结构化学课后答案第四章

合集下载

江元生《结构化学》答案CHAPTER4

江元生《结构化学》答案CHAPTER4

第四章 对称性与群论1. 水分子属于点群2v C ,有四个对称操作:I ,2C ,v σ,'v σ ,试造出乘法表。

解:2. 乙烯)H C (42属于分子2h D ,有八个对称操作,它们是:I ,绕三个相互垂直的二重轴的旋转)(2x C ,)(2y C ,)(2z C ;反演i ;三个相互垂直的反映面xy σ,yz σ,zx σ(参看图5.11),试造出完整的乘法表。

解:3. 对于O H 2,若令z 轴为二重轴,v σ,'v σ分别与xz ,yz 平面重合,试给出所有对称操作作用于向量),,(z y x 的矩阵表示。

若只以y x ,或z 做为被作用向量,结果又如何? 解:),,(z y x 为被作用向量时的矩阵表示为,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100010001I ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1000100012C ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001v σ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100010001'v σy x ,为被作用向量时的矩阵表示为,⎥⎦⎤⎢⎣⎡=1001I ,⎥⎦⎤⎢⎣⎡--=10012C ,⎥⎦⎤⎢⎣⎡-=1001v σ,⎥⎦⎤⎢⎣⎡-=1001'v σz 为被作用向量时的矩阵表示为[]1=I ,[]12=C ,[]1v =σ,[]1'v =σ。

4. 对于O H 2,若以氢原子上的)1,1B A s s (为二维向量,试给出所有对称操作作用于向量)1,1B A s s (的矩阵表示。

解:以氢原子上的)1,1B A s s (为二维向量的对称操作矩阵表示为(这里设O H 2在xz 平面),⎥⎦⎤⎢⎣⎡=1001I ,⎥⎦⎤⎢⎣⎡=01102C ,⎥⎦⎤⎢⎣⎡=1001v σ,⎥⎦⎤⎢⎣⎡=0110'v σ5. 根据矩阵(4-9)式的乘法,说明l j n j n l n l n j n C C C C C +==及I C C jn n j n =-。

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案北师⼤结构化学课后习题第⼀章量⼦理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电⼦等实物粒⼦具有波动性被称作物质波。

物质波的波动性是和微粒⾏为的统计性联系在⼀起的。

对⼤量粒⼦⽽⾔,衍射强度(即波的强度)⼤的地⽅,粒⼦出现的数⽬就多,⽽衍射强度⼩的地⽅,粒⼦出现的数⽬就少。

对⼀个粒⼦⽽⾔,通过晶体到达底⽚的位置不能准确预测。

若将相同速度的粒⼦,在相同的条件下重复多次相同的实验,⼀定会在衍射强度⼤的地⽅出现的机会多,在衍射强度⼩的地⽅出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒⼦,ψψ=ψ*2代表粒⼦的⼏率密度,在时刻t ,空间q 点附近体积元τd 内粒⼦的⼏率应为τd 2ψ;在整个空间找到⼀个粒⼦的⼏率应为 12=ψ?τd 。

表⽰波函数具有归⼀性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平⽅可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒⼦运动状态的波函数⾸先必须是单值的,因为只有当波函数ψ在空间每⼀点只有⼀个值时,才能保证概率密度的单值性;⾄于连续的要求是由于粒⼦运动状态要符合Schr?dinger ⽅程,该⽅程是⼆阶⽅程,就要求波函数具有连续性的特点;平⽅可积的是因为在整个空间中发现粒⼦的概率⼀定是100%,所以积分?τψψd *必为⼀个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,⼀个波可由若⼲个波叠加组成。

这个合成的波含有原来若⼲波的各种成份(如各种不同的波长和频率)。

⽽在量⼦⼒学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某⼀物理量Q 的对应不同本征值的本征态的叠加,使粒⼦部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有⾃⼰的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量⼦⼒学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒⼦的波粒⼆象性。

结构化学习题解答4(北大)

结构化学习题解答4(北大)
3 3
1 0 2

CH3
Cl
[(5.17 1030 C m) 2 (13.4 1030 C m) 2 1 1 2 2 5.17 1030 C m (13.4 1030 C m) ] 2 =5.95×10-30C•m
o C Cl C CH
2
N
CH3 Cl
[解:兹将各分子的序号、点群、旋光性和偶极矩等情况列表如下: 序号 点群 旋光性 偶极矩 a* C2v 无 有 b* Cs 无 有 c C4v 无 有 d D4d 无 无 e C2h 无 无 f Cs 无 有 g C1 有 有
*注:
基团。
在判断分子的点群时,除特别注明外总是将—CH3看作圆球对称性的
(g) H2N
NH2 (μ=5.34×10-30C•m)
[解]: 序号 a b c d
分子 C3O2 SO2 N≡C—C≡N H—O—O—H
几何构型 O=C=C=C=O
点群 D∞h C2v
同左
D∞h
C2
e
f*
O2N—NO2
H2N—NH2
D2h
C2v
g*
H2N
NH2
C2v
[4.16] 指出下列分子的点群、旋光性和偶极矩情况: (a) H3C—O—CH3 (b) H3C—CH=CH2 (c) IF5 (d) S8(环形) (e) ClH2C—CH2Cl(交叉式) NO (f) Br (g)
6.51 1030 C m

3

5.17 1030 C m 13.4 1030 C m
CH3
由推算结果可见,C6H4ClCH3间位异构体偶极矩的推算值和 实验值很吻合,而对位异构体和邻位异构体、特别是邻位异 构体两者差别较大。这既与共轭效应有关,更与紧邻的Cl原 子和—CH3之间的空间阻碍效应有关。事实上,两基团夹角 大于600。

结构化学第四章习题及答案

结构化学第四章习题及答案

第四章习题一、 选择题1. 下面说法正确的是:---------------------------- ( D )(A) 分子中各类对称元素的完全集合构成分子的对称群(B) 同一种分子必然同属于一个点群,不同种分子必然属于不同的点群(C) 分子中有 Sn 轴,则此分子必然同时存在 Cn 轴和σh 面(D) 镜面σd 一定也是镜面σv2. 下面说法正确的是:---------------------------- ( B )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i ,则必有σ(C) 凡是平面型分子必然属于Cs 群(D) 在任何情况下,2ˆn S =E ˆ3. 如果图形中有对称元素S6,那么该图形中必然包含:---------------------------- ( C )(A) C6, σh (B) C3, σh (C) C3,i (D) C6,i二、 填空题1. I3和I6不是独立的对称元素,因为I3= +I ,I6= +σh 。

2. 对称元素C2与σh 组合,得到__ i __;Cn 次轴与垂直它的C2组合,得到_n 个C2__。

3. 有两个分子,N3B3H6和 C4H4F2,它们都为非极性,且为反磁性,则N3B3H6几何构型_平面六元环__,点群 _。

C4H4F2几何构型_平面,有两个双键_,点群 。

三、 判断题1. 既不存在C n 轴,又不存在σh 时,S n 轴必不存在。

---------------------------- ( × )2. 在任何情况下,2ˆnS =E ˆ 。

---------------------------- ( × ) 3. 分子的对称元素仅7种,即σ ,i 及轴次为1,2,3,4,6的旋转轴和反轴。

---------------------------- ( × )四、 简答题1. 写出六重映轴的全部对称操作。

结构化学第四章习题讲解

结构化学第四章习题讲解

《结构化学》第四萃习题4001厶和人不是独立的对称元素• I大1为心___ ,/6= ________4002判断:既不存在G轴.又不存在6时,久轴必不存在。

--------------------- ()4003判断:在任何情况下,S^E。

------------------------- ()4004判断:分子的对称元素仅7种,即o , i及轴次为1. 2. 3, 4, 6的旋转轴和反轴。

4005下面说法正确的是:------------------- ()(A)分子中各类对称元素的完全集合构成分子的对称群(B)同一种分子必然同属于一个点群.不同种分子必然属于不同的点群(C)分子中有&轴.则此分子必然同时存在G轴和6面(D)tfirfliod —定也是镜而64006下面说法正确的是:------------------- ()(A)如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B)分子中若有C,又有i,则必有o(C)凡是平面型分子必然属于C,群(D)在任何情况下,= E4008对称元素G与6组合•得到 ___________________ : C”次轴与垂直它的G组合,得到.4009如果图形中有对称元素S6,那么该图形中必然包含:(A) a. 6 (B)C3,Qh (C)G,i (D)Cj i4010判断:因为映轴是旋转轴与垂直于轴的面组合所得到的对称元素.所以点群分子中必有对称元素6 和Cno ----------------------------- ()4011给出下列点群所具有的全部对称元素:(l)C2h (2) C JV⑶⑺⑷0⑸C引4012假定CuCl卩原來属于门点群,四个C1原子的编号如下图所示。

十出现下面的变化时•点群将如何变化(写出分子点群)。

(1)Cu-Cl(l)键长缩短(2)Cu-Cl(l)和Cu—C1⑵缩短同样长度(3)Cu-Cl(l)和Cu-Cl(2)缩短不同长度(4)0(1)和Cl(2)两原子沿这两原子(5)C1 (1)和CK2)沿其连线逆向移动相同距离.0(3)和Cl(4)亦沿其连线如上同样距离相向移动ci2--Cu-CL (Ch和Cb在纸面以上,X I C12和CX在纸面以下)4013d'(d._ 如.d 2-.2)sp4)杂化的几何构型属于 _________________ 点群°4014已知络合物MAaB:的中心原子M是dtp]杂化.该分子有多少种界构体?这些界构体备属什么点群?4015有一个AB.分子,实验测得其偶极矩为零且有一个三重轴,则此分子所属点群是4016有两个分子,NDH B和CHF"它们都为非极性,且为反磁性,则N3B3H6几何构型 __________________ 点群__________ o C1H4F2几何构型________ ,点群__________ 。

江元生《结构化学》课后习题答案

江元生《结构化学》课后习题答案

第一章 量子理论1. 说明⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ及⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ都是波动方程22222),(1),(t t x a c x t x a ∂∂=∂∂的解。

提示:将),(t x a 代入方程式两端,经过运算后,视其是否相同。

解:利用三角函数的微分公式)cos()sin(ax a ax x=∂∂和)sin()cos(ax a ax x -=∂∂,将⎥⎦⎤⎢⎣⎡-=) (2c o s ),(0t x a t x a νλπ代入方程:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡--∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 2000022t x a t x x a t x x x a t x a x νλπλπνλπλπνλπνλπ左边 ()⎥⎦⎤⎢⎣⎡--=⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡-∂∂=⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-∂∂∂∂=⎥⎦⎤⎢⎣⎡-∂∂=) (2cos 2 ) (2sin 2 ) (2cos ) (2cos 122020200222t x c a t x x c a t x t t c a t x a t c νλππννλππννλπνλπ右边 对于电磁波νλ=c ,所以⎥⎦⎤⎢⎣⎡-=) (2cos ),(0t x a t x a νλπ是波动方程的一个解。

对于⎥⎦⎤⎢⎣⎡-=) (2sin ),(0t x a t x a νλπ,可以通过类似的计算而加以证明:⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 20022t x a t x a x νλπλπνλπ左边()⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-∂∂=) (2sin 2) (2sin 12200222t x c a t x a t c νλππννλπ右边2. 试根据Planck 黑体辐射公式,推证Stefan 定律:4 T I σ=,给出σ的表示式,并计算它的数值。

厦门大学结构化学第4章答案

厦门大学结构化学第4章答案

第三章所给答案中,IF 5是四方锥构型,所以点群为C 4v ,大家更正一下!第一次作业:4-24.2. 对H 2+体系,根据极值条件: , 以及22112222112222aa ab bb aa ab bbc H c c H c H c S c c S c S ε++=++ 导出 解:参考书本《结构化学》厦大版,P97。

22112222112222aa ab bb aa ab bb c H c c H c H YE c S c c S c S Z++==++ …… (1) 2211122211;E Y Y Z E Y Y Z c Z c Z c c Z c Z c ∂∂∂∂∂∂=-=-∂∂∂∂∂∂ …….(2) 又 ,有:11220;0Y Z Y Z E E c c c c ∂∂∂∂-=-=∂∂∂∂ (3)且12122aa ab Y c H c H c ∂=+∂,12122aa abZ c S c S c ∂=+∂;12222ab bb Y c H c H c ∂=+∂, 12222ab bb Z c S c S c ∂=+∂ …… (4) 将(4)代入(3),可导出:第二次作业:4.3, 4.5, 4.6, 4.134.3、比较O 22+、O 2 、O 2-、O 22- 的键长及磁性,并按顺序排列。

解:比较键长从键级的角度分析,键级: 磁性考虑分子是否存在单电子,存在单电子则为顺磁性,不存在单电子则为反磁性的。

(具体原因可参考分子磁性的研究论文)上述各分子的电子组态:O 22+: O 2: O 2-: O 22-: 所以:12()()0aa aa ab ab c H ES c H ES -+-=12()()0ab ab bb bb c H ES c H ES -+-=10c ε∂=∂20c ε∂=∂10E c ∂=∂20Ec ∂=∂12()()0aa aa ab ab c H ES c H ES -+-=12()()0ab ab bb bbc H ES c H ES -+-=1(*)2b n n =-22242222()()()()s s p p KK σσσπ*2224222222()()()()()s s p p p KK σσσππ**2224322222()()()()()s s p pp KK σσσππ**2224422222()()()()()s s p p p KK σσσππ**4-5 根据N 2+、N 2、N 2- 的电子组态,预测各体系N-N 键长度,并比较它们的稳定性。

结构化学课后答案第四章

结构化学课后答案第四章

04分子的对称性【4.1】HCN和CS2都是直线型分子,写出该分子的对称元素。

解:HCN : C::f ;CS2:C::,C2 ,i【4.2】写出H3C CI分子中的对称元素。

解:C3,G3【4.3】写出三重映轴S和三重反轴1 3的全部对称操作。

解:依据三重映轴S3所进行的全部对称操作为:s3=<ih C3 &=町s3 = c3 s3 s3 = E依据三重反轴1 3进行的全部对称操作为:I3=Q3, ifI34二c3, i3s4 =Oh C;,S4 =C2,s^=^h C43,s4 = E依据|4进行的全部对称操作为:1 1 214 =0,丨4【4.5】写出二xz和通过原点并与轴重合的C2轴的对称操作C2的表示矩阵。

【4.6】用对称操作的表示矩阵证明:(a)C2 z 匚=i (匕)C2 x C2 y = C2 z (C)L=C2 z解:(a)■x lj y =C=C3 , 13 = i =iC; , I3 =E【4.4】写出四重映轴S4和四重反轴1 4的全部对称操作。

解:依据S4进行的全部对称操作为:解:-10 0〕■100〕^xz =0—1 0_1100 1_卫0T」C 2 z;「xy 云 1 1推广之,有, C 2n z ;「xy = ;「xy C 2n z =i即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

C 2轴,则其交点上必定出现垂直于这两个 C 2轴的第三个C 2轴。

推广之,交角为2二/2n 的两个轴组合,在其交点上必定出现一个垂直于这两个 C 2轴C n 轴,在垂直于C n 轴且过交点的平面内必有 n 个C 2轴。

进而可推得,一个C n 轴与垂 直于它的C 2轴组合,在垂直于 C n 的平面内有n 个C 2轴,相邻两轴的夹角为 2二/2n 。

这说明,两个互相垂直的镜面组合, 可得一个C 2轴,此C 2轴正是两镜面的交线。

推而广之, 若两个镜面相交且交角为 2- /2n ,则其交线必为一个 n 次旋转轴。

(完整版)结构化学习题答案第4章

(完整版)结构化学习题答案第4章

2组长:070601314组员:070601313070601315070601344070601345070601352第四章 双原子分子结构与性质1.简述 LCAO-MO 的三个基本原则,其依据是什么?由此可推出共价键应具有什么样的特征?答:1.(1)对称性一致(匹配)原则: φa = φs 而φb = φ pz 时, φs 和φ pz 在σˆ yz 的操作下对称性一致。

故 σˆ yz ⎰φs H ˆφ pz d τ = β s , pz ,所以, β s , pz ≠ 0 ,可以组合成分子轨道(2)最大重叠原则:在 α a 和α b 确定的条件下,要求 β 值越大越好,即要求 S ab 应尽可能的大(3)能量相近原则: 当α a = α b 时,可得 h = β ,c 1a = c 1b , c 1a =- c 1b ,能有效组合成分子轨道;2.共价键具有方向性。

2、以 H 2+为例,讨论共价键的本质。

答:下图给出了原子轨道等值线图。

在二核之间有较大几率振幅,没有节面,而在核间值则较小且存在节面。

从该图还可以看出,分子轨道不是原子轨道电子云的简单的加和,而是发生了波的叠加和强烈的干涉作用。

图 4.1 H + 的 ψ 1(a)和 ψ 2(b)的等值线图研究表明,采用 LCAO-MO 法处理 H 2+是成功的,反映了原子间形成共价键 的本质。

但由计算的得到的 Re=132pm ,De=170.8kJ/mol ,与实验测定值Re=106pm、De=269.0 kJ/mol 还有较大差别,要求精确解,还需改进。

所以上处理方法被称为简单分子轨道法。

当更精确的进行线性变分法处理,得到的最佳结果为Re=105.8pm、De=268.8 kJ/mol,十分接近H2+的实际状态。

成键后电子云向核和核间集中,被形象的称为电子桥。

通过以上讨论,我们看到,当二个原子相互接近时,由于原子轨道间的叠加,产生强烈的干涉作用,使核间电子密度增大。

北师大结构化学课后习题答案

北师大结构化学课后习题答案

北师大构造化学课后习题第一章量子理论根底习题答案1什么是物质波与它的统计说明?参考答案:象电子等实物粒子具有波动性被称作物质波。

物质波的波动性是与微粒行为的统计性联络在一起的。

对大量粒子而言,衍射强度〔即波的强度〕大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。

对一个粒子而言,通过晶体到达底片的位置不能精确预料。

假设将一样速度的粒子,在一样的条件下重复屡次一样的试验,肯定会在衍射强度大的地方出现的时机多,在衍射强度小的地方出现的时机少。

因此依据波恩物质波的统计说明,对于单个粒子,ψ2代表粒子的几率密度,在ψ*=ψ时刻t,空间q点旁边体积元τd内粒子的几率应为τd2ψ;在整个空间找到一个粒子的几率应为12⎰τd。

表示波函数具有归ψ=一性。

2如何理解合格波函数的根本条件?参考答案合格波函数的根本条件是单值,连续与平方可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描绘微观粒子运动状态的波函数首先必需是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间必为一个有限中发觉粒子的概率肯定是100%,所以积分⎰τψdψ*数。

3如何理解态叠加原理?参考答案在经典理论中,一个波可由假设干个波叠加组成。

这个合成的波含有原来假设干波的各种成份〔如各种不同的波长与频率〕。

而在量子力学中,按波函数的统计说明,态叠加原理有更深入的含义。

某一物理量Q的对应不同本征值的本征态的叠加,使粒子部分地处于Q1状态,部分地处于Q2态,……。

各种态都有自己的权重〔即成份〕。

这就导致了在态叠加下测量结果的不确定性。

但量子力学可以计算出测量的平均值。

4测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。

5铝的逸出功是4.2eV,用2000Å的光照耀时,问〔a〕产生的光电子动能是多少?(b)及其相联络的德布罗依波波长是多少?(c)假如电子位置不确定量及德布罗依波波长相当,其动量不确定量如何?参考答案(a)依据爱因斯坦光电方程W m h +=221υν,又λνc =,得光电子动能:(b)由德布罗依关系式,相应的物质波波长为(c) 由不确定关系式h Px x ≥∆⋅∆,假设位置不确定量λ≈∆x ,那么动量不确定量6波函数e -x (0≤x≤¥)是否是合格波函数,它归一化了吗?如未归一化,求归一化常数。

《结构化学》第四章习题答案

《结构化学》第四章习题答案

《结构化学》第四章习题答案4001C3+i; C3+σh4002(非)4003(非)4004不对4005(D)4006(B)4008i; n个C24009(C)4010(否)4011①C2h: C2(1), σh(1),i②C3v: C3(1),σv(3)③S4 : I4或S4④D2: C2(3)⑤C3i: C3(1),i4012(1) C3v(2) C2v(3) C s(4) C2v(5) D2d4013D3h4014有2 种异构体; 其一属于C2v,另一属于D4h。

4015D3h4016①平面六元环; ②D3h ; ③平面,有两个双键; ④C2h4017(1) D4h(2) C4v(3) C2v(4) D5h(5) C s4018C3v; C34019(C)4020(E)4022是4023D34024SO3: D3h;SO32-: C3v;CH3+: D3h;CH3-: C3v;BF3: D3h。

4025(1) D2h;(2) D2d;(3) D2。

4026C3v; D2h; O h; C3v; C3v。

4027(B)4028C2和D2h4029C2v; ∏344030SO2: C2v;CO2: D∞h;304031C s; C3v; C s。

4032D4h; C3v; C2; C s; D2h; T d。

4033C2v; C2v;。

4034I84035(A)4036(D)4037(D)4038(A)4039(B)4041(C)40424043C n;D n; T; O。

4044I n:分子有I n,无旋光;分子无I n,可能观察到旋光。

4045(E)4046(1) C3v,有(2) C2v,有(3) D3h,无(4) D2d,无(5) C s,有4047(1) C s,有(2) D∞v,有(3) C2,有(4) D5h,无(5) C2v,有4048C n4049点群旋光性偶极矩C i无无C n有有C nh无无C nv无有S n无无D n有无D nh无无D nd无无T d无无O h无无4050D n或T或O ; C nv40514052D3h; D3d; D3。

结构化学_第四章习题(周公度)_群论

结构化学_第四章习题(周公度)_群论

10、联苯 C6H5—C6H5 有三种不同的构象,两苯环的二面角(a)分别为:a=0 (2) a=90o 种构想的点群 2
解:(1) a=0
两个苯环在一个平面内,联苯分子属于 D 2h 点群
(2) a=90o 两个苯环相互垂直,分子含有 1 个通过两个苯环相连的 C-C 键轴方向的 C2 轴,两个通过两个苯环二 面角 45o 方向的 C2 轴,2 个σ v,分子属于 D 2d 点群。 (3) 0< a <90o 分子含有 1 个通过两个苯环相连的 C-C 键轴方向的 C2 轴,分子属于 C2 点群。 11、SF5 分子的形状和 SF 6 相似,试指出它的点群 解 SF 5 分子为四方锥构型;SF6 分子为八面体构型。 SF 5 分子属于 C4v 点群,SF6 分子属于 O h 点群 12、画一立方体,在 8 个顶角上放 8 个相同的球,写明编号。若(1)去掉 2 个球,(2)去掉 3 个球。分别列表指出所 去掉的球的号数,指出剩余的球构成的图形属于什么点群
3
Cl N Ni N Cl A
A 属于 C2V 群,有极性无旋光性 B 属于 C2V 群,有极性无旋光性 C 属于 C1 群,有极性有旋光性 D 属于 C1 群,有极性有旋光性
NH3 NH3 NH3 N NH3 B N Ni Cl N Cl N
NH3 NH3 Cl Cl C N N
NH3 Cl Ni NH3 Cl D
V V

h
3、写出三重映轴 S3 和三重反轴 I3 的全部对称操作 解:S31=C3σ ; S32=C32 ; S33=σ ; S34= C3 ; S35 = C32σ I31= C3i ; I32=C32 ; I33= i; I34= C3 ; I35 = C32i 4、写出四重映轴 S4 和四重反轴 I4 的全部对称操作 解:S41=C4σ ; S42=C2 ; S43=C43σ ; S44= E I41= C4i ; I42=C2 ; I43=C43 i; I44= E 5、写出σ 解:σ

结构化学课后习题答案

结构化学课后习题答案

结构化学课后习题答案结构化化学课后习题答案一、化学键与分子结构1. 选择题a) 正确答案:D解析:选择题中,选项D提到了共价键的形成是通过电子的共享,符合共价键的定义。

b) 正确答案:B解析:选择题中,选项B提到了离子键的形成是通过电子的转移,符合离子键的定义。

c) 正确答案:C解析:选择题中,选项C提到了金属键的形成是通过金属原子之间的电子云重叠,符合金属键的定义。

d) 正确答案:A解析:选择题中,选项A提到了氢键的形成是通过氢原子与高电负性原子之间的吸引力,符合氢键的定义。

2. 填空题a) 正确答案:共价键解析:填空题中,根据问题描述,两个非金属原子之间的键称为共价键。

b) 正确答案:离子键解析:填空题中,根据问题描述,一个金属原子将电子转移到一个非金属原子上形成的键称为离子键。

c) 正确答案:金属键解析:填空题中,根据问题描述,金属原子之间的电子云重叠形成的键称为金属键。

d) 正确答案:氢键解析:填空题中,根据问题描述,氢原子与高电负性原子之间的吸引力形成的键称为氢键。

二、有机化学1. 选择题a) 正确答案:C解析:选择题中,选项C提到了烷烃是由碳和氢组成的,符合烷烃的定义。

b) 正确答案:D解析:选择题中,选项D提到了烯烃是由含有一个或多个双键的碳原子组成的,符合烯烃的定义。

c) 正确答案:B解析:选择题中,选项B提到了炔烃是由含有一个或多个三键的碳原子组成的,符合炔烃的定义。

d) 正确答案:A解析:选择题中,选项A提到了芳香烃是由芳香环结构组成的,符合芳香烃的定义。

2. 填空题a) 正确答案:醇解析:填空题中,根据问题描述,含有羟基(-OH)的有机化合物称为醇。

b) 正确答案:醚解析:填空题中,根据问题描述,含有氧原子连接两个碳原子的有机化合物称为醚。

c) 正确答案:酮解析:填空题中,根据问题描述,含有羰基(C=O)的有机化合物称为酮。

d) 正确答案:酯解析:填空题中,根据问题描述,含有羧基(-COO)的有机化合物称为酯。

结构化学答案 CHAPTER4

结构化学答案 CHAPTER4
16.苯分子属于点群 ,但对6个H上的 轨函的分类,只需用子群 ,(1)试根据点群 ,给出以6个 轨函为基的群表示的约化结果;(2)对6个C原子的 轨函,群表示的约化结果是否相似;(3)若认为6个C-H键是这两组轨道组合成的,试给出对应的能级图。
解: 群的特征标表如下
——————————————————————————————————
7.通过矩阵相乘,求证(4-22)式和(4-23)式,即 , 。
解:


8.证明Abel群的两个性质:(i)群中的每一元素自成一类;(ii)所有不可约表示都是一维的。
解:
(i)对于Abel群有, 。对此式两边同乘以 得 ,即 自成一类。
(ii)设Abel群的阶为 ,又群中的每一元素自成一类,即共轭类的数目为 。根据4.5.2定理1,群的不可约表示的数目等于共轭类数,不可约表示的数目为 。根据4.5.2定理2,群的不可约表示维数平方和等于阶数,即 ,这要求所有的维数 。
同样的理由可以说明其它轨函的对称性归属.
当然,也可以根据特征标表给出的各不可约表示基函数直接判断.如Eg不可约表示的基函数为z2,x2-y2,由于, , 的对称性变换性质和z2,x2-y2一致,故而 , 属于Eg不可约表示.
18.当有一个氘离子D+在三重轴方向与NH3结合成NH3D+,试问 的能级图4.7将发生什么变化,请画出NH3D+的能级图。
(3)
17.过渡金属络合物 具有 对称性,属于金属原子 的价轨道有 , , ; , ; , , 及 ,试说明它们的不可约表示类是: , ,及 。
解:判断一个轨函属于何种不可约表示,主要是根据其在群的各生成元的作用下的变换性质.Oh群的生成元为C4, C3, C2,i.可以验证,上述原子轨道中dxy,dyz,dxz在这些对称操作下的变换性质是相同的:例如, C4( ) = , C4( ) = , C4( ) = .所以对于这三个轨函, C4的特征标(C4)为1.同理,(C3)=0,(C2)=1.根据这些信息,就可以判断出,这三个轨函应该属于T2g或T2u,由于 , , 是中心对称的, , , 就只能属于T2g.

结构化学习题答案

结构化学习题答案

《结构化学》第四章习题4001I3和I6不是独立的对称元素,因为I3= ,I6= 。

4002 判断:既不存在C n轴,又不存在σh时,S n轴必不存在。

---------------------------- ( ) 4003 判断:在任何情况下,2ˆnS=Eˆ。

---------------------------- ( )4004 判断:分子的对称元素仅7种,即σ,i及轴次为1,2,3,4,6的旋转轴和反轴。

( ) 4005 下面说法正确的是:---------------------------- ( )(A) 分子中各类对称元素的完全集合构成分子的对称群(B) 同一种分子必然同属于一个点群,不同种分子必然属于不同的点群(C) 分子中有S n轴,则此分子必然同时存在C n轴和σh面(D) 镜面σd一定也是镜面σv4006 下面说法正确的是:---------------------------- ( )(A) 如构成分子的各类原子均是成双出现的,则此分子必有对称中心(B) 分子中若有C4,又有i,则必有σ(C) 凡是平面型分子必然属于C s群(D) 在任何情况下,2ˆnS=Eˆ4008 对称元素C2与σh组合,得到___________________;C n次轴与垂直它的C2组合,得到______________。

4009 如果图形中有对称元素S6,那么该图形中必然包含:---------------------------- ( )(A) C6,σh(B) C3,σh(C) C3,i(D) C6,i4010判断:因为映轴是旋转轴与垂直于轴的面组合所得到的对称元素,所以S n点群分子中必有对称元素σh和C n。

---------------------------- ( )4011 给出下列点群所具有的全部对称元素:(1) C2h(2) C3v(3) S4(4) D2(5) C3i4012 假定CuCl43-原来属于T d点群,四个Cl 原子的编号如下图所示。

结构化学第四章分子的对称性习题及答案

结构化学第四章分子的对称性习题及答案

一、填空题
1.群的表示可分为可约表示和不可约表示。

2.判断分子有无旋光性的标准是是否具有反轴。

3. 分子有无偶极矩与分子对称性有密切关系,只有属于C n和C nv这两类点群的分子才具有偶极矩,而其它点群的分子偶极矩为0。

二、选择题
1. CO2分子没有偶极矩,表明该分子是【D 】
A. 以共价键结合的
B. 以离子键结合的
C. V形的
D. 线形的,并且有对称中心
2. 根据分子的对称性,可知CCl4分子的偶极矩等于【A 】
A. 0
B.
C.
D.
3. 组成点群的群元素是什么【A 】
A. 对称操作
B. 对称元素
C. 对称中心
D. 对称面
4. CH4属于下列哪类分子点群【A 】
A. T d
B. D h
C. C3v
D. C s
5. H2O属于下列哪类分子点群【 A 】
A. C2v
B. C3v
C. C2h
D. O h
三、回答问题
1. 找出H2O分子和NH3分子的对称元素和对称操作及其所属点群,并建立其对称操作的乘积表。

课本第125页:表和表课本第142页:表。

结构化学第四章习题答案

结构化学第四章习题答案

结构化学第四章习题答案结构化学第四章习题答案第一题:a) 分子式为C6H12O6的化合物是葡萄糖。

b) 分子式为C6H12O6的同分异构体有葡萄糖、果糖和半乳糖。

c) 分子式为C5H10O5的化合物是蔗糖。

d) 葡萄糖和果糖是差异在于它们的羟基位置不同,葡萄糖的羟基在1号碳上,而果糖的羟基在2号碳上。

e) 蔗糖是由葡萄糖和果糖通过缩合反应形成的二糖。

第二题:a) 分子式为C2H6O的化合物是乙醇。

b) 分子式为C3H6O的化合物是丙酮。

c) 分子式为C3H8O的化合物是异丙醇。

d) 乙醇和丙酮都是醇类化合物,它们的区别在于它们的碳链长度不同。

e) 异丙醇是一个异构体,与乙醇和丙酮相比,它的碳链上有一个甲基基团。

第三题:a) 分子式为CH3COOH的化合物是乙酸。

b) 分子式为CH3COCH3的化合物是乙酮。

c) 分子式为CH3COOCH3的化合物是乙酸甲酯。

d) 乙酸和乙酮都是含有羰基的化合物,但乙酸是酸性化合物,而乙酮是酮类化合物。

e) 乙酸甲酯是乙酸和甲醇通过酯化反应形成的酯类化合物。

第四题:a) 分子式为HCl的化合物是氯化氢。

b) 分子式为H2SO4的化合物是硫酸。

c) 分子式为HNO3的化合物是硝酸。

d) 氯化氢是一种无机酸,硫酸和硝酸也是无机酸。

e) 硫酸和硝酸都是强酸,而氯化氢是弱酸。

第五题:a) 分子式为NH3的化合物是氨。

b) 分子式为H2O的化合物是水。

c) 分子式为CO2的化合物是二氧化碳。

d) 氨是一种碱性化合物,水是中性化合物,而二氧化碳是酸性化合物。

e) 氨和水可以发生酸碱中和反应,生成氨水。

结构化学是一门研究化学物质分子结构及其性质的学科。

通过学习分子式和化合物的命名规则,我们可以了解不同化合物的组成和结构,进而推断其性质和反应。

本章习题主要涉及有机化合物和无机酸碱的命名和性质,通过解答这些习题,我们可以加深对这些概念的理解。

在第一题中,我们学习了有机化合物的命名和同分异构体的概念。

北师大_结构化学课后习题答案

北师大_结构化学课后习题答案

北师大 结构化学 课后习题第一章 量子理论基础习题答案1 什么是物质波和它的统计解释?参考答案:象电子等实物粒子具有波动性被称作物质波。

物质波的波动性是和微粒行为的统计性联系在一起的。

对大量粒子而言,衍射强度(即波的强度)大的地方,粒子出现的数目就多,而衍射强度小的地方,粒子出现的数目就少。

对一个粒子而言,通过晶体到达底片的位置不能准确预测。

若将相同速度的粒子,在相同的条件下重复多次相同的实验,一定会在衍射强度大的地方出现的机会多,在衍射强度小的地方出现的机会少。

因此按照波恩物质波的统计解释,对于单个粒子,ψψ=ψ*2代表粒子的几率密度,在时刻t ,空间q 点附近体积元τd 内粒子的几率应为τd 2ψ;在整个空间找到一个粒子的几率应为12=ψ⎰τd 。

表示波函数具有归一性。

2 如何理解合格波函数的基本条件?参考答案合格波函数的基本条件是单值,连续和平方可积。

由于波函数2ψ代表概率密度的物理意义,所以就要求描述微观粒子运动状态的波函数首先必须是单值的,因为只有当波函数ψ在空间每一点只有一个值时,才能保证概率密度的单值性;至于连续的要求是由于粒子运动状态要符合Schrödinger 方程,该方程是二阶方程,就要求波函数具有连续性的特点;平方可积的是因为在整个空间中发现粒子的概率一定是100%,所以积分⎰τψψd *必为一个有限数。

3 如何理解态叠加原理?参考答案在经典理论中,一个波可由若干个波叠加组成。

这个合成的波含有原来若干波的各种成份(如各种不同的波长和频率)。

而在量子力学中,按波函数的统计解释,态叠加原理有更深刻的含义。

某一物理量Q 的对应不同本征值的本征态的叠加,使粒子部分地处于Q 1状态,部分地处于Q 2态,……。

各种态都有自己的权重(即成份)。

这就导致了在态叠加下测量结果的不确定性。

但量子力学可以计算出测量的平均值。

4 测不准原理的根源是什么?参考答案根源就在于微观粒子的波粒二象性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04分子的对称性【4.1】HCN 和2CS 都是直线型分子,写出该分子的对称元素。

解:HCN :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞【4.2】写出3H CCl 分子中的对称元素。

解:()3,3C υσ【4.3】写出三重映轴3S 和三重反轴3I 的全部对称操作。

解:依据三重映轴S 3所进行的全部对称操作为:1133h S C σ=,2233S C =,33h S σ= 4133S C =,5233h S C σ=,63S E = 依据三重反轴3I 进行的全部对称操作为:1133I iC =,2233I C =,33I i = 4133I C =,5233I iC =,63I E =【4.4】写出四重映轴4S 和四重反轴4I 的全部对称操作。

解:依据S 4进行的全部对称操作为:11213344442444,,,h h S C S C S C S E σσ====依据4I 进行的全部对称操作为:11213344442444,,,I iC I C I iC I E ====【4.5】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。

解:100010001xz σ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦, ()12100010001x C ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦【4.6】用对称操作的表示矩阵证明: (a )()2xy C z i σ= (b ) ()()()222C x C y C z = (c ) ()2yz xz C z σσ=解:(a )()()1122xy z z x x x C y C y y z z z σ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, x x i y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()12xy z C iσ=推广之,有,()()1122xy xy n z n z C C i σσ==即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

(b )()12z x x C y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 这说明,若分子中存在两个互相垂直的C 2轴,则其交点上必定出现垂直于这两个C 2轴的第三个C 2轴。

推广之,交角为2/2n π的两个轴组合,在其交点上必定出现一个垂直于这两个C 2轴n C 轴,在垂直于n C 轴且过交点的平面内必有n 个C 2 轴。

进而可推得,一个n C 轴与垂直于它的C 2 轴组合,在垂直于n C 的平面内有n 个C 2 轴,相邻两轴的夹角为2/2n π。

(c )yz xz yz x x x y y y z z z σσσ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ ()12z x x C y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ()12yz xz x C σσ=这说明,两个互相垂直的镜面组合,可得一个2C 轴,此2C 轴正是两镜面的交线。

推而广之,若两个镜面相交且交角为2/2n π,则其交线必为一个n 次旋转轴。

同理,n C 轴和通过该轴的镜面组合,可得n 个镜面,相邻镜面之交角为2/2n π。

【4.7】写出ClHC CHCl =(反式)分子全部对称操作及其乘法表。

解:反式C 2H 2C l2分子的全部对称操作为:12,,,h E C i σ【4.8】写出下列分子所归属的点群:HCN ,3SO ,氯苯()65C H Cl ,苯()66C H ,萘()108C H 。

【4.9】判断下列结论是否正确,说明理由。

(a ) 凡直线型分子一定有C ∞轴;(b ) 甲烷分子有对称中心; (c ) 分子中最高轴次()n 与点群记号中的n 相同(例如3h C 中最高轴次为3C 轴);(d ) 分子本身有镜面,它的镜像和它本身相同。

解:(a ) 正确。

直线形分子可能具有对称中心(h D ∞点群),也可能不具有对称中心(v C ∞点群)。

但无论是否具有对称中心,当将它们绕着连接个原子的直线转动任意角度时,都能复原。

因此,所有直线形分子都有C ∞轴,该轴与连接个原子的直线重合。

(b ) 不正确。

因为,若分子有对称中心,则必可在从任一原子至对称中心连线的延长线上等距离处找到另一相当原子。

甲烷分子(d T 点群)呈正四面体构型,显然不符合此条件。

因此,它无对称中心。

按分子中的四重反轴进行旋转-反演操作时,反演所依据的“反轴上的一个点”是分子的中心,但不是对称中心。

事实上,属于d T 点群的分子皆无对称中心。

(c ) 就具体情况而言,应该说(c )不全错,但作为一个命题,它就错了。

这里的对称轴包括旋转轴和反轴(或映轴)。

在某些情况中,分子最高对称轴的轴次(n )与点群记号中的n 相同,而在另一些情况中,两者不同。

这两种情况可以在属于nh C ,nh D 和nd D 等点群的分子中找到。

在nh C 点群的分子中,当n 为偶数时,最高对称轴是n C 轴或n I 轴。

其轴次与点群记号中的n 相同。

例如,反式C 2H 2Cl 2分子属2h C 点群,其最高对称轴为2C 轴,轴次与点群记号的n 相同。

当n 为基数时,最高对称轴为2h I ,即最高对称轴的轴次是分子点群记号中的n 的2倍。

例如,H 3BO 3分子属2h C 点群,而最高对称轴为6I 。

在nh D 点群的分子中,当n 为基数时,最高对称轴为n C 轴或n I 轴,其轴次(n )与点群记号中的n 相同。

例如,C 6H 6分子属6h D 点群,在最高对称轴为6C 或6I ,轴次与点群记号中的n 相同。

而当n 为奇数时,最高对称轴为2n I ,轴次为点群记号中的n 的2倍。

例如,CO 3-属3h D 点群,最高对称轴为6I ,轴次是点群记号中的n 的2倍。

在nd D 点群的分子中,当n 为奇数时,最高对称轴为n C 轴或n I 轴,其轴次与分子点群记号中的n 相同。

例如,椅式环己烷分子属3d D 点群,其最高对称轴为3C 或3I ,轴次与点群记号中的n 相同。

当n 为偶数时,最高对称轴为2n I ,其轴次是点群记号中n 的2倍。

例如,丙二烯分子属2d D 点群,最高对称轴为4I 。

轴次是点群记号中的n 的2倍。

(d )正确。

可以证明,若一个分子具有反轴对称性,即拥有对称中心,镜面或4m (m 为正整数)次反轴,则它就能被任何第二类对称操作(反演,反映,旋转-反演或旋转-反映)复原。

若一个分子能被任何第二类对称操作复原,则它就一定和它的镜像叠合,即全同。

因此,分子本身有镜面时,其镜像与它本身全同。

【4.10】联苯6565C H C H -有三种不同构象,两苯环的二面角()α分别为:(a )0α=,(b )090α=,(c )0090α<<,试判断这三种构象的点群。

解:【4.11】5SF Cl 分子的形状和6SF 相似,试指出它的点群。

解:SF 6分子呈正八面体构型,属h O 点群。

当其中一个F 原子被Cl 原子取代后,所得分子SF 5Cl 的形状与SF 6 分子的形状相似(见图4.11),但对称性降低了。

SF 5Cl 分子的点群为4v C 。

图4.11 SF 5Cl 的结构【4.12】画一立方体,在8个顶角上放8个相同的球,写明编号。

若:(a )去掉2个球,(b )去掉3个球。

分别列表指出所去掉的球的号数,指出剩余的球的构成的图形属于什么点群? 解:图4.12示出8个相同求的位置及其编号。

(a ) 去掉2个球:去掉的球的号数所剩球构成的图形所属的点群 图形记号1和2,或任意两个共棱的球 2C υ A 1和3,或任意两个面对角线上的球2C υB 1和7,或任意两个体对角线上的球 3d D C去掉的球的号数所剩球构成的图形所属的点群 图形记号1,2,4或任意两条相交的棱上的三个球 5C D 1,3,7或任意两条平行的棱上的三个球5CE 1,3,8或任意由3C 轴联系起来的三个球 3C υF123456781234567812345678ABC123456781234567812345678DEF【4.13】判断一个分子有无永久偶极矩和有无旋光性的标准分别是什么?解:凡是属于n C 和n C υ点群的分子都具有永久偶极距,而其他点群的分子无永久的偶极距。

由于11h s C C C υ≡≡,因而s C 点群也包括在n C υ点群之中。

凡是具有反轴对称性的分子一定无旋光性,而不具有反轴对称性的分子则可能出现旋光性。

“可能”二字的含义是:在理论上,单个分子肯定具有旋光性,但有时由于某种原因(如消旋或仪器灵敏度太低等)在实验上测不出来。

反轴的对称操作是一联合的对称操作。

一重反轴等于对称中心,二重反轴等于镜面,只有4m 次反轴是独立的。

因此,判断分子是否有旋光性,可归结为分子中是否有对称中心,镜面和4m 次反轴的对称性。

具有这三种对称性的分子(只要存在三种对称元素中的一种)皆无旋光性,而不具有这三种对称性的分子都可能有旋光性。

【4.14】作图给出()()322Ni en NH Cl 可能的异构体及其旋光性。

解:见图4.14图4.14【4.15】由下列分子的偶极矩数据,推测分子立体构型及其点群。

(a ) 32C O()0μ=(b ) 2SO ()305.4010C m μ-=⨯⋅(c ) N C C N ≡-≡ ()0μ=(d ) H O O H ---()306.910C m μ-=⨯⋅(e ) 22O N NO -()0μ=(f ) 22H N NH - ()306.1410C m μ-=⨯⋅(g )NH 2NH 2()305.3410C m μ-=⨯⋅解:注:由于N 原子中有孤对电子存在,使它和相邻3个原子形成的化学键呈三角锥形分布。

【4.16】指出下列分子的点群、旋光性和偶极矩情况:(a ) 33H C O CH -- (b ) 32H C CH CH -= (c ) 5IF(d ) 8S (环形) (e )22ClH C CH Cl -(交叉式)(f )BrN (g )33【4.17】请阐明表4.4.3中4对化学式相似的化合物,偶极矩不同,分子构型主要差异是什么?解:在C 2H 2分子中,C 原子以sp 杂化轨道分别与另一C 原子的sp 杂化轨道和H 原子的1s轨道重叠形成的两个σ键;两个C 原子的x p 轨道相互重叠形成x π键,y p轨道相互重叠形成yπ键,分子呈直线形,属h D ∞点群,因而偶极距为0。

而在H 2O 2分子中,O 原子以3sp 杂化轨道(也有人认为以纯p 轨道)分别与另一个O 原子的3sp 杂化轨道和H 原子的1s 轨道重叠形成的两个夹角为9652'的σ键;两O H -键分布在以过氧键O O ---为交线、交角为9351'的两个平面内,分子呈弯曲形(见4.15题答案附图),属2C 点群,因而有偶极距。

相关文档
最新文档