半导体器件物理4章半导体中的载流子输运现象

合集下载

半导体物理学第四章

半导体物理学第四章
2
算术平均速度:
8kT 5 7 10 m / s 10 cm / s * m
作为比较: 声速~ 340m / s ,波音767~272m / s
§4.1 载流子的漂移运动,迁移率
无规则运动的原因:载流子(电子)在运动过程中 遭到散射,每次散射后它们的运动方向及速度大小 均发生变化,而且这种变化是随机的,所以速度不 能无限增大。 ②有规则运动(条件:存在电场或载流子浓度梯度)
a) 施加电场,电子(空穴)作 漂移运动,在电场方向上获 得加速度。
设电压为 V ,则电场
q * F qE m a a * E m
V E L

图4-1-1 电子在电 场中的运动
§4.1 载流子的漂移运动,迁移率
每次散射经过时间△t,得到附加度 j nqd 。
n型,n p, n N D , n 1 1 N D qn
n
§4.1 载流子的漂移运动,迁移率
1 p型, p n, p N A , p p N A q p
本征,ni pi , i 1
1
i

1 ni q( n p )
n type, 用N D N A 代替N D 存在杂质补偿时 p type, 用N A N D 代替N A

V ( x)
x 0,V (0) V0 示意图 V ( x) V0 Ex V0 x xd ,V ( xd ) 0, E x const d V0 电子电势能 qV ( x) qV0 qEx qV0 q x x0 设 xd 处为电势零点,对应的导带底为 Ec 0 V0 Ec ( x) Ec 0 qV ( x) Ec 0 qV0 qEx Ec 0 qV0 q x 则: xd

半导体物理-第四章-载流子的输运现象PPT课件

半导体物理-第四章-载流子的输运现象PPT课件
• 学习的目的:最终确定半导体器件I-V特性的基础。 • 本章所作的假设:虽然输运过程中电子和空穴净流动,
但是热平衡状态不受到干扰。
.
2
4.1 载流子的漂移运动
一、电导微观理论(刘恩科书p106)
单位: 西门子/米 1S=1A/V=1/Ω
.
3
.
4
二、半导体的电导率和迁移率
.
5
4.2 载流子的散射
一、
.
6
1、
.
7
.
8
.
9
二、
.
10
.
11
.
12
.
13
小结:
.
14
4.3 迁移率与杂质浓度和温度的关系
一、
.
15
.
16
.
17
二、
.
18
.
19
4.4 强电场下的输运
一、欧姆定律的偏离和热载流子
.
20
.Leabharlann 21.22
.
23
.
24
第四章 载流子的输运现象
书 第五章
.
1
• 在半导体中电子和空穴的净流动产生电流,把载流子的 这种运动称为输运。
• 本章介绍半导体晶体中两种基本输运机制: 1、漂移运动:由电场引起的载流子运动。 2、扩散运动:由浓度梯度引起的载流子运动。 此外半导体的温度梯度也引起载流子的运动,但是由于 半导体器件尺寸越来越小,这一效应可以忽略。

半导体器件中的载流子输运与控制

半导体器件中的载流子输运与控制

半导体器件中的载流子输运与控制半导体器件是现代电子技术的基础,广泛应用于各个领域。

而半导体器件的性能与其内部的载流子输运和控制密切相关。

本文将从理论和实践两个方面,探讨半导体器件中的载流子输运与控制的重要性以及相关的研究进展。

一、载流子输运的基本原理半导体器件的工作原理是基于载流子的输运和控制。

在半导体中,载流子主要包括电子和空穴。

电子是负电荷的载流子,空穴是正电荷的载流子。

它们在半导体中的输运过程决定了器件的性能。

载流子的输运过程主要包括漂移和扩散两种方式。

漂移是指载流子在电场的作用下移动,扩散是指载流子由高浓度区向低浓度区的自发移动。

在半导体器件中,电场和浓度梯度是通过外加电压和材料结构来实现的。

二、载流子输运与器件性能的关系载流子的输运过程直接影响着半导体器件的性能。

首先,载流子的输运速度决定了器件的工作速度。

电子和空穴在半导体中的移动速度取决于材料的能带结构和杂质的影响。

较高的移动速度能够提高器件的响应速度,从而实现更高的工作频率。

其次,载流子的输运过程也影响着器件的功耗和能效。

载流子在输运过程中会发生散射,导致能量损失。

因此,减小载流子的散射和提高输运效率可以降低器件的功耗,提高能效。

此外,载流子输运还与半导体器件的电流密度和热耗散能力有关。

较高的电流密度会导致载流子的散射增加,从而产生更多的热量。

因此,合理设计器件结构和优化载流子输运过程可以提高器件的电流承载能力和热耗散能力。

三、载流子输运与控制的研究进展为了改善半导体器件的性能,研究人员一直在不断探索载流子输运与控制的方法。

在理论方面,基于半导体物理学的模型和数值仿真方法被广泛应用。

这些方法可以揭示载流子输运的机制和影响因素,为器件设计提供理论指导。

在实践方面,研究人员通过改变半导体材料的性质和器件结构来控制载流子的输运过程。

例如,通过引入杂质和控制材料的晶格结构,可以调节载流子的能带结构和散射机制,从而影响其输运特性。

此外,利用纳米尺度结构和界面工程等方法,也可以实现对载流子输运的精确控制。

半导体物理基础(4)06.02

半导体物理基础(4)06.02

J = nqμ E = nqvd
在某一个电场强度 区域,电流密度随电场 强度的增大而减小。
负的微分电导(negetive differential conductance)。 NDC
3 Gunn effect (耿氏效应) 实验现象:
ε0
阈电场(threshold field)
对于GaAs: ε 0
电子 空穴
电场:
ε
v
若比例系数为 μ 则: v vd v ------迁移率 vd = με ∴ μ =
ε
单位电场下, 载流子的平均 漂移速度
2 Mobility(迁移率) 定性分析:迁移率的大小反映了载流子迁移的难易程度。
载流子的有效质量 m ∗ ↑⇒ μ ↓, 载流子的平均自由时间 τ ↑⇒ μ ↑
n1
μ 2 =100cm / V ⋅ s
2
n2
2 Negetive differential conductance(负微分电导)
n1μ1 + n2 μ 2 μ= n1 + n2
1 电场很低 2 电场增强 3 电场很强
n2 ≈ 0
n1 ↓
n1 ≈ 0
n ≈ n1
n2 ↑
n = n1 + n2
n ≈ n2可以证明:μ =qτ m∗
μn μp
qτ n = ∗ mn qτ p = m∗ p
3 影响迁移率的因素
qτ n μn = ∗ mn
μp =
qτ p m
∗ p
不同材料,载流子的有效质量不同;但材料一定,有效质 量则确定。 对于一定的材料,迁移率由平均自由时间决定。也就是 由载流子被散射的情况来决定的。
μ: T *中温

半导体器件中的载流子输运与特性

半导体器件中的载流子输运与特性

半导体器件中的载流子输运与特性在当今高科技发展中,半导体器件扮演着重要的角色。

从计算机芯片到智能手机,从电子器件到太阳能板,半导体器件已经渗透到我们生活的各个方面。

而半导体器件的性能受载流子输运与特性的影响。

本文将从载流子的生成、输运和特性三个方面来探讨半导体器件中的载流子输运与特性。

一、载流子的生成半导体器件中的载流子主要有两类:电子和空穴。

电子是负电荷的带负载流子,空穴则是正电荷的带正载流子。

在半导体中,载流子的生成与其内部能带结构有关。

当半导体材料受到能量激发时,价带中的电子可以被激发到导带中,从而产生自由电子和自由空穴。

这种过程可以通过热激发、光激发或电子-空穴对的复合来实现。

二、载流子的输运载流子的输运是指在半导体中由于电场、温度梯度以及杂质等因素的作用下,使得电子和空穴在材料中自由运动的过程。

载流子的输运主要分为两种方式:漂移和扩散。

漂移是指载流子在电场作用下沿着电场方向移动的过程。

正电荷的载流子会向着电场的反方向移动,负电荷的载流子则会沿着电场方向移动。

载流子在半导体内部的碰撞和散射会影响其移动的方向和速度。

扩散是指载流子由高浓度区域向低浓度区域移动的过程。

在半导体中,杂质原子的浓度梯度可以引起载流子的扩散。

当两个不同浓度区域之间存在浓度梯度时,载流子会沿着浓度梯度的方向从高浓度区域移动到低浓度区域。

三、载流子的特性不同类型的半导体器件具有不同的载流子特性。

其中,两个重要的载流子特性是载流子浓度和载流子迁移率。

载流子浓度是指在半导体中自由载流子的数量。

浓度的大小会直接影响到器件的电导率。

载流子浓度可以通过控制材料的杂质浓度和温度来调节。

载流子迁移率是指载流子运动速度和外界电场之间的关系。

迁移率的大小决定了载流子在电场中的受力情况,进而影响器件的性能。

提高载流子迁移率可以通过优化半导体材料的结构和纯度来实现。

综上所述,载流子输运和特性对于半导体器件的性能具有重要影响。

了解载流子的生成、输运和特性可以帮助我们更好地理解和设计半导体器件。

半导体材料中载流子输运行为研究

半导体材料中载流子输运行为研究

半导体材料中载流子输运行为研究随着科技的快速发展,半导体材料在电子行业中起着重要的作用。

半导体材料中的载流子输运行为研究不仅对于理解材料本身的特性有着重要意义,还能为电子器件的设计和优化提供理论依据。

一、载流子输运行为的意义与背景随着电子技术的不断进步,人们对于材料与器件之间的关系有了更深入的了解。

而半导体材料作为电子器件的重要组成部分,其载流子输运行为对于电流的流动与电荷的传输起着至关重要的作用。

因此,研究半导体材料中的载流子输运行为就成为了科学家们的关注点。

二、载流子输运行为的原理与机制在半导体材料中,载流子的输运往往是通过扩散和漂移两种方式进行的。

扩散是由于载流子浓度梯度引起的自发过程,而漂移是由于电场的作用使得载流子向着电场方向运动。

这两种方式在不同的材料中起着不同的作用,需要根据具体的情况来考虑。

在半导体材料中,载流子的输运行为受到很多因素的影响。

例如,材料的晶格结构、杂质和缺陷等都会对载流子的运动产生影响。

此外,温度和电场也是重要的影响因素。

因此,科学家们需要通过实验和理论计算来研究这些因素对于载流子输运行为的影响,并找出最佳的策略来优化电子器件的性能。

三、载流子输运行为的研究方法与手段为了研究载流子输运行为,科学家们采用了多种不同的方法和手段。

例如,他们可以通过光电子学方法来研究载流子的激发和复合过程;通过扫描电子显微镜和透射电子显微镜等显微镜技术,观察材料表面和内部的载流子输运行为;通过电学测量,测定载流子在材料中的迁移率和寿命等参数。

此外,模拟计算也是研究载流子输运行为的重要手段之一。

通过建立合适的模型和方程,科学家们可以在计算机上模拟材料中的载流子输运行为,从而预测其性能和行为。

四、载流子输运行为研究的应用研究半导体材料中的载流子输运行为不仅对于理解材料的特性有着重要意义,还有着广泛的应用前景。

例如,在太阳能电池中,研究材料中的载流子传输行为有助于提高太阳能电池的效率。

此外,在遥感和传感器领域,对于半导体材料中载流子输运行为的研究也能为新型传感器的设计和开发提供指导。

半导体物理学中载流子的输运特性分析

半导体物理学中载流子的输运特性分析

半导体物理学中载流子的输运特性分析半导体物理学是研究半导体材料中电荷载流子的性质和运动的学科。

对于这些半导体材料电流输送特性的研究,对于现代电子设备和信息技术的发展起着至关重要的作用。

本文将探讨半导体物理学中载流子的输运特性分析。

一、载流子的定义和类型在半导体物理学中,载流子是指携带电荷的粒子,它们在半导体材料中负责电流的输送。

根据带电荷性质的不同,载流子分为正电荷的空穴和负电荷的电子。

空穴是电子跳出离子晶格位置后在其原处留下的带正电荷的空位,而电子则是负电荷的粒子。

二、载流子的产生和输运载流子的产生主要通过固体材料的激发过程来实现。

当外界施加电场、光照或温度变化等激励时,电子会从价带跃迁到导带形成电子-空穴对。

这些电子和空穴会受到电场力的作用向着电场方向运动,从而形成了电流。

在半导体中,电子由于能级差距小,其导电性能强于绝缘体材料。

三、载流子的输运特性在半导体材料中,载流子的输运特性决定了材料的电导率和电流的传输效率。

其中,电流主要通过两种方式传输:漂移和扩散。

1. 漂移:漂移是指由于外加电场的作用,携带电荷的载流子在晶体中受到电场力的驱动而移动。

漂移速度与电场强度成正比,与载流子迁移率成正比。

而载流子的迁移率受到材料中杂质、晶格缺陷等因素的影响。

因此,提高半导体材料的纯度和结晶度可以提高载流子的迁移率,进而提高电导率。

2. 扩散:扩散是指由于载流子浓度差异引起的材料中的载流子传输。

当载流子浓度不均匀时,通过自由运动的载流子将会发生扩散,以实现浓度均匀分布。

扩散速度与浓度梯度成正比,与扩散系数成正比。

扩散系数受到温度、材料的缺陷和掺杂等因素的影响。

四、载流子输运的限制因素在实际的半导体器件中,载流子的输运过程会受到一些因素的限制,主要包括散射、载流子密度限制和表面反射等。

1. 散射:散射是指载流子在晶体中与杂质、晶格缺陷或声子等相互作用后改变原始运动状态的过程。

散射会使得载流子的迁移率降低,影响载流子的输运效率。

半导体中载流子的输运现象

半导体中载流子的输运现象
假如光照恒定,则表面非平衡载流子浓度恒为(Δp)0,因表面 不断注入,样品内部各处空穴浓度不随时间变化,形成稳定分布,
即σ=1/ρ,ρ旳单位是Ω·cm。
二、半导体旳电导率和迁移率
若在半导体两端加上电压,内部就
形成电场,电子和空穴漂移方向相反,
但所形成旳漂移电流密度都是与电场方
向一致旳,所以总漂移电流密度是两者
之和。
图4.2 电子和空穴漂移电流密度
因为电子在半导体中作“自由”运动,而空穴运动实际上是
共价键上电子在共价键之间旳运动,所以两者在外电场作用下旳
一维情况下非平衡载流子浓度为Δp(x),在x方向上旳浓度梯度 为dΔp(x)/dx。假如定义扩散流密度为S单位时间垂直经过单位面积 旳粒子数,那么S与非平衡载流子旳浓度梯度成正比。
设空穴旳扩散流密度为Sp,则有下面所示旳菲克第一定律
dpx
S p Dp dx
Dp为空穴扩散系数,它反应了存在浓度梯度时扩散能力旳强弱, 单位是cm2/s,负号表达扩散由高浓度向低浓度方向进行。
5、在外加电场E作用下,为何半导体内载流子旳漂移电流恒 定,试从载流子旳运动角度阐明。
三、散射几率P与平均自由时间τ间旳关系
因为存在散射作用,外电场E作用下定向漂移旳载流子只在连 续两次散射之间才被加速,这期间所经历旳时间称为自由时间, 其长短不一,它旳平均值τ称为平均自由时间, τ和散射几率P 都与载流子旳散射有关, τ和P之间存在着互为倒数旳关系。
施主杂质在半导体中未电离时是中性旳,电离后成为正电 中心,而受主杂质电离后接受电子成为负电中心,所以离化旳 杂质原子周围就会形成库仑势场,载流子因运动接近后其速度 大小和方向均会发生变化,也就是发生了散射,这种散射机构 就称作电离杂质散射。

半导体中的载流子输运

半导体中的载流子输运

半导体中的载流子输运半导体是一种特殊的材料,其电子能带结构使其具有半导体特性,即既不完全导电也不完全绝缘。

在半导体中,载流子的输运是至关重要的。

载流子是指在材料中参与电导的带电粒子,包括带负电荷的电子和带正电荷的空穴。

了解并掌握半导体中的载流子输运机制对于研究和应用半导体技术具有重要意义。

在半导体中,载流子的输运主要包括两个过程:漂移和扩散。

漂移是指在外加电场作用下,带电粒子受力移动的过程。

外加电场使得正负载流子分别向电场方向进行漂移,从而形成电流。

扩散是指由于浓度梯度的存在,带电粒子自发地从浓度高区域向浓度低区域扩散的过程。

扩散使得正负载流子重新组合并导致电流的流动。

在半导体材料中,载流子的输运与材料的特性、结构、掺杂以及温度等因素密切相关。

以硅(Si)为例,由于其晶格结构具有四面体对称性,硅材料中的电子和空穴密度均可达到相对较高的数值。

半导体材料通过掺杂可以引入杂质能级,从而改变其导电性能。

掺杂浓度的增加会导致更多的载流子生成,进而增大电导率。

在载流子输运中,杂质能级起到了重要的作用。

对于掺杂的P型半导体,通常采用三价杂质(如硼)来取代四面体结构中的硅原子,形成硅晶格中的空穴。

这些空穴可以被电子激发进入价带,从而产生正电荷。

而N型半导体则采用五价杂质(如磷)取代硅原子,形成额外的电子。

这些额外的电子使半导体具有了更高的导电性。

此外,温度也对半导体中的载流子输运起到重要影响。

随着温度的升高,材料中的原子振动加剧,导致更多的载流子被激发。

这进一步增加了电导率。

然而,过高的温度也会破坏材料的晶体结构,从而降低电导率。

近年来,随着半导体技术的快速发展,对载流子输运的研究也越发深入。

纳米级半导体结构的出现为探索新的载流子输运机制提供了新的平台。

例如,量子效应引起的载流子波函数重叠对于电导率具有重要影响。

此外,载流子输运还与材料的表面态和边界条件等因素密切相关。

综上所述,半导体中的载流子输运是现代电子技术和信息处理的基础,对于理解和应用半导体材料和器件具有重要意义。

半导体材料中的载流子输运行为分析

半导体材料中的载流子输运行为分析

半导体材料中的载流子输运行为分析引言:半导体材料广泛应用于电子器件和光电子器件等领域,其性能的优劣直接影响着器件的工作效率和性能。

而半导体材料中的载流子输运行为是影响器件性能的关键因素之一。

本文将对半导体材料中的载流子输运行为进行分析,并探讨其对器件性能的影响。

1. 载流子的生成和重新组合半导体材料中的载流子主要包括电子和空穴。

激发光照射或电场作用下,半导体材料中的原子或分子中的电子可以跃迁至导带,形成自由电子。

而原本在价带中的电子离开的位置会留下空穴。

当激发光停止或者外加电场消失时,自由电子和空穴可以重新组合,形成基态。

2. 载流子的扩散在半导体材料中,载流子通过扩散来传输和输运。

扩散是指由高浓度区域向低浓度区域的无组成物流动。

在半导体材料中,载流子的扩散受到浓度梯度的驱动。

当载流子浓度较高的地方,将通过热运动的方式向浓度较低的地方扩散。

载流子的扩散行为会导致载流子的分布不均匀性,进而影响器件的性能。

3. 载流子的漂移除了扩散,载流子在半导体材料中还会发生漂移行为。

漂移是指在电场的作用下,载流子受到电场力的驱动而产生的运动。

在半导体材料中,电场会影响载流子的运动方向和速度。

因此,电场的存在对于半导体材料中载流子的输运行为有着重要的影响。

4. 载流子的复合在半导体材料中,自由电子和空穴会发生复合现象。

复合是指自由电子和空穴重新组合,产生能量的损失。

复合的方式有多种,其中包括辐射复合和非辐射复合。

辐射复合是指复合过程中产生辐射,而非辐射复合则没有产生辐射。

复合现象对于半导体材料中的载流子输运行为产生明显的影响,进而影响器件性能。

5. 载流子输运行为的影响因素载流子输运行为受到多种因素的影响。

其中,材料的掺杂浓度和温度是两个重要的因素。

掺杂浓度的变化会导致载流子浓度发生变化,从而影响扩散和漂移行为。

而温度的变化则会影响载流子的热运动和复合速率。

此外,晶格结构、杂质和缺陷也会对载流子输运行为产生一定的影响。

第四章半导体中载流子的输运

第四章半导体中载流子的输运
第四章 半导体中载流子的输运
•电子器件通常是通过荷电载流子输运实现信息的传输、处理、存储 的,因此,了解载流子输运规律是研究半导体器件性能的基础。 •本章将讨论半导体中载流子的运动和电流输运规律。 •在Si半导体中载流子的电流输运(Carrier transport)机制 (mechanism) 可分为两种:其一是,电场作用下的漂移运动 (drift); 其二是,浓度的梯度变化引起的扩散运动 (diffusion)。 •载流子的漂移和扩散运动所满足的规律及内在联系。
带电子和价带空穴将做随机的热运动,在热平衡条件下,按照统计物理规
律,其热能(Thermal Energy)~(3/2)kT,电子的平均动能满足:
1 2
m
nV
ห้องสมุดไป่ตู้
2 th
=
3 kT 2
其中,mn是载流子的有效质量, Vth~107 cm/sec. @300K
热平衡时,载流子的运动是完全 随机的,因此,净电流为零。
§ 4.1 载流子的热运动(Thermal motion)和散射
4.1.3 半导体中载流子的散射机制
•电离杂质散射:电离杂质引起的散射 •晶格散射或声子散射:由于晶格振动引起的散射 •中性杂质散射:在杂质浓度不是很高时可忽略 •电子和(或)空穴散射:在高载流子浓度情形时重要 •晶格缺陷散射:在多晶情形时才显得重要 •表面散射:载流子在表面层(如反型层)运动时受到表 面因素如粗糙度作用引起的散射
荷电载流子在电场作用下作定向漂移运动,引起电流。设其定向漂移运 动的平均速度(称为漂移速度)为v,则漂移电流表示为:
j = nqv
其中n为载流子的浓度,q为载流子的电量
实验显示,在弱电场下, 载流子的漂移速度v与电

半导体器件中的载流子输运

半导体器件中的载流子输运

半导体器件中的载流子输运在当今信息技术迅速发展的时代,半导体设备的应用已经成为现代社会不可或缺的一部分。

而在半导体器件的工作中,载流子输运起着关键作用。

本文将讨论半导体器件中的载流子输运的相关概念、机制以及其对器件性能的影响。

一、载流子输运概述半导体器件中的载流子输运指的是载流子在器件内部的传输过程。

在半导体器件中,载流子可以是电子或空穴,它们的运动会直接影响器件的电导性能。

因此,对载流子输运过程的研究非常重要。

二、载流子输运机制在理解载流子输运之前,我们先来了解一些基本的物理机制。

半导体器件中的载流子输运主要受到散射、扩散和漂移三种机制的影响。

1. 散射散射是指载流子与其他物质或背景离子的碰撞。

在半导体中,常见的散射机制有声子散射、杂质散射和缺陷散射等。

这些散射事件会导致载流子的能量和动量发生改变,从而影响其传输性能。

2. 扩散扩散是指由浓度梯度引起的载流子的自由传输。

其过程可以类比溶液中的扩散现象,即高浓度区域中的载流子会自动向低浓度区域扩散。

在半导体器件中,扩散对于载流子输运的平均速度和传输距离起着重要作用。

3. 漂移漂移是指在电场的作用下,载流子受到电场力的驱动而运动。

电场影响下的载流子传输会形成漂移电流。

在半导体器件中,漂移对于载流子的定向输运和电导性能有着决定性影响。

三、载流子输运对器件性能的影响半导体器件中的载流子输运直接影响器件的电导性能和响应速度等重要参数。

良好的载流子输运能够减小电阻、提高电导率和增强设备的响应能力。

1. 提高电导率载流子输运过程中,减小散射事件对于实现高电导率非常重要。

通过降低杂质浓度、优化晶格结构等方式,可以减少载流子与背景离子的碰撞,从而提高电导率。

2. 降低电阻电阻是电流通过器件时遇到的阻力。

通过优化载流子输运,可以减小电阻,提高器件的整体效率。

例如,在半导体器件制造过程中,可以使用掺杂技术调控载流子浓度,从而降低电阻。

3. 提高响应速度在某些高速响应要求的设备中,载流子输运的速度至关重要。

半导体器件物理4章半导体中的载流子输运现象

半导体器件物理4章半导体中的载流子输运现象

第四章 半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。

我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。

半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。

由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。

其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。

载流子的漂移运动和扩散运动都会在半导体内形成电流。

此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。

载流子运动形成电流的机制最终会决定半导体器件的电流-电压特性。

因此,研究半导体中载流子的输运现象非常必要。

4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加电场的作用下,电子和空穴将产生净加速度和净移位。

电场力的作用下使载流子产生的运动称为“漂移运动”。

载流子电荷的净漂移会产生“漂移电流”。

如果电荷密度为ρ的正方体以速度dυ运动,则它形成的电流密度为()4.1dr fdJ ρυ=其中ρ的单位为3C cm - ,drfJ 的单位是2Acm -或2/C cms 。

若体电荷是带正电荷的空穴,则电荷密度epρ=,e 为电荷电量191.610(e C -=⨯库仑),p 为载流子空穴浓度,单位为3cm -。

则空穴的漂移电流密度/p drfJ可以写成:()()/ 4.2p drf dpJ ep υ=dp υ表示空穴的漂移速度。

空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为()*4.3p F m a eE==e 代表电荷电量,a 代表在电场力F 作用下空穴的加速度,*pm 代表空穴的有效质量。

如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。

但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。

半导体第四章载流子输运现象

半导体第四章载流子输运现象

Resistivity Dependence on Doping
For n-type material:
1 enn
For p-type material:
1 ep p
Note: This plot does not apply for compensated material!
21
薄膜电阻(方块电阻) (Sheet Resistance)
解:由n型半导体的多数载流子浓度一般表达式:
n0
N
D
2
N
D
2
2
ni2
N D 1016 cm3
少数载流子
ቤተ መጻሕፍቲ ባይዱp0
ni2 n0
1.5 1010 1016
2
2.25104 cm3
n型半导体漂移电流密度为
Jdrf e n0n p0 p en0n 1.61019 1016 120010 19.2A / cm2
2 y
k
2 z
mt*
ml* 纵向有效质量 mt* 横向有效质量
极值点附近的等能面为 旋转椭球
13
练习题
在室温下,高纯Ge的电子迁移率为3900cm2/Vs,设 电子的有效质量为0.3m0=310-28g,试计算 1. 热运动速度平均值(取均方根速度) 2. 平均自由时间 3. 平均自由程 4. 在外加电场10V/cm时的电子漂移速度vd,并简单 讨论 1、3、4中的结果。
参见教材p107页
18
杂质补偿效应对迁移率的影响
GaAs迁移率的理论预测
参考文献 [4]W. Walukiewicz, etal, Electron Mobility and Free Carrier Absorption in GaAs: Determination of the Compensation Ratio, J. Appl. Phys. 50, 899 (1979)

半导体物理学中的载流子输运和器件特性

半导体物理学中的载流子输运和器件特性

半导体物理学中的载流子输运和器件特性半导体物理学是一门研究半导体材料及其器件的学科。

在半导体器件中,载流子的输运过程起着至关重要的作用,决定了器件的性能特性。

本文将从载流子的输运机制和半导体器件的特性等方面,探讨半导体物理学的重要性。

一、载流子的输运机制载流子是指在半导体中自由移动的电子和空穴。

在半导体材料中,载流子的输运涉及到材料的电子结构以及载流子与晶格之间的相互作用。

1. 现象描述当一个电场施加在半导体材料中,载流子将受到电场的作用,发生输运现象。

在纯净的半导体中,载流子的输运主要由电子和空穴的扩散和漂移两个机制共同驱动。

2. 扩散和漂移扩散是指由于浓度梯度引起的载流子的自发传播。

用水流的类比来理解,就好像在两个连接着的容器中,两者水平面的差异将导致水从浓度高的容器流向浓度低的容器。

在半导体中,载流子也会沿着浓度梯度自发扩散,从浓度高的区域流向浓度低的区域。

而漂移则是指在外电场的驱动下,载流子受到电场力的作用,从而产生定向的输运。

载流子漂移的方向取决于其带电性质。

在半导体中,电子带有负电荷,所以在电场的驱动下,电子将朝着电场的方向移动。

而空穴则相反,它们带有正电荷,所以在电场的作用下,空穴将朝相反的方向移动。

二、半导体器件的特性半导体器件是应用半导体材料制成的电子器件,广泛应用于现代电子技术中。

不同的器件具有不同的特性。

1. 二极管二极管是最简单的半导体器件之一。

它由PN结构组成,其中P区富含空穴,N区富含电子。

当外加正向电压时,载流子将被注入PN结中,空穴和电子会再结附近的活动,形成一个导电通道,电流得以通过。

而当施加反向电压时,由于PN结两侧的空穴和电子被电场分离,形成一个无法导电的区域。

2. 晶体管晶体管是一种三极管器件,具有放大和开关功能。

它由三个掺杂不同的区域组成:发射区、基区和集电区。

发射区富含电子,集电区富含空穴。

当在基区加上适当的电压时,电子从发射区注入到基区,而空穴会从集电区注入到基区,形成一个导电通道。

半导体物理学中的电子输运和载流子行为

半导体物理学中的电子输运和载流子行为

半导体物理学中的电子输运和载流子行为半导体物理学是研究半导体材料性质和现象的学科,深入了解半导体物理学的基本原理和电子输运以及载流子行为对于电子学、光电子学和材料科学的发展至关重要。

一、半导体基础知识半导体材料是介于导电材料和绝缘体材料之间的一类材料,其电导率处于这两者之间。

半导体的电导率可以通过控制材料导电性的因素(掺杂、温度等)来调节。

在半导体中,载流子是负责电荷传递的粒子。

主要有带负电荷的电子和带正电荷的空穴两种载流子。

电子处于价带的底部,而空穴则位于导带的顶部。

当一个能量大于价带底部的电子被激发到导带,将会形成一个空穴。

二、电子输运和载流子行为1. 碰撞散射在半导体中,电子和空穴通过被散射的方式进行传导。

碰撞散射是其中最重要的散射方式之一。

当载流子遇到原子核、晶格缺陷或杂质时,将发生散射,改变其运动方向和能量。

这种散射现象会影响载流子的自由传导和周围杂质对载流子运动的影响。

2. 迁移率迁移率是描述载流子在外电场下运动性能的指标。

它是载流子在电场中受到外界力量后在单位电场下的移动速率。

迁移率决定了载流子的运动速度和电导率,对于半导体材料的电子输运行为具有重要的影响。

3. 扩散扩散是指由高浓度区域向低浓度区域的自发性移动。

在半导体中,载流子由于浓度差异而发生扩散现象。

扩散常用于形成PN结、二极管和其他半导体器件。

4. 良好的载流子输运为了实现良好的载流子输运,半导体中需要减少散射、提高迁移率和控制扩散。

这可以通过优化半导体材料的结构、纯度和掺杂浓度来实现。

此外,对器件的设计和制造工艺也需要特别注意以保证电子和空穴的有效传输。

三、电流和电导半导体中的电流是由载流子引起的,载流子的数量和速度决定了电流的大小。

电导是电流与电场之间的比值,反映了电流在电场中的传输能力。

电导率与迁移率和载流子浓度成正比,所以通过调节这些参数可以改变电导率。

四、应用领域1. 半导体器件半导体物理学的研究在半导体器件的设计和制造中起着重要作用。

半导体物理_第四章综述

半导体物理_第四章综述

上式中σ是半导体晶体材料的电导率,其常用 的单位是(Ω·cm)-1,它是两种载流子浓度及其 迁移率的函数,我们已经看到,载流子迁移率 也是掺杂浓度的函数,因此可以预计,电导率 将是掺杂浓度的一个非常复杂的函数。
电导率的倒数就是电阻率,其表达式为
右图所示 为N型和P 型硅单晶 材料在室 温(300K) 条件下电 阻率随掺 杂浓度的 变化关系 曲线。
单纯由晶格振动散射所决定的载流子迁 移率随温度的变化关系为:
在比较低的掺 杂浓度下,电子 的迁移率随温度 的变化如右图, 这表明在低掺杂 浓度的条件下, 电子的迁移率主 要受晶格振动散 射的影响。
在低掺杂浓度 的条件下,空 穴的迁移率也 是主要受晶格 振动散射的影 响。
载流子在半导体晶体材料中运动时所受到的第 二类散射机制是所谓的离化杂质电荷中心的库 仑散射作用。单纯由离化杂质散射所决定的载 流子迁移率随温度和总的掺杂浓度的变化关系 为:
在没有外加电场和有外加电场存在的两种 情况下,导带电子在半导体晶体材料中的运 动情况分别如下图所示:
1. 漂移电流密度 如下图所示,对于一块半导体材料来说,当 在其两端外加电压V之后,所形成的电流密度 (面密度)可表示为:
其中N为导电载流子的密度, 定向漂移速度。
v 为载流子的平均
在弱场情况下,载流子的定向漂移速度与 外加电场成正比,即:
其中NI=ND++NA- ,为总的离化杂质浓度。
从上式中可见,离化杂质散射所决定的载流子 迁移率随温度的升高而增大,这是因为温度越 高,载流子热运动的程度就会越剧烈,载流子 通过离化杂质电荷中心附近所需的时间就会越 短,因此离化杂质散射所起的作用也就越小。
下图所示为室温(300K)条件下硅单晶材料中 电子和空穴的迁移率随总的掺杂浓度的变化关 系曲线。从图中可见,随着掺杂浓度的提高, 载流子的迁移率发生明显的下降。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章半导体中载流子的输运现象在前几章我们研究了热平衡状态下,半导体导带和价带中的电子浓度和空穴浓度。

我们知道电子和空穴的净流动将会产生电流,载流子的运动过程称谓输运。

半导体中的载流子存在两种基本的输运现象:一种是载流子的漂移,另一种是载流子的扩散。

由电场引起的载流子运动称谓载流子的漂移运动;由载流子浓度梯度引起的运动称谓载流子扩散运动。

其后我们会将会看到,漂移运动是由多数载流子(简称多子)参与的运动;扩散运动是有少数载流子(简称少子)参与的运动。

载流子的漂移运动和扩散运动都会在半导体內形成电流。

此外,温度梯度也会引起载流子的运动,但由于温度梯度小或半导体的特征尺寸变得越来越小,这一效应通常可以忽略。

载流子运动形成电流的机制最终会决定半导体器件的电流一电压特性。

因此,研究半导体中载流子的输运现象非常必要。

4.1漂移电流密度如果导带和价带都有未被电子填满的能量状态,那么在外加作用下使载流子产生的运动称为“漂移运动”。

载流子电荷的净如果电荷密度为P的正方体以速度4运动,则它形成的电流密度为^drf = P U d(°」)其中°的单伎为C»cm~3, J drf的单位是Acm~2或C/cnr»s。

若体电荷是带正电荷的空穴,则电荷密度p = ep , e为电荷电量^=1.6X10-,9C(^仑),〃为载流子空穴浓度,单位为⑵尸。

则空穴的漂移电流密度打场可以写成:丿"爾=⑷)%(4.2)%表示空穴的漂移速度。

空穴的漂移速度跟那些因素有关呢?在电场力的作用下,描述空穴的运动方程为F = ma = eE(4.3)p£代表电荷电量,d代表在电场力F作用下空穴的加速度,加;代表空穴的有效质量。

如果电场恒定,则空穴的加速度恒定,其漂移速度会线性增加。

但半导体中的载流子会与电离杂质原子和热振动的晶格原子发生碰撞或散射,这种碰撞或散射改变了带电粒子的速度特性。

在电场的作用下,晶体中的空穴获得加速度,速度增加。

当载流子同晶体中的原子相碰撞后,载流子会损失大部分或全部能量,使粒子的速度减慢。

然后粒子又会获得能量并重新被加速,直到下一次受到碰撞或散射,这一过程不断重复。

因此,在整个过程粒子将会有一个平均漂移速度。

在弱电场的情况下,平均漂移速度与电场強度成正比(言外之意,在强电场的情况下,平均漂移速度与电场强度不会成正比)。

S—E(4.4)其中竹咼空穴迁移率,载流子迁移率是一个重要的参数,它描述了粒子在电场作用下的运动情况,迁移率的单位为cnr/V.s.将式(4.4)带入(4.2),可得出空穴漂移电流密度的表达式:空穴的漂移电流密度方向与施加的电场方向相同。

同理可知电子的漂移电流为J 啊(46)弱电场时,电子的漂移电流也与电场成正比。

但由于电子带负电,电子的运动方向与电场方向相反,所以%=-咔(4.7)其中%代表电子的平均漂移速度,儿代表电子的迁移率,为正值。

所以电子的漂移电流密度为虽然电子的运动方向与电场方向相反,但电子的漂移电流密度方向仍与电场方向相同。

表4.17 = 300KH寸,低掺杂浓度下的典型迁移率值电子迁移率和空穴迁移率都与温度和掺杂浓度有关。

表4.1 给出了T = 300K时低掺杂浓度下的一些典型迁移率值。

总的漂移电流是电子的漂移电流与空穴的漂移电流的和:即丿时=e(“/ + “pP)E(4.9)例题:给定电场强度时,计算半导体中产生的漂移电流密度。

考虑硅半导体在T = 300/r,掺杂浓度Nd=10"c 〃^,M=0。

假定电子与空穴 的迁移率由表4.1给出,计算给定电场强度E = 35V/dM 产生的漂移电流密度。

解:由于Nd>N”所以是N 型半导体。

假定室温下杂质完全电离, 因此电子浓度:n q 耳=10”c 〃厂彳,、 n 2 (1.5xlO lo )~空穴浓度卩=丄= - --- 厂丄=2.25xlO 4c/zr 3H 1016由于n » /7,所以漂移电流为J drf = e(np n += (1.6X 10-,9)(10,6)(1350)(35)= 15.6 A/cm 2=756mA / mm 2 这个例子说明,漂移电流密度是由多数载流子产生的;很小的电 场就会产生较犬的漂移电流密度;也意味着产生毫安级的电流占 用较小的器件面积。

练习题:1. T = 300K 时,硅的掺杂浓度为^rf =10,4cw-3,^=1015c/?r\电子与空穴 的迁移率见表4.1。

若外加电场为E = 35Vcm~l ,求漂移电流密度°(6.8Ac 〃厂')2. T = 300CTJ,某P 型半导体器件的外加电场E = 20Vcnr\求漂移电流 密度为仏=120加〃严时的杂质浓度O (P 0 = ^=7.81X 1016C /H -3)4.2迁移率载流子迁移率反映的是载流子的平均漂移速度与施加电场 的关系,定义为“=半。

E对空穴而言%=吋。

空穴的加速度与电场力的关系F = eE = ma =加;—=加; " "dt " 。

表示载流子在电场作用下沿电场方向的平均速度;「表示两次碰 撞的时间间隔。

根据上式得u 二*E ,所以载流子迁移率eEtK (4」0)A = —(4.H)叫如果将上式的f用空穴的平均碰撞时间%代替,则空穴的迁移率为同理,电子的迁移率为(4.13)其中唁表示电子受到碰撞的平均时间间隔。

晶体中影响载流子迁移率大小的主要因素是两种散射机制:即晶格散射(声子散射)与电离杂质散射。

固体的理想周期性势场允许电子在整个晶体中自由运动,不会对电子产生散射。

当温度升高时,半导体晶体中的原子具有一定的热能,在其晶格位置附近做无规则的振动,晶格振动破坏了理想周期势场,导致载流子电子、空穴与振动的晶格原子发生相互作用。

这就是所谓的晶格散射机制。

因为晶格散射与原子的热运动有关,所以出现散射的几率一定是温度的函数。

如呆定义血代表存在晶格散射的迁移率,根据散射理论,在一阶近似的情况下有炖="加(4.13)当温度下降时,晶格原子的热振动减弱,受到晶格散射的几率降低,使迁移率增大。

在高温下,轻掺杂半导体中晶格散射是迁移率降低的主要机制。

另一种影响载流子迁移率的机制称谓电离杂质散射。

掺入半 导体的杂质原子可以控制或改变半导体的特性。

室温下杂质已完 全电离,电子和空穴与电离杂质之间存在库仑作用,库仑作用引 起的散射也会改变载流子的速度特性。

如呆定义M 表示只有电离 杂质散射存在的迁移率,则在一阶近似下有7*3/2=oc — (414)其中N 严+ 表示半导体总电离杂质浓度。

温度升高,载流子 的随机运动速度增加,减小了位于电离杂质散射中心附近的时 间,这相当于库仑作用时间短,受到散射的影响就小,电离散射 迁移率"就大;如果电离杂质散射中心数量M 增加,那么载流子 与电离杂质散射中心碰撞或散射几率相应增加,电离散射迁移率 旳就小。

低温或常温下,半导体中电离杂质散射是迁移率降低的 主要机制。

如果6表示晶格散射的平均时间间隔,那么刃心就表示在dt 时间内受到晶格散射的几率。

同理,如呆巧表示电离杂质散射的 平均时间间隔,那么dt/T,就表示在力时间内受到电离杂质散射的 几率。

若同时存在两种散射机制且两种散射机制相互独立,则在 dt 时间内受到的散射的几率为两者之和其中&为任意两次散射的平均时间间隔。

根据迁移率的定义(4.12)或(4.13)式,上式可以写成dt dt dt —=—+ — (415)(4-16) 其中M 代表仅有电离杂质散射时的迁移率;血代表仅有晶格原 子散射时的迁移率;“代表总的迁移率。

4.3电导率4.2节的(4.9)式给出了漂移电流密度的表达式,可以写成:J 血+ = (4.17)其中"代表半导体材料的电导率,单位是电导率是载流 子浓度及迁移率的函数。

而迁移率又是掺杂浓度的函数 (N 严+ (主要指电离杂质散射迁移率)。

因此,电导率是掺 杂浓度的复杂函数。

电导率的倒数是电阻率。

记为p ,单位是6协。

Q=£= ―1 ------------ ? (418) 图5.5表示条形半导体材料电阻,电阻条的长度为厶,高度为耳,宽度为W,则电阻条的截面积为AT %.。

如果在条形1 1 1 —= ------- 1 -- “ P L半导体材料的两端施加电压y,产生流过电阻的电流为/。

我们 有电流密度加在半导体电阻上的电场式(4.1%)是半导体中的欧姆定律。

其中-彳是方块电阻,它是电阻率与结深的比值。

所以电阻既是电 阻率的函数又是半导体几何形状和图形尺寸的函数。

考虑具有受主掺杂浓度为M (R=0)的P 型半导体,由于 N a » n,,假定电子与空穴的迁移率为同一数量级,则电导率为 b = &P )宀呱])(4.21) 假定杂质完全电离上式可改写为非本征半导体的电导率或电阻率的大小由多数载流子浓度 决定。

这验证了漂移电流密度由多数载流子贡献的结论。

载流子 迁移率的值应根据掺杂浓度和对应的温度下的实际测量曲线求得。

既然载流子迁移率的大小跟温度有关,那么非本征半导体的 电导(4.19^) (4.19/?) R = ^ = ( 、 P_ £ =R (L 、 W Xj X ; \ J 7 u(4.20)(4.22)E = -L PL1%(4.19J)率或电阻率也与温度有关,其半导体材料制成的电阻器也是温度的函数。

对本征半导体而言,电导率为6 (4.23)一般来说,电子和空穴的迁移率并不相等,所以本征半导体的电导率中含有电子迁移率和空穴迁移率两个参数。

4.4载流子速度饱和在前面的讨论中,我们假设了迁移率不受电场影响,也就是说,漂移速度与电场的比值“ =土保持不变。

这种假设只有在弱E电场情况下才有效。

在强电场的情况下,载流子的漂移速度严重偏离了弱电场区线性关系。

例如,硅中的电子漂移速度在外加电场为3kVcm~}速度达到饱和,饱和速度为lO7^-1 o如果载流子的漂移速度达到饱和,那么漂移电流密度也会达到饱和,不再随外加电场变化。

载流子迁移率饱和的机理是强电场下引起的载流子有效质量变大的缘故。

cm(饱和迁移率“迦= ---- 3 ----- r = 3.3 x 102加2 / U.S ,这是体饱和内3x10 Vcm迁移率的值,并不是表面饱和迁移率的值。

以后会看到表面迁移率要远小于“⑷。

主要原因是半导体的表面有较多的缺陷。

)另外一个结论是外加电场不会显著改变电子的随机热运动速度。

外加电场后,在不考虑其它因素的情况下(这里指其后讨论的载流子扩散),半导体内存在两种运动,一种是电子的随机热运动;另一种是载流子在电场作用下沿电场方向的漂移运动。

相关文档
最新文档