值点,则()f x '在区间()0,∞+上存在变号零点;令()2111ln 101x a x x x ⎛⎫⎛⎫-+++= ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax -++++=,令()()()2=1ln 1g x ax x x x +-++,()f x 在区间()0,∞+存在极值点,等价于()g x 在区间()0,∞+上存在变号零点,()()()12ln 1,21g x ax x g x a x '=''=-+-+当0a ≤时,()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,()g x 在区间()0,∞+上无零点,不合题意;当12a ≥,21a ≥时,由于111x <+,所以()()''0,g x g x >'在区间()0,∞+上单调递增,所以()()00g x g ''>=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,所以()g x 在区间()0,∞+上无零点,不符合题意;当102a <<时,由()''1201g x a x =-=+可得1=12x a-,当10,12x a ⎛⎫∈- ⎪⎝⎭时,()0g x ''<,()g x '单调递减,当11,2x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0g x ''>,()g x '单调递增,故()g x '的最小值为1112ln 22g a a a ⎛⎫-=-+⎪⎝⎭',令()()1ln 01m x x x x =-+<<,则()10x m x x-+'=>,函数()m x 在定义域内单调递增,()()10m x m <=,据此可得1ln 0x x -+<恒成立,则1112ln 202g a a a ⎛⎫-=-+<⎪'⎝⎭,令()()2ln 0h x x x x x =-+>,则()221x x h x x-++'=,当()0,1x ∈时,()()0,h x h x '>单调递增,当()1,x ∈+∞时,()()0,h x h x '<单调递减,故()()10h x h ≤=,即2ln x x x ≤-(取等条件为1x =),所以()()()()()222ln 12112g x ax x ax x x ax x x ⎡⎤=-+>-+-+=-+⎣⎦',()()()()22122121210g a a a a a ⎡⎤->---+-=⎣⎦',且注意到()00g '=,根据零点存在性定理可知:()g x '在区间()0,∞+上存在唯一零点0x .当()00,x x ∈时,()0g x '<,()g x 单调减,当()0,x x ∈+∞时,()0g x '>,()g x 单调递增,所以()()000g x g <=.令()11ln 2n x x x x ⎛⎫=-- ⎪⎝⎭,则()()22211111022x n x x x x--⎛⎫=-+=≤ ⎪⎝⎭',则()n x 单调递减,注意到()10n =,故当()1,x ∈+∞时,11ln 02x x x ⎛⎫--< ⎪⎝⎭,从而有11ln 2x x x ⎛⎫<- ⎪⎝⎭,所以()()()2=1ln 1g x ax x x x +-++()()211>1121ax x x x x ⎡⎤+-+⨯+-⎢⎥+⎣⎦21122a x ⎛⎫=-+ ⎪⎝⎭,令211022a x ⎛⎫-+= ⎪⎝⎭得2x =,所以0g >,所以函数()g x 在区间()0,∞+上存在变号零点,符合题意.综合上面可知:实数a 得取值范围是10,2⎛⎫ ⎪⎝⎭.【点睛】(1)求切线方程的核心是利用导函数求切线的斜率,求函数的导数要准确地把函数拆分成基本初等函数的和、差、积、商,再利用运算法则求导,合函数求导,应由外到内逐层求导,必要时要进行换元.(2)根据函数的极值(点)求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;②验证:求解后验证根的合理性.本题中第二问利用对称性求参数值之后也需要进行验证.四、选做题【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为ππ2sin 42⎛⎫=≤≤ ⎪⎝⎭ρθθ,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【答案】(1)()[][]2211,0,1,1,2x y x y +-=∈∈(2)()(),0-∞+∞【解析】【分析】(1)根据极坐标与直角坐标之间的转化运算求解,注意,x y 的取值范围;(2)根据曲线12,C C 的方程,结合图形通过平移直线y x m =+分析相应的临界位置,结合点到直线的距离公式运算求解即可.【小问1详解】因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=,整理得()2211x y +-=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======-ρθθθθρθθθ,且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=-∈θθ,故()[][]221:11,0,1,1,2C x y x y +-=∈∈.【小问2详解】因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧,如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m -+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C 均没有公共点,则m >或0m <,即实数m 的取值范围()(),0-∞+∞ .【选修4-5】(10分)23.已知()22f x x x =+-.(1)求不等式()6f x x ≤-的解集;(2)在直角坐标系xOy 中,求不等式组()60f x y x y ≤⎧⎨+-≤⎩所确定的平面区域的面积.【答案】(1)[2,2]-;(2)6.【解析】【分析】(1)分段去绝对值符号求解不等式作答.(2)作出不等式组表示的平面区域,再求出面积作答.【小问1详解】依题意,32,2()2,0232,0x x f x x x x x ->⎧⎪=+≤≤⎨⎪-+<⎩,不等式()6f x x ≤-化为:2326x x x >⎧⎨-≤-⎩或0226x x x ≤≤⎧⎨+≤-⎩或0326x x x <⎧⎨-+≤-⎩,解2326x x x >⎧⎨-≤-⎩,得无解;解0226x x x ≤≤⎧⎨+≤-⎩,得02x ≤≤,解0326x x x <⎧⎨-+≤-⎩,得20x -≤<,因此22x -≤≤,所以原不等式的解集为:[2,2]-【小问2详解】作出不等式组()60f x y x y ≤⎧⎨+-≤⎩表示的平面区域,如图中阴影ABC,由326y x x y =-+⎧⎨+=⎩,解得(2,8)A -,由26y x x y =+⎧⎨+=⎩,解得(2,4)C ,又(0,2),(0,6)B D ,所以ABC 的面积11|||62||2(2)|822ABC C A S BD x x =⨯-=-⨯--= .。

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)(解析版)

2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。

2020年高考理科数学全国1卷(word版,含答案)

2020年高考理科数学全国1卷(word版,含答案)

1.【ID:4002604】若,则()A.B.C.D.【答案】D【解析】解:,则.故选D.2.【ID:4002605】设集合,,且,则()A.B.C.D.【答案】B【解析】解:易求得:,,则由,得,解得.故选B.3.【ID:4002606】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.【答案】C【解析】解:如图,设正四棱锥的底面边长为,斜高,则,两边同时除以,得:,解得:,故选C.4.【ID:4002607】已知为抛物线:上一点,点到的焦点的距离为,到轴的距离为,则()A.B.C.D.【答案】C【解析】解:由题意知,,则.故选C.5.【ID:4002608】某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是()A.B.C.D.【答案】D【解析】解:由图易知曲线特征:非线性,上凸,故选D.6.【ID:4002609】函数的图象在点处的切线方程为()A.B.C.D.【答案】B【解析】解:,则切线斜率,又,则切线方程为.故选B.7.【ID:4002610】设函数在的图象大致如下图,则的最小正周期为()A.B.C.D.【答案】C【解析】解:由图可估算,则.故选C.由图可知:,由单调性知:,解得,又由图知,则,当且仅当时满足题意,此时,故最小正周期.8.【ID:4002611】的展开式中的系数为()A.B.C.D.【答案】C【解析】解:,要得到项,则应取项,则其系数为.故选C.9.【ID:4002612】已知,且,则()A.B.C.D.【答案】A【解析】解:由,得,解得:或(舍),又,则.故选A.10.【ID:4002613】已知,,为球的球面上的三个点,为的外接圆.若的面积为,,则球的表面积为()A.B.C.D.【答案】A【解析】解:由条件易得:,由,则,则,所以球的表面积为.故选A.11.【ID:4002614】已知:,直线:,为上的动点.过点作的切线,,切点为,,当最小时,直线的方程为()A.B.C.D.【答案】D【解析】解::,则,如图,由圆的切线性质,易知:,则,所以最小时,最短,即最短,此时,易求得:,则直线:,整理,得:.故选D.12.【ID:4002615】若,则()A.B.C.D.【答案】B【解析】根据题意,有,若,则,不符合题意,因此.13.【ID:4002616】若,满足约束条件,则的最大值为________.【答案】1【解析】解:作不等式组满足的平面区域如图:易得:,,,因为区域为封闭图形,分别将点的坐标代入,得最大值为.14.【ID:4002617】设,为单位向量,且,则________.【答案】【解析】解:因为,,则,则.15.【ID:4002618】已知为双曲线:的右焦点,为的右顶点,为上的点,且垂直于轴.若的斜率为,则的离心率为________.【答案】2【解析】解:如图,,,则由题意得:,解得:,(舍),所以的离心率为.16.【ID:4002619】如图,在三棱锥的平面展开图中,,,,,,则________.【答案】【解析】在中,;在中,,由展开图的生成方式可得,在中,由余弦定理可得,于是,因此在中,由余弦定理可得.17. 设是公比不为的等比数列,为,的等差中项.(1)【ID:4002620】求的公比.【答案】【解析】解:设数列的公比为,则,,即,解得或(舍去),的公比为.(2)【ID:4002621】若,求数列的前项和.【答案】【解析】解:记为的前项和.由及题设可得,.所以,.可得.所以.18. 如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,.是底面的内接正三角形,为上一点,.(1)【ID:4002622】证明:平面.【答案】见解析【解析】方法:以为原点,所在直线为轴,建立如图所示的空间直角坐标系,则有,,,,,.,,,则,,,平面.方法:设,由题设可得,,,.因此,从而.又,故.所以平面.(2)【ID:4002623】求二面角的余弦值.【答案】【解析】由知,,,平面的一个法向量为,设平面的一个法向量为,则,即,解得,,二面角的余弦值为.19. 甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰:当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为.(1)【ID:4002624】求甲连胜四场的概率.【答案】【解析】解:.(2)【ID:4002625】求需要进行第五场比赛的概率.【答案】【解析】(甲连胜场)(乙连胜场)(丙连胜场).(3)【ID:4002626】求丙最终获胜的概率.【答案】【解析】丙最终获胜,有两种情况,丙连胜或输一场.(丙连胜),丙输一场,则共进行场,丙可以在①第场输,、场胜;②第、场胜,场输;③第、、场胜,第场输,(丙第场输,,场胜);(丙第,场胜,第场输);(丙第,,场胜,第场输),(丙胜).20. 已知,分别为椭圆:的左、右顶点.为的上顶点,,为直线上的动点,与的另一交点为,与的另一交点为.(1)【ID:4002627】求的方程.【答案】【解析】由题意知,,,故,,,故椭圆的方程为.(2)【ID:4002628】证明:直线过定点.【答案】见解析【解析】方法:设,,故:,,故:,联立,,同理可得,,①当时,:,②当时,,:,③当且时,,:,令,故直线恒过定点.方法:设,,.若,设直线的方程为,由题意可知.因为直线的方程为,所以.直线的方程为,所以.可得.又,故,可得,即.①将代入得.所以,.代入①式得.解得(舍去),.故直线的方程为,即直线过定点.若,则直线的方程为,过点.综上,直线过定点.21. 已知函数.(1)【ID:4002629】当时,讨论的单调性.【答案】当时,函数单调递减;当时,函数单调递增.【解析】当时,,其导函数,又函数为单调递增函数,且,于是当时,函数单调递减;当时,函数单调递增.(2)【ID:4002630】当时,,求的取值范围.【答案】【解析】方法:根据题意,当时,不等式显然成立;当时,有,记右侧函数为,则其导函数,设,则其导函数,当时,函数单调递减,而,于是.因此函数在上单调递增,在上单调递减,在处取得极大值,也为最大值.因此实数的取值范围是,即.方法:等价于.设函数,则.(i)若,即,则当时,.所以在上单调递增,而,故当时,,不合题意.(ii)若,即,则当时,;当时,.所以在,上单调递减,在上单调递增.又,所以当且仅当,即.所以当时,.(iii)若,即,则.由于,故由(ii)可得.故当,.综上,的取值范围是.22. 在直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)【ID:4002631】当时,是什么曲线?【答案】为以坐标原点为圆心,半径为的圆.【解析】解:,的参数方程为,则的普通方程为:,是以坐标原点为圆心,半径为的圆.(2)【ID:4002632】当时,求与的公共点的直角坐标.【答案】【解析】解:当时,:,消去参数,得的直角坐标方程为:,的直角坐标方程为:,联立得,其中,,,解得,与的公共点的直角坐标为.23. 已知函数.(1)【ID:4002633】画出的图象.【答案】见解析【解析】解:如图,.(2)【ID:4002634】求不等式的解集.【答案】【解析】解:方法:由题意知,结合图象有,当时,不等式恒成立,故舍去;当,即时,不等式恒成立;当时,由,得,,解得,综上,.方法:函数的图象向左平移个单位长度后得到函数的图象.的图象与的图象的交点坐标为.由图象可知当且仅当时,的图象在的图象上方.故不等式的解集为.。

2021年全国高考理科数学试题及答案-全国

2021年全国高考理科数学试题及答案-全国

2021年普通高等学校招生全国统一考试理科数学〔必修+选修II 〕本试卷分第一卷〔选择题〕和第二卷〔非选择题〕两局部。

第一卷1至2页。

第二卷3至4页。

考试结束后,将本试卷和答题卡一并交回。

第一卷考前须知:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。

.......... 3.第一卷共l2小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项符合题目要求的。

一、选择题1.复数1z i =+,z 为z 的共轭复数,那么1zz z --=A .2i -B .i -C .iD .2i2.函数0)y x =≥的反函数为A .2()4x y x R =∈B .2(0)4x y x =≥C .24y x =()x R ∈ D .24(0)y x x =≥3.下面四个条件中,使a b >成立的充分而不必要的条件是A .1a b +>B .1a b ->C .22a b >D .33a b >4.设n S 为等差数列{}n a 的前n 项和,假设11a =,公差2d =,224k k S S +-=,那么k =A .8B .7C .6D .55.设函数()cos (0)f x x ωω=>,将()y f x =的图像向右平移3π个单位长度后,所得的图像与原图像重合,那么ω的最小值等于A .13B .3C .6D .96.直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.假设AB=2,AC=BD=1,那么D 到平面ABC 的距离等于A .3B C D .17.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,那么不同的赠送方法共有A .4种B .10种C .18种D .20种8.曲线y=2xe -+1在点〔0,2〕处的切线与直线y=0和y=x 围成的三角形的面积为A .13 B .12C .23D .19.设()f x 是周期为2的奇函数,当0≤x≤1时,()f x =2(1)x x -,那么5()2f -=A .-12B .1 4-C .14D .1210.抛物线C :24y x =的焦点为F ,直线24y x =-与C 交于A ,B 两点.那么cos AFB ∠=A .45B .35C .35-D .45-11.平面α截一球面得圆M ,过圆心M 且与α成060二面角的平面β截该球面得圆N .假设该球面的半径为4,圆M 的面积为4π,那么圆N 的面积为A .7πB .9πC .11πD .13π12.设向量a ,b ,c 满足a =b =1,a b =12-,,a c b c --=060,那么c 的最大值等于A .2BCD .1第二卷考前须知:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

高考全国卷数学理科试题及答案详解

高考全国卷数学理科试题及答案详解

2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。

新课标Ⅰ高考数学理科真题试卷(含答案)

新课标Ⅰ高考数学理科真题试卷(含答案)

绝密(juémì)★启封(qǐ fēnɡ)并使用完毕前试题(shìtí)类型:A 2021年普通高等学校招生全国(quán ɡuó)统一考试理科(lǐkē)数学考前须知:1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一.选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设集合,,那么〔A〕〔B〕〔C〕〔D〕〔2〕设,其中x,y是实数,那么〔A〕1〔B〕〔C〕〔D〕2〔3〕等差数列前9项的和为27,,那么〔A〕100〔B〕99〔C〕98〔D〕97〔4〕某公司的班车在7:00,8:00,8:30发车,学.科网小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,那么他等车时间不超过10分钟的概率是〔A〕〔B〕〔C〕〔D〕〔5〕方程–=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是〔A〕(–1,3) 〔B〕(–1,3) 〔C〕(0,3) 〔D〕(0,3)〔6〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是,那么它的外表积是〔A〕17π〔B〕18π〔C〕20π〔D〕28π〔7〕函数y=2x2–e|x|在[–2,2]的图像大致为〔A〕〔B〕〔C〕〔D〕〔8〕假设(jiǎshè),那么(nà me)〔A〕〔B〕〔C〕〔D〕〔9〕执行右面(yòumiàn)的程序图,如果输入的,那么(nà me)输出x,y的值满足(mǎnzú)〔A〕〔B〕〔C〕〔D〕(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的标准线于D、E两点.|AB|=,|DE|=,那么C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8(11)平面a过正方体ABCD-A1B1C1D1的顶点A,a//平面CB1D1,平面ABCD=m,a 平面ABA1B1=n,那么m、n所成角的正弦值为(A)(B) (C) (D)12.函数(hánshù)为的零点(línɡ diǎn),为图像(tú xiànɡ)的对称轴,且()f x在单调(dāndiào),那么的最大值为〔A〕11 〔B〕9 〔C〕7 〔D〕5第II卷本卷包括必考题(kǎo tí)和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每题5分(13)设向量a=(m,1),b=(1,2),且|a+b|2=|a|2+|b|2,那么m=.(14)的展开式中,x3的系数是.〔用数字填写答案〕〔15〕设等比数列满足a1+a3=10,a2+a4=5,那么a1a2…a n的最大值为。

2020年全国统一高考数学试卷(理科)与答案(新课标Ⅰ)

2020年全国统一高考数学试卷(理科)与答案(新课标Ⅰ)

当 b = 2 时,f(a) - f(b2) =-1 < 0,此时 f(a) < f(b2),有 a < b2,所以 C、D 错误 .
故选:B.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2x + y - 2 ≤ 0, 13. 若 x,y 满足约束条件 x - y - 1 ≥ 0, 则 z = x + 7y 的最大值为 ______________.
型的是 ( )
A. y = a + bx
B. y = a + bx2
C. y = a + bex
D. y = a + blnx
【答案】D
【详解】由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率 y 和温度 x 的回归方程类型的是 y = a + blnx.
故选:D.
6. 函数 f(x) = x4 - 2x3 的图像在点 (1,f(1)) 处的切线方程为 ( )
求解一次不等式 2x + a ≤ 0 可得:B = x|x ≤-a2 .
由于 A ∩ B = x| -2 ≤ x ≤ 1 ,故:-a2 = 1,解得:a =-2.
故选:B.
3. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正 方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值 为( )
A. a > 2b
B. a < 2b
C. a > b2
D. a < b2
【答案】B
【详解】设 f(x) = 2x + log2x,则 f(x) 为增函数,因为 2a + log2a = 4b + 2log4b = 22b + log2b

2022年全国甲卷理科数学高考试卷(原卷+答案)

2022年全国甲卷理科数学高考试卷(原卷+答案)

绝密★启用前2022年普通高等学校招生全国统一考试(全国甲卷)(适用地区:云南、四川、广西、贵州、西藏)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若=−+z 1,则−=zz z1( )A. −+1B. −1C. −+331D. −−33i12. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:1.则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差3. 设全集=−−U {2,1,0,1,2,3},集合∣=−=−+=A B x x x {1,2},4302}{,则ð⋃=A B U ()( )A. {1,3}B. {0,3}C. −{2,1}D. −{2,0}4. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 205. 函数=−−y x x x33cos )(在区间⎣⎦⎢⎥−⎡⎤22,ππ的图象大致为( )A. B.C. D.6. 当=x 1时,函数=+xf x a x b()ln 取得最大值−2,则='f (2)( ) A. −1B. −21 C.21 D. 17. 在长方体−ABCD A B C D 1111中,已知B D 1与平面ABCD 和平面AA B B 11所成的角均为°30,则( )A. =AB AD 2B. AB 与平面AB C D 11所成的角为°30C. =AC CB 1D. B D 1与平面BB C C 11所成的角为︒458. 沈括的《梦溪笔谈》是中国古代科技史上的杰作,其中收录了计算圆弧长度的“会圆术”,如图,AB 是以O 为圆心,OA 为半径的圆弧,C 是AB 的中点,D 在AB 上,⊥CD AB .“会圆术”给出AB 的弧长的近似值s 的计算公式:=+OAs AB CD 2.当︒=∠=OA AOB 2,60时,=s ( )1.A.−211 B.−211C.−29 D.−29 9. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为π2,侧面积分别为甲S 和乙S ,体积分别为甲V 和乙V .若乙甲S S =2,则乙甲V V=( )A.B.C.D.410. 椭圆+=>>a b C a b x y :1(0)2222的左顶点为A ,点P ,Q 均在C 上,且关于y 轴对称.若直线AP AQ ,的斜率之积为41,则C 的离心率为( )A. 2B. 2C. 21D. 3111. 设函数⎝⎭⎪=+⎛⎫ωf x x 3()sin π在区间)π(0,恰有三个极值点、两个零点,则ω的取值范围是( ) A. ⎭⎣⎢⎪⎡⎫36,513 B. ⎣⎭⎢⎪⎡⎫36,519 C. ⎝⎦⎥ ⎛⎤63,138 D. ⎝⎦⎥ ⎛⎤66,131912. 已知===a b c 3244,cos ,4sin 3111,则( ) A. >>c b a B. >>b a c C. >>a b c D. >>a c b二、填空题:本题共4小题,每小题5分,共20分.13. 设向量a ,b 的夹角的余弦值为31,且=a 1,r =b 3,则+⋅=a b b 2)(_________.14. 若双曲线−=>my m x 1(0)222的渐近线与圆+−+=x y y 43022相切,则=m _________.15. 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________. 16. 已知△ABC 中,点D 在边BC 上,∠=︒==ADB AD CD BD 120,2,2.当ABAC取得最小值时,=BD ________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 记S n 为数列a n }{的前n 项和.已知+=+nn a Sn n 212.(1)证明:a n }{是等差数列;(2)若a a a ,,479成等比数列,求S n 的最小值.18. 在四棱锥−P ABCD 中,⊥PD 底面∥=====ABCD CD AB AD DC CB AB DP ,,1,2,.(1) 证明:⊥BD PA ;(2)求PD 与平面PAB 所成的角的正弦值.19. 甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.20. 设抛物线=>C y px p :2(0)2的焦点为F ,点D p ,0)(,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,=MF 3.(1)求C 的方程;(2)设直线MD ND ,与C 另一个交点分别为A ,B ,记直线MN AB ,的倾斜角分别为αβ,.当−αβ取得最大值时,求直线AB 的方程.21. 已知函数+−=−e x xf x x a xln )(.(1)若≥f x 0)(,求a 的取值范围;(2)证明:若f x )(有两个零点x x ,12,则<x x 112.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,曲线C 1的参数方程为⎩=⎪⎨⎪=⎧+y x t 62(t 为参数),曲线C 2的参数方程为⎩=⎪⎨⎪=−⎧+y x s 62(s 为参数).(1)写出C 1的普通方程;的(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程为−=θθ2cos sin 0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标.[选修4-5:不等式选讲]23. 已知a ,b ,c 均为正数,且++=a b c 43222,证明: (1)++≤a b c 23;(2)若=b c 2,则+≥a c311.参 考 答 案1.【答案】C 【解析】【详解】=−=−+−=+=z zz 1(1113 4.−==−+−zz z 1333i 11故选 :C2.【答案】B 【解析】【详解】讲座前中位数为>+270%70%75%,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为−=100%80%20%,讲座前问卷答题的正确率的极差为−=>95%60%35%20%,所以D 错. 故选:B.3.【答案】D 【解析】【详解】由题意,−+==B x x x =4301,32}{}{,所以⋃=−A B 1,1,2,3}{,所以ð⋃=−A B 2,0U }{)(.故选:D.4.【答案】B 【解析】【详解】由三视图还原几何体,如图,则该直四棱柱的体积=⨯⨯=+V 2221224. 故选:B.5.【答案】A 【解析】【详解】令⎣⎦⎢⎥=−∈−⎡⎤−ππf x x x xx2233cos ,,)()(, 则−=−−=−−=−−−f x x x f x x x x x33cos 33cos )()()()()(,所以f x )(为奇函数,排除BD ; 又当⎝⎭⎪∈⎛⎫πx 20,时,−>>−x x x330,cos 0,所以>f x 0)(,排除C. 故选:A.6.【答案】B 【解析】【详解】因为函数f x )(定义域为+∞0,)(,所以依题可知,=-f 12)(,='f 10)(,而=−'x xf x a b2)(,所以=−−=b a b 2,0,即=−=−a b 2,2,所以=−+'x x f x 222)(,因此函数f x )(在0,1)(上递增,在+∞1,)(上递减,=x 1时取最大值,满足题意,即有=−+=−'f 222111)(.故选:B.7.【答案】D【解析】【详解】如图所示:不妨设===AB a AD b AA c ,,1,依题以及长方体的结构特征可知,B D 1与平面ABCD 所成角为∠B DB 1,B D 1与平面AA B B 11所成角为∠DB A 1,所以==B D B Dc b sin 3011,即=b c ,==B D c 21得=a .对于A ,=AB a ,=AD b ,=AB ,A 错误;对于B ,过B 作⊥BE AB 1于E ,易知⊥BE 平面AB C D 11,所以AB 与平面AB C D 11所成角为∠BAE ,因为∠==a BAE c 2tan ,所以∠≠BAE 30,B 错误;对于C ,==AC ,==CB 1,≠AC CB 1,C 错误;对于D ,B D 1与平面BB C C 11所成角为∠DB C 1,∠===B D c DB C CD a 22sin 11,而<∠<DB C 0901,所以∠=DB C 451.D 正确.故选:D .8.【答案】B【解析】【详解】解:如图,连接OC , 因为C 是AB 的中点, 所以⊥OC AB ,又⊥CD AB ,所以O C D ,,三点共线, 即===OD OA OB 2, 又︒∠=AOB 60,所以===AB OA OB 2,则=OC =−CD 2所以=+=+=−OAs AB CD 22211222(.故选:B .9.【答案】C 【解析】【详解】解:设母线长为l ,甲圆锥底面半径为r 1,乙圆锥底面圆半径为r 2,则乙甲===ππS r l r rl rS 22211, 所以=r r 212, 又+=πππl l r r 22212, 则=+lr r112,所以==r l r l 33,2112,所以甲圆锥的高==h l 31,乙圆锥的高==h l 32,所以乙甲===⨯ππr h V V r h l l 93313142221122. 故选:C.10.【答案】A【详解】解:−A a ,0)(, 设P x y ,11)(,则−Q x y ,11)(, 则+−+==x a x ak k y y AP AQ ,1111, 故+−+−+⋅=⋅==x a x a x a k k y y y AP AQ41111221112, 又+=a b x y 1221122,则=−a y b a x 2121222)(, 所以−+=−x a a b a x 4112221222)(,即=a b 4122, 所以椭圆C的离心率===a e c . 故选:A .11. 【答案】C【分析】由x 的取值范围得到+ωπx 3的取值范围,再结合正弦函数的性质得到不等式组,解得即可.【详解】解:依题意可得ω>0,因为∈πx 0,)(,所以⎝⎭⎪+∈+⎛⎫ωωππππx 333,, 要使函数在区间π0,)(恰有三个极值点、两个零点,又=y x sin ,⎝⎭⎪∈⎛⎫ππx 3,3的图象如下所示:则<+≤ωππππ2335,解得<≤ω63138,即⎝⎦⎥ ∈⎛⎤ω63,138. 故选:C .12.【答案】A【详解】因为=b c 44tan 1,因为当⎝⎭ ⎪∈<<⎛⎫x x x x 20,,sin tan π 所以>44tan 11,即>b c1,所以>c b ;设=+−∈+∞f x x x x 2()cos 1,(0,)12,=−+>'f x x x ()sin 0,所以f x ()在+∞(0,)单调递增,则⎝⎭⎪>⎛⎫f f 4(0)=01,所以−>432cos 0131, 所以>b a ,所以>>c b a ,故选:A13.【答案】11【详解】解:设a 与b 的夹角为θ,因为a 与b 的夹角的余弦值为31,即=θ3cos 1, 又=a 1,r =b 3,所以⋅=⋅=⨯⨯=θa b a b 3cos 1311,所以+⋅=⋅+=⋅+=⨯+=a b b a b b a b b 22221311222)(. 故答案为:11.14.【答案】3【详解】解:双曲线−=>my m x 10222)(的渐近线为=±m x y ,即±=x my 0,不妨取+=x my 0,圆+−+=x y y 43022,即+−=x y 2122)(,所以圆心为0,2)(,半径=r 1,依题意圆心0,2)(到渐近线+=x my 0的距离==d 1,解得=m 3或=m .故答案为:3.15.【答案】356. 【解析】【详解】从正方体的8个顶点中任取4个,有==n C 7084个结果,这4个点在同一个平面的有=+=m 6612个,故所求概率===n P m 7035126.故答案为:356.16.1##−【详解】设==>CD BD m 220,则在△ABD 中,=+−⋅∠=++AB BD AD BD AD ADB m m 2cos 422222, 在△ACD 中,=+−⋅∠=+−AC CD AD CD AD ADC m m 2cos 4442222,所以+++++++===−+−++−+m m AB m m m mAC m m m m m 1142423444412442121222222)()()(≥=−44, 当且仅当++=m m 113即=−m 1时,等号成立,所以当ABAC取最小值时,=m 1.−1.17. 【答案】(1)证明见解析; (2)−78. 【解析】【分析】(1)依题意可得+=+S n na n n n 222,根据⎩−≥⎨=⎧=−S S n a S n nn n ,2,111,作差即可得到−=−a a n n 11,从而得证;(2)由(1)及等比中项的性质求出a 1,即可得到a n }{的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为+=+nn a S n n212,即+=+S n na n n n 222①, 当≥n 2时,+−=−+−−−S n n a n n n 21211112)()()(②,①−②得,+−−−=+−−−−−−S n S n na n n a n n n n n 22122111122)()()(, 即+−=−−+−a n na n a n n n 22122111)(,即−−−=−−n a n a n n n 2121211)()()(,所以−=−a a n n 11,≥n 2且∈n N*, 所以a n }{是以1为公差的等差数列.【小问2详解】解:由(1)可得=+a a 341,=+a a 671,=+a a 891,又a 4,a 7,a 9成等比数列,所以=⋅a a a 7492,即+=+⋅+a a a 6381112)()()(,解得=−a 121,所以=−a n n 13,所以⎝⎭ ⎪=−+=−=−−⎛⎫−S n n n n n n n 22222812125125625122)(, 所以,当=n 12或=n 13时=−S n 78min )(.18.【答案】(1)证明见解析;(2. 【解析】 【分析】(1)作⊥DE AB 于E ,⊥CF AB 于F ,利用勾股定理证明⊥AD BD ,根据线面垂直的性质可得⊥PD BD ,从而可得⊥BD 平面PAD ,再根据线面垂直的性质即可得证; (2)以点D 为原点建立空间直角坐标系,利用向量法即可得出答案.【小问1详解】证明:在四边形ABCD 中,作⊥DE AB 于E ,⊥CF AB 于F , 因为====CD AB AD CD CB AB //,1,2, 所以四边形ABCD 为等腰梯形, 所以==AE BF 21,故=DE 2,==BD 所以+=AD BD AB 222, 所以⊥AD BD ,因为⊥PD 平面ABCD ,⊂BD 平面ABCD , 所以⊥PD BD , 又⋂=PD AD D , 所以⊥BD 平面PAD , 又因为⊂PA 平面PAD , 所以⊥BD PA ;【小问2详解】解:如图,以点D 为原点建立空间直角坐标系,=BD则A B P 1,0,0,,()()(, 则=−=−=AP BP DP 1,0,3,0,3,3,0,0,3)()()(,设平面PAB 的法向量=n x y z ,,)(,则有⋅=−+=⋅=−+=n BP y z n AP x z 330{30,可取=n 3,1,1)(,则==⋅n DPn DP n DP 5cos ,5,所以PD 与平面PAB19.【答案】(1)0.6; (2)分布列见解析,=E X 13)(.【解析】 【分析】(1)设甲在三个项目中获胜的事件依次记为A B C ,,,再根据甲获得冠军则至少获胜两个项目,利用互斥事件的概率加法公式以及相互独立事件的乘法公式即可求出;(2)依题可知,X 的可能取值为0,10,20,30,再分别计算出对应的概率,列出分布列,即可求出期望. 【小问1详解】设甲在三个项目中获胜的事件依次记为A B C ,,,所以甲学校获得冠军的概率为=+++P P ABC P ABC P ABC P ABC )()()()(=⨯⨯+⨯⨯+⨯⨯+⨯⨯0.50.40.80.50.40.80.50.60.80.50.40.2 =+++=0.160.160.240.040.6.【小问2详解】依题可知,X 的可能取值为0,10,20,30,所以,==⨯⨯=P X 00.50.40.80.16)(,==⨯⨯+⨯⨯+⨯⨯=P X 100.50.40.80.50.60.80.50.40.20.44)(, ==⨯⨯+⨯⨯+⨯⨯=P X 200.50.60.80.50.40.20.50.60.20.34)(,==⨯⨯=P X 300.50.60.20.06)(. 即X期望=⨯+⨯+⨯+⨯=E X 00.16100.44200.34300.0613(.20.【答案】(1)=y x 42;(2)=+AB x :4.【解析】【分析】(1)由抛物线的定义可得+MF p p2=,即可得解; (2)设点的坐标及直线=+MN x my :1,由韦达定理及斜率公式可得=k k MN AB 2,再由差角的正切公式及基本不等式可得=k AB 2,设直线=+AB x n :,结合韦达定理可解. 小问1详解】抛物线的准线为=−x p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时+=MF p p2=3,所以=p 2, 所以抛物线C 的方程为=y x 42;【小问2详解】设⎝⎭⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪⎛⎫⎛⎫⎛⎫⎛⎫M y N y A y B y y y y y 4444,,,,,,,123412432222,直线=+MN x my :1, 由⎩=⎨⎧=+y xx my 412可得−−=y my 4402,∆>=−y y 0,412, 由斜率公式可得−+==−y y y y k y y MN 44412122212,−+==−y y y y k y y AB 44434432234,直线=⋅+−y MD x y x :2211,代入抛物线方程可得−⋅−=−y y y x 8042121)(, ∆>=−y y 0,813,所以=y y 232,同理可得=y y 241,所以++===y y y y k k AB MN 22443412)(又因为直线MN 、AB 的倾斜角分别为αβ,,【所以===βαk k AB MN 22tan tan , 若要使−αβ最大,则⎝⎭⎪∈⎛⎫βπ20,,设==>k k k MN AB 220,则+++−===≤=−αβαβαβk k k k 21tan tan 1241tan tan tan 12)(,当且仅当=k k 21即=k 2时,等号成立,所以当−αβ最大时,=k AB ,设直线=+AB x n :,代入抛物线方程可得−−=y n 402,∆>=−==−y y n y y 0,44163412,所以=n 4,所以直线=+AB x :4.21.【答案】(1)−∞+e (,1](2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为⎣⎦⎝⎭⎢⎥ ⎪−−−−>⎛⎫⎡⎤x x x x x x x 2e 2ln 0e 111,再利用导数即可得证. 【小问1详解】f x ()的定义域为+∞(0,),⎝⎭ ⎪=−−+'⎛⎫x x x f x x ()e 11112⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪=−+−=+⎛⎫⎛⎫−⎛⎫x x x x x x x x 1e 111111e令=f x ()0,得=x 1当∈<'x f x f x (0,1),()0,()单调递减当∈+∞'>x f x f x (1,),()0,()单调递增≥=+−f x f a ()(1)e 1, 若≥f x ()0,则+−≥a e 10,即≤+a e 1 所以a 的取值范围为−∞+e (,1]【小问2详解】由题知,f x )(一个零点小于1,一个零点大于1 不妨设<<x x 112 要证<x x 112,即证<x x 121 因为∈x x ,(0,1)121,即证⎝⎭ ⎪>⎛⎫x f x f 121)( 因为=f x f x 12)()(,即证⎝⎭⎪>⎛⎫x f x f 122)(即证−+−−−>∈+∞x xx x x x x x x ln e ln 0,(1,)e 11即证⎣⎦⎝⎭⎢⎥ ⎪−−−−>⎛⎫⎡⎤x x x x x x x 2e 2ln 0e 111下面证明>x 1时,⎝⎭⎪−>−−<⎛⎫x x x x x x x 2e 0,ln 0e 111设>=−x xg x x x xe e ,()11,则⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪ ⎪ ⎪=−−+⋅−=−−−'⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫x x x x x x g x x x x x x x ()e e e 1e e 111111122111⎝⎭⎝⎭⎝⎭ ⎪ ⎪ ⎪=−−=−⎛⎫−⎛⎫⎛⎫x x x x x x xx x1e e 1e 1e 11设⎝ >'⎭⎪=>=−=⎛⎫−ϕϕx x x x x x x x x xx 1,e e 0e 11122)()()(所以>=ϕϕx 1e )()(,而<x e e 1所以−>xx xe 0e 1,所以>'g x ()0所以g x ()在+∞(1,)单调递增即>=g x g ()(1)0,所以−>xx x xe 0e1令⎝⎭ ⎪=−−>⎛⎫x h x x x x 2()ln ,111⎝⎭ ⎪=−+==<'⎛⎫−−−−x x x x h x x x x 222()1011121(1)22222所以h x ()在+∞(1,)单调递减即<=h x h ()(1)0,所以⎝⎭⎪−−<⎛⎫x x x 2ln 011;综上, ⎣⎦⎝⎭⎢⎥ ⎪−−−−>⎛⎫⎡⎤x x x x x x x 2e 2ln 0e 111,所以<x x 112.22.【答案】(1)=−≥y x y 6202)(;(2)C C ,31的交点坐标为⎝⎭ ⎪⎛⎫2,11,1,2)(,C C ,32的交点坐标为⎝⎭⎪−−⎛⎫2,11,−−1,2)(.【解析】【分析】(1)消去t ,即可得到C 1普通方程;(2)将曲线C C ,23的方程化成普通方程,联立求解即解出. 【小问1详解】因为=+x t 62,=y ,所以=+x y 622,即C 1的普通方程为=−≥y x y 6202)(.【小问2详解】因为=−=+x y s6,2,所以=−−x y 622,即C 2的普通方程为=−−≤y x y 6202)(, 由−=⇒−=θθρθρθ2cos sin 02cos sin 0,即C 3的普通方程为−=x y 20.联立⎩−=⎨=−≥⎧x y y x y 206202)(,解得:⎩=⎪⎨⎪=⎧y x 121或⎩=⎨⎧=y x 21,即交点坐标为⎝⎭ ⎪⎛⎫2,11,1,2)(; 联立⎩−=⎨=−−≤⎧x y y x y 206202)(,解得:⎩=−⎪⎨⎪=−⎧y x 121或⎩=−⎨⎧=−y x 21,即交点坐标为⎝⎭ ⎪−−⎛⎫2,11,−−1,2)(.23. 【答案】(1)见解析 (2)见解析【解析】【分析】(1)根据++=++a b c a b c 42222222)(,利用柯西不等式即可得证;的(2)由(1)结合已知可得<+≤a c 043,即可得到+≥a c 4311,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有⎣⎦++++≥++⎡⎤a b c a b c 211122222222)()()(,所以++≤a b c 23,当且仅当===a b c 21时,取等号, 所以++≤a b c 23; 【小问2详解】证明:因为=b c 2,>a 0,>b 0,>c 0,由(1)得++=+≤a b c a c 243, 即<+≤a c 043,所以+≥a c 4311,由权方和不等式知+++=+≥=≥+a c a c a c a c44431112912222)(,当且仅当=a c 412,即=a 1,=c 21时取等号,所以+≥a c311.。

2020年高考全国II卷理科数学试题(含解析)

2020年高考全国II卷理科数学试题(含解析)

2020年全国统一高考数学试卷(理科)(全国新课标Ⅱ)一、选择题1.已知集合{2,1,0,1,2,3}U =--,{1,0,1}A =-,{1,2}B =,则()U C A B ⋃=( ) A.{2,3}- B.{2,2,3}-C.{2,1,0,3}--D.{2,1,0,2,3}--【答案】A 【解析】∵{1,0,1,2}AB =-,∴ (){2,3}UC A B ⋃=-.2.若α为第四象限角,则( ) A.cos20α> B.cos20α<C.sin 20α>D.sin 20α<【答案】D 【解析】∵22()2k k k Z ππαπ-+<<∈,∴424()k k k Z ππαπ-+<<∈,∴2α是第三象限角或第四象限角,∴sin 20α<.3.在新冠肺炎疫情期间,某超市开通网上销售业务,每天能完成1200份订单配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作。

已知该超市某日积压500份订单未配货,预计第二天新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A.10名 B.18名 C.24名 D.32名 【答案】B【解析】因为公司可以完成配货1200份订单,则至少需要志愿者为160050012001850+-=名.4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,己知每层环数相同,且下层比中层多729块,则三层共有扇形面形石板(不含天心石)( ) A.3699块B.3474块C.3402块D.3339块【答案】C【解析】设每一层有n 环,由题可知从内到外每环之间构成等差数列,公差9d =,19a =,由等差数列性质知n S ,2n n S S -,32n n S S -成等差数列,且2322()()n n n n S S S S n d ---=,则29729n =,得9n =,则三层共有扇形面石板为3271272627934022n S S a ⨯==+⨯=块. 5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )A.【答案】B【解析】设圆心为(,)a a ,则半径为a ,圆过点(2,1),则222(2)(1)a a a -+-=,解得1a =或5a =,所以圆心坐标为(1,1)或(5,5),圆心到直线的距离都是5d =. 6.数列{}n a 中,12a =,m n m n a a a +=,若155121022k k k a a a ++++++=-,则k =( )A.2B.3C.4D.5【答案】C【解析】取1m =,则11n n a a a +=,又12a =,所以12n na a +=,所以{}n a 是首项为2,公比为2的等比数列,则2nn a =,所以11011115512102(12)222212k k k k k k a a a ++++++-+++==-=--,得4k =.7.右图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A.EB.FC.GD.H【答案】A【解析】该几何体是两个长方体拼接而成,如图所示,显然选A.8.设O 为坐标原点,直线x a =与双曲线2222:1x yC a b-=(0,0)a b >>的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为( ) A.4 B.8 C.16 D.32 【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==号成立,所以min 4c =,焦距min (2)8c =.9.设函数()ln |21|ln |21|f x x x =+--,则()f x ( )A. 是偶函数,且在1(,)2+∞单调递增B.是奇函数,且在11(,)22-单调递减C. 是偶函数,且在1(,)2-∞-单调递增D.是奇函数,且在1(,)2-∞-单调递减【答案】D【解析】函数()ln |21|ln |21|ln |21|ln |21|()f x x x x x f x -=-+---=--+=-,则()f x 为奇函数,故排除A 、C ;当11(,)22x ∈-时,()ln(21)ln(12)f x x x =+--,根据函数单调性的性质可判断()f x 在11(,)22-上单调递增,故排除B ;当1(,)2x ∈-∞-时,212()ln(21)ln(12)lnln(1)2121x f x x x x x +=----==+--,根据复合函数单调性可判断()f x 在1(,)2-∞-上单调递减,故D 正确.10.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为( )B.32C.1【答案】C【解析】设ABC ∆的外接圆圆心为1O ,记1OO d =,圆1O 的半径为r ,球O 半径为R ,等边三角形ABC ∆的边长为a ,则2ABC S ∆==,可得3a =,于是r ==,由题知球O 的表面积为16π,则2R =,由222R r d =+易得1d =,即O 到平面ABC 的距离为1.11.若2233x y x y ---<-,则( ) A.ln(1)0y x -+> B.ln(1)0y x -+< C.ln ||0x y -> D.ln ||0x y -<【答案】A【解析】2323x x y y---<-,设()23x x f x -=-,则()2ln 23ln30x xf x -'=+>,所以函数()f x 在R 上单调递增,因为()()f x f y <,所以x y <,则11y x -+>,ln(1)0y x -+>,选A.12.01-周期序列在通信技术中有着重要应用,若序列12......n a a a 满足{}10,1(1,2,...)a i ∈=,且存在正整数m ,使得(1,2,...)i m i a a i +==成立,则称其为01-周期序列,并称满足(1,2,...)i m i a a i +== 的最小正整数m 为这个序列的周期,对于周期为m的01-序列12......n a a a ,11()(1,2,...,1)mi i k i C k a a k m m +===-∑是描述其性质的重要指标,下列周期为5的01-序列中,满足1()(1,2,3,4)5C k k ≤=的序列是( ) A. 11010... B.11011... C. 10001... D.11001... 【答案】C【解析】对于A 选项:511111(1)(10000)555i i i C a a +===++++=∑,5211121(2)(01010)5555i i i C a a +===++++=>∑,不满足,排除;对于B 选项,5111131(1)(10011)5555i i i C a a +===++++=>∑,不满足,排除;对于C 选项,511111(1)(00001)555i i i C a a +===++++=∑,52111(2)(00000)055i i i C a a +===++++=∑,53111(3)(00000)055i i i C a a +===++++=∑,541111(4)(10000)555i i i C a a +===++++=∑,满足;对于D 选项,5111121(1)(10001)5555i i i C a a +===++++=>∑,不满足,排除;故选C 。

2023年高考全国甲卷理科数学试题真题(含答案详解)

2023年高考全国甲卷理科数学试题真题(含答案详解)

2023年高考全国甲卷理科数学试题一、单选题34 ..已知向量,,a b c 满足1,2a b c ===,且0a b c ++=,则cos ,a c b c 〈--〉=( B .25- C .25 D .45.设等比数列{}n a 的各项均为正数,前n 项和n S ,若11a =和5354S S =-,则4S =B .658 C .15 D .40,则PBC的面积为(23 5PF=,则二、填空题.在ABC中∠三、解答题nS为数列}na的通项公式;ABC A B C中,111上两点0⋅=,求FM FN⎫⎪⎭的取值范围.α2023年高考全国甲卷理科数学试题答案详解一、单选题 1.设全集Z U =,集合{31,},{32,}M xx k k Z N x x k k Z ==+∈==+∈∣∣,∁U (M ∪N)=( ) A .{|3,}x x k k =∈Z B .{31,}xx k k Z =-∈∣ C .{32,}xx k k Z =-∈∣ D .∅ 【答案】A【分析】根据整数集的分类,以及补集的运算即可解出.【详解】因为整数集{}{}{}|3,|31,|32,x x k k x x k k x x k k ==∈=+∈=+∈Z Z Z Z ,U Z = 所以,∁U (M ∪N )={x|x =3k,k ∈Z }.故选:A .2.设()()R,i 1i 2,a a a ∈+-=,则=a ( )A .-1B .0 ·C .1D .2【答案】C【分析】根据复数的代数运算以及复数相等即可解出.【详解】因为()()()22i 1i i i 21i 2a a a a a a a +-=-++=+-=。

所以22210a a =⎧⎨-=⎩,解得:1a =. 故选:C.3.执行下面的程序框图,输出的B =( )A .21B .34C .55D .89【答案】B.已知向量,,a b c 满足1,2a b c ===,且0a b c ++=,则cos ,a c b c 〈--〉=( B .25- C .25 D .45【分析】作出图形,根据几何意义求解.【详解】因为0a b c ++=,所以a ⃗+即2222a b a b c ++⋅=,即1+1+2a 所以0a b ⋅=. 如图,设,,OA a OB b OC c ===,2,OAB 是等腰直角三角形22, 322=, 310ACD =, ,cos a c b c ACB 〈--〉=∠:D..设等比数列{}n a 的各项均为正数,前1582q.+=.815.某地的中学生中有60%的同学爱好滑冰,生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为(3π3π7π3π3π7π11,则PBC 的面积为(利用全等三角形的证明方法依次证得PDO PCO ≅和PDB PCA ≅,从而得到PA ,由此在PBC 中利用余弦定理与三角形面积公式即可得解;和1cos 3PCB ∠=,从而求得3PA PC ⋅=-,再利用空间向量的数量从而求得17PB =,由此在PBC 中利用余弦定理与三角形面积公,所以PDO PCO ≅,则∠,所以PDB PCA ≅,则PA 45PCA =︒。

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)

2020年高考理科数学(全国卷Ⅲ真题)——(含答案和解析)
A. B. C. D.
8.下图为某几何体的三视图,则该几何体的表面积是()
A. 6+4 B. 4+4 C. 6+2 D. 4+2
9.已知2tanθ–tan(θ+ )=7,则tanห้องสมุดไป่ตู้=()
A. –2B. –1C. 1D. 2
10.若直线l与曲线y= 和x2+y2= 都相切,则l的方程为()
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【详解】根据三视图特征,在正方体中截取出符合题意的立体图形
根据立体图形可得:
根据勾股定理可得:
是边长为 的等边三角形
根据三角形面积公式可得:
该几何体的表面积是: .
故选:C.
【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 , ,则 中元素的个数为()
A.2B.3C.4D.6
2.复数 的虚部是()
A. B. C. D.
3.在一组样本数据中,1,2,3,4出现的频率分别为 ,且 ,则下面四种情形中,对应样本的标准差最大的一组是()

因此, .
故选:D.
【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题.
7.在△ABC中,cosC= ,AC=4,BC=3,则cosB=()
A. B. C. D.

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)

2021年全国统一高考理科数学试卷(全国甲卷)(含详细解析)2021年普通高等学校招生全国统一考试理科数学甲卷注意事项:1.在答题卡上填写姓名和准考证号;2.选择题用铅笔在答题卡上涂黑选项,非选择题在答题卡上作答;3.考试结束后,将试卷和答题卡一并交回。

一、选择题共12小题,每小题5分,共60分。

1.(5分) 设集合M={x|0<x<4},N={x|≤x≤5},则M∩N=()A。

{x|0<x≤} B。

{x|≤x<4} C。

{x|4≤x<5} D。

{x|0<x≤5}2.(5分) 对某地农村经济情况进行抽样调查,得到收入频率分布直方图。

下列结论中不正确的是()A。

低于4.5万元的农户比率估计为6%B。

不低于10.5万元的农户比率估计为10%C。

农户年收入平均值不超过6.5万元D。

有一半以上的农户年收入介于4.5万元至8.5万元之间3.(5分) 已知,则z=()A。

-1-i B。

-1+i C。

+i D。

-i4.(5分) 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量,通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L和小数记数法的数据V满足L=5+lgV。

已知某同学视力的五分记录法的数据为4.9,则其视力的小数记数法的数据约为()1.5、1.2、0.8、0.65.(5分) 已知双曲线C的两个焦点为F1和F2,点P在C上且∠F1PF2=60°,|PF1|=3|PF2|,则C的离心率为()A.≈1.259 B。

C。

D.6.(5分) 在一个正方体中,过顶点A的三条棱的中点分别为E、F、G。

该正方体截去三棱锥A-EFG后,所得多面体的三视图中,正视图如右图所示,则相应的侧视图是()A。

B。

C。

D.7.(5分) 等比数列{an}的公比为q,前n项和为Sn,设甲:q>0,乙:{Sn}是递增数列,则()A.甲是乙的充分条件但不是必要条件 B.甲是乙的必要条件但不是充分条件 C.甲是乙的充要条件 D.甲既不是乙的充分条件也不是乙的必要条件8.(5分) 2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一。

2021年全国统一高考数学试卷(理科)答案及解析

2021年全国统一高考数学试卷(理科)答案及解析

y2 b2
1(a
b
0) 的上顶点,若 C
上的任意一点
P 都满足,
PB 2b ,则 C 的离心率的取值范围是( )
2 A.[ ,1)
2
B.[ 1 ,1) 2
C. (0, 2 ] 2
D. (0, 1 ] 2
答案:
C
解析:
由题意,点 B(0,b) ,设 P(x0, y0 ) ,则
x02 a2
y02 b2
,所以 z 1 i . 2.已知集合 S {s | s 2n 1,n Z} , T {t | t 4n 1, n Z} ,则 S T ( ) A. B. S
C. T D. Z
答案: C 解析:
s 2n 1, n Z ; 当 n 2k , k Z 时, S {s | s 4k 1, k Z} ;当 n 2k 1, k Z 时,
m AM
2 x y 0 .令 x 2
2 ,的 m (
2,1, 2) .设平面 PMB 的一个法向量为
n (x, y, z) ,

n
CB
2x 0
.令 y 1, 的 n (0,1,1) .所 以
n PB 2x y z 0
cosm, n
m n
3
3 14 ,所以二面角 A PMN B 的正弦值为
表目距的差 C. 表高 表距 表距
表目距的差 D. 表高 表距 表距
表目距的差
答案:
A
解析:
连接 DF 交 AB 于 M ,则 AB AM BM .
记 BDM
, BFM
,则
MB tan
MB tan
MF
MD
DF
.
而 tan FG , tan ED .所以

2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)

2019年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
(2)由(1)知 ,由题设及正弦定理得 ,
即 ,可得 .
由于 ,所以 ,故

18.解:(1)连结B1C,ME.
因为M,E分别为BB1,BC的中点,
所以ME∥B1C,且ME= B1C.
又因为N为A1D的中点,所以ND= A1D.
由题设知A1B1 DC,可得B1C A1D,故ME ND,
因此四边形MNDE为平行四边形,MN∥ED.
1.已知集合 ,则 =
A. B. C. D.
【答案】C
【解析】
【分析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
【详解】由题意得, ,则
.故选C.
【点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.设复数z满足 ,z在复平面内对应的点为(x,y),则
A. B. C. D.
11.关于函数 有下述四个结论:
①f(x)是偶函数②f(x)在区间( , )单调递增
③f(x)在 有4个零点④f(x)的最大值为2
其中所有正确结论的编号是
A.①②④B.②④C.①④D.①③
12.已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,PB的中点,∠CEF=90°,则球O的体积为
22.[选修4—4:坐标系与参数方程](10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为 .
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
23.[选修4—5:不等式选讲](10分)

2020年高考理科数学全国卷3(附答案与解析)

2020年高考理科数学全国卷3(附答案与解析)

2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y导数为y '=,则直线l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用2020年普通高等学校招生全国统一考试·全国Ⅲ卷理科数学答案解析一、选择题 1.【答案】C【解析】采用列举法列举出A B 中元素的即可.由题意,A B 中的元素满足8y x x y ⎧⎨+=⎩≥,且x ,*y ∈N ,由82x y x +=≥,得4x ≤,所以满足8x y +=的有()17,,()26,,()35,,()44,,故A B 中元素的个数为4.故选:C .【考点】集合的交集运算,交集定义的理解 2.【答案】D【解析】利用复数的除法运算求出z 即可.因为()()113131313131010i z i i i i +===+--+,所以复数113z i=-的虚部为310.故选:D . 【考点】复数的除法运算,复数的虚部的定义 3.【答案】B【解析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=,方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大.故选:B . 【考点】标准差的大小比较,方差公式的应用 4.【答案】C【解析】将t t *=代入函数()()0.23531t K I t e --=+结合()0.95I t K *=求得t *即可得解.()()0.23531t K I t e --=+,所以()()0.23530.951t KI t K e**--==+,则()*0.235319t e -=,所以,()0.2353ln193t *-=≈,解得353660.23t *+≈≈.故选:C .【考点】对数的运算,指数与对数的互化 5.【答案】B【解析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.因为直线2x =与抛物线()220y px p =>交于E ,D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()22D ,,代入抛物线方程44p =,求得1p =,所以其焦点坐标为102⎛⎫⎪⎝⎭,,故选:B .【考点】圆锥曲线,直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标 6.【答案】D【解析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos a a b +,的值.5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-,因此,()1919cos 5735a a ba ab a a b⋅++===⨯⋅+,.故选:D . 【考点】平面向量夹角余弦值的计算,平面向量数量积的计算,向量模的计算 7.【答案】A【解析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.在ABC △中,2cos 3C =,4AC =,3BC =.根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅,2224322433AB =+-⨯⨯⨯,可得29AB =,即3AB =.由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯,故1cos 9B =.故选:A . 【考点】余弦定理解三角形8.【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:AB AD DB ===ADB ∴△是边长为,根据三角形面积公式可得:(211sin 6022ADBS AB AD =⋅⋅==△∴该几何体的表面积是:632=⨯++ 故选:C .【考点】根据三视图求立体图形的表面积,根据三视图画出立体图形 9.【答案】D【解析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案.2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan t θ=,1t ≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=.故选:D .【考点】利用两角和的正切公式化简求值 10.【答案】D【解析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.设直线l 在曲线y =(0x,则00x >,函数y =导数为y '=l 的斜率k =,设直线l 的方程为)0y x x =-,即00xx -+=,由于直线l 与圆2215x y +=相切,则=,两边平方并整理得2005410x x --=,解得01x=,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【考点】导数的几何意义的应用,直线与圆的位置的应用 11.【答案】A【解析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.5ca=,c ∴,根据双曲线的定义可得122PF PF a -=,1212142PF F PF S PF =⋅=△,即128PF PF ⋅=, 12F P F P ⊥,()222122PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A .【考点】双曲线的性质以及定义的应用,勾股定理,三角形面积公式的应用 12.【答案】A【解析】由题意可得a 、b 、()01c ∈,,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、()01c ∈,, ()222528log 3lg3lg81lg3lg8lg3lg8lg 241log 5lg5lg522lg5lg 25lg5a b ⎛⎫⎛⎫++⎛⎫==⋅⋅==⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭<<,a b ∴<;由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <;由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >.综上所述,a b c <<.故选:A .【考点】对数式的大小比较,基本不等式、对数式与指数式的互化,指数函数单调性的应用 二、填空题 13.【答案】7【解析】作出可行域,利用截距的几何意义解决.不等式组所表示的可行域如图.因为32z x y =+,所以322x z y =-+,易知截距2z 越大,则z 越大,平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大,由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,()12A ,,所以max 31227z =⨯+⨯=.故答案为:7.【考点】简单线性规划的应用,求线性目标函数的最大值 14.【答案】240【解析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项.622x x ⎛⎫+ ⎪⎝⎭其二项式展开通项:()()()621221236661222rrr r r r r r r r r C xC x C x x T x ---+-⎛⎫⋅⋅⋅⋅=⋅⎭= ⎝=⎪,当1230r -=,解得4r =,622x x ⎛⎫∴+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【考点】二项式定理,利用通项公式求二项展开式中的指定项15. 【解析】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2BC =,3AB AC ==,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC r ,则:()11113322222ABC AOB BOC AOC S S S S AB r BC r AC r r =++=⨯⨯+⨯⨯+⨯⨯=⨯++⨯=△△△△r,其体积:343V r π=.. 16.【答案】②③【解析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.对于命题①,152622f π⎛⎫=+= ⎪⎝⎭,152622fπ⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{}x x k k π≠∈Z ,,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,()1sin 02sin f x x x=+<<,命题④错误.故答案为:②③.【考点】正弦型函数的奇偶性、对称性,最值的求解 三、解答题17.【答案】(1)25a =,37a =,21n a n =+,当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立.(2)()12122n n S n +=-⋅+【解析】(1)利用递推公式得出2a ,3a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可.由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+,证明如下:当1n =时,13a =成立;假设n k =时,21k a k =+成立.那么1n k =+时,()()134321423211k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;(2)由错位相减法求解即可.由(1)可知,()2212n nn a n ⋅=+⋅,()()231325272212212n n n S n n -=⨯+⨯+⨯++-⋅++⋅,①()()23412325272212212n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②,由-①②得:()()()()()21231112126222221262212122212n n n n n n S n n n -+++--=+⨯+++-+⋅=+⨯-+⋅=⋅⨯---,即()12122n n S n +=-⋅+.【考点】求等差数列的通项公式,利用错位相减法求数列的和18.【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09 (2)350(3()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【解析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率.由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=. (2)利用每组的中点值乘以频数,相加后除以100可得结果.由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=.(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=⨯⨯⨯≈>,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【考点】利用频数分布表计算频率和平均数,独立性检验的应用19.【答案】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内.(2)7【解析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内.在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,长方体1111ABCD A B C D -中,AD BC ∥且AD BC =,11BB CC ∥且11BB CC =,112C G CG=12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 平行四边形,则AF DG∥且AF DG =,同理可证四边形1DEC G 为平行四边形,1C E DG ∴∥且1C E DG =,1C E AF ∴∥且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值.以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()213A ,,、()1210A ,,、()202E ,,、()011F ,,,()011AE =--,,,()202AF =--,,,()1012A E =-,,,()1201A F =-,,,设平面AEF 的法向量为()111m x y z =,,,由00m AE m AF ⎧⋅⎪⎨⋅=⎪⎩=,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()111m =-,,,设平面1A EF 的法向量为()222n x y z =,,,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()142n =,,,3cos 3m n m n m n⋅===⨯⋅,,设二面角1A EF A--的平面角为θ,则cos θ=,sinθ∴==.因此,二面角1A EF A --.【考点】点在平面的证明,利用空间向量法求解二面角20.【答案】(1)221612525x y +=(2)52【解析】(1)因为()222:10525x y C m m+=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案.()222:10525x y C m m +=<<,5a∴=,b m =,根据离心率4c e a ====, 解得54m =或54m =-(舍),C ∴的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=. (2)点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ △的面积.点P 在C 上,点Q 在直线6x =上,且BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N .根据题意画出图形,如图BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=,又90PBM QBN ∠+∠=,90BQN QBN ∠+∠=,PBM BQN ∴∠=∠,根据三角形全等条件“AAS ”,可得:PMB BNQ ≅△△,221612525x y +=, ()50B ∴,,651PM BN ∴==-=,设P 点为()P P x y ,,可得P 点纵坐标为1P y =,将其代入221612525x y +=,可得:21612525P x +=,解得:3P x =或3P x =-,P ∴点为()31,或()31-,, ①当P 点为()31,时,故532MB =-=,PMB BNQ ≅△△,2MB NQ ∴==,可得:Q 点为()62,,画 出图象,如图()50A -,,()62Q ,,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ 的距离为:d ===,根据两点间距离公式可得:AQ =,APQ ∴△面积为:1522⨯=;②当P 点为()31-,时,故5+38MB ==,PMB BNQ ≅△△,8MB NQ ∴==,可得:Q 点为()68,,画出图象,如图()50A -,,()68Q ,,可求得直线AQ 的直线方程为:811400x y -+=,根据点到直线距离公式可得P到直线AQ 的距离为:d ===AQ ==APQ ∴△面积为:1522=,综上所述,APQ △面积为:52. 【考点】椭圆标准方程,三角形面积,椭圆的离心率定义,数形结合求三角形面积 21.【答案】(1)34b =-(2)由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1.【解析】(1)利用导数的几何意义得到102f ⎛⎫'= ⎪⎝⎭,解方程即可.因为()23f x x b '=+,由题意,102f ⎛⎫'= ⎪⎝⎭,即21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-; (2)由(1)可得()231132422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,易知()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,采用反证法,推出矛盾即可.由(1)可得()334f x x x c =-+,()231133422f x x x x ⎛⎫⎛⎫'=-=+- ⎪⎪⎝⎭⎝⎭,令()0f x '>,得12x >或12x -<;令()0f x '<,得1122x -<<,所以()f x 在1122⎛⎫- ⎪⎝⎭,上单调递减,在12⎛⎫-∞- ⎪⎝⎭,,12⎛⎫+∞ ⎪⎝⎭,上单调递增,且()114f c -=-,1124f c ⎛⎫-=+ ⎪⎝⎭,1124f c ⎛⎫=- ⎪⎝⎭,()114f c =+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则()10f ->或()10f <,即14c >或14c -<.当14c >时,()1104f c -=->,11024f c ⎛⎫-=+ ⎪⎝⎭>,11024f c ⎛⎫=- ⎪⎝⎭>,()1104f c =+>,又()()32464341160f c c c c c c -=-++=-<,由零点存在性定理知()f x 在()41c --,上存在唯一一个零点0x ,即()f x 在()1-∞-,上存在唯一一个零点,在()1-+∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c -<时,()1104f c -=-<,11024f c ⎛⎫-=+ ⎪⎝⎭<,11024f c ⎛⎫=- ⎪⎝⎭<,()1104f c =+<,又()()32464341160f c c c c c c -=++=->,由零点存在性定理知()f x 在()14c -,上存在唯一一个零点0x ',即()f x 在()1+∞,上存在唯一一个零点,在()1-∞,上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾;综上,()f x 所有零点的绝对值都不大于1. 【考点】利用导数研究函数的零点,导数的几何意义,反证法22.【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】(1)由参数方程得出A ,B 的坐标,最后由两点间距离公式,即可得出AB 的值.令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即()012A ,.令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即()40B -,.AB ∴=(2)由A ,B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.由(1)可知()120304AB k -==--,则直线AB 的方程为()34y x =+,即3120x y -+=.由cos x ρθ=,sin y ρθ=可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【考点】利用参数方程求点的坐标,直角坐标方程化极坐标方程 23.【答案】(1)()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴ {}3max 4a b c ,,.【解析】(1)由()22222220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明.()22222220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++.a ,b ,c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<. (2)不妨设{}max a b c a =,,,由题意得出0a >,b ,0c <,由()222322b c b c bca aa bcbc+++=⋅==,结合基本不等式,即可得出证明.不妨设{}max a b c a =,,,由0a b c ++=,1abc =可知,0a >,0b <,0c <,a b c =--,1a bc=,()222322224b c b c bc bc bc a a a bc bc bc ++++∴=⋅===≥.当且仅当b c =时,取等号,a ∴{}3max 4a b c ,,.【考点】不等式的基本性质,基本不等式的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果.详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

13. 曲线在点处的切线方程为__________.【答案】【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.详解:点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.14. 若满足约束条件则的最大值为__________.【答案】9【解析】分析:先作可行域,再平移直线,确定目标函数最大值的取法.详解:作可行域,则直线过点A(5,4)时取最大值9.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.15. 已知,,则__________.【答案】【解析】分析:先根据条件解出再根据两角和正弦公式化简求结果.详解:因为,,所以,因此点睛:三角函数求值的三种类型(1)给角求值:关键是正确选用公式,以便把非特殊角的三角函数转化为特殊角的三角函数.(2)给值求值:关键是找出已知式与待求式之间的联系及函数的差异.①一般可以适当变换已知式,求得另外函数式的值,以备应用;②变换待求式,便于将已知式求得的函数值代入,从而达到解题的目的.(3)给值求角:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.16. 已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.【答案】【解析】分析:先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式求结果.因为与圆锥底面所成角为45°,所以底面半径为因此圆锥的侧面积为点睛:本题考查线面角,圆锥的侧面积,三角形面积等知识点,考查学生空间想象与运算能力三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,每个试题考生都必须作答。

第22、23为选考题,考生根据要求作答。

(一)必考题:共60分。

17. 记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.【答案】(1)a n=2n–9,(2)S n=n2–8n,最小值为–16.【解析】分析:(1)根据等差数列前n项和公式,求出公差,再代入等差数列通项公式得结果,(2)根据等差数列前n项和公式得的二次函数关系式,根据二次函数对称轴以及自变量为正整数求函数最值.详解:(1)设{a n}的公差为d,由题意得3a1+3d=–15.由a1=–7得d=2.所以{a n}的通项公式为a n=2n–9.(2)由(1)得S n=n2–8n=(n–4)2–16.所以当n=4时,S n取得最小值,最小值为–16.点睛:数列是特殊的函数,研究数列最值问题,可利用函数性质,但要注意其定义域为正整数集这一限制条件.18. 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.【答案】(1)利用模型①预测值为,利用模型②预测值为,(2)利用模型②得到的预测值更可靠.【解析】分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.详解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为=–+×19=(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为=99+×9=(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.点睛:若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回归直线方程有待定参数,则根据回归直线方程恒过点求参数.19. 设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.【答案】(1) y=x–1,(2)或.【解析】分析:(1)根据抛物线定义得,再联立直线方程与抛物线方程,利用韦达定理代入求出斜率,即得直线的方程;(2)先求AB中垂线方程,即得圆心坐标关系,再根据圆心到准线距离等于半径得等量关系,解方程组可得圆心坐标以及半径,最后写出圆的标准方程.详解:(1)由题意得F(1,0),l的方程为y=k(x–1)(k>0).设A(x1,y1),B(x2,y2).由得.,故.所以.由题设知,解得k=–1(舍去),k=1.因此l的方程为y=x–1.(2)由(1)得AB的中点坐标为(3,2),所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为(x0,y0),则解得或因此所求圆的方程为或.点睛:确定圆的方程方法(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.(2)待定系数法①若已知条件与圆心和半径有关,则设圆的标准方程依据已知条件列出关于的方程组,从而求出的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.20. 如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.【答案】(1)见解析(2)【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM 一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果. 详解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21. 已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.【答案】(1)见解析(2)详解:(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.点睛:利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.(二)选考题:共10分。

相关文档
最新文档