操作系统-先来先服务算法FCFS(C语言)

合集下载

先来先服务和优先数调度算法c语言

先来先服务和优先数调度算法c语言

先来先服务和优先数调度算法c语言先来先服务和优先数调度算法c语言一、前言操作系统中的进程调度是指在多道程序环境下,按照一定的规则从就绪队列中选择一个进程,将CPU分配给它运行。

常用的进程调度算法有先来先服务(FCFS)、最短作业优先(SJF)、时间片轮转(RR)等。

本文将介绍两种常见的进程调度算法:先来先服务和优先数调度算法,并给出相应的C语言实现。

二、先来先服务算法1. 算法原理FCFS即First Come First Served,也称为FIFO(First In First Out),是一种非抢占式的进程调度算法。

按照任务到达时间的顺序进行处理,即谁先到达谁就被处理。

2. 算法流程(1)按照任务到达时间排序;(2)依次执行每个任务,直至所有任务都完成。

3. C语言实现下面是一个简单的FCFS程序:```c#include <stdio.h>struct process {int pid; // 进程IDint arrival_time; // 到达时间int burst_time; // 执行时间int waiting_time; // 等待时间};int main() {struct process p[10];int n, i, j;float avg_waiting_time = 0;printf("请输入进程数:");scanf("%d", &n);for (i = 0; i < n; i++) {printf("请输入第%d个进程的信息:\n", i + 1); printf("进程ID:");scanf("%d", &p[i].pid);printf("到达时间:");scanf("%d", &p[i].arrival_time);printf("执行时间:");scanf("%d", &p[i].burst_time);}for (i = 0; i < n; i++) {for (j = 0; j < i; j++) {if (p[j].arrival_time > p[j + 1].arrival_time) { struct process temp = p[j];p[j] = p[j + 1];p[j + 1] = temp;}}}int current_time = p[0].arrival_time;for (i = 0; i < n; i++) {if (current_time < p[i].arrival_time) {current_time = p[i].arrival_time;}p[i].waiting_time = current_time - p[i].arrival_time;current_time += p[i].burst_time;}printf("进程ID\t到达时间\t执行时间\t等待时间\n");for (i = 0; i < n; i++) {printf("%d\t%d\t%d\t%d\n", p[i].pid, p[i].arrival_time, p[i].burst_time, p[i].waiting_time);avg_waiting_time += (float)p[i].waiting_time / n;}printf("平均等待时间:%f\n", avg_waiting_time);return 0;}```三、优先数调度算法1. 算法原理优先数调度算法是一种非抢占式的进程调度算法。

用于作业调度的算法

用于作业调度的算法

用于作业调度的算法作业调度是计算机操作系统中的一个重要概念,它指的是在多个进程同时运行时,如何合理地分配CPU资源,使得系统能够高效地完成各项任务。

作业调度算法是实现作业调度的关键,下面将详细介绍几种常见的作业调度算法。

一、先来先服务(FCFS)算法先来先服务(FCFS)算法是最简单也是最容易实现的一种作业调度算法。

该算法按照进程到达时间的顺序依次执行,即当一个进程到达后,如果当前没有正在执行的进程,则立即执行该进程;否则将该进程加入等待队列中,并等待前面所有进程执行完毕后再进行处理。

FCFS算法优点在于简单易实现,并且保证了公平性。

但由于没有考虑到不同进程的优先级和执行时间等因素,因此可能会导致长任务等待时间过长、短任务响应时间过长等问题。

二、短作业优先(SJF)算法短作业优先(SJF)算法是一种根据作业长度进行排序的调度策略。

该算法按照各个进程需要占用CPU时间片长度进行排序后依次执行,即当一个新的进程到达时,如果其需要占用的时间片长度比当前正在执行的进程短,则立即切换到该进程进行处理,否则将该进程加入等待队列中,并等待前面所有进程执行完毕后再进行处理。

SJF算法优点在于能够最大限度地缩短作业响应时间,提高系统的吞吐量。

但由于需要预测每个进程需要占用的时间片长度,因此实现起来较为困难,并且可能会出现“饥饿”现象,即长时间等待CPU资源的进程无法得到及时处理。

三、优先级调度算法优先级调度算法是一种按照不同进程的优先级进行排序的调度策略。

该算法将每个进程赋予一个优先级值,根据优先级值高低依次执行,即当一个新的进程到达时,如果其优先级比当前正在执行的进程高,则立即切换到该进程进行处理,否则将该进程加入等待队列中,并等待前面所有优先级更高的进程执行完毕后再进行处理。

优先级调度算法可以根据不同任务类型和紧急性进行灵活调整,并且可以避免长任务等待时间过长、短任务响应时间过长等问题。

但由于可能会出现“饥饿”现象和优先级反转等问题,因此需要进行适当的优化和调整。

常用的调度算法

常用的调度算法

常用的调度算法调度算法是指操作系统中用于决定进程何时执行、何时暂停等的一种算法。

常用的调度算法包括先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转等。

下面将对这些常用的调度算法进行详细介绍。

一、先来先服务(FCFS)先来先服务是最简单的调度算法之一,它按照进程到达的顺序进行调度,即谁先到谁先执行。

这种算法容易实现,但是存在“饥饿”现象,即如果某个进程长时间等待,则其他进程可能会一直占用CPU资源,导致该进程无法得到执行。

因此,在实际应用中,FCFS很少被使用。

二、短作业优先(SJF)短作业优先是一种以作业运行时间为依据的调度算法。

它通过预测每个进程需要运行的时间,并将其按照运行时间从小到大排序,然后依次执行。

这种算法可以最大限度地减少平均等待时间和平均周转时间,并且不会出现“饥饿”现象。

但是,在实际应用中,由于很难准确预测每个进程需要运行的时间,因此SJF也存在缺陷。

如果预测不准确,那么就会出现长作业等待短作业的情况,导致长作业的等待时间变长。

三、优先级调度优先级调度是一种按照进程优先级进行调度的算法。

每个进程都有一个优先级,系统会根据进程的优先级来决定下一个要执行的进程。

通常情况下,优先级越高的进程越有可能得到CPU资源。

但是,如果某个进程的优先级一直比其他进程高,那么其他进程就会一直等待,导致“饥饿”现象。

此外,在实际应用中,由于不同进程之间的优先级差别较大,因此可能会导致低优先级的进程长时间等待。

四、时间片轮转时间片轮转是一种按照时间片进行调度的算法。

它将CPU资源划分成若干个时间片,并将每个时间片分配给一个正在运行或等待运行的进程。

当一个进程用完了它所分配到的时间片后,系统会将其挂起,并将CPU资源分配给下一个等待运行的进程。

这种算法可以避免“饥饿”现象,并且能够保证所有正在运行或等待运行的进程都能够得到CPU资源。

但是,如果时间片太小,会导致进程频繁切换,影响系统性能;如果时间片太大,会导致长作业等待时间变长。

操作系统中常用作业调度算法的分析

操作系统中常用作业调度算法的分析

操作系统中常用作业调度算法的分析作业调度算法是操作系统中非常重要的一部分,它负责决定哪个进程应该被调度执行、以及在什么时候执行。

不同的作业调度算法会对系统的性能和资源利用率产生不同的影响,因此了解和分析常用的作业调度算法对于优化系统性能至关重要。

在操作系统中,常用的作业调度算法包括先来先服务(FCFS)、短作业优先(SJF)、最高响应比优先(HRRN)、优先级调度、轮转调度和多级反馈队列调度等。

下面对这些常见的作业调度算法进行详细分析。

1. 先来先服务(FCFS)先来先服务是最简单的作业调度算法之一,它按照作业到达的先后顺序来进行调度。

当一个作业到达系统后,系统会将其放入就绪队列,然后按照先来先服务的原则,依次执行队列中的作业。

FCFS算法的优点是实现简单、公平性好,但缺点也非常明显。

由于该算法没有考虑作业的执行时间,因此可能导致长作业等待时间过长,影响系统的响应时间和吞吐量。

2. 短作业优先(SJF)短作业优先算法是一种非抢占式作业调度算法,它会根据作业的执行时间来进行调度。

当一个作业到达系统后,系统会根据其执行时间与就绪队列中其他作业的执行时间进行比较,选取执行时间最短的作业进行执行。

SJF算法的优点是能够最大程度地减少平均等待时间,提高系统的响应速度和吞吐量。

但这种算法也存在缺陷,即当有长作业不断地进入系统时,可能导致短作业一直得不到执行,进而影响系统的公平性。

3. 最高响应比优先(HRRN)最高响应比优先算法是一种动态优先级调度算法,它根据作业的响应比来进行调度。

作业的响应比定义为(等待时间+服务时间)/ 服务时间,响应比越高的作业被优先调度执行。

HRRN算法的优点是能够最大程度地提高系统的响应速度,同时保持较高的公平性。

但由于需要不断地计算和更新作业的响应比,因此算法的复杂度较高。

4. 优先级调度优先级调度算法是一种静态优先级调度算法,它根据作业的优先级来进行调度。

每个作业在进入系统时就会被赋予一个优先级,系统会按照作业的优先级来决定执行顺序。

各类作业调度算法

各类作业调度算法

各类作业调度算法作业调度算法是操作系统中的重要概念,用于决定计算机系统中各类作业的执行顺序。

它能够优化系统资源利用,提高作业处理效率和用户体验。

本文将介绍各类常见的作业调度算法。

1.先来先服务(FCFS)先来先服务是最简单、最直观的作业调度算法,按照作业到达的顺序来执行。

即当一个作业进入系统后,它将会被放入作业队列的末尾等待执行。

这种算法的优点是简单易懂,缺点是没有考虑作业的执行时间,可能导致长作业占用系统资源时间过长,等待时间较长。

2.最短作业优先(SJF)最短作业优先算法根据每个作业的执行时间来安排执行顺序,执行时间短的作业优先执行。

该算法能够最大限度地缩短作业的等待时间,提高系统的作业处理效率。

然而,这种算法可能会导致长作业饥饿,即长作业始终无法执行,因为每次都有短作业到达系统。

3.最高响应比优先(HRRN)最高响应比优先算法考虑了作业的等待时间和执行时间,通过响应比来确定作业的执行顺序。

响应比定义为(等待时间+执行时间)/执行时间。

该算法能够综合考虑作业的等待时间和执行时间,避免长作业饥饿问题,提高系统的整体响应性能。

4.时间片轮转(RR)时间片轮转算法将系统的执行时间划分为若干个固定大小的时间片,并按照顺序依次分配给作业执行。

每个作业只能在一个时间片内执行,当时间片用完后,如果作业还没有执行完,就需要重新排队等待执行。

时间片轮转算法能够公平地分配系统资源,降低长作业占用系统资源的情况,但也可能导致较大的上下文切换开销。

5.多级队列调度(MLQ)多级队列调度算法将作业划分成多个队列,每个队列具有不同的优先级。

作业首先进入高优先级队列执行,如果执行完后还未完成,就降低其优先级,放入低优先级队列执行。

这样能够确保高优先级作业得到及时执行,同时避免低优先级作业饥饿。

多级队列调度算法常用于实时系统中。

总结来说,作业调度算法有先来先服务、最短作业优先、最高响应比优先、时间片轮转和多级队列调度等。

不同的算法有不同的特点和适用场景,选取合适的作业调度算法能够优化系统资源利用和提高作业处理效率。

调度算法C语言实现

调度算法C语言实现

调度算法C语言实现调度算法是操作系统中的重要内容之一,它决定了进程在系统中的运行方式和顺序。

本文将介绍两种常见的调度算法,先来先服务(FCFS)和最短作业优先(SJF),并用C语言实现它们。

一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是最简单的调度算法之一、它按照进程到达的先后顺序进行调度,即谁先到达就先执行。

实现这个算法的关键是记录进程到达的顺序和每个进程的执行时间。

下面是一个用C语言实现先来先服务调度算法的示例程序:```c#include <stdio.h>//进程控制块结构体typedef structint pid; // 进程IDint arrivalTime; // 到达时间int burstTime; // 执行时间} Process;int maiint n; // 进程数量printf("请输入进程数量:");scanf("%d", &n);//输入每个进程的到达时间和执行时间Process process[n];for (int i = 0; i < n; i++)printf("请输入进程 %d 的到达时间和执行时间:", i);scanf("%d%d", &process[i].arrivalTime,&process[i].burstTime);process[i].pid = i;}//根据到达时间排序进程for (int i = 0; i < n - 1; i++)for (int j = i + 1; j < n; j++)if (process[i].arrivalTime > process[j].arrivalTime) Process temp = process[i];process[i] = process[j];process[j] = temp;}}}//计算平均等待时间和平均周转时间float totalWaitingTime = 0; // 总等待时间float totalTurnaroundTime = 0; // 总周转时间int currentTime = 0; // 当前时间for (int i = 0; i < n; i++)if (currentTime < process[i].arrivalTime)currentTime = process[i].arrivalTime;}totalWaitingTime += currentTime - process[i].arrivalTime;totalTurnaroundTime += (currentTime + process[i].burstTime) - process[i].arrivalTime;currentTime += process[i].burstTime;}//输出结果float avgWaitingTime = totalWaitingTime / n;float avgTurnaroundTime = totalTurnaroundTime / n;printf("平均等待时间:%f\n", avgWaitingTime);printf("平均周转时间:%f\n", avgTurnaroundTime);return 0;```以上程序实现了先来先服务(FCFS)调度算法,首先根据进程的到达时间排序,然后依次执行每个进程,并计算总等待时间和总周转时间。

c语言实现进程调度算法

c语言实现进程调度算法

c语言实现进程调度算法进程调度算法是操作系统中的一个重要组成部分,用于决定在多道程序环境下,选择哪个进程来占用CPU并执行。

C语言是一种通用的编程语言,可以用于实现各种进程调度算法。

这里我将分别介绍三种常见的进程调度算法:先来先服务调度算法(FCFS)、最短作业优先调度算法(SJF)和轮转法调度算法(RR),并给出用C语言实现的示例代码。

首先,我们来看先来先服务调度算法(FCFS)。

此算法根据到达时间的先后顺序,按照先来后到的顺序进行处理。

下面是基于C语言的先来先服务调度算法实现示例代码:```c#include<stdio.h>struct Process};void FCFS(struct Process proc[], int n)for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}FCFS(proc, n);return 0;```其次,我们来看最短作业优先调度算法(SJF),该算法选择执行时间最短的进程先执行。

下面是基于C语言的最短作业优先调度算法实现示例代码:```c#include<stdio.h>struct Process};void SJF(struct Process proc[], int n)for (int i = 0; i < n; i++)for (int j = 0; j < i; j++)}shortest_job = i;for (int j = i + 1; j < n; j++)shortest_job = j;}}}for (int i = 1; i < n; i++)}printf("进程号到达时间服务时间完成时间等待时间周转时间\n");for (int i = 0; i < n; i++)}for (int i = 0; i < n; i++)}int maiint n;printf("请输入进程数:");scanf("%d", &n);struct Process proc[n];for (int i = 0; i < n; i++)printf("请输入进程%d的到达时间和服务时间(用空格分隔):", i + 1);}SJF(proc, n);return 0;```最后,我们来看轮转法调度算法(RR),该算法分配一个时间片给每个进程,当时间片用完后,将CPU分配给下一个进程。

几种操作系统调度算法

几种操作系统调度算法

几种操作系统调度算法操作系统调度算法是操作系统中用于确定进程执行的顺序和优先级的一种方法。

不同的调度算法有不同的优缺点,适用于不同的场景和需求。

下面将介绍几种常见的操作系统调度算法:1.先来先服务(FCFS)调度算法:先来先服务调度算法是最简单的调度算法之一、按照进程到达的顺序进行调度,首先到达的进程先执行,在CPU空闲时执行下一个进程。

这种算法实现简单,并且公平。

但是,由于没有考虑进程的执行时间,可能会导致长作业时间的进程占用CPU资源较长时间,从而影响其他进程的响应时间。

2.短作业优先(SJF)调度算法:短作业优先调度算法是根据进程的执行时间进行排序,并按照执行时间最短的进程优先执行。

这种算法可以减少平均等待时间,提高系统的吞吐量。

然而,对于长作业时间的进程来说,等待时间会相对较长。

3.优先级调度算法:优先级调度算法是根据每个进程的优先级来决定执行顺序的。

优先级可以由用户设置或者是根据进程的重要性、紧迫程度等因素自动确定。

具有较高优先级的进程将具有更高的执行优先级。

这种算法可以根据不同情况进行灵活调度,但是如果不恰当地设置优先级,可能会导致低优先级的进程长时间等待。

4.时间片轮转(RR)调度算法:时间片轮转调度算法将一个固定的时间片分配给每个进程,当一个进程的时间片用完时,将该进程挂起,调度下一个进程运行。

这种算法可以确保每个进程获得一定的CPU时间,提高系统的公平性和响应速度。

但是,对于长时间运行的进程来说,可能会引起频繁的上下文切换,导致额外的开销。

5.多级反馈队列(MFQ)调度算法:多级反馈队列调度算法将进程队列划分为多个优先级队列,每个队列有不同的时间片大小和优先级。

新到达的进程被插入到最高优先级队列,如果进程在时间片内没有完成,则被移到下一个较低优先级队列。

这种算法可以根据进程的执行表现自动调整优先级和时间片,更好地适应动态变化的环境。

以上是几种常见的操作系统调度算法,每种算法都有其优缺点和适用场景。

操作系统五种进程调度算法的代码

操作系统五种进程调度算法的代码

操作系统五种进程调度算法的代码一、先来先服务(FCFS)调度算法先来先服务(FCFS)调度算法是操作系统处理进程调度时比较常用的算法,它的基本思想是按照进程的提交时间的先后顺序依次调度进程,新提交的进程会在当前运行进程之后排队,下面通过C语言代码来实现先来先服务(FCFS)调度算法:#include <stdio.h>#include <stdlib.h>//定义进程的数据结构struct Processint pid; // 进程标识符int at; // 到达时间int bt; // 执行时间};//进程调度函数void fcfs_schedule(struct Process *processes, int n)int i, j;//根据进程的到达时间排序for(i = 0; i < n; i++)for(j = i+1; j < n; j++)if(processes[i].at > processes[j].at) struct Process temp = processes[i]; processes[i] = processes[j];processes[j] = temp;//获取各个进程执行完毕的时间int ct[n];ct[0] = processes[0].at + processes[0].bt; for(i = 1; i < n; i++)if(ct[i-1] > processes[i].at)ct[i] = ct[i-1] + processes[i].bt;elsect[i] = processes[i].at + processes[i].bt; //计算各个进程的周转时间和带权周转时间int tat[n], wt[n], wt_r[n];for(i = 0; i < n; i++)tat[i] = ct[i] - processes[i].at;wt[i] = tat[i] - processes[i].bt;wt_r[i] = wt[i] / processes[i].bt;printf("P%d:\tAT=%d\tBT=%d\tCT=%d\tTAT=%d\tWT=%d\tWT_R=%f\n", processes[i].pid, processes[i].at, processes[i].bt, ct[i], tat[i], wt[i], wt_r[i]);//主函数int mainstruct Process processes[] ={1,0,3},{2,3,5},{3,4,6},{4,5,2},{5,6,4}};fcfs_schedule(processes, 5);return 0;输出:。

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语言实现)

【操作系统】先来先服务和短作业优先算法(C语⾔实现)【操作系统】先来先服务算法和短作业优先算法实现介绍:1.先来先服务 (FCFS: first come first service)如果早就绪的进程排在就绪队列的前⾯,迟就绪的进程排在就绪队列的后⾯,那么先来先服务(FCFS: first come first service)总是把当前处于就绪队列之⾸的那个进程调度到运⾏状态。

也就说,它只考虑进程进⼊就绪队列的先后,⽽不考虑它的下⼀个CPU周期的长短及其他因素。

FCFS算法简单易⾏,是⼀种⾮抢占式策略,但性能却不⼤好。

简单来说,先来先服务就是那个进程到达时间最早,那么CPU就先处理哪个进程。

2.短作业优先(SJF, Shortest Job First)对预计执⾏时间短的作业(进程)优先分派处理机。

通常后来的短作业不抢先正在执⾏的作业。

也就是说,不但要考虑进程的到达时间,还要考虑进程需要运⾏的时间。

当⼀个进程正在运⾏时,假如有其他的进程到达,那么这些到达的进程就需要按照其需要运⾏的时间长短排序,运⾏时间短的在前,运⾏时间长的在后。

3.例⼦:4.运⾏截图1.先来先服务2.短作业优先5.话不多说,直接上代码。

第⼀次写,有很多不⾜的地⽅。

希望⼤家看到可以帮忙纠正⼀下,谢谢⼤家。

#include <stdio.h>#include <stdlib.h>#define MAX 10typedef struct PCB {int id,arrive_time,service_time,start_time,finish_time; //进程id、到达时间、服务时间、开始时间、完成时间float zhouzhuan_time,daiquanzhouzhuan_time; //周转时间、带权周转时间。

只能说我的拼英。

emm,。

尴尬。

int status;}PCB;typedef enum {OK,ERROR}Status;typedef enum {FALSE,TRUE}Bool;typedef PCB datatype;typedef struct LinkQueue {int front;int rear;int length;datatype* base;}quene;int arrive[MAX]; // 记录每个作业的到达时间int service[MAX]; //记录每个作业的服务时间int num; //输⼊的进程个数quene init(){quene q_pcb;q_pcb.base = (datatype *)malloc(sizeof(datatype)*MAX);q_pcb.front = q_pcb.rear = 0;q_pcb.length = 0;return q_pcb;}Bool isFull(quene *q) {if ((q->rear + 1) % MAX == q->front) {return TRUE;}return FALSE;}Bool isEmpty(quene *q) {if (q->rear == q->front) {return TRUE;}return FALSE;}Status rudui(quene *q,datatype p){ //⼊队。

操作系统中的进程调度算法

操作系统中的进程调度算法

操作系统中的进程调度算法在计算机操作系统中,进程调度是一项重要的任务,它决定了多个进程在CPU上的执行顺序。

进程调度算法的设计对于提高系统的运行效率、资源利用率和用户体验非常关键。

本文将介绍几种常见的进程调度算法,并讨论它们的优缺点。

1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种最简单的调度算法,按照进程到达的顺序进行调度。

当一个进程到达后,它将被放入就绪队列中,等待CPU 的执行。

当前一个进程执行完毕后,下一个进程将获得CPU的调度,并开始执行。

这种算法非常直观和公平,但有可能导致长作业等待时间较长的问题,即所谓的"饥饿"现象。

2. 最短作业优先调度算法(SJF)最短作业优先调度算法是以进程执行时间为依据的调度算法。

在这种算法中,操作系统会首先选择执行时间最短的进程。

这样可以最大程度地减少平均等待时间,并提高系统的吞吐量。

然而,该算法可能会导致长执行时间的进程等待时间过长,容易出现"饥饿"现象。

3. 优先级调度算法优先级调度算法根据进程的优先级来进行调度。

每个进程都有一个与之相关的优先级数值,数值越小表示优先级越高。

操作系统会选择具有最高优先级的就绪进程来执行。

这种算法仅适用于静态优先级的系统,如果优先级可以动态调整,则可能导致优先级倒置的问题。

4. 时间片轮转调度算法(RR)时间片轮转调度算法是一种常用的调度算法,特别适用于分时操作系统。

在这种算法中,每个进程被分配一个固定的时间片,当时间片用尽后,操作系统会将CPU资源分配给下一个就绪进程。

这种算法保证了公平性,并且可以在一定程度上避免长作业等待时间过长的问题。

5. 多级反馈队列调度算法多级反馈队列调度算法采用多个就绪队列,每个队列具有不同的优先级和时间片大小。

新到达的进程首先进入最高优先级队列,如果时间片用尽或者被抢占,进程将被移到下一个优先级队列中。

这种算法综合了优先级和时间片轮转的优点,适用于多种类型的作业。

处理机的调度算法分类

处理机的调度算法分类

处理机的调度算法分类
处理机的调度算法是指操作系统的一种重要机制,用于在多个进程之间分配和利用处理器资源。

根据不同的策略和目标,处理机的调度算法可以分为以下几种类型:
1. 先来先服务(FCFS)调度算法
先来先服务调度算法是一种简单的调度算法,它按照进程到达的顺序来分配处理器资源。

即,先到达的进程先被执行。

这种算法的优点是简单易实现,但是它没有考虑进程执行时间的差异,可能会导致长时间等待。

最短作业优先调度算法是一种根据进程执行时间长度来分配处理器资源的方法,执行时间短的进程优先得到处理器资源。

这种算法对缩短平均等待时间和平均周转时间有很好的效果,但由于需要预测进程执行时间,所以难以实现。

3. 优先级调度算法
优先级调度算法是一种通过为每个进程分配优先级,并按照优先级来分配处理器资源的方法。

高优先级的进程先被执行,但由于进程间优先级差异过大导致的低优先级进程饥饿问题,所以该算法应用不广泛。

4. 时间片轮转调度算法
时间片轮转调度算法是一种根据时间片长度来分配处理器资源的方法,每个进程被分配一个时间片,当时间片用完后,处理器资源就被分配给下一个进程。

这种算法可以轻松地实现进程并发和多任务处理,但是对于系统计算要求高或进程数较多时,系统响应速度会降低。

多级反馈队列调度算法是一种结合了时间片和优先级的方法。

每个进程被分配一个初始优先级和时间片长度,当进程使用完当前时间片时,优先级降低且时间片长度增加。

这种算法既保证了优先级的考虑,也避免了长时间等待或者进程饥饿问题。

最后,需要指出的是,不同的调度算法适用于不同的场景,需要根据具体需求进行选择和应用。

计算机操作系统的进程调度算法

计算机操作系统的进程调度算法

计算机操作系统的进程调度算法计算机操作系统是指控制和管理计算机硬件与软件资源的系统软件。

在操作系统中,进程调度算法起着至关重要的作用,它决定了系统中各个进程的执行顺序,合理的调度算法可以提高系统的性能和效率。

本文将对常见的进程调度算法进行介绍和分析。

一、先来先服务调度算法(First-Come, First-Served,FCFS)先来先服务调度算法是最简单的调度算法之一。

按照进程到达的先后顺序依次执行,即抢占后只有等待其他进程执行完毕才能执行。

该算法的优点是简单易实现,但缺点是平均等待时间较长,无法满足实时性要求,容易产生“饥饿”现象。

二、短作业优先调度算法(Shortest Job First,SJF)短作业优先调度算法是通过预测进程执行时间的长短来进行调度的。

当有多个进程同时到达时,选择执行时间最短的进程先执行。

该算法的优点是能够最大限度地减少平均等待时间,但缺点是无法应对长作业的到来,可能导致长作业的等待时间过长。

三、优先级调度算法(Priority Scheduling)优先级调度算法根据进程的优先级来进行调度,优先级高的进程先执行。

该算法可以根据实际需要为不同的进程设置不同的优先级。

该算法的优点是能够满足实时性要求,但缺点是可能导致优先级低的进程长时间等待,产生“饥饿”现象。

四、轮转调度算法(Round Robin,RR)轮转调度算法是一种按照时间片轮流分配CPU的调度算法。

每个进程被分配一个固定的时间片,当时间片用完时,进程被剥夺CPU,并放入就绪队列的末尾等待下一次调度。

该算法的优点是能够公平地分配CPU时间,避免长作业的等待时间过长,缺点是可能导致平均等待时间较长,无法满足实时性要求。

五、多级反馈队列调度算法(Multilevel Feedback Queue,MLFQ)多级反馈队列调度算法是一种综合利用多个调度算法的调度策略。

它将进程划分为多个队列,每个队列采用不同的调度算法。

操作系统-先来先服务算法FCFS(C语言)

操作系统-先来先服务算法FCFS(C语言)
printf("\n时刻:%d,当前开始运行作业%s\n\n",time,p1->name);
time+=p1->ServiceTime;
p1->state='T';
p1->FinishTime=time;
p1->WholeTime=p1->FinishTime-p1->ArriveTime;
p1->WeightWholeTime=p1->WholeTime/p1->ServiceTime;








算法原理:
设计程序模拟进程的先来先服务FCFS过程。假设有n个进程分别在T1,…,Tn时刻到达系统,它们需要的服务时间分别为S1,…,Sn。分别采用先来先服务FCFS调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。
程序要求如下:
run_FCFS(q);
}
p=p->next;
}
}
void getInfo() //获得进程信息并创建进程
{
int num;
printf("\n进程个数:");
scanf("%d",&n);
for(num=0;num<n;num++)
{
p=(pcb *)malloc(sizeof(pcb));
printf("依次输入:\n进程名到达时间服务时间\n");
intServiceTime[MaxNum];
intFinishTime[MaxNum];

操作系统中的进程调度算法

操作系统中的进程调度算法

操作系统中的进程调度算法随着现代计算机技术的不断发展,操作系统成为管理计算机系统的核心组件。

操作系统不仅可以控制计算机硬件和软件资源的分配,还可以提高计算机的效率和管理性能。

而进程调度就是操作系统中最重要的功能之一,其目的是实现多个进程之间的均衡,响应用户请求,最大程度的利用计算机资源。

进程调度算法是指操作系统中用来决定哪个进程可以被执行和运行多长时间的算法。

不同的操作系统有不同的进程调度算法,通常根据不同策略来选择进程。

下面将介绍几种经典的进程调度算法。

1. 先来先服务(FCFS)算法FCFS算法是最简单的进程调度算法之一。

它的核心思想是按照进程到达的顺序排队,当一个进程结束执行后,下一个进程将会自动成为就绪队列中的第一个进程。

这种算法的优点在于简单易实现,但是很容易出现长作业长等待的问题,也就是说长时间在等待队列中的进程可能会影响到系统效率。

2. 最短作业优先(SJF)算法SJF算法通过对进程执行时间的估计来决定下一个要执行的进程。

也就是说,当一个新进程加入系统时,选择预计需要最短执行时间的进程进行调度。

这种算法在情况比较稳定时,可以保证平均等待时间最少。

但是当有大量的短作业成批到达时,长作业就可能会一直等待。

3. 优先级算法优先级算法是按照每个进程的优先级确定执行顺序的算法。

通常情况下,优先级由进程的重要性、紧急程度等因素来决定。

优先级越高的进程会先得到执行机会。

这种算法可以保证重要的进程得到优先执行,但是它也存在一个问题:优先级调度可能会导致低优先级的进程一直等待执行,这就是由于饥饿现象的出现。

4. 时间片轮转算法时间片轮转算法是一种按照时间分配资源的算法。

每个进程都被分配一个时间片,在该时间片结束时,操作系统会强制暂停进程的执行,将CPU时间分配给下一个进程执行。

这种算法可以保证每个进程都有机会得到尽可能的执行时间,而且能够避免长时间的等待。

5. 高响应比优先(HRRN)算法HRRN算法是一种综合了SJF和优先级算法的综合调度算法。

C语言磁盘调度算法

C语言磁盘调度算法

C语言磁盘调度算法1.FCFS(先来先服务)算法:FCFS算法按照磁盘请求的顺序进行调度,即按照先来先服务的原则,先处理先到达磁盘的请求。

它的实现非常简单,只需要按照请求的顺序进行访问即可。

C代码示例:```c#include <stdio.h>#include <stdlib.h>int fcfs(int start, int *requests, int n)int i;int total = abs(start - requests[0]);for (i = 1; i < n; i++)total += abs(requests[i] - requests[i - 1]);}return total;int maiint start = 50;int requests[] = { 82,170, 43, 140, 24, 16, 190};int n = sizeof(requests) / sizeof(requests[0]);int total = fcfs(start, requests, n);printf("Total head movement: %d\n", total);return 0;```2.SSTF(最短寻道时间优先)算法:SSTF算法每次都选择离当前磁道最近的请求进行处理,以减少寻道时间。

具体实现时,需要计算每个请求到当前磁道的距离,并选择最小的距离进行处理。

C代码示例:```c#include <stdio.h>#include <stdlib.h>int sstf(int start, int *requests, int n)int i, j;int total = 0;int visited[n];for (i = 0; i < n; i++)visited[i] = 0;}int cur = start;for (i = 0; i < n; i++)int minDist = __INT_MAX__;int index = -1;for (j = 0; j < n; j++)if (!visited[j])int dist = abs(cur - requests[j]); if (dist < minDist)minDist = dist;index = j;}}}total += minDist;visited[index] = 1;cur = requests[index];}return total;int maiint start = 50;int requests[] = { 82,170, 43, 140, 24, 16, 190};int n = sizeof(requests) / sizeof(requests[0]);int total = sstf(start, requests, n);printf("Total head movement: %d\n", total);return 0;```3.SCAN(电梯算法)算法:SCAN算法模拟电梯的运行方式,先向一个方向扫描直到末尾,然后再改变方向向另一个方向扫描,以此往复。

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先

操作系统实验_先来先服务的调度算法和短作业优先先来先服务(FCFS)调度算法是一种非抢占式调度算法,在这种算法中,进程按照到达系统的先后顺序执行,并且在一个进程执行完毕之前,不会有其他进程执行。

如果一个进程没有执行完成,后续进程需要等待。

FCFS调度算法的优点是实现简单,公平性好。

由于按照到达时间先后顺序执行进程,能够保证所有进程都能够得到执行的机会。

然而,FCFS调度算法容易出现“饥饿”现象,即如果一个进程占用了较长的CPU时间,其他进程可能需要等待较长时间。

短作业优先(SJF)调度算法是一种非抢占式调度算法,它选择下一个执行的进程是根据预计的执行时间最短的进程。

在SJF调度算法中,进程按照预计的执行时间进行排序,并按照顺序执行。

SJF调度算法的优点是能够最大程度地减少平均等待时间。

因为进程按照预计的执行时间最短的顺序执行,执行时间短的进程优先执行,可以最大限度地减少其他进程等待的时间。

然而,SJF调度算法需要预先知道所有进程的执行时间,并且如果一个进程执行时间长,其他进程需要等待的时间可能会很长。

FCFS调度算法和SJF调度算法都有各自的优点和局限性。

FCFS调度算法适用于进程执行时间相对均匀的情况,可以保证所有进程都能够得到执行的机会。

但是,如果一个进程执行时间很长,可能会导致其他进程等待的时间非常长,容易出现“饥饿”现象。

SJF调度算法适用于进程执行时间差异较大的情况,可以最大程度地减少平均等待时间。

但是,SJF调度算法需要预先知道所有进程的执行时间,而且在实际应用中,很难准确预测进程的执行时间。

在实验中,可以通过编写相应的模拟程序来实现FCFS调度算法和SJF调度算法。

可以设定一个进程队列,每个进程有自己的到达时间和执行时间。

按照FCFS算法,按照到达时间先后顺序执行进程;按照SJF算法,按照执行时间从小到大的顺序执行进程。

通过模拟进程的调度过程,可以观察到FCFS算法和SJF算法的效果差异。

几种操作系统调度算法

几种操作系统调度算法

几种操作系统调度算法操作系统调度算法是操作系统中的关键机制之一,用于确定进程的执行顺序和分配处理器时间片。

不同的调度算法可以根据不同的应用需求和系统性能进行选择。

下面将介绍几种常见的操作系统调度算法。

1.先来先服务(FCFS)调度算法:即按照进程到达的先后顺序进行调度。

对于短作业而言,这种算法可以保证公平性,但对于长作业而言,可能会导致等待时间过长的问题。

2.最短作业优先(SJF)调度算法:即选择执行时间最短的作业进行调度。

这种算法可以减少平均等待时间,但需要提前准确预测作业的执行时间,对于实时系统或具有多变性质的作业调度来说,这种算法可能存在不可行性。

3.优先级调度算法:为每个进程分配一个优先级,并按照优先级大小进行调度。

可以根据作业的重要程度、紧迫程度等因素来分配优先级。

优先级调度算法可以优先保证重要作业的执行,但还需要解决优先级反转、饥饿等问题。

4.时间片轮转(RR)调度算法:将处理器时间分成固定大小的时间片,每个进程在一个时间片的执行时间后被挂起,然后按照队列中的顺序进行下一个时间片的调度。

这种算法可以保证每个进程都有执行的机会,但对于长作业而言,可能会导致响应时间过长的问题。

5.最高响应比优先(HRRN)调度算法:根据作业等待时间和作业执行时间的比值来选择下一个要执行的作业。

这种算法可以根据作业的等待情况来自动调整作业的执行优先级,适用于具有多变性质的作业调度。

6.多级反馈队列(MFQ)调度算法:将进程按照优先级分成多个队列,初始时将所有进程放入第一级队列,每个队列的时间片大小逐级递增。

当进程在其中一级队列用完时间片后,如果仍然有剩余时间,则将进程移到下一级队列。

这种算法可以根据作业的执行情况进行动态调整,适用于提高系统吞吐量和减少响应时间。

以上是几种常见的操作系统调度算法,每种算法都有其优点和缺点,具体选择哪种算法需要根据系统的需求和特点进行综合考虑。

为了提高系统性能和用户体验,操作系统调度算法的研究与优化一直是操作系统领域的重要研究方向。

操作系统中进程调度算法的比较与选择

操作系统中进程调度算法的比较与选择

操作系统中进程调度算法的比较与选择操作系统中的进程调度算法是决定进程如何被分配和调度执行的重要机制。

不同的调度算法采用不同的策略来优化处理器利用率、响应时间、吞吐量等性能指标。

本文将比较几种常见的进程调度算法,并介绍如何选择适合的算法应用于特定场景。

一、先来先服务(FCFS)调度算法先来先服务调度算法是最简单的调度算法之一。

按照进程到达的先后顺序进行调度,先到达的进程先执行,直到执行完毕或者出现某种阻塞情况。

尽管该算法简单易懂,但是由于无法考虑进程的执行时间和优先级等因素,可能会导致长作业优先的现象,造成短作业的等待时间过长,影响系统的吞吐量。

二、短作业优先(SJF)调度算法短作业优先调度算法根据每个进程的执行时间进行排序,选择执行时间最短的进程优先执行。

这种调度算法能够最大限度地减少平均周转时间和平均等待时间,适用于短作业频繁出现的场景。

然而,该算法存在无法预测进程执行时间、难以精确评估的缺点,可能会导致长作业等待时间过长。

三、优先级调度算法优先级调度算法根据进程的优先级来决定进程的调度顺序。

优先级可以由系统管理员或者其他调度算法赋予,数值越高表示优先级越高。

该算法能够保证高优先级进程优先执行,但是可能导致低优先级进程长时间等待,产生饥饿现象。

为了解决饥饿问题,可以引入动态优先级调度算法,即根据进程等待时间进行动态调整优先级。

四、时间片轮转调度算法时间片轮转调度算法将时间划分为固定大小的时间片,每个进程在一个时间片内执行。

当时间片用完后,进程被挂起,而后续的进程获得执行机会。

这种调度算法可以公平地分配处理器时间,并降低长作业等待时间,适用于多个进程需要竞争处理器的情况。

然而,时间片的大小需要合理设置,过小会引起上下文切换开销过大,过大会导致响应时间较长。

五、多级反馈队列调度算法多级反馈队列调度算法采用多个队列,每个队列的优先级不同。

新到达的进程最先进入最高优先级队列,如果在时间片内没有完成,则进入下一级队列继续执行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
printf("%6d %10d %10d %8d %10.1f %10.2f \n ",p1->ArriveTime,p1->StartTime,p1->ServiceTime,p1->FinishTime,p1->WholeTime,p1->WeightWholeTime);
printf("\n平均周转时间平均带权周转时间\n");
q->next=p;
p->StartTime=0;
p->FinishTime=0;
p->WholeTime=0;
p->WeightWholeTime=0;
p->next=NULL;
p->state='F';
q=p;
}
}
void main()
{printf("先来先服务FCFS算法模拟\n");
getInfo();
实 验 报 告
题目
名称
C语言实现调度算法程序设计实验报告-先来先服务FCFS
院系
a
班级
完成时间
指导老师
本次实验成绩











算法原理:
设计程序模拟进程的先来先服务FCFS过程。假设有n个进程分别在T1,…,Tn时刻到达系统,它们需要的服务时间分别为S1,…,Sn。分别采用先来先服务FCFS调度算法进行调度,计算每个进程的完成时间,周转时间和带权周转时间,并且统计n个进程的平均周转时间和平均带权周转时间。
printf("\n时刻:%d,当前开始运行作业%s\n\n",time,p1->name);
time+=p1->ServiceTime;
p1->state='T';
p1->FinishTime=time;
p1->WholeTime=p1->FinishTime-p1->ArriveTime;
p1->WeightWholeTime=p1->WholeTime/p1->ServiceTime;
x+=p1->WholeTime;
y+=p1->WeightWholeTime;
p1->AverageWT_FCFS=p1->WholeTime/n;
p1->AverageWWT_FCFS=p1->WeightWholeTime/n;
printf("到达时间开始时间服务时间完成时间周转时间带权周转时间\n");
程序要求如下:
1)进程个数n;每个进程的到达时间T1,…,Tn和服务时间S1,…,Sn。
2)要求采用先来先服务FCFS调度进程运行,计算每个进程的周转时间,带权周转时间,并且计算所有进程的平均周转时间,带权平均周转时间;
3)输出:要求模拟整个调度过程,输出每个时刻的进程运行状态,如“时刻3:进程B开始运行”等等;
scanf("%s\t%d\t%d",&p->name,&p->ArriveTime,&p->ServiceTime);
if(head==NULL)
{head=p;q=p;time=p->ArriveTime;}
if(p->ArriveTime < time) time=p->ArriveTime;
p=head;
FCFS();
printf(" %10.2f %10.2f\n ",p1->AverageWT_FCFS,p1->AverageWWT_FCFS);
}
void FCFS() //找到当前未完成的进程
{
int i;
p=head;
for(i=0;i<n;i++)
{
if(p->state=='F')
{
q=p; //标记当前未完成的进程
float WholeTime;//周转时间
float WeightWholeTime;//带权周转时间
double AverageWT_FCFS; //平均周转时间
double AverageWWT_FCFS;//带权平均周转时间
struct PCB *next; //指向下个进程
}pcb;
double x=0,y=0;
int i;
int time; //计时器
int n; //进程个数
pcb *head=NULL,*p,*q; //进程链表指针
void run_FCFS(pcb *p1) //运行未完成的进程
{
time = p1->ArriveTime > time? p1->ArriveTime:time;
p1->StartTime=time;
intServiceTime[MaxNum];
intFinishTime[MaxNum];
intWholeTime[MaxNum];
doubleWeightWholeTime[MaxNum];
doubleAverageWT_FCFS;
doubleAverageWWT_FCFS;
2)进程调度的实现过程如下:
变量初始化;
接收用户输入n,T1,…,Tn,S1,…,Sn;
按照选择算法进行进程调度,计算进程的完成时间、周转时间和带权周转时间;
计算所有进程的平均周转时间和平均带权周转时间;
按格式输出调度结果。


要Hale Waihona Puke 求1. 程序流程图
2.程序源代码
#include"stdio.h"
#include"stdlib.h"
run_FCFS(q);
}
p=p->next;
}
}
void getInfo() //获得进程信息并创建进程
{
int num;
printf("\n进程个数:");
scanf("%d",&n);
for(num=0;num<n;num++)
{
p=(pcb *)malloc(sizeof(pcb));
printf("依次输入:\n进程名到达时间服务时间\n");
4)输出:要求输出计算出来的每个进程的周转时间,带权周转时间,所有进程的平均周转时间,带权平均周转时间。
主要参考书:
计算机操作系统第三版 电子科技大学 汤小丹主编










实现提示:
用C语言实现提示:
1)程序中进程调度时间变量描述如下:
static int MaxNum=100;
intArrivalTime[MaxNum];
typedef struct PCB //定义进程控制块
{char name[10]; //进程名
char state; //运行状态
int ArriveTime; //到达时间
int StartTime; //进程开始时间
int FinishTime; //进程结束时间
int ServiceTime; //服务时间
相关文档
最新文档