半导体器件物理第6章
半导体器件物理--薄膜晶体管(TFT) ppt课件
BTS(bias temperature stress):VG=VD=30 V, T=55 oC;
应力作用产生缺陷态,引起C-V曲线漂移. 16 ppt课件
6. p-Si TFF的改性技术 (1)非晶硅薄膜晶化技术-----更低的温度、更大的晶粒, 进一步提高载流子迁移率. (2)除氢技术----改善稳定性. (3)采用高k栅介质----降低阈值电压和工作电压. (4)基于玻璃或塑料基底的低温工艺技术(<350 oC).
对于恒定的VDS,VGS越大,则
沟道中的可动载流子就越多,
沟道电阻就越小,ID就越大.
即栅电压控制漏电流.
对于恒定的VGS,当VDS增大时,沟道厚度从源极到漏极逐渐变 薄, 引起沟道电阻增加,导致IDS增加变缓.当VDS>VDsat时,漏极 被夹断,而后VDS增大,IDS达到饱和.
8 ppt课件
TFT的工作原理
低载流子 迁移率
稳定性和 可靠性
TFT发展过程中遭遇 的关键技术问题?
低成本、大面 积沉膜
低温高性能半 导体薄膜技术
挑战:在玻璃或塑料基底上生长出单晶半导体薄膜!
5 ppt课件
TFT的种类
按采用半导体材料不同分为: 硅基:非晶Si-TFT,多晶硅-TFT
无机TFT 化合物:CdS-TFT,CdSe-TFT 氧化物:ZnO-TFT
V
th)V
d
1 2
V
2 d
]
(V d V g V th) …….(3)
当Vd<<Vg时,(3)式简化为I d
W L
Ci (V g V th)V d
在饱和区(Vd>Vg-Vth),将Vd=Vg-Vth代入(3)式可得:
半导体物理与器件ppt课件
2.23
h h K为波数=2π/λ, λ为波长。 2mE 15 P
2.3薛定谔波动方程的应用
2.3.2无限深势阱(变为驻波方程) 与时间无关的波动方程为:
2 x 2m 2 E V x x 0 2 x
2.13
由于E有限,所以区域I和III 中:
课程主要内容
固体晶格结构:第一章 量子力学:第二章~第三章 半导体物理:第四章~第六章 半导体器件:第七章~第十三章
1
绪论
什么是半导体
按固体的导电能力区分,可以区分为导体、半导体和绝缘体
表1.1 导体、半导体和绝缘体的电阻率范围 材料 电阻率ρ(Ωcm) 导体 < 10-3 半导体 10-3~109 绝缘体 >109
分别求解与时间无关的波动方程、与时间有关的波 动方程可得自由空间中电子的波动方程为:
j j x, t A exp x 2mE Et B exp x 2mE Et
2.22
说明自由空间中的粒子运动表现为行波。 沿方向+x运动的粒子: x, t A exp j kx t
18
2.3薛定谔波动方程的应用
无限深势阱(前4级能量)
随着能量的增加,在任意给 定坐标值处发现粒子的概率 会渐趋一致
19
2.3薛定谔波动方程的应用
2.3.3阶跃势函数
入射粒子能量小于势垒时也有一定概率穿过势垒 (与经典力学不同)
20
2.3薛定谔波动方程的应用
2.3.3阶跃势函数 Ⅰ区域 21 x 2mE 2 1 x 0 2.39 2
最新(施敏)半导体器件物理(详尽版)ppt
江西科技师范大学
半导体器件物理
金刚石结构
由两个面心立方结构 沿空间对角线错开四 分之一的空间对角线 长度相互嵌套而成。
硅(Si) 锗(Ge)
江西科技师范大学
半导体器件物理 大量的硅(Si)、锗 (Ge)原子靠共价键 结合组合成晶体,每 个原子周围都有四个 最邻近的原子,组成 正四面体结构, 。这 四个原子分别处在正 四面体的四个顶角上, 任一顶角上的原子各 贡献一个价电子和中 心原子的四个价电子 分别组成电子对,作 为两个原子所共有的 价电子对。
江西科技师范大学
a 3/2
半导体器件物理
例1-1
假使体心结构的原子是刚性的小球,且中心原子与立方体八个角落 的原子紧密接触,试算出这些原子占此体心立方单胞的空间比率。
解
江西科技师范大学
半导体器件物理
练习
假使面心结构的原子是刚性的小球,且面中心原子与 面顶点四个角落的原子紧密接触,试算出这些原子占此面 心立方单胞的空间比率。
E1
原子核
E2 E3
能级
电子受到原子核和其 他电子的共同作用。
轨道 电子云在空间分布几率最 大值,即轨道上,电子出现的几 率最大。
江西科技师范大学
半导体器件物理 晶体中的电子
制造半导体器件所用的材 料大多是单晶体。 单晶体是由原子按一定周 期重复排列而成,且排列 相当紧密,相邻原子间距 只有零点几个纳米的数量 级。 当原子间距很小时,原子间的电子轨道将相遇而交叠,晶体中每个原子 的电子同时受到多个原子核和电子(包括这个原子的电子和其他原子的 电子)作用。 电子不仅可以围绕自身原子核旋转,而且可以转到另一个原子周围,即 同一个电子可以被多个原子共有,电子不再完全局限在某一个原子上, 可以由一个原子转到相邻原子,将可以在整个晶体中运动。 江西科技师范大学
半导体器件物理-张莉
⎨ ⎪
d
2ψ
⎪⎩ dx2
= q NA εs
= −q ND εs
(−xp < x < 0) (0 < x < xn )
23
1.1 平衡PN结(电场和电势分布)
边界条件: • x=0 处电场连续:
dψ1 = dψ 2 dx x=0 dx x=0
( ) • 空间电荷区外电场为0: ε −xp = ε ( xn ) = 0
对非平衡载流子,np 乘积显然不再等于 ni2 np ≠ ni2
15
1.1 平衡PN结
1.1 平衡PN结 参考教材: 《半导体物理学》§6.1;
《微电子技术基础》1.1,1.2 PN结的形成方法:
在一块N型(或P型)半导体单晶衬底上用扩散、 外延或离子注入等方法掺入P型(或N型)杂质
本节将分析理想突变结的电场、电势分布及能带图
ψ −ψ p
=1 L2De
ψ −ψ p
(1-18)
LDe称为非本征德拜长度: LDe ≡
( ) 因此, ψ −ψ p ∝ exp ( x ) LDe
ε s kT q2NA
(1-19)
电势ψ 在空间电荷区边界附近随 x 指数变化,其特 征长度等于非本征德拜长度LDe
载流子浓度与电势呈指数变化关系,仅在几个德拜 长度下,载流子浓度就能从掺杂浓度快速下降至零
第一章
PN 结
第一章 PN结
本章内容: 复习《半导体物理学》第六章(同质PN结)
平衡态特性,小注入直流特性,电容,击穿 补充内容:
大注入直流特性,瞬变特性,二极管模型, 集成电路中的二极管
2
半导体物理基本知识
能带 电子和空穴 禁带 导带和价带
半导体物理与器件习题
半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。
2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。
3.半导体的电阻率为10-3~109Ωcm。
4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。
常用的掺杂方法有扩散和离子注入。
6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。
2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。
三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。
◼允带(allowed band):允许电子能量存在的能量范围。
◼禁带(forbidden band):不允许电子存在的能量范围。
◼允带又分为空带、满带、导带、价带。
◼空带(empty band):不被电子占据的允带。
◼满带(filled band):允带中的能量状态(能级)均被电子占据。
导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。
价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。
半导体物理第六章PPT课件课件
电子和空穴的扩散方程可进一步变换为下式:
上述两式就是在掺杂和组分均匀的条件下,半导体材 料中过剩载流子浓度随着时间和空间变化规律的方程。
《半导体物理第六章》PPT课件
扩散方程的物理意义: 与时间相关的扩散方程描述过剩载流子浓度随着时间和 空间位置的变化规律。
《半导体物理第六章》PPT课件来自这一节将详细讨论过剩载流子运动的分析方法。
《半导体物理第六章》PPT课件
6.2.1 连续性方程 如下图所示的一个微分体积元,一束一维空穴流在
x处进入微分体积元,又在x+dx处离开微分体积元。 空穴的流量:Fpx+,单位:个/cm2-s,则有下式成立:
《半导体物理第六章》PPT课件
《半导体物理第六章》PPT课件
6.3.1 双极输运方程的推导
利用方程: 扩散方程; 泊松方程;
(泊松方程能建立过剩电子浓度及过剩空穴浓度与内 建电场之间的关系),其表达式为:
其中εS是半导体材料的介电常数。 《半导体物理第六章》PPT课件
扩散方程中的
项不能忽略。
《半导体物理第六章》PPT课件
双级输运方程的推导: 半导体中的电子和空穴是成对产生的,因此电子和空 穴的产生率相等,即:
Eapp:外加电场; Eint:内建电场。
《半导体物理第六章》PPT课件
内建电场倾向于将过剩电子和过剩空穴保 持在同一空间位置,因此这些带负电的过剩电 子和带正电的过剩空穴就会以同一个等效的迁 移率或扩散系数共同进行漂移或扩散运动。 这种现象称为双极扩散或双极输运过程。
《半导体物理第六章》PPT课件
§6.3 双极输运
在第5章中,导出的电子电流密度方程和空穴电流密 度方程中,引起漂移电流的电场指的是外加的电场。
半导体器件物理教案课件
半导体器件物理教案课件PPT第一章:半导体物理基础知识1.1 半导体的基本概念介绍半导体的定义、特点和分类解释n型和p型半导体的概念1.2 能带理论介绍能带的概念和能带结构解释导带和价带的概念讲解半导体的导电机制第二章:半导体材料与制备2.1 半导体材料介绍常见的半导体材料,如硅、锗、砷化镓等解释半导体材料的制备方法,如拉晶、外延等2.2 半导体器件的制备工艺介绍半导体器件的制备工艺,如掺杂、氧化、光刻等解释各种制备工艺的作用和重要性第三章:半导体器件的基本原理3.1 晶体管的基本原理介绍晶体管的结构和工作原理解释n型和p型晶体管的概念讲解晶体管的导电特性3.2 半导体二极管的基本原理介绍半导体二极管的结构和工作原理解释PN结的概念和特性讲解二极管的导电特性第四章:半导体器件的特性与测量4.1 晶体管的特性介绍晶体管的主要参数,如电流放大倍数、截止电流等解释晶体管的转移特性、输出特性和开关特性4.2 半导体二极管的特性介绍半导体二极管的主要参数,如正向压降、反向漏电流等解释二极管的伏安特性、温度特性和频率特性第五章:半导体器件的应用5.1 晶体管的应用介绍晶体管在放大电路、开关电路和模拟电路中的应用解释晶体管在不同应用电路中的作用和性能要求5.2 半导体二极管的应用介绍半导体二极管在整流电路、滤波电路和稳压电路中的应用解释二极管在不同应用电路中的作用和性能要求第六章:场效应晶体管(FET)6.1 FET的基本结构和工作原理介绍FET的结构类型,包括MOSFET、JFET等解释FET的工作原理和导电机制讲解FET的输入阻抗和输出阻抗6.2 FET的特性介绍FET的主要参数,如饱和电流、跨导、漏极电流等解释FET的转移特性、输出特性和开关特性分析FET的静态和动态特性第七章:双极型晶体管(BJT)7.1 BJT的基本结构和工作原理介绍BJT的结构类型,包括NPN型和PNP型解释BJT的工作原理和导电机制讲解BJT的输入阻抗和输出阻抗7.2 BJT的特性介绍BJT的主要参数,如放大倍数、截止电流、饱和电流等解释BJT的转移特性、输出特性和开关特性分析BJT的静态和动态特性第八章:半导体存储器8.1 动态随机存储器(DRAM)介绍DRAM的基本结构和工作原理解释DRAM的存储原理和读写过程分析DRAM的性能特点和应用领域8.2 静态随机存储器(SRAM)介绍SRAM的基本结构和工作原理解释SRAM的存储原理和读写过程分析SRAM的性能特点和应用领域第九章:半导体集成电路9.1 集成电路的基本概念介绍集成电路的定义、分类和特点解释集成电路的制造工艺和封装方式9.2 集成电路的设计与应用介绍集成电路的设计方法和流程分析集成电路在电子设备中的应用和性能要求第十章:半导体器件的测试与故障诊断10.1 半导体器件的测试方法介绍半导体器件测试的基本原理和方法解释半导体器件测试仪器和测试电路10.2 半导体器件的故障诊断介绍半导体器件故障的类型和原因讲解半导体器件故障诊断的方法和步骤第十一章:功率半导体器件11.1 功率二极管和晶闸管介绍功率二极管和晶闸管的结构、原理和特性分析功率二极管和晶闸管在电力电子设备中的应用11.2 功率MOSFET和IGBT介绍功率MOSFET和IGBT的结构、原理和特性分析功率MOSFET和IGBT在电力电子设备中的应用第十二章:光电器件12.1 光电二极管和太阳能电池介绍光电二极管和太阳能电池的结构、原理和特性分析光电二极管和太阳能电池在光电子设备中的应用12.2 光电晶体管和光开关介绍光电晶体管和光开关的结构、原理和特性分析光电晶体管和光开关在光电子设备中的应用第十三章:半导体传感器13.1 温度传感器和压力传感器介绍温度传感器和压力传感器的结构、原理和特性分析温度传感器和压力传感器在电子测量中的应用13.2 光传感器和磁传感器介绍光传感器和磁传感器的结构、原理和特性分析光传感器和磁传感器在电子测量中的应用第十四章:半导体器件的可靠性14.1 半导体器件的可靠性基本概念介绍半导体器件可靠性的定义、指标和分类解释半导体器件可靠性的重要性14.2 半导体器件可靠性的影响因素分析半导体器件可靠性受材料、工艺、封装等因素的影响14.3 提高半导体器件可靠性的方法介绍提高半导体器件可靠性的设计和工艺措施第十五章:半导体器件的发展趋势15.1 纳米晶体管和新型存储器介绍纳米晶体管和新型存储器的研究进展和应用前景15.2 新型半导体材料和器件介绍石墨烯、碳纳米管等新型半导体材料和器件的研究进展和应用前景15.3 半导体器件技术的未来发展趋势分析半导体器件技术的未来发展趋势和挑战重点和难点解析重点:1. 半导体的基本概念、分类和特点。
半导体物理与器件6
Process1:Capture of electron Process2:Emission of electron Process3:Capture of hole Process4: Emission of hole
受主型陷阱(Trap)的俘获和发射过程
6.5 过剩载流子的寿命
6.5 过剩载流子的寿命
过剩载流子产生时
E Fi E Fp p0 p ni exp kT
EFn和EFp分别是电子和空穴的准费米能级
6.5 过剩载流子的寿命
6.5.1 Shockley-Read-Hall Theory of recombination
Trap:recombination center
6.1载流子的产生与复合
产生generation—电子和空穴的生成过程 复合recombination—电子和空穴的消失过程
6.1.1平衡状态半导体
对于直接带间direct band-to-band产生来说,电子和空穴是成对 出现的, Gn0和Gp0分别为电子和空穴的产生率,单位是#的寿命
6.5 过剩载流子的寿命
6.5 过剩载流子的寿命
6.5 过剩载流子的寿命
6.6 表面效应 Surface Effects
6.6.1 表面态
作业
• P164 6.2 • P165 6.11 • P167 6.31
对于空穴
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
6. 3.3 双极输运方程的应用
半导体物理学ppt课件
②当电流密度一定时, dEF/dx与载流子浓
度成反比 ③上述讨论也适用于电子子系及空穴子系
(用准费米能级取代费米能级):
J =n
dEF dx
J =p
dEF dx
35
36
★ 正向偏压下的p-n结
①势垒: ♦ 外电压主要降落
于势垒区 ♦ 加正向偏压V, 势
垒高度下降为 e(VD-V),
荷区的产生—复合作用。 P型区和N型区的电阻率都足够低,外加电压全部降落
在过渡区上。
57
准中性区的载流子运动情况
稳态时, 假设GL=0
0
DN
d 2np dx2
n p
n
......x
xp
0
DP
d 2pn dx2
边界条件:
pn
p
......x
xn
图6.4
欧姆接触边界
以及工作温度
24
③接触电势差:
♦ pn结的势垒高度—eVD 接触电势差—VD
♦ 对非简并半导体,饱和电离近似,接触 电势为:
VD
kT e
ln nn0 np0
kT e
ln
NDNA ni2
♦ VD与二边掺杂有关,
与Eg有关
25
电势
图6-8
电子势能(能带)
26
④平衡p-n结的载流子浓度分布: ♦ 当电势零点取x=-xp处,则有: EC (x) EC qV (x)
52
53
54
理想二极管方程
PN结正偏时
55
理想二极管方程
PN结反偏时
半导体器件物理 教案 课件
半导体器件物理教案课件PPT第一章:半导体简介1.1 半导体的定义与特性1.2 半导体材料的分类与应用1.3 半导体的导电机制第二章:PN结与二极管2.1 PN结的形成与特性2.2 二极管的结构与工作原理2.3 二极管的应用电路第三章:晶体三极管3.1 晶体三极管的结构与类型3.2 晶体三极管的工作原理3.3 晶体三极管的特性参数与测试第四章:场效应晶体管4.1 场效应晶体管的结构与类型4.2 场效应晶体管的工作原理4.3 场效应晶体管的特性参数与测试第五章:集成电路5.1 集成电路的基本概念与分类5.2 集成电路的制造工艺5.3 常见集成电路的应用与实例分析第六章:半导体器件的测量与测试6.1 半导体器件测量基础6.2 半导体器件的主要测试方法6.3 测试仪器与测试电路第七章:晶体二极管的应用7.1 二极管整流电路7.2 二极管滤波电路7.3 二极管稳压电路第八章:晶体三极管放大电路8.1 放大电路的基本概念8.2 晶体三极管放大电路的设计与分析8.3 晶体三极管放大电路的应用实例第九章:场效应晶体管放大电路9.1 场效应晶体管放大电路的基本概念9.2 场效应晶体管放大电路的设计与分析9.3 场效应晶体管放大电路的应用实例第十章:集成电路的封装与可靠性10.1 集成电路封装技术的发展10.2 常见集成电路封装形式与特点10.3 集成电路的可靠性分析与提高方法第十一章:数字逻辑电路基础11.1 数字逻辑电路的基本概念11.2 逻辑门电路及其功能11.3 逻辑代数与逻辑函数第十二章:晶体三极管数字放大器12.1 数字放大器的基本概念12.2 晶体三极管数字放大器的设计与分析12.3 数字放大器的应用实例第十三章:集成电路数字逻辑家族13.1 数字逻辑集成电路的基本概念13.2 常用的数字逻辑集成电路13.3 数字逻辑集成电路的应用实例第十四章:半导体存储器14.1 存储器的基本概念与分类14.2 随机存取存储器(RAM)14.3 只读存储器(ROM)与固态硬盘(SSD)第十五章:半导体器件物理在现代技术中的应用15.1 半导体器件在微电子技术中的应用15.2 半导体器件在光电子技术中的应用15.3 半导体器件在新能源技术中的应用重点和难点解析重点:1. 半导体的定义、特性及其导电机制。
半导体物理与器件 第六章3 (2)-PPT课件
半导体物理与器件
半导体物理与器件
当有过剩载流子存在时,半导体材料就不再处于热平衡状态, 此时费米能级就失去意义,但是在这种情况下,我们可以分别 为电子和空穴定义一个适用于非平衡条件下的准费米能级,即:
其中EFn和EFp就是电子和空穴的准费米能级,在非平衡条件 下,电子的总浓度和空穴的总浓度分别是其准费米能级的函数。
t=0时刻 输入脉冲
V1
t=t0
t
xpEt 0 0 d p E 0t0
δ p脉冲按少子迁移率 沿着外加电场方向漂 移
t=t1 t
半导体物理与器件
§6.4 准费米能级
在热平衡条件下,电子和空穴的浓度是费米能级位置的函数, 即:
其中EF和EFi分别是费米能级和本征费米能级,ni是本征载流子 浓度。对于N型和P型半导体材料,其EF和EFi的位置分别如下 页图所示。
介质驰豫时间常数
半导体物理与器件
例6.5 n型Si掺杂浓度为10e16,计算该半导体的介电驰豫常数。 答案:
1 4 1 1 . 7 8 . 8 5 1 0 1 3 5 . 3 9 1 0 s d 1 . 9 2
在4τd时间后,即可达到电荷平衡,与过剩载流 子寿命(~0.1µ s)相比,该过程非常迅速。这证 明了电中性条件。
半导体物理与器件
过剩载流子浓度随着时间的指数衰减过程示意图
光照停止后的载流子复合过程
半导体物理与器件
例8.2
半导体物理与器件
开始光照时,过剩载流子的产 生过程
半导体物理与器件
求解如下: 对于均匀掺杂的P型半导体材料,少数载流子电子的 双极输运方程为:
半导体物理与器件
半导体物理与器件
根据题设条件,一维均匀半导体材料,无外加电场,除x=0点 之外,各处产生率为零,要求稳态时过剩载流子分布结果,故双 极输运方程可简化为:
《半导体物理第六章》课件
以可靠性测试、光电性能测试、尺寸测量为例,介绍半导体器件的特殊测试方法。
3
故障分析
讲解半导体器件的故障定位和与制造
学习IC设计的基本流程和制造 工艺。
集成电路器件
掌握集成电路的种类、分类及 其基本原理。
分立元件和模拟器件
介绍分立元件、模拟器件和数 字器件的基本特性和应用。
工作原理
掌握p-n结的基本构造、电学性质及工 作原理。
光电二极管
讲解光电二极管的内部结构、工作方 式和应用。
光电器件与半导体器件
发光二极管
介绍LED的特性、类型及应用。
传感器
介绍传感器的种类、原理及应用。
太阳能电池
掌握太阳能电池的工作原理和结构。
集成电路
学习集成电路的发展历史、制作工艺及设计 方法。
半导体材料与工艺
材料制备
掌握制备单晶硅和多晶硅的方 法及原理。
光刻工艺
学习光刻胶制备、光刻芯片制 造和相关工艺。
等离子刻蚀
讲解等离子刻蚀的基本原理和 工艺过程。
洁净室技术
介绍半导体器件制造中的洁净 室技术和要求。
半导体器件的特性与检测
1
电学特性
讲解电感、电容、电阻、电压及电流等基本电学特性。
2
特殊测试
半导体结构
讲解半导体的基本结构和制备 工艺。
载流子与能带理论
1 费米能级
介绍半导体中费米能级 的概念及作用。
2 载流子统计
掌握电子与空穴的贡献 对半导体电学特性的影 响。
3 掺杂
讲解杂质原子掺杂对半 导体特性的影响。
p-n结及其应用
1
二极管
2
掌握二极管的类型、电学特性和应用。
3
半导体器件物理 课件 第六章
p沟道耗尽型MOSFET 零栅压时已存在反型沟道,VTP>0
37
耗尽型:栅压为0时已经导通 N沟(很负才关闭) P沟(很正才关闭)
增强型:栅压为0时不导通
N沟(正电压开启 “1”导通)
P沟(负电压开启 “0”导通)
38
6.3.2 N 沟道增强型 MOS 场效应管工作原理
1. VGS对半导体表面空间电荷区状态的影响
EFS Ev
费米能级
价带顶能级
6
6.1 MOS电容
小的正栅压情形
表面能带图:p型衬底(2)
(耗尽层)
大的正栅压情形
X dT
(反型层+耗尽层)
EFS Ev
EFS EFi
EFS Ev
EFS EFi
7
6.1 MOS电容
表面能带图:n型衬底(1)
正栅压情形
EFS Ec
EFS EC
8
6.1 MOS电容
小的负栅压情形
n型
(耗尽Hale Waihona Puke )大的负栅压情形n型
(反型层+耗尽层)
表面能带图:n型衬底(2)
EFS Ec
EFS EFi
EFS Ec
EFS EFi
9
6.1 MOS电容 空间电荷区厚度:表面耗尽情形
表面势 s / s 半导体表面电势与 体内电势之差
Al SiO2 Si : fp 0.228V
(T 300K, Na 1014 cm3)
ms 0.83V
15
6.1 MOS电容 功函数差:n+掺杂多晶硅栅(P-Si)
简并:degenerate 退化,衰退
半导体器件物理TFT
特点: 1. 单晶硅作为靶材. 2. 与基片粘附力强、成膜牢 固. 3. 成膜厚度容易控制. 3. 不受材料熔点限制. 4. 成膜面积相对较大. 5. 基底温度相对低. 6. 薄膜大都为非晶相.
半导体器件物理
电子与信息学院
低压化学气相沉积(LPCVD: Low-Pressure CVD) 特点: ■ 压力低,只需10Pa ■ 沉积速度较低:0.01~0.1um/min。 ■ 均匀性好。
半导体器件物理 电子与信息学院
TFT的工作原理
工作于积累状态下原理示意图
工作原理:与MOSFET相似,TFT也是通过栅电压来调节沟道 电阻,从而实现对漏极电流的有效控制. 与MOSFET不同的是:MOSFET通常工作强反型状态,而TFT根 据半导体活性层种类不同,工作状态有两种模式: 对于a-Si TFT、OTFT、氧化物TFT通常工作于积累状态. 对于p-Si TFT工作于强反型状态.
特性参数:迁移率、开关电流比、关态电流、阈值电压、跨导
半导体器件物理 电子与信息学院
3. p-Si TFF中的Kink 效应 机理: 高VD (VD>VDsat)时, 夹断区因强电场引起碰撞电 离所致. 此时ID电流可表示为:
为碰撞电离产生率,与电 场相关,类似于pn结的雪 崩击穿.
半导体器件物理 电子与信息学院
(1)非晶硅薄膜晶化技术-----更低的温度、更大的晶粒, 进一步提高载流子迁移率. (2)除氢技术----改善稳定性. (3)采用高k栅介质----降低阈值电压和工作电压. (4)基于玻璃或塑料基底的低温工艺技术(<350 oC).
半导体器件物理
电子与信息学院
p-Si TFT制备工艺流程
半导体器件物理6章p-n结的电流-电压方程
我们定义:
则式(6.25)可以写成
(6.27)式称为理想二极管方程。它是在很大电流与电
压范围内P-N结电流-电压特性的最佳描述。虽然(6.27)式是在正向偏压的假设下推导出来的,但也允许 取负值,图6.8为P-N结电流-电压关系曲线图。
假如 的值为负,比如几个热电压,那么反向电流的大小就与反向偏压无关了,此时 。因此 称为反向饱和电流密度。式(6.27)中的正向偏压值大于几个热电压时,则可以忽略式中的-1项。此时的电流电压关系为:
; ;
于是(6.12)式的输运方程可简化为
其中 是过剩空穴的扩散长度。在相同的假设条件下,P区内过剩载流子浓度满足下式
其中 是过剩电子的扩散长度。
总少子浓度的边界条件是:
式(6.13)的通解为
式(6.14)的通解为
由边界条件式(6.15b)和式(6.15d)可知,系数A和D必须为零。系数B和系数C由边界条件式(6.15a)和(6.15c)确定。
热平衡状态P区多子空穴浓度
热平衡状态P区少子电子浓度
非热平衡状态P区总少子电子浓度
非热平衡状态N区总少子空穴浓度
非热平衡状态空间电荷区边缘处P区少子电子浓度
非热平衡状态空间电荷区边缘处N区少子空穴浓度
非热平衡状态P区过剩少子电子浓度
非热平衡状态N区过剩少子空穴浓度
我们在前一章已经讨论过的P-N结内建电势的表达式 ,它是P-N结空间电荷区的电势差。对该式两边同除以热电压并取对数,再取倒数可得:
对P-N结施加正向偏压时,P区的多子空穴也可以穿过耗尽区而注入到N区,使N区产生过剩的少子空穴。同样,N区的少子空穴浓度可表示为:
N区过剩的少子空穴浓度可表示为:
68第6章2_半导体器件物理EM2模型
半导体器件物理(1)第6章BJT模型和BJT版图6-1 E-M模型三、E-M2模型在描述直流特性的EM-1模型基础上,再考虑串联电阻、势垒电容和扩散电容的影响,就得到考虑寄生电阻和交流特性和瞬态响应的EM-2模型。
1.串联电阻考虑基区、发射区和集电区3个区域的串联电阻,新增3个模型参数:RB、RE和RC。
半导体器件物理(I )半导体器件物理(I)反偏情况下势垒电容的一般表达式为:C J =C T0(1-V/V J )-mj包含3个模型参数:C T0:零偏势垒电容;V J :势垒内建电势;mj :电容指数。
对eb 结势垒电容,新增3个模型参数:CTE0、VJE 和MJE 。
对bc 结势垒电容,新增3个模型参数:CTC0、VJC 和MJC 对IC 考虑衬底结势垒电容,新增3个模型参数:CTS0、VJS 和MJS第6章BJT模型和BJT版图6-1 E-M 模型三、E-M2模型2. 势垒电容半导体器件物理(I)在正偏条件下,势垒电容的表达式为:C J =C T0(1-F C )-(1+mj)(1-F C (1+mj)+mjV/V J )又新增一个模型参数FC (势垒电容正偏系数)。
第6章BJT模型和BJT版图6-1 E-M 模型三、E-M2模型2. 势垒电容半导体器件物理(I)3.扩散电容发射结扩散电容为:C de =τF (eI CC /kT)新增一个模型参数:TF (正向渡越时间)集电结扩散电容为:C dc =τR (eI EC /kT)新增一个模型参数:TR (反向渡越时间)。
第6章BJT模型和BJT版图6-1 E-M 模型三、E-M2模型半导体器件物理(I)4.等效电路在EM-1模型等效电路中新增三个电阻、三个势垒电容、两个扩散电容,成为EM-2模型等效电路。
第6章BJT模型和BJT版图6-1 E-M 模型三、E-M2模型半导体器件物理(I)第6章BJT模型和BJT版图6-1 E-M 模型三、E-M2模型EM-2模型新增15个模型参数。
半导体器件物理第六章习题
第六章 金属-氧化物-半导体场效应晶体管6-1.绘出在偏压条件下MOS 结构中对应载流子积累、耗尽以及强反型的能带和电荷分布的示意图,采用N 型衬底并忽略表面态和功函数的影响。
6-2.推导出体电荷、表面电势以及表面电场的表达式,说明在强反型时他们如何依赖于衬底的掺杂浓度a N 。
在1410至1810 3−cm 范围内画出体电荷、表面电势及电场与a N 的关系。
6-3.在受主浓度为31610−cm 的P 型硅衬底上的理想MOS 电容具有0.1um 厚度的氧化层,40=K ,在下列条件下电容值为若干?(a )V V G 2+=和Hz f 1=,(b ) V V G 20=和Hz f 1=,(c )V V G 20+=和MHz f 1=。
6-4.采用叠加法证明当氧化层中电荷分布为)(x ρ时,相应的平带电压变化可用下式表示:0000()x FB q x x V dx C x ρΔ=−∫ 6-5.一MOS 器件的01000x =Å,eV q m 0.4=φ,eV q s 5.4=φ,并且有21610−cm的均匀正氧化层电荷,计算出它的平带电压。
假设40=K ,运用习题6-4的表达式 6-6.利用习题6-4中的结果对下列情形进行比较。
(a) 在MOS 结构的氧化层中均匀分布着212105.1−×cm 的正电荷,若氧化层的厚度为150nm ,计算出这种电荷引起的平带电压。
(b) 若全部电荷都位于硅-氧化硅的界面上,重复(a)。
(c) 若电荷成三角分布,它的峰值在0=x ,在0x x =处为零,重复(a)。
6-7.在31510−=cm N a 的P 型Si<111>衬底上制成一铝栅MOS 晶体管。
栅氧化层厚度为120nm ,表面电荷密度为211103−×cm 。
计算阈值电压。
6-8. 一MOS 结构中由315105−×=cm N a 的N 型衬底,100nm 的氧化层以及铝接触构成,测得阈值电压为2.5V ,计算表面电荷密度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lienfeld和Heil于30年代初就提出了表面场效应晶体管原理。 40年代末Shockley和Pearson进行了深入研究。 1960年Kahng和Alalla应用热氧化硅结构制造出第一只MOSFET. MOSFET是大规模集成电路中的主流器件。 MOSFET是英文缩写词。 其它叫法:绝缘体场效应晶体管(IGFET)、金属-绝缘体-半导体场效应 晶体管(MISFET)、金属-氧化物-半导体晶体管(MOST)等。
(6-25)
6.2 理想MOS电容器
则
C 0 =绝缘层单位面积上的电容,
C S =半导体表面空间电荷区单位面积电容。
C 1 C0 1 C0 C S
(6-28)
1 1 1 C C0 C S
(6-26)
C C 0 称为系统的归一化电容。
C0
dQM 0 k 0 dV0 x0
(6-29)
S
的变化也逐渐减慢, C S 变小。总电容
C FB C0
1 k 0 LD 1 k s x0
(6-40)
(6-40)由掺杂浓度和氧化层厚度确定
6.2 理想MOS电容器
耗尽区( VG >0)
dQS 0 k S CS d S xd
V0
(6-42)
C CS
氧化层电容
QS ,代入(6-2)式中有 C0
教学要求
掌握概念:沟道电导、阈值电压 导出沟道电导公式(6-53) 导出阈值电压公式(6-54) 说明阈值电压的物理意义。
6.4实际MOS的电容-电压特性
6.4实际MOS的电容-电压特性
• 功函数差的影响
6.4 实际MOS的电容—电压特性
以铝电极和P型硅衬底为例。铝的功函数比型硅的小,前者的费米能级比后者的高 。接触前,功函数差
2
间电荷区也处于热平衡状态,这使得整个表面空间电荷区中费米能级为常数。这些 假设在以后将被取消而接近实际的MOS结构。
6.1 理想MOS结构的表面空间电荷区
半导体表面空间电荷区 : 每个极板上的感应电荷与电场之间满足如下关系
QM QS k 0 0 0 k S 0 S
式中0=自由空间的电容率
dQI dQB dQS Cs d S d S d S
(6-47)
6.2 理想MOS电容器
小结
MOS电容定义为
C
dQM dVG
(6-22)
绝缘层单位面积电容
导体表面空间电荷区单位面积电容
dQM 0 k 0 C0 dV0 x0
(6-29)
CS
dQ S dQ M d S d S
-q q m S
= -( EFM
EFS )<0
由于功函数的不同,铝—二氧化硅—P型硅MOS系统在没有外加偏压的时候,在 半导体表面就存在表面势 S >0。因此,欲使能带平直,即除去功函数差所带来的影 响,就必须在金属电极上加一负电压。
' ' VG1 ms m s'
QM QS k 0 0 0 k S 0 S
(6-1)
6.1 理想MOS结构的表面空间电荷区
小结
载流子积累、耗尽和反型的概念。 载流子积累、耗尽和反型和强反型四种情况的能带图。 体费米势的概念:
Ei 0 EF f
q
反型和强反型条件: 反型条件;
(6-1)
S =半导体表面的电场
k 0 =氧化物的相对介电常数
k S =半导体相对介电常数
x d =空间电荷区在半导体内部的边界亦即空间电荷区宽度。
外加电压 VG 为跨越氧化层的电压
V0和表面势 S 所分摊:
(6-2)
VG V0 S
6.1 理想MOS结构的表面空间电荷区
图6-3 加上电压 VG 时MOS结构内的电位分布
1 k 0 xd 1 k S x0
(6-43)
QS S VG C0
把
(6-44)
QS QB qN a x d
2 qN a x d S 2k s 0
(6-5)
和
(6-6)
6.2 理想MOS电容器
代入(6-44)式解出 x
d
Xd
kS 0 kS 0 2VG 1 C0 2 C0 C0 qkS 0 N a
G
(6-51) (6-54)
沟道电荷受到偏压 V 阈值电压:
控制,这正是MOSFET工作的基础。
VTH
QB Si C0
(6-55)
第一项表示在形成强反型时,要用一部分电压去支撑空间电荷 QB ; 第二项表示要用一部分电压为半导体表面提供达到强反型时所需要的表面势 Si 。
6.3沟道电导与阈值电压
6.1 理想MOS结构的表面空间电 荷区
6.1 理想MOS结构的表面空间电荷区
理想MOS结构基于以下假设: (1)在氧化物中或在氧化物和半导体之间的界面上不存在电荷。 (2)金属和半导体之间的功函数差为零,如绘于图6-2b中的情形。 〔由于假设(1)、(2),在无偏压时半导体能带是平直的。〕 (3) SiO 层是良好的绝缘体,能阻挡直流电流流过。因此,即使有外加电压,表面空
6.1 理想MOS结构的表面空间电荷区
载流子耗尽 单位面积下的总电荷为
QS QB qN a x d
式中 xd 为耗尽层宽度。
2 qN a x d S 2k s 0
(6-5)
(6-6)
x S 1
x xd
2
(6-7)
载流子反型:载流子类型发生变化的现象或者说半导体的导电类型发生变化的现象。
小结
二个概念:沟道电导、阈值电压 沟道电导公式
Z g I n QI L
阈值电压公式
(6-53)
QB QI C0 VG C Si C 0 VG VTH 0
(6-54)
6.3沟道电导与阈值电压
6.1 理想MOS结构的表面空间电荷区
6.1.3反型和强反型条件 反型条件;
s f
强反型条件;
(6-17)
si 2 f
式中 Si 为出现强反型时的表面势。
(6-18)
6.1 理想MOS结构的表面空间电荷区
E
Ec
q f q f
Ei
Ev
0
xI
x
图6-5 强反型时的能带图
6.1 理想MOS结构的表面空间电荷区
x dm 2k S 0 si qNa 4 k S 0 f qNa
(6-19) (6-20)
QB qN a xdm
总表面空间电荷
QS QI QB QI qN a xdm
(6-21)
QI为反型层中单位面积下的可动电荷即沟道电荷:
qnI x dx Q I
Z g I n QI L
(6-53)
6.3沟道电导与阈值电压
二 阈值电压 VTH :定义为形成强反型所需要的最小栅电压。
当出现强反型时
QI QB VG Si C0 C0 QB QI C 0 VG C 0 VG VTH C Si 0
归一化MOS电容 C C 0 随着外加偏压
2 0 k 0 V 1 2 G qN a k S x0
(6-46)
VG 的增加而减小
画出了理想系统的电容—电压特性(图6.7)。
6.2 理想MOS电容器
教学要求
掌握理想系统的电容—电压特性,对图6.7作出正确分析。 导出公式(6-45)、(6-46)。
0 xI
(6-52)
6.1 理想MOS结构的表面空间电荷区
小结
理想MOS结构基于以下假设: (1)在氧化物中或在氧化物和半导体之间的界面上不存在电荷。 (2)金属和半导体之间的功函数差为零,如绘于图6-2b中的情形。 〔由于假设(1)、(2),在无偏压时半导体能带是平直的。〕 (3) SiO2 层是良好的绝缘体,能阻挡直流电流流过。因此,即使有外加电压,表面空 间电荷区也处于热平衡状态,这使得整个表面空间电荷区中费米能级为常数。 偏压 V 使半导体表面具有表面势,出现表面空间电荷区。 G 空间电荷与电场具有以下关系
6.1 理想MOS结构的表面空间电荷区
载流子积累、耗尽和反型
载流子积累 紧靠硅表面的多数载流子浓度大于体内热平衡多数载流子浓度时,称为载流子积 累现象。 单位面积下的空间电荷
Qs q [ p ( x) p0 ]dx
0
xd
6.1 理想MOS结构的表面空间电荷区
图6-4 几种偏压情况的能带和电荷分布 (a) VG , (b)小的 VG , (c)大的 VG
2 0 12
(6-45)
C 2C VG 1 C0 qN a k S 0
2 0 k 0 V 1 2 G qN a k S x0
2
12
(6-46)
归一化电容 C C 0 随着外加偏压 VG 的增加而减小. 反型区( VG >0)
(6-25)
6.2 理想MOS电容器
小结
归一化电容
C 1 C0 1 C0 C S
Xd kS 0 kS 0 2VG C0 2 1 C0 C0 qkS 0 N a
2 0 12
(6-28)
在耗尽区
(6-45)
2 12
C 2C VG 1 C0 qN a k S 0