三极管及MOS管的讲解.
三极管 npn mos管 沟道

三极管、NPN型MOS管、沟道是电子元件中常见的三种类型的晶体管。
它们在电路中扮演着重要的角色,带来了电子技术的革命性变革。
本文将对这三种晶体管进行详细的介绍和分析。
一、三极管三极管是一种常用的半导体元件,由三个掺杂不同的半导体结构组成。
它由发射极、基极和集电极三个电极组成。
其中,发射极和集电极之间的电场可以通过对基极电流的控制进行放大。
三极管可以分为PNP型和NPN型两种类型,其中NPN型三极管是最常见的一种。
1. NPN型三极管NPN型三极管的结构由P型导电区、N型基极和P型发射极组成。
当在基特殊施加正电压时,由于电子与空穴的净迁移性不同,电子会从基极穿过到发射极,形成电流。
由于集电特殊与基特殊之间存在反向偏置电压,因此电子会被集电极吸收,形成放大作用。
2. 三极管的特性三极管具有放大作用,可以对输入信号进行放大。
它还具有开关功能,可以被用于数字电路中。
另外,三极管的工作频率也较高,可以达到几十吉赫兹。
二、 NPN型MOS管N型金属氧化物半导体场效应管(NPN型MOS管)是一种场效应管。
它由金属栅极、氧化物绝缘层和N型半导体构成。
NPN型MOS管与三极管相比,具有更高的输入阻抗和更低的驱动功率。
1. MOS管的工作原理NPN型MOS管的工作原理是通过改变栅极和源极之间的电压来调整沟道的电荷密度,从而影响漏极和源极之间的电流。
当栅极和源极之间的电压大于阈值电压时,沟道中的电荷密度增加,漏极和源极之间的电流增大,形成导通状态。
当电压小于阈值电压时,沟道中的电荷密度减小,漏极和源极之间的电流减小,形成截止状态。
2. MOS管的特性MOS管具有高输入阻抗、低功耗、高频特性好等特点。
它的工作速度快,可以达到数十千赫兹。
MOS管在数字电路和模拟电路中有着广泛的应用。
三、沟道在N型MOS管中,沟道是指在栅极和源极之间的半导体区域。
沟道的电荷密度决定了MOS管的导通特性。
通过控制沟道中的电荷密度,可以实现对MOS管的控制,从而实现对电路的控制。
三极管与mos管工作原理

三极管与mos管工作原理三极管与MOS管是现代电子器件中常见的两种晶体管。
它们在各自的工作原理下,实现了信号放大、开关控制等功能。
本文将分别介绍三极管与MOS管的工作原理,并对其异同点进行比较。
一、三极管的工作原理三极管是一种由三个掺杂不同材料的半导体层组成的晶体管。
它的结构包括一块P型半导体(基极)、一块N型半导体(发射极)和一块P型半导体(集电极)。
当三极管处于正常工作状态时,发射极与基极之间的结为PN结,基极与集电极之间的结为NP结。
在三极管的工作过程中,发射极接收到的控制信号将会影响到基极与发射极之间的电流。
当发射极接收到正向偏置的控制信号时,PN 结会被击穿,形成一个电流通路,使得集电极与发射极之间的电流得以流动。
这种状态被称为饱和区。
而当发射极接收到反向偏置的控制信号时,PN结不会被击穿,电流无法流动,此时三极管处于截止区。
三极管通过调节发射极与基极之间的电流来控制集电极与发射极之间的电流,从而实现信号放大的功能。
当输入信号的幅度增大时,三极管会放大信号,输出信号的幅度也随之增大。
然而,三极管也存在一些缺点,比如体积较大、功耗较高等。
二、MOS管的工作原理MOS管是一种由金属氧化物半导体(MOS)结构构成的晶体管。
它的结构包括一块P型或N型半导体(基极)、一层绝缘层和一块N型或P型半导体(源极和漏极)。
绝缘层通常由氧化硅制成。
MOS管的工作原理是通过调节栅极电压来控制漏极与源极之间的电流。
当栅极施加正向偏置时,栅极与基极之间会形成一个正向导通的电势差,使得漏极与源极之间的电流得以流动,此时MOS管处于导通状态。
而当栅极施加反向偏置时,栅极与基极之间会形成一个反向的电势差,电流无法流动,此时MOS管处于截止状态。
MOS管相较于三极管具有许多优点,比如体积小、功耗低、开关速度快等。
此外,MOS管还可以实现集成电路的制造,使得其在现代电子器件中得到广泛应用。
三、三极管与MOS管的比较三极管和MOS管在工作原理上有一些重要的区别。
3极管和mos管

3极管和mos管3极管和MOS管是电子行业里使用最普遍的器件类别,它们都是表示晶体管的一种类型,广泛应用于电子设备及元器件的数字和模拟电路中。
本文将重点介绍3极管和MOS管的概念、功能特性、应用领域以及发展状况。
首先,3极管是一种特殊的晶体管类型,是由三个接口(基、集、放)组成的半导体器件。
三极管可以分为NPN和PNP两种类型,区别在于放电极(放电口)的极性是不一样的。
三极管具有较高的电阻上升、放大和抑制电子信号的作用,可以用于电子电路中的放大、模拟和数字电路中。
MOS管也叫做场效应管,是一种特殊的晶体管,以及其相关的场效应及其器件。
MOS管主要由基极、集极、源极和控制极组成。
它可以更便捷地控制半导体内部的流体,可以有效地控制信号和电流,从而在电路中实现高速放大和控制。
MOS管最常见的应用有电路保护、开关和放大电路等。
三极管和MOS管都有其独特的功能特性和优势,它们的应用领域也不同。
三极管主要用于功率电路,如控制大功率设备的接口和实现电路的放大作用;MOS管主要用于控制小功率的设备,如电子驱动器、通信芯片、显示器等。
随着电子产品的创新和发展,3极管和MOS管在电子行业中的广泛应用也受到了一定程度的改进和发展。
在三极管方面,经过不断改良,它的稳定性、对电压的反应灵敏度、电路控制和抗冲击等性能都得到不断提高;而在MOS管方面,受到半导体发展的推动,它的发展从普通的MOS管向MOSFET、CMOS等方向发展,可以更有效地控制电路,提高放大性能。
总之,三极管和MOS管都是电子行业中非常重要的器件,它们的发展极大地推动了电子设备的创新和发展,也提供给其他行业了更多的应用机会。
未来,3极管和MOS管都将继续受到重视,并有望开发出更先进的产品,为电子行业带来更多的创新技术和发展。
三极管和mos面试知识点

三极管和mos面试知识点三极管和MOS是电子学中非常重要的两种器件,它们在电路设计和集成电路中起着至关重要的作用。
以下是关于三极管和MOS的面试知识点:1. 三极管的工作原理:三极管是一种半导体器件,由发射极、基极和集电极组成。
它的工作原理是通过控制基极电流来控制集电极电流。
当在基极-发射极之间施加正向偏置电压时,发射结和基结被正向偏置,电子注入基区,从而使得集电结被反向偏置,集电极电流被控制。
这种特性使得三极管可以作为放大器、开关等电路中使用。
2. MOS场效应晶体管的工作原理:MOSFET是一种主要由金属-氧化物-半导体构成的场效应晶体管。
它的工作原理是通过栅极电压控制通道中的电子或空穴浓度,从而控制漏极和源极之间的电流。
当栅极施加正向电压时,电子或空穴被吸引到通道中,形成导电通道,从而使得漏极和源极之间的电流增大。
MOSFET因其高输入阻抗和低功耗而被广泛应用于集成电路和数字电路中。
3. 三极管和MOS的区别:三极管和MOSFET虽然都是用于放大和开关的器件,但它们有一些重要的区别。
三极管是双极型器件,其控制极和输出极之间的电流由输入极控制,而MOSFET是场效应型器件,其控制极和输出极之间的电流由栅极电压控制。
此外,MOSFET的输入电阻比三极管高,功耗低,速度快,适合于集成电路的制造。
4. 应用领域:三极管在模拟电路中广泛应用,例如放大器、振荡器和开关等。
而MOSFET主要应用于数字集成电路、功率放大器、开关电源等领域。
以上是关于三极管和MOS的一些面试知识点,希望能够帮助你更好地理解这两种重要的电子器件。
三极管和mos管

三极管和mos管三极管和Metal-oxide-semiconductor(MOS)管是目前最常用的半导体器件,广泛应用于电子设计和电路设计。
本文将介绍三极管和MOS管的原理,构成,功能和应用等内容。
三极管是一种三端口电子器件,由源极、漏极和控制极构成。
它的工作原理是利用其内部电子来控制流经漏极的电流,从而控制输出电流。
三极管电路可以实现电流放大、截止、限幅、延迟、电源识别和时间控制等功能。
三极管电路在电子电路和控制系统中广泛应用,特别是在功率放大器中,它的优良的功率特性和良好的稳定性深受用户的欢迎。
MOS管是一种二极管装置,由三个主要部分:金属氧化物电界-硅制成的发射极、接地和源极组成。
它具有低电压、低功耗、高效率、抗电磁干扰等先进特性,大大减少了电路中的热量发生。
MOS管电路广泛应用于电子计算机、通讯、自动控制和测试等领域,它具有低功耗,可靠性高,可以实现简单的几乎所有电子电路功能,是当今电子设计的重要组成部分。
三极管和MOS管彼此有共同的特性,但也有一些重要的不同之处。
基本上,MOS管要求较低的功率,比三极管更加高效,但三极管的电流放大能力较强,可以有效地提高系统的效率。
此外,三极管的功率消耗也大于MOS管。
然而,MOS管因其较高的电容,也存在着延迟和泄漏电流这两个缺点,使得它在某些特定场合使用不太合适。
上述内容介绍了三极管和MOS管的基本原理,构成和功能,以及它们之间的异同。
它们在电子设计中共同扮演重要角色,能够实现电流放大、截止、限幅、延迟、电源识别和时间控制等功能,并得到了广泛的应用。
未来的研究将着重于提高该类器件的性能和可靠性,使其在更广泛的领域中得到应用。
三极管和MOS管驱动电路的正确用法

1三极管和MOS 管的基本特性三极管是电流控制电流器件,用基极电流的变化控制集电极电流的变化。
有NPN 型三极管和PNP 型三极管两种,符号如下:MOS 管是电压控制电流器件,用栅极电压的变化控制漏极电流的变化。
有P 沟道MOS 管(简称PMOS )和N 沟道MoS 管(简称NMOS ),符号如下(此处只讨论常用的增强型MOS 管):2三极管和MOS 管的正确应用(1)NPN 型三极管适合射极接GND 集电极接负载到VCC 的情况。
只要基极电压高于射极电压(此处为GND )0.7V,即发射结正偏(VBE 为正),NPN 型三极管即可开始导通。
基极用高电平驱动NPN 型三极管导通(低电平时不导通);基极除限流电阻外,更优的设计是,接下拉电阻10-2Ok 到GND ;(a ) N 沟道增强型MoS 管结构(b ) N 沟通增强型MOS (C ) P 沟道增强型 示意图 省代表符号 MOS 管代表符号优点是:①使基极控制电平由高变低时,基极能够更快被拉低,NPN型三极管能够更快更可靠地截止;②系统刚上电时,基极是确定的低电平。
(2) PNP型三极管(3)适合射极接VCC集电极接负载到GND的情况。
只要基极电压低于射极电压(此处为VCe)0.7V,即发射结反偏(VBE为负),PNP型三极管即可开始导通。
基极用低电平驱动PNP型三极管导通(高电平时不导通);基极除限流电阻外,更优的设计是,接上拉电阻10-20k到VCC;(4)优点是:①使基极控制电平由低变高时,基极能够更快被拉高,PNP型三极管能够更快更可靠地截止;②系统刚上电时,基极是确定的高电平。
(5)所以,如上所述:对NPN三极管来说,最优的设计是,负载R12接在集电极和VCC之间。
不够周到的设计是,负载R12接在射极和GND之间。
对PNP三极管来说,最优的设计是,负载R14接在集电极和GND之间。
不够周到的设计是,负载R14接在发射极和VCC之间。
三极管和MOS管的区别,这样总结很好理解!

三极管和MOS管的区别,这样总结很好理解!1、工作性质:三极管用电流控制,MOS管属于电压控制.2、成本问题:三极管便宜,mos管贵。
3、功耗问题:三极管损耗大。
4、驱动能力:mos管常用来电源开关,以及大电流地方开关电路。
三极管比较便宜,用起来方便,常用在数字电路开关控制。
MOS管用于高频高速电路,大电流场合,以及对基极或漏极控制电流比较敏感的地方。
MOS管不仅可以做开关电路,也可以做模拟放大,因为栅极电压在一定范围内的变化会引起源漏间导通电阻的变化。
二者的主要区别就是:双极型管是电流控制器件(通过基极较小的电流控制较大的集电极电流),MOS管是电压控制器件(通过栅极电压控制源漏间导通电阻)。
MOS管(场效应管)的导通压降下,导通电阻小,栅极驱动不需要电流,损耗小,驱动电路简单,自带保护二极管,热阻特性好,适合大功率并联,缺点开关速度不高,比较昂贵。
三极管开关速度高,大型三极管的Ic可以做的很大,缺点损耗大,基极驱动电流大,驱动复杂。
一般来说低成本场合,普通应用的先考虑用三极管,不行的话考虑MOS管实际上说电流控制慢,电压控制快这种理解是不对的。
要真正理解得了解双极晶体管和mos晶体管的工作方式才能明白。
三极管是靠载流子的运动来工作的,以npn管射极跟随器为例,当基极加不加电压时,基区和发射区组成的pn结为阻止多子(基区为空穴,发射区为电子)的扩散运动,在此pn结处会感应出由发射区指向基区的静电场(即内建电场),当基极外加正电压的指向为基区指向发射区,当基极外加电压产生的电场大于内建电场时,基区的载流子(电子)才有可能从基区流向发射区,此电压的最小值即pn结的正向导通电压(工程上一般认为0.7v)。
但此时每个pn结的两侧都会有电荷存在,此时如果集电极-发射极加正电压,在电场作用下,发射区的电子往基区运动(实际上都是电子的反方向运动),由于基区宽度很小,电子很容易越过基区到达集电区,并与此处的PN的空穴复合(靠近集电极),为维持平衡,在正电场的作用下集电区的电子加速外集电极运动,而空穴则为pn结处运动,此过程类似一个雪崩过程。
自激振荡三极管和mos管-概述说明以及解释

自激振荡三极管和mos管-概述说明以及解释1.引言1.1 概述概述:自激振荡是一种常见于电子电路中的现象,通过在三极管和MOS管中引入反馈回路,使得电路产生自身驱动的振荡信号。
本文将重点讨论自激振荡的原理及其在电路设计中的应用。
首先,我们将介绍三极管和MOS 管的基本原理,然后详细解释自激振荡的概念及其特点。
最后,我们将探讨自激振荡在实际应用中的意义和存在的潜在问题,并展望未来研究方向。
通过本文的阐述,读者将对自激振荡有更深入的了解,并可以应用这一技术在电路设计中取得更好的效果。
1.2 文章结构:本文将从三个方面展开讨论自激振荡三极管和MOS管的相关知识。
首先,会介绍三极管和MOS管的基本原理,包括工作原理、结构特点和特性参数等内容。
其次,会深入探讨自激振荡的概念,包括自激振荡产生的原因、特点以及影响因素等方面。
最后,文章将总结自激振荡三极管和MOS管在实际应用中的意义和价值,探讨可能存在的潜在问题,并提出相应的解决方案。
同时,还会展望未来自激振荡领域的研究方向,为读者提供对该领域更加深入了解和探索的参考资料。
通过全面系统地介绍和分析,读者将能够更好地理解自激振荡三极管和MOS管的原理和应用,为相关领域的研究和实践提供有益的启示。
1.3 目的本文旨在探讨自激振荡三极管和MOS管的原理和应用。
通过对三极管和MOS管的基本原理进行介绍,以及解释自激振荡的概念,可以帮助读者更好地理解这两种器件的工作原理和特性。
同时,分析自激振荡的应用与意义,有助于读者深入了解其在电子领域中的实际应用场景,为工程师和研究人员提供更多的参考和启发。
此外,对于自激振荡可能存在的潜在问题,本文也将提供解决方案,并展望未来研究方向,以激发更多关于自激振荡三极管和MOS管的深入研究和探索。
通过本文的研究,旨在促进相关技术的发展和应用,推动电子领域的进步。
2.正文2.1 三极管的基本原理三极管是一种常用的半导体器件,由三个区别于晶体管基本原件的掺杂程度不同的半导体区域构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特性曲线将向右稍微移动一些
。但UCE再增加时,曲线右移
很不明显。因为UCE=1V时,
集电结已把绝大多数电子收集过去
,收集电子数量的比例不再明显增大。
工程实践上,
图02.05 共发射极接法输入特性曲线
就用UCE=1V的输入特性曲线代替UCE >1V以后的输入特性曲 线。
2、输出特性曲线
。 共基极接法,基极作为公共电极
1) 共射接法中的电流传输方程式 通过改变IB可控制IC的变化。
IC≈ IE= (IC+IB)= IC+ IB
(1- )IC≈ IB
IC≈
1
IB= IB
控制系数(传输系数) ≈IC/IB
称为直流共射集-基电流比或直流电流放大倍 数。
1、晶体管中载流子的移动 双极型半导体三极管在工作时一定要加上适当的
直流偏置电压。若在放大工作状态:发射结加正 向电压,集电结加反向电压。现以 NPN型三极 管的放大状态为例,来说明三极管内部的电流关 系, 见图02.02。
图02.0Байду номын сангаас 双极型三极管的电流传输关系
1)发射区向基区发射电子
使集电结反偏电压较大时,运动到集电结的电子 基本上都可以被集电区收集,此后UCE再增加, 电流也没有明显的增加,特性曲线进入与UCE轴 基本平行的区域 (这与输入特性曲线随UCE增大 而右移的原因是一致的) ,此区域称为放大区。
图02.06 共发射极接法输出特性曲线
(1)截止区——IC接近零的区域,相当IB=0的 曲线的下方。此时,发射结反偏,集电结反偏。
的变化值 △IB和△IC,可以估算出晶体管的另一
重要参数,即交流共射集-基电流比或交流电流 放大倍数,表示为 β=△IC/△IB
当管子工作频率较低时,在数值上β≈ ,如此例
=IC/IB=2/0.04=50
β=△IC/△IB=(4-2)/(0.08-0.04)=50
所以在工程实践中将两者混用。
电极称为发射极,用E或e表示(Emitter);另一侧称为集电区和集电极,用C或c表示 (Collector)。E-B间的PN结称为发射结,C-B间的PN结称为集电结。
双极型三极管的符号在图的下方给出,发射极的箭头代表发射极电流的实际方向。 从外表上看两个N区(或两个P区)是对称的,实际上发射区的掺杂浓度大,集电区 掺杂浓度低,且集电结面积大。基区要制造得很薄,其厚度一般在几个微米。
(3)饱和区——IC受UCE显著控制的区域,该区域内 UCE的数值较小,一般UCE<0.7 V(硅管)。此时发射结 正偏,集电结正偏或反偏电压很小。
在饱和区内,晶体管集电极和发射极之间的电压叫饱和 电压降,用UCES表示。其数值对小功率晶体管约为 (0.2~0.3)V,而对大功率晶体管常可达1V以上。
3.3.2 共射接法晶体管的特性曲线
共发射极接法的供电电路和电压-电流关系如图 02.04所示
。 图02.04 共发射极接法的电压-电流关系
1、输入特性曲线
输入特性曲线——IB=f(UBE)
UCE
=常数
简单地看,输入特性曲线类似于发射结的伏安特性曲线,现讨论 IB和UBE之间的函数关系。因为有集电结电压的影响,它与一个
有部分电子与基区的多子空穴复合而消失,被复合的电 子形成的电流是IBN (3)集电极收集电子
进入基区的电子流因基区的空穴浓度低,被复合的机会 较少。又因基区很薄,在集电结反偏电压的作用下,电 子在基区停留的时间很短,很快就运动到了集电结的边 上,进入集电结的结电场区域,被集电极所收集,形成 集电极电流ICN。
单独的PN结的伏安特性曲线不同。为了排除UCE的影响,在讨
论输入特性曲线时,应使UCE=常数。
共发射极接法的输入特性曲线见图02.05。其中UCE=0V的那一 条相当于发射结的正向特性曲线。当UCE ≥1V时,UCB= UCE— UBE>0,集电结已进入反偏状态,开始收集电子,使基区复合减 少,IC / IB增大,
输出特性曲线—— IC=f(UCE)I B=常数
共发射极接法的输出特性曲线如图02.06所示, 它是以IB为参变量的一族特性曲线。输出特性曲
线可以分为三个区域。现以其中任何一条加以说 明,当UCE =0 V时,因集电极无收集作用, IC=0。当UCE微微增大时,发射结虽处于正向 电压之下,但集电结反偏电压(UCB =UCE— UBE)很小,收集电子的能力很弱,IC主要由 UCE决定,此区域称为饱和区。当UCE增加到
第3章、三極管及MOS管的講解
※ 双极性晶体三极管 ※ 场效应半导体三极管(场效应管FET)
3.1 双极性晶体三极管
3.3.1 晶体管的结构
晶体管的结构示意图如图02.01所示。它有两种类型:NPN型和PNP型。 中间部分称为基区,相连电极称为基极,用B或b表示(Base);一侧称为发射区,相连
发射结加正偏时,从发射区将有大量的电子向基区扩散, 形成的电流为IEN。与PN结中的情况相同。从基区向发 射区也有空穴的扩散运动,但其数量小,形成的电流为 IEP。这是因为发射区的掺杂浓度远大于基区的掺杂浓度。 IE=IEN+IEP≈IEN。
(2)电子在基区的扩散和复合情况 进入基区的电子将向集电结方向扩散。在扩散过程中,
(2)放大区——IC平行于UCE轴的区域,曲线 基本平行等距。此时,发射结正偏,集电结反偏。
实际上,大约在UCE>1V和IB>0的区域是输出特 性曲线族上的放大区。此区为放大电路中晶体管 应处的工作区域。
在放大区中,根据每条曲线对应的IB和IC值,就 可估算 =IC/IB;另外,根据两条曲线所对应
结论:IEN=ICN+IBN 且有IEN>> IBN , ICN>>IBN
2、晶体管电路中的电流方式
(1) 三种组态 双极型三极管有三个电极,其中两个可以作为输入, 两个可以作为输出,
这样必然有一个电极是公共电极。三种接法也称三种组态,见图02.03。 共发射极接法,发射极作为公共电极; 共集电极接法,集电极作为公共电极;