11.6一元一次不等式组(4) 课件 (苏科版七年级下)

合集下载

七年级数学下册第11章一元一次不等式11.5用一元一次不等式解决问题作业设计(新版)苏科版

七年级数学下册第11章一元一次不等式11.5用一元一次不等式解决问题作业设计(新版)苏科版

精品文档,欢迎下载如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!11.5 用一元一次不等式解决问题一.选择题(共13小题)1.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.12道B.13道C.14道D.15道2.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4 B.3 C.2 D.13.某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折4.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A.B.C.D.5.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读()A.50页B.60页C.80页D.100页6.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.2 800x≥2400×5%B.2800x﹣2400≥2400×5%C.2 800×≥2400×5%D.2 800×﹣2400≥2400×5%7.一位老师说,他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球,则这个班的学生最多有()人.A.36人B.48人C.59人D.0人8.自来水公司的收费标准如下:若每户用水不超过5立方米,则每立方米收费2.8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月用水量至少()A.11立方米B.10立方米C.9立方米D.5立方米9.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元10.王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.211.南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.912.一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队赢了的场数最少为()A.3 B.4 C.5 D.613.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300C.100+5x>300 D.100+5x≥300二.填空题(共9小题)14.甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过元时,在甲商场购物花费少.15.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为元/千克.16.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买支冰激凌.17.在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是场.18.老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了只种兔?19.某工程队计划在10天内修路6km.现计划发生变化,准备8天完成修路任务,那么这8天平均每天至少要修路多少?设这8天平均每天要修路xkm,依题意得一元一次不等式为:.20.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为.21.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.22.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出环的成绩.三.解答题(共6小题)23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?24.某校艺术节时欲购40盆花卉布置舞台.现有甲、乙两种花卉可供选择,已知甲种花卉的单价为18元/盆,乙种花卉的单价为25元/盆.若学校计划用于购买花卉的费用最多为860元,且购买乙花卉不少于18盆.请你为该校设计购买方案,并求出最小的费用是多少元?25.青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.(1)求每袋大米和面粉各多少元?(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?26.为弘扬中华优秀传统文化,某中学在全校开展诵读古诗词竞赛活动.测试题共有27道题,评分办法规定:答对一道题得10分,不答得0分,答错一道题倒扣5分,小明有1道题未答,他若得分不低于95分,至少要答对几道题?(I)分析:若设小明答对x道题,则可得分,答错道题,要倒扣分;(用含x的式子表示)(Ⅱ)根据题意,列出不等式,完成本题解答.27.小诚响应“低碳环保,绿色出行”的号召,一直坚持跑步与步行相结合的上学方式.已知小诚家距离学校2200米,他步行的平均速度为80米/分,跑步的平均速度为200米/分.若他要在不超过20分钟的时间内从家到达学校,至少需要跑步多少分钟?28.蔬菜经营户老王,近两天经营的是青菜和西兰花.(1)昨天的青菜和西兰花的进价和售价如下表,老王用600元批发青菜和西兰花共200斤,老王昨天青菜和西兰花各进了多少斤?青菜西兰花进价(元/斤) 2.6 3.4售价(元/斤) 3.6 4.6(2)今天因进价不变,老王仍用600元批发青菜和西兰花共200斤,但在运输中青菜损坏了10%,而西兰花没有损坏仍按昨天的售价销售,要想当天售完后所赚的钱不少于昨天所赚的钱,请你帮老王计算,青菜每斤售价至少为多少元?参考答案与试题解析一.选择题(共13小题)1.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.12道B.13道C.14道D.15道【分析】设小明至少答对的题数是x道,答错的为(20﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣x)≥60,x≥14,故应为15.故选:D.【点评】本题考查一元一次不等式的应用.首先要明确题意,找到关键描述语即可解出所求的解.2.小红准备用50元钱买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小红最多能买甲种饮料的瓶数是()A.4 B.3 C.2 D.1【分析】首先设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意可得不等关系:甲饮料的花费+乙饮料的花费≤50元,根据不等关系可列出不等式,再求出整数解即可.【解答】解:设小红能买甲种饮料的瓶数是x瓶,则可以买乙饮料(10﹣x)瓶,由题意得:7x+4(10﹣x)≤50,解得:x≤,∵x为整数,∴x=0,1,2,3,则小红最多能买甲种饮料的瓶数是3瓶.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,找出合适的不等关系,设出未知数,列出不等式.3.某商品进价是6000元,标价是9000元,商店要求利润率不低于5%,需按标价打折出售,最低可以打()A.8折B.7折C.7.5折D.8.5折【分析】利用打折是在原价的基础上,利润是在进价的基础上得出,进而得出不等式关系求出即可.【解答】解:设商店可以打x折出售此商品,根据题意可得:,解得:x≥7,故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等式关系是解题关键.4.某商品的标价比成本价高m%,现根据市场需要,该商品需降价n%岀售.为了使获利不低于10%,n应满足()A.B.C.D.【分析】根据最大的降价率即是保证售价大于等于获利不低于10%,进而得出不等式即可.【解答】解:设成本为a元,由题意可得:a(1+m%)(1﹣n%)﹣(1+10%)a≥0,则(1+m%)(1﹣n%)﹣1.1≥0,去括号得:1﹣n%+m%﹣﹣1.1≥0,整理得:100n+mn+1000≤100m,故n≤.故选:B.【点评】此题主要考查了一元一次不等式的应用,得出正确的不等关系是解题关键.5.小红读一本400页的书,计划10天内读完,前5天因种种原因只读了100页,为了按计划读完,则从第六天起平均每天至少要读()A.50页B.60页C.80页D.100页【分析】设从第六天起平均每天要读x页,由题意得不等关系:100页+后5天读的页数≥400,根据不等关系列出不等式,进而可得答案.【解答】解:设从第六天起平均每天要读x页,由题意得:100+5x≥400,解得:x≥60,故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.6.某品牌电脑的成本价为2400元,售价为2800元,该商店准备举行打折促销活动,要求利润率不低于5%,如果将这种品牌的电脑打x折销售,则下列不等式中能正确表示该商店的促销方式的是()A.2 800x≥2400×5%B.2800x﹣2400≥2400×5%C.2 800×≥2400×5%D.2 800×﹣2400≥2400×5%【分析】设最低可打x折,根据电脑的利润率不低于5%,可列不等式求解.【解答】解:如果将这种品牌的电脑打x折销售,根据题意得2 800×﹣2400≥2400×5%,故选:D.【点评】本题考查了一元一次不等式的应用,根据利润=售价﹣进价,可列不等式求解.7.一位老师说,他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球,则这个班的学生最多有()人.A.36人B.48人C.59人D.0人【分析】设这个班有x人,根据“他班上学生的一半在学数学,四分之一的学生在学外语,六分之一的学生在学音乐,还有不足5名同学在操场上踢足球”,列出关于x的一元一次不等式,解之即可.【解答】解:设这个班有x人,根据题意得:x﹣≤4,解得:x≤48,即这个班的学生最多有48人,故选:B.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.8.自来水公司的收费标准如下:若每户用水不超过5立方米,则每立方米收费2.8元;若每户每月用水超过5立方米,则超出部分每立方米收费3元.小颖家每月水费都不少于29元,小颖家每月用水量至少()A.11立方米B.10立方米C.9立方米D.5立方米【分析】设小颖家每月的用水量为x立方米,根据水费=2.8×5+3×超出5立方米的部分结合每月水费都不少于29元,即可得出关于x的一元一次不等式,解之即可得出结论.【解答】解:设小颖家每月的用水量为x立方米,根据题意得:2.8×5+3(x﹣5)≥29,解得:x≥10.故选:B.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.9.某商家出售某种商品,标价为360元,比进价高出80%,为了吸引顾客,又进行降价处理,若要使售后利润率不低于20%(利润率=×100%),则最多可降价()A.80元B.160元C.100元D.120元【分析】设可降价x元,根据利润率=×100%结合售后利润率不低于20%,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论.【解答】解:设可降价x元,根据题意得:×100%≥20%,解得:x≤120.故选:D.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.10.王老师揣着100元现金到新天地文体用品超市购买学生期末考试奖品,他看好了一种笔记本和一种钢笔,每本笔记本5元,每支钢笔7元,王老师计划购买这两种奖品共15份,王老师最少能买()本笔记本.A.5 B.4 C.3 D.2【分析】设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据总价=单价×数量结合总价不超过100元,即可得出关于x的一元一次不等式,解之取其中最小的整数即可得出结论.【解答】解:设王老师购买x本笔记本,则购买(15﹣x)支钢笔,根据题意得:5x+7(15﹣x)≤100,解得:x≥,∴x为整数,∴x的最小值为3.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x﹣3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.12.一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队赢了的场数最少为()A.3 B.4 C.5 D.6【分析】设这个篮球队赢了x场,则最多平(x+1)场,最多输(x+2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【解答】解:设这个篮球队赢了x场,则最多平(x+1)场,最多输(x+2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.故选:C.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.13.有一本书共有300页,小明要在10天内(包括第10天)把它读完,他前5天共读了100页,从第6天起的后5天中每天要至少读多少页?设从第6天起每天要读x页,根据题意得不等式为()A.5×100+5x>300 B.5×100+5x≥300C.100+5x>300 D.100+5x≥300【分析】设从第6天起每天要读x页,根据前5天共读的页数+从第6天起每天要读的页数×5≥300可得不等式求解.【解答】解:依题意有100+5x≥300.故选:D.【点评】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,找出题目中的不等关系,选准不等号.二.填空题(共9小题)14.甲乙两商场以同样价格出售同样的商品.在甲商场累计购物超过100元后,超出100元的部分按八折收费;在乙商场累积购物超过50元后,超过50元的部分按九折收费.李红累计购物超过100元,当李红的累计购物金额超过150 元时,在甲商场购物花费少.【分析】设李红的累积购物金额为x元,根据“在甲商场购物实际花费<在乙商场购物实际花费”列不等式求解可得.【解答】解:设李红的累积购物金额为x元,根据题意得,100+0.8(x﹣100)<50+0.9(x﹣50),解得:x>150,答:当李红的累计购物金额超过150元时,在甲商场购物花费少.故答案为:150.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目蕴含的不等关系,并据此列出一元一次不等式.15.商家花费1900元购进某种水果100千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为20 元/千克.【分析】设商家把售价应该定为每千克x元,因为销售中有5%的水果正常损耗,故每千克水果损耗后的价格为x(1﹣5%),根据题意列出不等式即可.【解答】解:设商家把售价应该定为每千克x元,根据题意得:x(1﹣5%)≥,解得,x≥20,故为避免亏本,商家把售价应该至少定为每千克20元.故答案为:20.【点评】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题意,根据“去掉损耗后的售价≥进价”列出不等式即可求解.16.小明用30元钱购买矿泉水和冰激凌,每瓶矿泉水2元,每支冰激凌3.5元,他买了6瓶矿泉水和若干支冰激凌,他最多能买 5 支冰激凌.【分析】设他买了x支冰激凌,根据“矿泉水的总钱数+冰激凌的总钱数≤30”列不等式求解可得.【解答】解:设他买了x支冰激凌,根据题意,得:6×2+3.5x≤30,解得:x≤,∵x为整数,∴他最多能买5支冰激凌,故答案为:5.【点评】本题主要考查一元一次不等式的应用,解题的关键是理解题意,找到题目中蕴含的不等关系,并据此列出不等式.17.在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是7 场.【分析】设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据总积分=3×获胜场数+1×平局场数结合总积分不少于21分,即可得出关于x的一元一次不等式,解之取其中的最小整数即可得出结论.【解答】解:设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据题意得:3x+(9﹣1﹣x)≥21,解得:x≥.∵x为整数,∴x的最小值为7.故答案为:7.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.18.老张与老李购买了相同数量的种兔,一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的.一年前老张至少买了 3 只种兔?【分析】设一年前老张买了x只种兔,则老李也买了x只种兔,根据“一年后,老张养兔数比买入种兔增加了2只,老李养兔数比买入种兔数的2倍少了1只,老张养兔数不超过老李养兔数的”,列出关于x的一元一次不等式,解之即可.【解答】解:设一年前老张买了x只种兔,则老李也买了x只种兔,根据题意得:一年后老张的兔子数量为:x+2(只),一年后老李的兔子数量为:2x﹣1(只),则:x+2≤2x﹣1,解得:x≥3,即一年前老张至少买了3只种兔,故答案为:3.【点评】本题考查一元一次不等式的应用,正确找出等量关系,列出一元一次不等式是解题的关键.19.某工程队计划在10天内修路6km.现计划发生变化,准备8天完成修路任务,那么这8天平均每天至少要修路多少?设这8天平均每天要修路xkm,依题意得一元一次不等式为:8x≥6 .【分析】根据题意可以列出相应的不等式即可.【解答】解:设这8天平均每天要修路xkm,8x≥6,故答案为:8x≥6【点评】本题考查一元一次不等式的应用,解题的关键是明确题意,找出所求问题需要的条件.20.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为5x+2(30﹣x)≤100 .【分析】设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据总价=单价×购买数量结合总价不超过100元,即可得出关于x的一元一次不等式.【解答】解:设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据题意得:5x+2(30﹣x)≤100.故答案为5x+2(30﹣x)≤100.【点评】本题考查了由实际问题抽象出一元一次不等式,根据各数量间的关系,正确列出一元一次不等式是解题的关键.21.2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为55 cm.【分析】利用长与高的比为8:11,进而利用携带行李箱的长、宽、高三者之和不超过115cm 得出不等式求出即可.【解答】解:设长为8x,高为11x,由题意,得:19x+20≤115,解得:x≤5,故行李箱的高的最大值为:11x=55,答:行李箱的高的最大值为55厘米.故答案为:55【点评】此题主要考查了一元一次不等式的应用,根据题意得出正确不等关系是解题关键.22.在一次射击比赛中,某运动员前7次射击共中62环,如果他要打破89环(10次射击)的记录,那么第8次射击他至少要打出8 环的成绩.【分析】设第8次射击打出x环的成绩,根据总成绩=前7次射击成绩+后3次射击成绩(9、10两次按最高成绩计算)结合总成绩大于89环,即可得出关于x的一元一次不等式,解之取其内的最小值即可得出结论.【解答】解:设第8次射击打出x环的成绩,根据题意得:62+x+10+10>89,解得:x>7,∵x为正整数,∴x≥8.故答案为:8.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题(共6小题)23.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?【分析】(1)设键盘的单价为x元/个,鼠标的单价为y元/个,根据“购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买键盘m个,则购买鼠标(50﹣m)个,根据总价=单价×折扣率×数量结合总费用不超过1820元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设键盘的单价为x元/个,鼠标的单价为y元/个,根据题意得:,解得:.答:键盘的单价为50元/个,鼠标的单价为40元/个.(2)设购买键盘m个,则购买鼠标(50﹣m)个,根据题意得:50×0.8m+40×0.85(50﹣m)≤1820,解得:m≤20.答:最多可购买键盘20个.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.某校艺术节时欲购40盆花卉布置舞台.现有甲、乙两种花卉可供选择,已知甲种花卉的单价为18元/盆,乙种花卉的单价为25元/盆.若学校计划用于购买花卉的费用最多为860元,且购买乙花卉不少于18盆.请你为该校设计购买方案,并求出最小的费用是多少元?【分析】直接利用学校计划用于购买花卉的费用最多为860元,进而得出不等关系求出答案.【解答】解:设购买乙种花卉x盆,则甲种花卉为(40﹣x)盆,由题意得 18(40﹣x)+25x≤860,解得:x≤20,又∵乙花卉不少于18盆,∴18≤x≤20,∵x为整数,∴x=18或19或20,40﹣x=22或21或20,∴一共有三种购买方案,分别是:①购买甲种花卉22盆,乙种花卉18盆,②购买甲种花卉21盆,乙种花卉19盆,③购买甲种花卉20盆,乙种花卉20盆,其中第①种购买方案的费用最少,最少费用为846元.【点评】此题主要考查了一元一次不等式的应用,正确得出不等关系是解题关键.25.青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.(1)求每袋大米和面粉各多少元?(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?【分析】(1)设每袋大米x元,每袋面粉y元,根据“购买1袋大米、4袋面粉,共需240。

第11章 一元一次不等式-2023-2024学年苏科版数学七年级下册章节复习讲义(导图+(0001)

第11章 一元一次不等式-2023-2024学年苏科版数学七年级下册章节复习讲义(导图+(0001)

2023-2024学年苏科版数学七年级下册章节知识讲练1.理解不等式的有关概念,掌握不等式的三条基本性质;2.理解不等式的解(解集)的意义,掌握在数轴上表示不等式的解集的方法;3.会利用不等式的三个基本性质,熟练解一元一次不等式或不等式组;4.会根据题中的不等关系建立不等式(组),解决实际应用问题;5.通过对比方程与不等式、等式性质与不等式性质等一系列教学活动,理解类比的方法是学习数学的一种重要途径.知识点01:不等式【高频考点精讲】1.不等式:用符号“<”(或“≤”),“>”(或“≥”),≠连接的式子叫做不等式.【易错点剖析】(1)不等式的解:能使不等式成立的未知数的值叫做不等式的解.(2)不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.解集的表示方法一般有两种:一种是用最简的不等式表示,例如x a>,x a≤等;另一种是用数轴表示,如下图所示:(3)解不等式:求不等式的解集的过程叫做解不等式.2. 不等式的性质:不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).知识点02:一元一次不等式【高频考点精讲】1. 定义:不等式的左右两边都是整式,经过化简后只含有一个未知数,并且未知数的最高次数是1,这样的不等式叫做一元一次不等式,【易错点剖析】ax+b>0或ax+b<0(a≠0)叫做一元一次不等式的标准形式.2.解法:解一元一次不等式步骤:去分母、去括号、移项、合并同类项、系数化为1.【易错点剖析】不等式解集的表示:在数轴上表示不等式的解集,要注意的是“三定”:一是定边界点,二是定方向,三是定空实.3.应用:列不等式解应用题的基本步骤与列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量;(2)设:设出适当的未知数;(3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不超过”“超过”等关键词的含义;(4)列:根据题中的不等关系,列出不等式;(5)解:解出所列的不等式的解集;(6)答:检验是否符合题意,写出答案.【易错点剖析】列一元一次不等式解应用题时,经常用到“合算”、“至少”、“不足”、“不超过”、“不大于”、“不小于”等表示不等关系的关键词语,弄清它们的含义是列不等式解决问题的关键.知识点03:一元一次不等式组【高频考点精讲】关于同一未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组.【易错点剖析】(1)不等式组的解集:不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集.(2)解不等式组:求不等式组解集的过程,叫做解不等式组.(3)一元一次不等式组的解法:分别解出各不等式,把解集表示在数轴上,取所有解集的公共部分,利用数轴可以直观地表示不等式组的解集.(4)一元一次不等式组的应用:①根据题意构建不等式组,解这个不等式组;②由不等式组的解集及实际意义确定问题的答案.检测时间:120分钟试题满分:100分难度系数:0.55一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023秋•姑苏区期末)若a>b,则下列不等式变形错误的是()A.a﹣1>b﹣1 B.C.3a>3b D.1﹣a>1﹣b2.(2分)(2023秋•奉化区校级期中)若关于x的不等式组的整数解共有4个,则m的取值范围是()A.6<m<7 B.6≤m<7 C.6≤m≤7 D.6<m≤73.(2分)(2023秋•永州期末)已知关于x的不等式整数解共有2个,若m为整数,则m=()A.2 B.3 C.4 D.54.(2分)(2022秋•新化县期末)方程组的解满足不等式x﹣y<5,则a的范围是()A.a<1 B.a>1 C.a<2 D.a>25.(2分)(2022秋•新田县期末)若关于x的不等式组恰有3个整数解,则实数a的取值范围是()A.7<a<8 B.7≤a<8 C.7<a≤8 D.7≤a≤86.(2分)(2023秋•沙坪坝区校级期末)如果不等式(a﹣5)x<a﹣5的解集为x>1,则a必须满足的条件是()A.a>0 B.a>5 C.a≠5 D.a<57.(2分)(2023春•自贡期末)若关于x的不等式组有100个整数解,则a的取值范围是()A.﹣1449<a≤﹣1448 B.﹣1449≤a<﹣1448C.﹣1450≤a<﹣1449 D.﹣1450<a≤﹣14498.(2分)(2023春•那曲市期末)若关于x的一元一次不等式组有解,则k的取值范围是()A.k≤3 B.k<3 C.k<2 D.k≤29.(2分)(2023春•吕梁期末)若关于x的方程的解为正数,且a使得关于y的不等式组恰有两个整数解,则所有满足条件的整数a的值的和是()A.0 B.1 C.2 D.310.(2分)(2023秋•姑苏区校级期末)如果关于y的方程有非负整数解,且关于x的不等式组的解集为x≥1,则所有符合条件的整数a的和为()A.﹣5 B.﹣8 C.﹣9 D.﹣12二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2023秋•惠州期末)不等式组:的解集是.12.(2分)(2023春•集美区校级期中)若不等式(a﹣1)x>1﹣a的解集是x<﹣1,则a的取值范围是.13.(2分)(2023秋•海曙区期中)不等式组的解集为x>3,则k的取值范围为.14.(2分)(2023春•富锦市校级期末)已知关于x的不等式组的所有整数解的和为﹣9,m的取值范围是.15.(2分)(2023秋•新田县期末)关于x的不等式组恰有3个整数解,则a的取值范围是.16.(2分)(2023秋•鄞州区期中)若不等式(a﹣1)x<a﹣1的解集是x>1,则a的取值范围是.17.(2分)(2023春•渝中区校级期末)关于x的不等式组的解集为x≥3,且关于x的一次方程5x﹣a=x+3有非负整数解,则所有满足条件的整数a的和为.18.(2分)(2023春•重庆期中)若关于x的一元一次方程有正整数解,且使关于x的不等式组至少有4个整数解,求出满足条件的整数a的所有值的积为.19.(2分)(2022春•渝中区校级月考)清明将至,前去扫墓的人逐渐增多.某花店购进白菊,白百合,马蹄莲共计m捆.白菊每捆20支,白百合每捆12支,马蹄莲每捆10支.现取出白菊的,白百合的,马蹄莲的,全部用于扎成A、B两款花束销售.其中A款花束白菊2支,白百合3支,马蹄莲1支,B 款花束白菊5支,马蹄莲2支.如此取出后剩下的白百合支数不多于马蹄莲支数,则购进的白菊捆数与白百合捆数之比至少为.20.(2分)(2022春•梁园区期末)对于x,符号[x]表示不大于x的最大整数.如:[3.14]=3,[﹣7.59]=﹣8,则满足关系式的x的整数值有个.三.解答题(共8小题,满分60分)21.(6分)(2023秋•桐乡市期末)解不等式,并把解在数轴上表示出来.22.(6分)(2023秋•钢城区期末)解不等式组:,并求出它的非负整数解.23.(8分)(2023秋•邵阳期末)已知关于x的不等式组;(1)若该不等式组有且只有三个整数解,求a的取值范围;(2)若该不等式组有解,且它的解集中的任何一个值均不在x≥5的范围内,求a的取值范围.24.(8分)(2023春•大竹县校级期末)我们用[a]表示不大于a的最大整数,例如:[2.5]=2,[3]=3,[﹣2.5]=﹣3;用<a>表示大于a的最小整数,例如:<2.5>=3,<3>=4,<﹣2.5>=﹣2.根据上述规定,解决下列问题:(1)[﹣4.5]=,<3.01>=;(2)若x为整数,且[x]+<x>=2017,求x的值;(3)若x、y满足方程组,求x、y的取值范围.25.(8分)(2024•邵阳模拟)某商场同时采购了A,B两种品牌的运动装,第一次采购A品牌运动装10件,B品牌运动装30件,采购费用为8600元;第二次只采购了B品牌运动装50件,采购费用为11000元.(1)求A,B两种品牌运动装的采购单价分别为多少元每件?(2)商家通过一段时间的营销后发现,B品牌运动装的销售明显比A品牌好,商家决定采购一批运动装,要求:①采购B品牌运动装的数量是A品牌运动装的2倍多10件,且A品牌的采购数量不低于18件;②采购两种品牌运动装的总费用不超过15000元,请问该商家有哪几种采购方案?26.(8分)(2023•曲靖一模)2022年1月7日,《云南省全民健身实施计划(2021﹣2025年)》新闻发布会顺利举行.会议上就“十四五”时期深化体育改革,推进新时代全民健身高质量发展作了全面部署和安排.其中,“强化供给,补齐全民健身设施建设短板”是《云南省全民健身实施计划(2021﹣2025年)》的主要任务之一.春城小区计划购买10台健身器材供小区居民锻炼使用,了解到购买1台B型健身器材比1台A型健身器材贵200元,购买2台A型健身器材和5台B型健身器材共花8000元.(1)A型健身器材和B型健身器材的单价是多少钱?(2)春城小区计划购买B型健身器材的数量不超过A型健身器材的数量的2倍,购买资金不低于10800元,请问共有哪几种购买方案,哪一种方案最省钱.27.(8分)(2023•金凤区校级二模)围棋起源于中国,古代称为“弈”,是棋类鼻祖,围棋距今已有4000多年的历史,中国象棋也是中华民族的文化瑰宝,它源远流长,趣味浓厚,基本规则简明易懂.某学校为活跃学生课余生活,欲购买一批象棋和围棋,已知购买3副象棋和1副围棋共需125元,购买2副象棋和3副围棋共需165元.(1)求每副象棋和围棋的价格;(2)若学校准备购买象棋和围棋总共100副,且总费用不超过3200元,则最多能购买多少副围棋?28.(8分)(2022秋•婺城区期末)为更好地推进生活垃圾分类工作,改善城市生态环境,某小区准备购买A、B两种型号的垃圾箱,通过对市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需390元,购买2个A型垃圾箱比购买1个B型垃圾箱少用20元.(1)求每个A型垃圾箱和每个B型垃圾箱分别多少元?(2)该小区计划用不多于1500元的资金购买A、B两种型号的垃圾箱共20个,且A型号垃圾箱个数不多于B型垃圾箱个数的3倍,则该小区购买A、B两种型号垃圾箱的方案有哪些?。

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)七年级数学下册基础知识专项讲练(苏科版)

专题11.6 用一元一次不等式解决问题(专项练习)一、单选题1.(2020·浙江省杭州市萧山区高桥初级中学八年级期中)如果代数式32x-的值不小于3-,那么x 的取值范围是( ) A .0x ≥B .0x >C .12x ≤D .12x <-2.(2021·浙江湖州市·八年级期末)某超市开展促销活动,一次购买的商品超过88元时,就可享受打折优惠.小明同学准备为班级购买奖品.需买6本笔记本和若干支钢笔.已知笔记本每本4元.钢笔每支7元,如果小明想享受打折优惠,那么至少买钢笔( ) A .12支B .11支C .10支D .9支3.(2020·浙江杭州市·八年级期末)根据数量关系“y 与6的和不小于1”列不等式,正确的是( ) A .61y +>B .61y +≥C .61y +<D .61y +≤4.(2020·山东日照市·九年级二模)为了奉献爱心,贡献自己的一份力量,本次新冠状病毒疫情期间,九年级4班18名团员计划在家加工2250个口罩,奉献给社区志愿者,并规定每人每天加工a 个口罩(a 为整数),干了几天以后,其中4人因特殊情况没能继续,若剩下的同学每人每天多加工3个口罩,则提前完成了这次任务,由此可知a 的值最多是( ) A .8B .9C .10D .115.(2020·河北九年级其他模拟)x 的3倍与它的14的差不少于5,列出的关系式为( ) A .1354x x -≥ B .1354x x -≤C .1354x x ->D .1354x x -<6.(2019·山西七年级期末)太原市出租车的收费标准是:白天起步价8元(即行驶距离不超过3km 都需付8元车费),超过3km 以后,每增加1km ,加收1.6元(不足1km 按1km 计),某人从甲地到乙地经过的路程是xkm ,出租车费为16元,那么x 的最大值是( ) A .11B .8C .7D .57.(2020·瑞安市安阳实验中学八年级月考)商店为了对某种商品进行促销,将定价为5元的商品,以下列方式优惠销售:若购买不超过8件,则按原价付款;若一次性购买8件以上,则超出的部分打八折,小明带了70元钱,最多可以购买该商品( )A .14件B .15件C .16件D .17件8.(2021·全国七年级)在一次绿色环保知识竞赛中,共有20道题,对于每一道题,答对得10分,答错或不答扣5分,则至少答对多少题,得分才不低于80分?设答对x 题,可列不等式为( ) A .105(20)80x x -- B .105(20x x +- )80 C .105(20)80x x -->D .105(20x x +- )80>9.(2021·湖南益阳市·八年级期末)李老师网购了一本《好玩的数学》,让大家猜书的价格.甲说:“不少于10元”,乙说:“少于12元”.老师说:“大家说的都没有错”.则这本书的价格x (元)所在的范围为( ) A .10≤x <12B .10≤x ≤12C .10<x <12D .10<x ≤1210.(2021·浙江湖州市·八年级期末)假期,小云带150元去图书馆,下表记录了他当天的所有支出,其中小零食支出的金额不小心被涂黑了,如果平均每包小零食的售价为5元,那么小云可能剩下的金额是( )A .1元B .2元C .3元D .4元11.(2021·广东佛山市·八年级期末)某电信公司推出两种手机收费方案.方案A :月租费30元,本地通话话费0.15元/分;方案B :不收月租费,本地通话话费为0.3元/分.设婷婷的爸爸一个月通话时间为x 分钟,婷婷的爸爸一个月通话时间为多少时,选择方案A 比方案B 优惠?( ) A .100分钟B .150分钟C .200分钟D .250分钟12.(2021·全国八年级)运行程序如图所示,规定:从“输入一个值x ”到“结果是否26>”为一次程序操作,如果程序操作进行了1次后就停止,则x 最小整数值取多少( )A.7B.8C.9D.10 13.(2020·贵州黔西南布依族苗族自治州·八年级期末)等腰三角形的周长为20cm且三边均为整数,底边可能的取值有()个.A.1B.2C.3D.4 14.(2021·黑龙江齐齐哈尔市·九年级期末)某校组织10名党员教师和38名优秀学生团干部去某地参观学习.学校准备租用汽车,学校可选择的车辆(除司机外)分别可以乘坐4人或6人,为了安全每辆车上至少有1名教师,且没有空座,那么可以选择的方案有()A.2种B.3种C.4种D.5种15.(2021·广东潮州市·七年级期末)某次足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分,若小组赛中某队的积分为5分,则该队必是().A.两胜一负B.一胜两平C.五平一负D.一胜一平一负二、填空题16.(2021·浙江杭州市·八年级期末)“比x小1的数大于x的2倍”用不等式表示为_________.17.(2020·山西七年级期末)某超市在一次促销活动中规定:消费者消费满300元或超过300元就可领取礼品.某人准备买15瓶啤酒和若干袋火腿肠,已知啤酒每瓶5元,火腿肠每袋15元,他至少买_______袋火腿肠才能领取礼品.18.(2020·全国课时练习)当x______________时,114x--的值是非负数.19.(2020·广西百色市·七年级期中)华润超市在2019年中从某商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于疫情影响,该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打____折20.(2020·浙江杭州市·八年级期末)一次生活常识知识竞赛一共有30道题,答对一题得4分,不答得0分,答错扣2分.小聪有2道题没答,竞赛成绩超过80分,则小聪至多答错了________道题.21.(2020·广东江门市·七年级期末)某商店对一商品进行促销活动,将定价为10元的商品,按以下方式优惠销售:若购买不超过5件按原价付款;若一次性购买5件以上,超过部分打8折,现有98元钱,最多可以购买该商品_______件.22.(2020·全国七年级课时练习)某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于_________元23.(2020·湖北武汉市·七年级期末)某工厂计划m 天生产2160元个零件,若安排15名工人每人每天加工a 个零件(a 为整数)恰好完成.实际开工x 天后,其中3人外出培训,剩下的工人每人每天多加工2个零件,不能按期完成这次任务,则a 与m 的数量关系是_____________,a 的值至少为__________24.(2020·全国单元测试)当13x <<时,化简213x x -+-=________.25.(2020·四川巴中市·七年级期末)某同学设计了一个程序:对输入的正整数x ,首先进行奇偶识别,然后进行对应的计算,如下图所示.如果按1,2,3…的顺序依次逐个输入正整数x ,则首次输出大于100的y 的值是__________.26.(2020·江苏徐州市·七年级期末)疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售__________件衬衫,所得销售额才能超过进货总价.27.(2020·河南洛阳市·七年级期末)现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.28.(2020·洛阳市实验中学九年级月考)为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元.经过与经销商洽谈,键盘打八折,鼠标打八五折,若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘_____个.29.(2020·浙江省开化县第三初级中学八年级期中)“x 的4倍与1的差不大于3”用不等式表示为 ________________ .30.(2020·沙坪坝区·重庆八中八年级月考)今年立冬,某超市发起限时抢购饺子活动,规定立冬前一天(11月6日)价格打九折,立冬当天(11月7日)价格打八折,其余时间不打折,11月5日王老师在该超市选购甲、乙、丙三种饺子,他发现,2千克甲,4.2千克乙的总价和1千克甲,2千克乙,3千克丙在立冬当天(11月7日)的总价相等,都等于3千克甲,2.7千克乙,1.8千克丙在立冬前一天(11月6日)总价的2027,且4千克甲立冬前一天(11月6日)的总价不低于65元,也不超过100元.如果三种饺子每千克的价格均为正整数,则王老师11月5日买2千克甲,1千克乙,1千克丙共付款______元.三、解答题31.(2021·四川绵阳市·八年级期末)受“疫情”的影响,绵阳某水果批发市场某月只购进了两批相同品种的水果,第一批用了2000元,第二批用了5500元,第二批购进水果的重量是第一批的2.5倍.且进价比第一批每千克多1元.(1)求两批水果共购进了多少千克?(2)在这两批水果总重量正常损耗10%,其余全部售完的情况下,如果这两批水果的售价相同,且总利润率不低于26%,那么售价至少定为每千克多少元?(利润率=利润成本×100%)32.(2020·沙坪坝区·重庆八中八年级月考)受疫情影响,口罩价格不断走高.3月20日当天口罩的价格是年初的1.5倍;3月20日当天,王老师购买4盒口罩比年初多花了48元.(1)那么3月20日当天口罩的价格为每盒多少元?(2)3月20日,按照(1)中的口罩价格,某售卖点共卖出1000盒口罩.3月21日,政府决定投入储备口罩并规定其销售价在3月20日的基础上下调0.7%a出售.该售卖点按规定价出售一批储备口罩和非储备口罩,该售卖点的非储备口罩仍按3月20日的价格出售,3月21日当天的两种口罩总销量比3月20日增加了20%,且储备口罩的销量占总销量的56,两种口罩销售的总金额比3月20日至少提高了1%10a,求a的最大值.33.(2021·全国八年级)某班为了开展乒乓球比赛活动,准备购买一些乒乓球和乒乓球拍,通过去商店了解情况,甲乙两家商店出售同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价48元,乒乓球每盒定价12元,经商谈,甲乙两家商店给出了如下优惠措施:甲店每买一副乒乓球拍赠送一盒乒乓球,乙店全部按定价的9折优惠.现该班急需乒乓球拍5副,乒乓球x盒(不少于5盒).(1)请用含x的代数式表示:去甲店购买所需的费用;去乙店购买所需的费用.(结果要求化简)(2)当需要购买40盒乒乓球时,通过计算,说明此时去哪家商店购买较为合算;(3)试探究,当购买乒乓球的盒数x取什么值时,去哪家商店购买更划算?34.(2021·高台县城关初级中学)某社区要进行十九届五中全会会议精神宣讲,需要印刷宣传材料。

解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)

解一元一次不等式(第1课时)(课件)七年级数学下册精品课件(苏科版)

新知归纳 一元一次不等式的概念
只含有一个未知数,并且未知数的次数都是1,系数不等于0. 像这样的不等式,叫做一元一次不等式.
新知巩固
1.判断下列各式是否是一元一次不等式? 否 否 是 否
x>0 是
8>4 否
新知巩固
2.已知3x2-m +70>100是关于x的一元一次不等式,则m=__1__. 解:2-m=1,m=1.
解:因为(m-1)x|m|+3>0是关于x的一元一次不等式, 所以m-1≠0,|m|=1,解得m=-1.
课堂检测
6. 若不等式ax-2>0的解集为x<-2,则关于y的方程ay+2=0 的解为___y_=__2____.
7. 用※定义一种新运算:对于任意数m和n,规定m※n=m2n-mn-3n. 如1※2=12×2-1×2-3×2=-6. 若3※k≥-6,则k的取值范围 是__2__.
将m=1代入不等式,得3x +70>100
如何解这个 不等式呢?
知识回顾
解一元一次方程的一般步骤和依据是什么?
解一元一次方程的一般步骤是: 去分母,去括号,移项,合并同类项,系数化为1.
解一元一次方程的依据是等式的性质.
新知探索
解一元一次不等式能不能采取类似的步骤呢?
请你类比一元一次方程的解法,探索如何解元一次不等式 3x +70>100?说出每一步变形的依据.
0
-6 0
新知巩固
2.当x取什么值时,代数式2x-4的值大于代数式3x+1的值? 解:根据题意,得 2x-4>3x+1 2x-3x>1+4 -x>5 x<-5 当x<-5时,代数式2x-4的值大于代数式3x+1的值.
新知巩固
3.求一元一次不等式10(x+4)+x ≤73的非负整数解. 解: 10x+40+x≤73 11x≤33 x≤3

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

苏科版七年级数学下册第11章一元一次不等式小结与思考课件

苏科版七年级数学下册第11章一元一次不等式小结与思考课件

不等式与方程结合的应用
如果关于x的方程3x+a=x+4的解是非负数,求a的取 值范围。
解:3x-x = 4-a
2x = 4-a
x = 4-a 2
X是非负数
4-a 2

0
4-a≥0 -a ≥-4
a≤4
本节课你收获了什么?
1、不等式、一元一次不等式(组)的定义 2、不等式的基本性质 3、解一元一次不等式(组) 4、一元一次不等式的应用 5、数学思想的应用
作业: 导学案055反面
谢谢
3
x
x 0 (4)
(5)
x 0
(6)
x 1 3x 2 3
6
2
(7) x xy y2
A 5个 B 4个 C 6个 D 3个
不等式的基本性质
专 题 性质1: 不等式的两边都加 (或减去)同一个整式,

不等号的方向 不变;
性质2: 不等式的两边都乘以(或除以)同一个正数,


不等号的方向不变;
小结与思考
1、不等式的两边都加上(或减去)
同一个数,所得不等式仍成立
不等式的性质
2、不等式的两边都乘(或都除以)

同一个正数,所得不等式仍成立 不等式的两边都都乘(或都除以)

同一个负数,必须把不等号改变方向,

所得不等式仍成立
一元一次
解一元一次不等式
在数轴上表示
不等式(组)
不等式(组的
解一元一次不等式组 解集
用数轴表示不等式的解集的步骤: 1.画数轴; 2.定界点; 3.定方向. 4.定虚实.
x 1 x 1 x 1 326
(1)求出不等式的最大整数解 (2)求出不等式的正整数解 (3)求出不等式的非负整数解 (4)不等式的整数解的个数?

苏科版七年级下册数学-第七章课件

苏科版七年级下册数学-第七章课件

定义
在平面内画两条互相垂直、原点 重合的数轴,组成平面直角坐标
系。
构成
水平方向的数轴称为x轴或横轴, 竖直方向的数轴称为y轴或纵轴, 两坐标轴的交点为平面直角坐标
系的原点。
坐标
对于平面内任意一点P,过点P分 别向x轴、y轴作垂线,垂足在x 轴、y轴上对应的数a、b分别叫 做点P的横坐标、纵坐标,有序 数对(a,b)叫做点P的坐标。
反映一组数据的集中趋势,中位数将数据 按大小排列后位于中间的数,众数是一组 数据中出现次数最多的数。
数据波动程度刻画
极差
一组数据中最大值与最小值的 差,反映数据的波动范围。
方差
各数据与平均数之差的平方的 平均数,反映数据的离散程度 。
标准差
方差的算术平方根,反映数据 的波动程度。
变异系数
标准差与平均数的比值,用于 比较不同单位或平均数不同时

关键知识点总结回顾
平面直角坐标系
掌握平面直角坐标系的概念,理解坐 标轴、坐标原点的意义,能够熟练标 出点的坐标。
点的平移
理解点的平移规律,掌握平移公式, 能够应用平移规律解决相关问题。
一次函数的图象与性质
理解一次函数的概念和性质,掌握一 次函数的图象特征,能够利用一次函 数的性质解决问题。
二元一次方程组
理解二元一次方程组的概念,掌握二 元一次方程组的解法,包括代入消元 法和加减消元法。
易错难点剖析指导
平面直角坐标系中点的坐标特征
注意区分各象限内点的坐标符号特征,特别是坐标轴上的点。
点的平移规律
在平移过程中,要注意平移的方向和距离,避免混淆。
一次函数的图象与性质
要注意一次函数的斜率和截距对函数图象的影响,理解函数图象与x 轴、y轴的交点意义。

湘教版数学八年级上册第4章《一元一次不等式(组)单元复习课》课件

湘教版数学八年级上册第4章《一元一次不等式(组)单元复习课》课件
+1<
A.0
B.-1
C.1
10.(2023·遂宁中考)若关于x的不等式组
D.2 023
4( − 1) > 3 − 1
的解集为x>3,则a的
5 > 3 + 2
取值范围是( D )
A.a>3
B.a<3
C.a≥3
D.a≤3
7 − 14 ≤ 0①,
11.(1)(2023·湘潭中考)解不等式组
方案1:租用5辆B种客车,20辆A种客车;
方案2:租用6辆B种客车,19辆A种客车;
方案3:租用7辆B种客车,18辆A种客车;
(3)在(2)的条件下,若A种客车租金为每辆220元,B种客车租金每辆300元,应该怎
最小整数解.
【解析】由①得:x<1,由②得:x≥-2,
∴不等式组的解集为:-2≤x<1,
∴该不等式组的最小整数解为x=-2.
− 3( − 2) > 4①
2−1
3

3+2
6
− 1②
,并写出该不等式组的
考点4一元一次不等式(组)的应用
12.(2023·邵阳中考)低碳生活已是如今社会的一种潮流形式,人们的环保观念也
其解集在数轴上表示如图:
−1 −3
(2)(2022·宜昌中考)解不等式 ≥ +1,并在数轴上表示解集.
3
2
【解析】去分母得:2(x-1)≥3(x-3)+6,
去括号得:2x-2≥3x-9+6,
移项得:2x-3x≥-9+6+2,
合并同类项得:-x≥-1,
系数化为1得:x≤1.
表示如图.

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册

一元一次不等式——实际问题与一元一次不等式 课件 2022—2023学年人教版数学七年级下册
是每台10万元.经预算,该企业购买设备的资金不高于105万元.
(1)请问该企业有几种购买方案?
解:设购买污水处理设备A型x台,则B型为(10-x)台.
根据题意,得12x+10(10 – x)≤105.
解这个不等式,得x≤2.5.
又因为x取非负整数,所以x取0,1,2.
所以有3种购买方案:A型0台,B型10台;A型1台,B型9台;
购物都不享受优惠,且两商场以同样价格出售同
样的商品,因此到两商场购物花费一样.
新课讲解
典型例题
购物款
甲商场收费
乙商场收费
0<x≤50
x
x
50<x≤100
x
50+0.95(x–50)
乙商场少
x>100
100+0.9(x–100)
50+0.95(x–50)
继续分类讨论
收费相等
若在甲商场花费少,则100+0.9(x–100)<50+0.95(x–90)
社说:“所有人按全票价的 6 折优惠.”已知全票价 240 元.设学
生有 x 名,就学生人数讨论哪家旅行社更优惠.
解:①若 240+120x=144x+144,解得 x=4,
此时两家旅行社收费一样;
②若 240+120x>144x+144,解得 x<4,
此时乙旅行社更优惠;
③若 240+120x<144x+144,解得 x>4,
2.一般步骤:
(1)审题;
(2)找等量关系;
(3)设未知数;
(4)列方程;
(5)解方程;
(6)检验;
(7)答。

第11章 一元一次不等式 七年级数学下册单元复习(苏科版)

第11章 一元一次不等式 七年级数学下册单元复习(苏科版)
【分析】直接验证 4 个选项即可得到答案;
【详解】解:选项中只有 5 是不等式 x 3 的解,
故选 D.
【变式训练】
3
10
1.在﹣2、3、﹣4、0、1、 、﹣ 中能使不等式 x﹣2>2x 成立的有(
3
2
A.4 个
B.3 个
C.2 个
D.1 个
【答案】C
【分析】直接解不等式,进而得出符合题意的个数.
某文具店在次促销活动中规定:消费者消费满 200 元或者超过 200
元就可受打折优惠.期中考试后,小韦同学在该店为班级买奖品,
准备买 6 支钢笔和若干本笔记本.已知每支钢笔 15 元,每本笔记
②移项时不要忘记变号;
③去括号时,若括号前面是负号,括号里的每一项都要变号;
④在不等式两边都乘(或除以)同一个负数时,不等号的方向要改变。
不等式的解集在数轴上表示:
在用数轴表示不等式的解集时,要确定边界和方向:
●边界:有等号的是实心圆点,无等号的是空心圆圈;
●方向:大向右,小向左。
【典型例题】
下列各式中是一元一次不等式的是( D )
化为:(或)的形式,解一元一次不等式的一般步骤为:
(1)去分母;
(2)去括号;
(3)移项;
(4)化为(或)的形式(其中);
(5)两边同除以未知数的系数,得到不等式的解集。
知识点二 一元一次不等式的解法
在解一元一次不等式时,每个步骤并不一定都要用到,可根据具体问题灵
活运用。
解不等式应注意:
①去分母时,每一项都要乘同一个数,尤其不要漏乘常数项;
【详解】解:x﹣2>2x,
解得:x<﹣2,
10
故符合题意的有:﹣4,﹣ 3 共 2 个.

七下数学课件: 解一元一次不等式(课件)

七下数学课件: 解一元一次不等式(课件)
即-x>-10,
再根据不等式性质3,不等式两边同除以-1,不等号的方向改变,得x<10;
利用不等式的性质解不等式
根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:
5)-

x<-2

6)3x+5<0
5)根据不等式性质3,不等式两边同乘以-5,不等号的方向改变,
1
得- 5x×(-5)> -2×(-5),即x>10;


>
性质三:不等式的两边乘(或除)同一个负数,不等号方向发生改变。
表示为:如果a>b,c<0,那么ac<bc (或


<

)


)

学习目标
学习目标
1、掌握不等式的性质。
2、运用不等式性质解不等式。
3、用数轴表示不等式的解集。
重点
用数轴表示不等式的解集。
难点
运用不等式的性质解不等式。
练一练
设a>b,用“<”“>”填空并回答是根据不等式的哪一条基本性质.
【详解】

解:解不等式3x−a≤0,得x≤3,
∵不等式的正整数解是1,2,3,

∴3≤3<4,
解得9≤a<12.
故答案为:9≤a<12.
解一元一次不等式
不等式(x-m)/3>3-m的解集为x>1,则m的值为___.
【解析】
去分母得,x﹣m>3(3﹣m),
去括号得,x﹣m>9﹣3m,
移项,合并同类项得,x>9﹣2m.
∵此不等式的解集为x>1,
∴9﹣2m=1,解得m=4.
课后回顾
课后回顾

新苏科版七年级数学下册《11章 一元一次不等式 11.5 用一元一次不等式解决问题》公开课课件_25

新苏科版七年级数学下册《11章 一元一次不等式  11.5 用一元一次不等式解决问题》公开课课件_25
由(2)知,企业购买污水处理设备A型1台,B型9台时费用最低, 其10年间自己处理污水的费用为102元 若将污水排到污水厂处理,则需要用:
1012204010 2448000 =244.8万元 则节约资金:244.8-102=142.8万元
为了保护环境,某企业决定购买10台污水处理设备,现有A、
B两种型号的设备,其中每台的价格50 (x 50)95% 100 0.9x 90 50 0.95x 47.5
0.9x 0.95x 50 47.5100 90
0.05x 7.5 x 150
①当累计购物超过150元时,在甲商场购物花费小
②当累计购物小于150元但超过100元时, 在乙商场购物花费小.
为了保护环境,某企业决定购买10台污水处理设备,现有A、B 两种型号的设备,A型设备的价格是每台12万元,B型设备的价 格是每台10万元。 (1)经预算,该企业购买设备的资金不高于105万元。请你设 计该企业有几种购买方案。
解:(1)设购买污水处理设备A型x台,则B型为(10-x)台
12x 10(10 x) 105 12x 10010x 105
③累计购物刚好是150元时, 在两家商场购物花费一样多.
变式:甲、乙两商场以同样价格出售同样的商品,“五一”促销: 甲商场累计购买100元商品后,再购买的商品按原价的90%收费; 乙商场累计购买50元商品后,再购买的商品按原价的95%收费。 设在同一商场累计购物x元,
①当x取何值时,在甲、乙两商场的实际花费相同? ②当在同一商场累计购物超过100元时,在哪家商场的实际花费少?
月末:30%x—700=0.3x—700.
0.265x>0.3x—700
x<20000
答:当商场投资不足20000元时,第一种销售方式获利较多 当商场投资为20000元时,两种销售方式获利相同 当商场投资超过20000元时,第二种销售方式获利较多

第十一章 一元一次不等式(小结思考)(课件)七年级数学下册(苏科版)

第十一章 一元一次不等式(小结思考)(课件)七年级数学下册(苏科版)

B. ac>bc
a<b,c<0
ac>bc
C.a+c>b+c
b>a,c<0
b+c>a+c
D.a+b<c+b
a>c,b>0
a+b>c+b
c<0<a<b
c
O
a
b
知识结构
概念







定界点
定方向
画数轴
(三要素) (空心与实点)(大向右,小向左)
性质
不等式表示
不等式的解集
表示
不等式所有解的集合. 方法
利用一元一次不等式(组)解决实际问题
(2) 青少年活动中心决定再购进上述四种图书,总费用不超过32000元.
如果《西游记》比《三国演义》每本售价多10元,《水浒传》比《红楼
梦》每本售价少10元,要使先后购进的四大名著刚好配套(四大名著各
一本为一套),那么这次最多购买《西游记》多少本?
解:(2) 《三国演义》每本售价为60-10=50(元),
合并同类项,得-5x≥-20,
系数化为1,得x≤4,
因为x是正整数,所以x为1,2,3,4,
(+)

故x取正整数1,2,3,4时,代数式3-
的值不小于代数式 的值.


巩固练习
4.已知2-a和3-2a的值的符号相反,求a的取值范围.
注意:分类讨论,有两种可能:
−>

− <
+ >
(2)

最新苏科版七年级数学下册全册完整课件

最新苏科版七年级数学下册全册完整课件
最新苏科版七年级数学下册全册完 整课件
第7章 平面图 探索直线平行的条件
最新苏科版七年级数学下册全册完 整课件
7.2 探索平行线的性质
最新苏科版七年级数学下册全册完 整课件
7.3 图形的平移
最新苏科版七年级数学下册全册 完整课件目录
0002页 0052页 0076页 0118页 0148页 0184页 0214页 0249页 0273页 0295页 0330页 0360页 0395页 0431页 0454页 0481页 0504页
第7章 平面图形的认识(二) 7.2 探索平行线的性质 7.4 认识三角形 第8章 幂的运算 8.2 幂的乘方与积的乘方 第9章 从面积到乘法公式 9.2 单项式乘多项式 9.4 乘法公式 第10章 二元一次方程组 10.2 二元一次方程组 10.4 三元一次方程组 第11章 一元一次不等式 11.2 不等式的解集 11.4 解一元一次不等式 11.6 一元一次不等式组 12.1 定义与命题 12.3 互逆命题

11.5用一元一次不等式解决问题(4) 课件 (苏科版七年级下)

11.5用一元一次不等式解决问题(4) 课件 (苏科版七年级下)
解:设购买x千克时甲方案付款少(其中 x≥3000) 则 9x<8x+5000
某服装厂生产一种西装和领带,西装每套 定价200元领带每条定价40元.厂方在开展 促销活动期间,向客户提供两种优惠方案: (1)买一套西装送一条领带;(2)西装和领 带均按定价的90%付款.某商店老板现要到 该服装厂购买西装20套,领带x(x>20)条 .请你根据x的不同情况,帮助商店老板选 择最省钱的购买方案.
解:设小明有1元的硬币x枚
则: x+0.5(13-x)<8.5
……
某高速公路工地需要实施爆破,操作人员点 燃导火线后,要在炸药爆炸前跑到400米以 外的安全区域.已知导火线的燃烧速度是1.2 厘米/秒,人跑步的速度是5米/秒.问导火线 至少需要多长? 解:设导线xcm 长 则x/1.2>400/5 ……
拓展引申 ■商场A型冰箱的售价是2190元,每日 耗电量为1千瓦时,最近商场又进回一批B 型冰箱,其售价比A型冰箱高出10%,但每 日耗电量却为0.55千瓦时,为了减少库存 ,商场决定对A型冰箱降价销售,请解答下 列问题. (1)已知A型冰箱的进价为1700元,商场 为保证利润率不低于3%,试确定A型冰 箱的降价范围;(利润率 售价 进价 100%)
某公司到果园基地地购买某种水果,慰问医 务工作者.果园基地对购买量在3000千克以 上(含3000千克)的有两种销售方案,甲方 案;每千克9元,由基地送货上门;乙方案: 每千克8元,由顾客自己租车运回.已知该公 司租车从基地到公司的运输费为5000元.试 问:当购买量在什么范围时,选择哪种购买 方案付款最少?并说明理由.
解:设买x条领带时方案一比较省钱 则 200×20+40(x-20)<(200×20+40x)90% ……

专题11.5 用一元一次不等式解决问题(知识讲解)七年级数学下册基础知识专项讲练(苏科版)

专题11.5 用一元一次不等式解决问题(知识讲解)七年级数学下册基础知识专项讲练(苏科版)

专题11.5 用一元一次不等式解决问题(知识讲解)【学习目标】1.会从实际问题中抽象出不等的数量关系,会用一元一次不等式解决实际问题;2. 熟悉常见一些应用题中的数量关系.【要点梳理】要点一、常见的一些等量关系1.行程问题:路程=速度×时间2.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量3.利润问题:商品利润=商品售价-商品进价,4.和差倍分问题:增长量=原有量×增长率5.银行存贷款问题:本息和=本金+利息,利息=本金×利率6.数字问题:多位数的表示方法:例如:. 要点二、列不等式解决实际问题列一元一次不等式解应用题与列一元一次方程解应用题类似,通常也需要经过以下几个步骤:(1)审:认真审题,分清已知量、未知量及其关系,找出题中不等关系要抓住题中的关键字眼,如“大于”、“小于”、“不大于”、“至少”、“不超过”、“超过”等;(2)设:设出适当的未知数;(3)列:根据题中的不等关系,列出不等式;(4)解:解所列的不等式;(5)答:写出答案,并检验是否符合题意.特别说明:(1)列不等式的关键在于确定不等关系;(2)求得不等关系的解集后,应根据题意,把实际问题的解求出来;(3)构建不等关系解应用题的流程如图所示.=100%⨯利润利润率进价32101010abcd a b c d =⨯+⨯+⨯+(4)用不等式解决应用问题,有一点要特别注意:在设未知数时,表示不等关系的文字如“至少”不能出现,即应给出肯定的未知数的设法,然后在最后写答案时,应把表示不等关系的文字补上.如:若“设还需要B型车x辆”,而在答中应为“至少需要11辆 B型车”.这一点应十分注意.【典型例题】类型一、行程问题1.油电混动汽车是一种节油、环保的新技术汽车.某品牌油电混动汽车售价是16.48万元,百公里燃油成本20元;同一品牌的普通汽车售价16万元,百公里燃油成本50元.问至少行驶多少公里油电混动汽车的总成本不高于普通汽车的总成本?【答案】行驶的公里数至少为16000公里.【分析】设行驶的公里数为x公里,根据题意列出不等式即可得出答案.解:设行驶的公里数为x公里,根据题意得:164800+20100x≤160000+50100x,解得:x≥16000.答:行驶的公里数至少为16000公里.【总结升华】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.类型二、工程问题2.计划对河道进行改造,现有甲乙两个工程队参加改造施工,受条件限制,每天只能由一个工程队施工.若甲工程队先单独施工3天,再由乙工程队单独施工5天,则可以完成550米施工任务:若甲工程队先单独施工2天,再由乙工程对单独施工4天,则可以完成420米的施工任务.(1)求甲、乙两个工程队平均每天分别能完成多少米施工任务?(2)该河道全长6000米,若两队合作工期不能超过90天,乙工程队至少施工多少天?【答案】(1)甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)乙工程队至少施工50天【分析】(1)设甲工程队每天施工x米,乙工程队每天施工y米,根据等量关系列出二元一次方程组,即可求解;(2)设乙工程队施工a天,根据不等量关系,列出一元一次不等式,即可求解.解:(1)设甲工程队每天施工x米,乙工程队每天施工y米,根据题意得:3555024420x yx y+=⎧⎨+=⎩,解得:5080xy=⎧⎨=⎩,答:甲工程队每天能完成施工任务50米,乙工程队每天能完成施工任务80米;(2)设乙工程队施工a天,根据题意得:80a+50(90-a)≥6000,解得:a≥50,答:乙工程队至少施工50天【总结升华】本题主要考查二元一次方程组与一元一次不等式的实际应用,找出等量关系和不等量关系,列出方程组和不等式,是解题的关键.举一反三:【变式】某工厂计划m天生产2160个零件,安排15名工人每人每天加工a个零件(a为整数)恰好完成.(1)直接写出a与m的数量关系:;(2)若原计划16天完成生产任务,但实际开工6天后,有3名工人外出参加培训,如果剩下的工人要在规定时间里完成这批零件生产任务,每人每天至少要多加工多少个零件?【答案】(1)a=144m;(2)3个【分析】(1)根据工作总量=参加工作的人数×人均工作效率×工作时间,即可得出a与m的数量关系;(2)将m=16代入a=144m中求出a的值,设每人每天多加工x个零件,根据要在规定时间里完成这批零件生产任务,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中最小整数值即可得出结论.【详解】(1)依题意得:15am=2160,∴a=216015m,即a=144m.故答案为:a =144m. (2)当m =16时,a =144m =9. 设每人每天多加工x 个零件,依题意得:15×9×6+(15﹣3)×(16﹣6)×(9+x )≥2160,解得:x ≥94, 又∵x 为正整数,∴x 的最小值为3.答:每人每天至少要多加工3个零件.【总结升华】本题考查了一元一次不等式的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,找出a ,m 之间的数量关系;(2)根据各数量之间的关系,正确列出一元一次不等式.类型三、方案选择3.(2021·浙江宁波市·八年级期末)倡导垃圾分类,共享绿色生活.为了对回收的垃圾进行更精准的分类,某垃圾处理厂计划向机器人公司购买A 型号和B 型号垃圾分拣机器人共60台,其中B 型号机器人不少于A 型号机器人的1.4倍.(1)该垃圾处理厂最多购买几台A 型号机器人?(2)机器人公司报价A 型号机器人6万元/台,B 型号机器人10万元/台,要使总费用不超过510万元,则共有几种购买方案?【答案】(1)25台;(2)3种【分析】(1)设该垃圾处理厂购买x 台A 型号机器人,根据“B 型号机器人不少于A 型号机器人的1.4倍”列出不等式求解即可;(2)根据“总费用不超过510万元”列出不等式,结合(1)中不等式的解和x 为整数,即可得出共有3种方案.解:(1)设该垃圾处理厂购买x 台A 型号机器人.由题意得60 1.4x x -≥,解得25x ≤,∴该垃圾处理厂最多购买25台A 型号机器人;(2)610(60)510x x +-≤,解得22.5x ≥,22.525x ≤≤,且x 为整数,23x ∴=或24或25,答:共有3种购买方案.【点拨】本题考查一元一次不等式的应用.能根据题中不等关系列出不等式是解题关键. 举一反三:【变式】(2021·山东济宁市·七年级期末)某市出租车的起步价是7元(起步价是指不超过3km 行程的出租车价格),超过3km 行程后,其中除3km 的行程按起步价计费外,超过部分按每千米1.6元计费(不足1km 按1km 计算).如果仅去程乘出租车而回程时不乘坐此车,并且去程超过3km ,那么顾客还需付回程的空驶费,超过3km 部分按每千米0.8元计算空驶费(即超过部分实际按每千米2.4元计费).如果往返都乘同一出租车并且中间等候时间不超过3分钟,则不收取空驶费而加收1.6元等候费.现设小文等4人从市中心A 处到相距km x (12x ≤)的B 处办事,在B 处停留的时间在3分钟以内,然后返回A 处.现在有两种往返方案:方案一:去时4人同乘一辆出租车,返回都乘公交车(公交车票为每人2元); 方案二:4人乘同一辆出租车往返.问选择哪种计费方式更省钱?(写出过程)【答案】当x 小于5时,方案二省钱;当x=5时,两种方案费用相同;当x 大于5且不大于12时时,方案一省钱【分析】先根据题意列出方案一的费用:起步价+超过3km 的km 数×1.6元+回程的空驶费+乘公交的费用,再求出方案二的费用:起步价+超过3km 的km 数×1.6元+返回时的费用1.6x+1.6元的等候费,最后分三种情况比较两个式子的大小.解:方案一的费用:7+(x -3)×1.6+0.8(x -3)+4×2=7+1.6x -4.8+0.8x -2.4+8=7.8+2.4x ,方案二的费用:7+(x -3)×1.6+1.6x+1.6=7+1.6x-4.8+1.6x+1.6=3.8+3.2x,∴费用相同时x的值7.8+2.4x=3.8+3.2x,解得x=5,所以当x=5km时费用相同;∴方案一费用高时x的值7.8+2.4x>3.8+3.2x,解得x<5,所以当x<5km方案二省钱;∴方案二费用高时x的值7.8+2.4x<3.8+3.2x,解得x>5,所以当x>5km方案一省钱.【点拨】此题考查了应用类问题,解答本题的关键是根据题目所示的收费标准,列出x的关系式,再比较.类型四、几何问题4.(2020·哈尔滨市虹桥初级中学校七年级月考)如图,在平面直角坐标系中,点O为坐标原点.∴ABC的边BC在x轴上,A(0,4).B、C两点的坐标分别为B(m,0)、C(n,0),且m、n满足:21321m nm n-=-⎧⎨+=⎩.(1)求线段BC的长.(2)若点P从点B出发,以每秒2个单位的速度沿射线BO匀速运动,点Q从点C出发,以每秒1个单位的速度沿线段CB向终点B匀速运动,当一个点停止运动时,另一个点也停止运动.如果时间为t,PQ的长度为d,请用含t的式子表示d.(3)在(2)的条件下,若∴APQ的面积不小于∴ABC的面积的二分之一,求出t的范围.【答案】(1)BC=8;(2)当0≤t≤83时,d=8﹣3t;当83<t≤8时,d=3t﹣8;(3)0≤t≤43或4≤t≤8.【分析】(1)解方程组可求m,n的值,即可求解;(2)分相遇前和相遇后两种情况讨论,由路程=速度×时间,可求解;(3)分两种情况讨论,由面积公式列出不等式,即可求解.解:(1)∵m、n满足:21321m nm n-=-⎧⎨+=⎩,∴解得53mn=-⎧⎨=⎩,∴点B(﹣5,0),点C(3,0),∴BC=8;(2)点B(﹣5,0),点C(3,0),53OB OC∴==,分两种情况讨论:当0≤t≤83时,即点P、Q相遇前,532PQ OB OC BP CQ t t =+--=+--∴d=8﹣3t;当83<t≤8时,当P、Q相遇后,PQ BP CQ OB OC=+--∴d=3t﹣8,综上所述,d=8﹣3t或d=3t﹣8;(3)当0≤t≤83时,∵△APQ的面积不小于△ABC的面积的二分之一,∴12×4×(8﹣3t)≥12×12×4×8,∴t≤43,∴0≤t≤43;当83<t≤8时,∵△APQ的面积不小于△ABC的面积的二分之一,∴12×4×(3t﹣8)≥12×12×4×8,∴t≥4,∴4≤t≤8,综上所述:当0≤t≤43或4≤t≤8时,△APQ的面积不小于△ABC的面积的二分之一.【点拨】本题考查二元一次方程组的解法,其中涉及分类讨论法、线段上的动点与线段的和差、一元一次不等式等知识,是重要考点,难度一般,掌握相关知识是解题关键.举一反三:【变式】如图,在矩形ABCD中,AB=2cm,BC=4cm.点M从A出发,沿矩形的边A→B→C 运动,速度为1.5 cm/s;点N从B出发,沿矩形的边B→C→D运动,运动速度为3cm/s. 它们同时出发,设运动时间为x秒(0≤x≤2),一个点停止运动时,另一个点也同时停止运动.若MC∴ND,则x的值为___________________.【答案】43≤x≤2【解析】因为MC∴ND,而点C、D,分别固定的,且四边形ABCD是矩形,所以只有当M 点在BC上,N点在CD上时,满足题意.详解:当同时满足M点在BC上,N点在CD上时,MC∴ND.即:2 1.5643602xxx≤≤⎧⎪≤≤⎨⎪≤≤⎩,解得:44342302xxx⎧≤≤⎪⎪⎪≤≤⎨⎪≤≤⎪⎪⎩.综上可得:42 3x≤≤.点拨:本题考查了一元一次不等式组.。

一元一次不等式组的定义

一元一次不等式组的定义

一元一次不等式组的定义
◎ 一元一次不等式组的定义的定义
定义:
由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。

不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集。

求不等式组的解集的过程叫做解不等式组。

在理解时要注意以下两点:
1) 不等式组里不等式的个数并未规定;
2) 在同一不等式组里的未知数必须是同一个。

◎ 一元一次不等式组的定义的知识扩展
定义:由几个含有同一个未知数的一元一次不等式组成的不等式组,叫做一元一次不等式组。

◎ 一元一次不等式组的定义的特性
一元一次不等式必须符合三个条件:
①组成不等式组的一元一次不等式可以是两个、三个······
②每个不等式都是一元一次不等式;
③必须都含有同一个未知数。

◎ 一元一次不等式组的定义的知识点拨
◎ 一元一次不等式组的定义的教学目标
1、通过对不等式的复习和具体实例总结一元一次不等式组以及一元一次不等式组的解集的概念。

2、创设情境,通过实例引导学生考虑多个不等式联合的解法。

3、通过对典型例题的分析加深对一元一次不等式组的认识。

4、在探究学习中培养学生独立思考、自主探索、勇于创新的精神。

◎ 一元一次不等式组的定义的考试要求
能力要求:了解
课时要求:30 考试频率:少考分值比重:2。

苏科版七年级数学下册电子课本课件【全册】

苏科版七年级数学下册电子课本课件【全册】
苏科版七年级数学下册电子课本 课件【全册】目录
0002页 0029页 0067页 0069页 0084页 0110页 0145页 0164页 0197页 0216页 0254页 0285页 0365页 0391页 0405页 0430页 0454页
第7章 平面图形的认识(二) 7.2 探索平行线的性质 7.4 认识三角形 第8章 幂的运算 8.2 幂的乘方与积的乘方 第9章 从面积到乘法公式 9.2 单项式乘多项式 9.4 乘法公式 第10章 二元一次方程组 10.2 二元一次方程组 10.4 三元一次方程组 第11章 一元一次不等式 11.2 不等式的解集 11.4 解一元一次不等式 11.6 一元一次不等式组 12.1 定义与命题 12.3 互逆命题
第7章 平面图形的认识(二)
苏科版七年级数学下册电子课本课 件【全册】
7.1 探索直线平行的条件
苏科版七年级数学下
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


解不等式组: 解:解不等式①,得
2x+1<-1 3-x≥1 x<-1
① ②
解不等式②,得 x≤2
在数轴上表示不等式①、 ②解集:
。 -1
0
2
由图可知,不等式组的解集是 x<-1
解一元一次不等式组的步骤是什么?
解一元一次不等式组的步骤: (1)解不等式组中的各个不等式; (2)求出这几个不等式解集的公共部分. 解不等式组:
初中数学七年级下册
(苏科版)
11.6一元一次不等式组(1)
一个长方形足球场的宽是65m,如果 它的周长大于340m,面积不大于7150m2,求这 个足球场的的长的范围,并判断这个足球场是 否可以用于国际比赛。 (足球比赛规则规定:用于国际比赛的足球场 长度为100~110m,宽度为64~75m) 分析:设长方形足球场的长是x m,那么它的周 长和面积分别为2(x+65)m,65xm2. 根据题意,得 2(x+65)>340
65x≤7150
什么叫一元一次不等式组?
由几个含有同一个未知数的一次不等式
组成的不等式组叫做一元一次不等式组.
解:设长方形足球场的长是xm,那么它的周长 和面积分别为2(x+65)m,65xm2. 根据题意,得 2(x+65)>340 ① ② 65x≤7150 解不等式①,得 x>105 解不等式②,得 x≤110 在数轴上表示不等式的解集:
3x 1 2 x 1 (1 ) 1 x 2 2
x>2
5 x 4 3( x 1) (2 ) x 1 2x 1 5 2
1 x 2
1、求不等式组 的整数解.
5x 1 3( x 1)
2x 1 5x 1 1 3 2
105 110 0 这个不等式组的解集是105<x≤110 答:这个足球场的的宽是65m,长大于105m并 不大于110m.这个足球场可以用于国际足球比赛。
什么叫不等式组的解集?
所有不等式的解集 公共部分 不等式组中所有不等式的解集的公共部分 叫做这个不等式组的解集.
求不等式组解集的过程叫做解不等式组.
1
2
3
4
x 1
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
x 4
同小取小
x 3, (9) x 7.
探索. 求下列不等式组的解集:
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
3 x7
x 2, (10) x 5. x 1, (11) x 4. x 0, (12) x 4.
0 1 2 3 4 5 6 7 8 9
x3
x 2, (6) x 5. x 1, (7) x 4. x 0, (8) x 4.
解:原不等式组的解集为 -7 -6 -5 -4 -3 -2 -1 0
x 5
解:原不等式组的解集为
5
-3 -2 -1 0
不等式组的解集:
你会找不等式组的公 共部分吗?
探索. 求下列不等式组的解集:
x 3, (1) x 7. x 2, (2) x 3. x 2, (3) x 5. x 0, (4) x 4.
解:原不等式组的解集为
0 1 2 3 4 5 6 7 8 9
A. -5
(5)如图,
-2
B. -5
2.5 4
-2
C.
-5
-2
D. -5
-2
A. 1 x 2.5
-1
则其解集是( C )
B. 1 x 4
C. 2.5 x 4
D. 2.5 x 4
1、选择题: x≥2, (1)不等式组 的解集是( D ) x ≤2 A. x ≥2, B. x≤2, D. x =2. C. 无解, x 0.5, (2)不等式组 的整数解是( C ) x≤1 A. 0, 1 , B. 0 , D. x ≤1. C. 1, x ≥-2, (3)不等式组 的负整数解是( C ) x 3 A. -2, 0, -1 , B. -2 , C. -2, -1, D.不能确定. x ≥-2, (4)不等式组 的解集在数轴上表示为( B ) x 5
小结
• 你有哪些收获?说出来,大家共同分 享 • 你还有什么疑惑?提出来,我们一起
讨论
2.解下列不等式组:
3x - 2 < x + 2, (1) 5x + 5 2x - 7;
2x - 3 < 9 - x, (2) 2x - 5 > 10 - 3x;
2 (3 x ) 2 2 , 2x - 8 > 5x +1, 5 (3) (4) 2 11 - 2x < 21 - 4x; (x + 5)-1 < 3. 3
解:原不等式组的解集为
-7 -6 -5 -4 -3 -2 -1 0
5 x 2
解:原不等式组的解集为
-3 -2 -1 0
1
2
3
4
5
1 x 4
解:原不等式组的解集为
-6
-5 -4 -3 -2 -1
0
1
4 x 0
大小小大取中间
x 3, (13) x 7.
探索. 求下列不等式组的解集:
3.大小小大取中间,
运用规律求下列不等式组的解集:
4.大大小小是无解。
x 3 , x 0 , x 1 3 x 6 x 0 , 1 , x 2 x 3 , ( 2 ) ( 7 ) 6 ) (5) ( 1 ) 8 ( 4) (3 x 7 . x 4 . x 5 . 2 x x 2 4 . x 7 . x 4.
5
解:原不等式组无解.
-6
-5 -4 -3 -2 -1
0
1
解:原不等式组无解.
大大小小是无解
一般由两个一元一次不等式组成的不等式组的 解集,可以归结为下面四种情况:
①同大取大,同小取小;②大小小大取中间; ③大大小小是无解.
上表可以找出规律,编为口诀:
比一比:看谁反应快
1. 同大取大,
2.同小取小;
x7
解:原不等式组的解集为
-3 -2 -1 0 1 2 3 4
x2
解:原不等式组的解集为 -5 -4
-3
-2
-1
0

x 2
解:原不等式组的解集为
-5 -4 -3 -2 -1
0 1 2
x0
同大取大
x 3, (5) x 7.
探索. 求下列不等式组的解集:
解:原不等式组的解集为
1、若不等式组 x a x 3 0 只有三个整数解,求a的取值范围.
2、若不等式组
1 x 2 x m
有解,求m的取值范围。
x m 1 无解, 3、若不等式组 x 2m 1
则m的取值范围是_______ 4、若不等式4x-a≤0的正整数解是1,2, 则a的取值范围是______.
0 1 2 3 4 5 6 7 8 9
解:原不等式组无解.
x 2, (14) x 5. x 1, (15) x 4. x 0, (16) x 4.
-7 -6 -5 -4 -3 -2 -1 0
解:原不等式组无解.
-3 -2 -1 0
1
2
3
4
相关文档
最新文档