圆锥曲线(精编文档).doc
圆锥曲线定点、定直线、定值问题精编版
定点、定直线、定值专题1、已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :y kx m =+与椭圆C 相交于A ,B 两点(A B ,不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.【标准答案】(I)由题意设椭圆的标准方程为22221(0)x y a b a b +=>>3,1a c a c +=-=,22,1,3a c b ===221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k-⇒+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122y yx x ∴⋅=---, (最好是用向量点乘来)1212122()40y y x x x x +-++=,2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7km k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).72、已知椭圆C的离心率e =,长轴的左右端点分别为()1A 2,0-,()2A 2,0。
(完整word版)高中数学圆锥曲线知识点(word文档良心出品)
高中数学知识点 一圆锥曲线部分、平面解析几何的知识结构:炭|»■汕旷崔乂 —■ 才程,人闻性息、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长 2a 大于焦距2c 。
用集合表示为:{刊昭+昭 =2肚,<2c?,巩出为定点}②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e ,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数e 是离心率。
用集合表示为:厂国丽F •诵和廊阿 HSi^HSSJ^Tjj L|闿箫MWBUW 旧展rBe aglr ff<* 人卄武 -TRU :在虹 L-fttW —ifeBSMKEA■・—奥・/RAgTE Em严闌* IS 幣内CL 耐 严・寰丫Lesgg*&和 <«)MtLlweA^B€ff«^B>g* < lt> 的比较4 山RHHA5il曲测6“旳左丈吞穴育啟/UMfl■相FT?F- = % 0 < f < k F为定点9 £为动点到定言线的距离e越小,椭圆越圆;e越大,椭圆越扁(2)标准方程和性质:2 2①范围:由标准方程^2 爲1知|x| a,|y| b,说明椭圆位于直线x a,a by b所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(x, y)在曲线上时,点(x, y)也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y 轴对称。
若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。
所以,椭圆关于x轴、y轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。
在椭圆的标准方程中,令x 0,得y b,则B1(0, b),B2(0,b)是椭圆与y轴的两个交点。
圆锥曲线经典例题及总结(全面实用,你值得拥有)(K12教育文档)
圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为圆锥曲线经典例题及总结(全面实用,你值得拥有)(word版可编辑修改)的全部内容。
圆锥曲线 1。
圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a一定要小于|F 1F 2|,定义中的“绝对值"与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么?(ABC ≠0,且A,B ,C 同号,A ≠B)。
(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
圆锥曲线公式大全
圆锥曲线公式大全(总7页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--圆锥曲线知识考点一、直线与方程1、倾斜角与斜率:1212180<α≤0(tan x x y y --==)α 2、直线方程:⑴点斜式:直线l 经过点),(000y x P ,且斜率为k : ()00x x k y y -=- ⑵斜截式:已知直线l 的斜率为k ,且与y 轴的交点为),0(b :b kx y += ⑶两点式:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠:121121y y y y x x x x --=-- ⑷截距式:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b :1x y a b+= ⑸一般式:0=++C By Ax (A 、B 不同时为0, 斜率BAk -=,y 轴截距为BC -) (6)k 不存在⇔a x b a x o=⇔⇔=)的直线方程为过(轴垂直,90α3、直线之间的关系:222111:,:b x k y l b x k y l +=+=⑴平行:{⇔⇔≠=21212121//b b k k k k l l 且都不存在,212121C C B B A A ≠=⑵垂直:{⇔⇔⊥-=⇔-==21212111.021k k k k k k l l 不存在,02121=+B B A A⑶平行系方程:与直线0=++C By Ax 平行的方程设为:0=++m By Ax⑷垂直系方程:与直线0=++C By Ax 垂直的方程设为:0=++n Ay Bx⑸定点(交点)系方程:过两条直线:,0:22221111=++=++C y B x A l C y B x A l 的交点的方程设为:0)(222111=+++++C y B x A C y B x A λ反之直线0)(222111=+++++C y B x A C y B x A λ中,λ取任何一切实数R ,则直线一定过定点),(00y x ,即0:,0:22221111=++=++C y B x A l C y B x A l 两条直线的交点),(0y x4、距离公式:(1)两点间距离公式:两点),(),,(222211y x P x x P :()()21221221y y x x P P -+-=(2)点到直线距离公式:点),(00y x P 到直线0:=++C By Ax l 的距离为2200BA CBy Ax d +++=(3)两平行线间的距离公式:1l :01=++C By Ax 与2l :02=++C By Ax 平行,则2221BA C C d +-=二、圆与方程 1、圆的方程:⑴标准方程:()()222r b y a x =-+- 其中圆心为(,)a b ,半径为r .⑵一般方程:022=++++F Ey Dx y x (0422>-+F E D )其中圆心为(,)22D E --,半径为r =2、直线与圆的位置关系 点),(00y x 和圆222)()(r b y a x =-+-的位置关系有三种:222222222)()()(rb y a x r b y a x rb y a x >-+-⇔=-+-⇔<-+-⇔)(点在圆外)(点在圆上)(点在圆内直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .切线方程:(1)当点),(00y x P 在圆222r y x =+上⇔200r y y x x =+ 圆222)()(r b y a x =-+-⇔200))(())((r b y b y a x a x =--+-- (2)当点),(00y x P 在圆222r y x =+外,则设直线方程()00x x k y y -=-,并利用d=r 求出斜率,即可求出直线方程【备注:切线方程一定是两条,考虑特殊直线k 不存在】④弦长公式:222||d r AB -=2212121()4k x x x x =+-- 3、两圆位置关系:21O O d =⑴外离:r R d +> ⇔有4条公切线 ⑵外切:r R d += ⇔有3条公切线 ⑶相交:r R d r R +<<- ⇔有2条公切线 ⑷内切:r R d -= ⇔有1条公切线 ⑸内含:r R d -< ⇔有0条公切线三、圆锥曲线与方程1.椭圆焦点的位置 焦点在x 轴上 焦点在y 轴上图形标准方程()222210x y a b a b+=>> ()222210y x a b a b+=>> 第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(01)MFe e d=<< 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤2.双曲线顶点 ()1,0a A -、()2,0a A ()10,b B -、()20,b B ()10,a A -、()20,a A()1,0b B -、()2,0b B轴长 长轴的长2a = 短轴的长2b = 对称性 关于x 轴、y 轴对称,关于原点中心对称焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 222122()F F c c a b ==-离心率 22222221(01)c c a b b e e a a a a-====-<<准线方程 2a x c=±2a y c=±焦半径 0,0()M x y 左焦半径:10MF a ex =+ 右焦半径:20MF a ex =-下焦半径:10MF a ey =+ 上焦半径:20MF a ey =-焦点三角形面积12212tan()2MF F S b F MF θθ∆==∠021s 21y c in PF PF •=••=θ 通径过焦点且垂直于长轴的弦叫通径: ab 22焦点的位置焦点在x 轴上 焦点在y 轴上图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 第一定义到两定点21F F 、的距离之差的绝对值等于常数2a ,即21||||2MF MF a -=(2102||a F F <<) 第二定义 与一定点的距离和到一定直线的距离之比为常数e ,即(1)MFe e d=>【备注】1、双曲线和其渐近线得关系:由双曲线求渐进线:x a b y a x b y a x b y b y a x b y a x ±=⇒±=⇒=⇒=-⇒=-22222222222201由渐进线求双曲线:λ=-⇒=-⇒=⇒±=⇒±=2222222222220by a x b y a x a x b y a x b y x a b y2.等轴双曲线⇔实轴和虚轴等长的双曲线⇔其离心率e =2⇔渐近线x ±=y⇔方程设为λ=-22y x2、求弦长的方法: ①求交点,利用两点间距离公式求弦长; ②弦长公式 ) (消y x x x x k x x k l ]4))[(1(1212212212-++=-+=五、.直线与圆锥曲线的关系1、直线与圆锥曲线的关系如:直线y =kx +b 与椭圆x 2a 2+y 2b2=1 (a >b >0)的位置关系:图形标准方程 22y px = ()0p >22y px =- ()0p >22x py = ()0p >22x py =- ()0p >开口方向 向右 向左 向上 向下定义 与一定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线(定点F 不在定直线l 上)顶点 ()0,0离心率 1e =对称轴 x 轴y 轴范围0x ≥0x ≤0y ≥0y ≤焦点 ,02p F ⎛⎫ ⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭ 0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2px =2p y =-2p y =焦半径 0,0()M x y 02pMF x =+02pMF x =-+02pMF y =+02p MF y =-+通径 过抛物线的焦点且垂直于对称轴的弦称为通径:2HH p '=焦点弦长 公式 12AB x x p =++参数p几何意义参数p 表示焦点到准线的距离,p 越大,开口越阔直线与椭圆相交?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有2组实数解,即Δ>0.直线与椭圆相切?⎩⎨⎧ y =kx +bx 2a 2+y2b 2=1⇔有1组实数解,即Δ=0,直线与椭圆相离⎩⎨⎧y =kx +bx 2a 2+y2b 2=1⇔没有实数解,即Δ<【备注】(1)韦达定理(根与系数的关系){AB x AC x C By Ax x -=+=⇔=++2121x .x 210x 的两根方程和则有21221214)(||xx x x x x -+=-(2){b kx y bkx y +=+=1122则有下列结论b x x k y y ++=+)(2121)(2121x x k y y -=-22121221)(b x x k x x k y y +++=③、与弦的中点有关的问题常用“点差法”:把弦的两端点坐标代入圆锥曲线方程,作差→弦的斜率与中点的关系;0202y a x b k -=(椭圆) 0202y a x b k =(双曲线)3、关于抛物线焦点弦的几个结论(了解)设AB 为过抛物线22(0)y px p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,则⑴ 221212,;4p x x y y p ==- ⑵ 22;sin p AB θ=⑶ 以AB 为直径的圆与准线相切;π;⑸112. ||||FA FB P+=⑷焦点F对A B、在准线上射影的张角为2。
(完整版)《圆锥曲线》主要知识点
圆锥曲线与方程 知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==+,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=+,则点P 的轨迹是 2若P 是椭圆:12222=+by a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为3、点与椭圆、直线与椭圆的位置关系(1)点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:①点P 在椭圆上⇔ ;②点P 在椭圆内部⇔ ; ③点P 在椭圆外部⇔ .(2)直线y =kx +m 与椭圆x 2a 2+y 2b2=1(a >b >0)的位置关系判断方法:先联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b 2=1.消y 得一个一元二次方程是:(3)弦长公式:设直线方程为y =kx +m (k ≠0),椭圆方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b 2=1(a >b >0),直线与椭圆的两个交点为A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2, ∴|AB |=(x 1-x 2)2+(kx 1-kx 2)2=1+k 2·(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2, 或|AB |=⎝⎛⎭⎫1ky 1-1k y 22+(y 1-y 2)2=1+1k 2·(y 1-y 2)2=1+1k2×(y 1+y 2)2-4y 1y 2. 其中,x 1+x 2,x 1x 2或y 1+y 2,y 1y 2的值,可通过由直线方程与椭圆方程联立消去y 或x 后得到关于x 或y 的一元二次方程得到.(4)直线l :y =kx +m 与椭圆:()012222>>=+b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 二、双曲线方程. 1、双曲线的定义:平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF <=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF >=-,则点P 的轨迹是 平面内与两个定点F 1、F 2,点P 满足21212F F a PF PF ==-,则点P 的轨迹是 2(1)等轴双曲线:双曲线a y x ±=-称为等轴双曲线,其渐近线方程为 ,离心率(2)共渐近线的双曲线系方程:)0(2222≠=-λλby a x 的渐近线方程为如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为 .(3)从双曲线一个焦点到一条渐近线的距离等于 . 3、直线与双曲线的位置关系(1)一般地,设直线l :y =kx +m ……① 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0) ……②把①代入②得关于x 的一元二次方程为 . ①当b 2-a 2k 2=0时,直线l 与双曲线的渐近线 ,直线与双曲线C . ②当b 2-a 2k 2≠0时,Δ>0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ=0⇒直线与双曲线有 公共点,此时称直线与双曲线 ; Δ<0⇒直线与双曲线 公共点,此时称直线与双曲线 . 注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.(2)直线l :y =kx +m 与双曲线:()0,012222>>=-b a by a x 的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用x 0,y 0表示) 三、抛物线方程. 1、抛物线的定义平面内与一个定点F 和一条定直线l (不经过点F ) 的点的轨迹叫做抛物线.点F 叫做抛物线的 ,直线l 叫做抛物线的 .思考1:平面内与一个定点F 和一条定直线l (l 经过点F ),点的轨迹是 2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,AB 是抛物线y 2=2px (p >0)过焦点F 的一条弦,设A (x 1,y 1)、B (x 2,y 2), AB 的中点M (x 0,y 0),相应的准线为l .(1)以AB 为直径的圆必与准线l 的位置关系是 ; (2)|AB |= (焦点弦长用中点M 的坐标表示); (3)若直线AB 的倾斜角为α,则|AB |= (焦点弦长用倾斜角为α表示);如当α=90°时,AB 叫抛物线的通径,是焦点弦中最短的;抛物线的通径等于 . (4)求证A 、B 两点的横坐标之积、纵坐标之积为定值,即x 1·x 2= ,y 1·y 2= . 4、直线与抛物线的位置关系1.设直线l :y =kx +m ,抛物线:y 2=2px (p >0),将直线方程与抛物线方程联立整理成 关于x 的一元二次方程为 ,(1)若k =0,直线与抛物线有 个公共点,此时直线 于抛物线的对称轴或与对称轴 . 因此直线与抛物线有一个公共点是直线与抛物线相切的 条件. (2)若k ≠0, 当Δ>0时,直线与抛物线 ,有两个公共点;当Δ=0时,直线与抛物线 ,有一个公共点; 当Δ<0时,直线与抛物线 ,无公共点.2.直线l :y =kx +m 与抛物线:y 2=2px (p >0)的两个交点为A (x 1,y 1),B (x 2,y 2),弦AB 的中点M (x 0,y 0),则k = (用p 和x 0,y 0表示)3.抛物线:y 2=2px (p >0,y >0)在点A (x 0,02px )处的切线方程为 ,4.抛物线:x 2=2py (p >0)在点A (x 0,px 220)处的切线方程为 ,。
(完整word版)圆锥曲线知识点总结,推荐文档
圆锥曲线的方程与性质1.椭圆(1)椭圆概念的焦点,两焦点的距离2c 叫椭圆的焦距。
若 M为椭圆上任意一点,则有|MF 1 I |MF 2 I 2a 。
0的条件,要分清焦点的位置,只要看 X 2和y 2的分表示焦点在y 轴上的椭圆。
(2)椭圆的性质方程也不变,则曲线关于原点对称。
所以,椭圆关于X 轴、y 轴和原点对称。
这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心 叫椭圆的中心;X 0,得y b ,则B 1(0, b ), B 2(0,b )是椭圆与y 轴的两个交点。
同理令 y 0得X a ,即A ( a,0),A 2(a,0)是椭圆与X 轴的两个交点。
所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。
平面内与两个定点 F 1、F 2的距离的和等于常数2a (大于IF 1F 2I )的点的轨迹叫做椭圆。
这两个定点叫做椭圆上)。
椭圆的标准方程为:22Xy22a b0)(焦点在 x 轴上)2y a 2XP 1 ( a b 0 )(焦点在y 轴b 2注:①以上方程中 a,b 的大小 a b 0,其中b 2母的大小。
例如椭圆2y nn )当m n 时表示焦点在X 轴上的椭圆;当 m n 时1两个方程中都有aX 2①范围:由标准方程a1知|X| a ,|y| b ,说明椭圆位于直线 X a ,b 所围成的矩形里; ②对称性:在曲线方程里, 若以 y 代替y 方程不变,所以若点(X, y )在曲线上时,(X, y )也在曲线上, 所以曲线关于X 轴对称,同理,以X 代替X 方程不变,则曲线关于 y 轴对称。
若同时以X 代替X , y 代替y③ 顶点:确定曲线在坐标系中的位置,常需要求出曲线与X 轴、y 轴的交点坐标。
在椭圆的标准方程中,令焦距。
(2)双曲线的性质同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。
(完整版)《圆锥曲线》主要知识点
圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。
圆锥曲线 课件
利用线性代数知识求解圆锥曲线问题
线性方程组
线性方程组是线性代数中的基础内容, 它可以用来求解与圆锥曲线相关的问题 。例如,通过解线性方程组,可以找到 满足特定条件的点的坐标。
VS
特征值与特征向量
特征值和特征向量在解析几何中也有广泛 应用。通过计算圆锥曲线的特征值和特征 向量,可以深入了解曲线的性质,从而更 好地解决相关问题。
椭圆离心率的范围是0<e<1,双曲线的离心率范围是e>1。
圆锥曲线的光学性质
01
光线经过圆锥曲线上的点时,其 方向会发生改变,这种现象叫做 圆锥曲线的光学性质。
02
光线经过椭圆时,会沿着椭圆的 主轴方向折射;经过双曲线时, 会沿着双曲线的副轴方向折射。
圆锥曲线的对称性
圆锥曲线具有对称性,即如果将圆锥 曲线沿其对称轴旋转180度,它仍然 与原来的曲线重合。
02 圆锥曲线的性质
焦点与准线
焦点
圆锥曲线上的点到曲线的两个焦 点的距离之和等于常数,这个常 数等于椭圆的长轴长,等于双曲 线的实轴长。
准线
与圆锥的母线平行的线,在平面 内与准线相交的直线与圆锥相切 于一点,这个点叫做切点。
离心率
离心率:是描述圆锥曲线形状的一个重要参数,它等于圆锥顶点到曲线的距离与 圆锥的半径之比。离心率越大,圆锥曲线越扁平,反之则越接近于球形。
双曲线的极坐标 方程
$frac{rho^2}{a^2} frac{rho^2}{b^2} = 1$
圆锥曲线在极坐 标下的表…
将圆锥曲线问题转化为极 坐标形式,便于理解和求 解。
利用极坐标求解圆锥曲线问题
利用极坐标求解圆锥曲线问题的步骤
首先将问题转化为极坐标形式,然后利用极坐标的性质和公式进行求解。
(完整word版)圆锥曲线知识要点及结论个人总结
《圆锥曲线》知识要点及重要结论一、椭圆1 定义 平面内到两定点21,F F 的距离的和等于常数)2(221F F a a >的点P 的轨迹叫做椭圆。
若212F F a =,点P 的轨迹是线段21F F 。
若2120F F a <<,点P 不存在.2 标准方程 )0(12222>>=+b a b y a x ,两焦点为)0,(),0,(21c F c F -.)0(12222>>=+b a b x a y ,两焦点为),0(),,0(21c F c F -.其中222c b a +=. 3 几何性质椭圆是轴对称图形,有两条对称轴. 椭圆是中心对称图形,对称中心是椭圆的中心. 椭圆的顶点有四个,长轴长为a 2,短轴长为b 2,椭圆的焦点在长轴上。
若椭圆的标准方程为)0(12222>>=+b a b y a x ,则b y b a x a ≤≤-≤≤-,;若椭圆的标准方程为)0(12222>>=+b a b x a y ,则a y a b x b ≤≤-≤≤-,。
二、双曲线1 定义 平面内到两定点21,F F 的距离之差的绝对值等于常数)20(221F F a a <<的点的轨迹叫做双曲线. 若212F F a =,点P 的轨迹是两条射线.若212F F a >,点P 不存在.2 标准方程 )0,0(12222>>=-b a b y a x ,两焦点为)0,(),0,(21c F c F -。
)0,0(12222>>=-b a b y a x ,两焦点为),0(),,0(21c F c F -.其中222b a c +=. 3 几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心。
双曲线的顶点有两个21,A A ,实轴长为a 2,虚轴长为b 2,双曲线的焦点在实轴上.若双曲线的标准方程为)0,0(12222>>=-b a by a x ,则R y a x a x ∈≥-≤,或;若双曲线的标准方程为)0,0(12222>>=-b a bx a y ,则R x a y a y ∈≥-≤,或。
[实用参考]圆锥曲线.doc
第3讲圆锥曲线 一、考点整合1.直线与圆的位置关系:(1)圆心到直线的距离d =|Ax 0+By 0+C |A 2+B 2与半径r 比较;(2)弦长公式|AB |=2r 2-d 2(弦心距d ).2.圆锥曲线的定义:(1)椭圆|MF 1|+|MF 2|=2a (2a >|F 1F 2|; (2)双曲线||MF 1|-|MF 2||=2a (2a <|F 1F 2|; (3)抛物线|MF |=d (d 为M 点到准线的距离). 3.圆锥曲线的几何性质:(1)椭圆e =ca=1-b 2a 2.(2)双曲线①e =ca=1+b 2a 2;②渐近线方程:P =±b aG 或P =±abG ;(3)抛物线:设P 2=2pG (p >0),C (G 1,P 1),D (G 2,P 2)为抛物线上的点,F 为其焦点.①焦半径|CF |=G 1+p 2;②过焦点的弦长|CD |=G 1+G 2+p ;③G 1G 2=p 24,P 1P 2=-p 2.4.三大法宝研究直线与圆锥曲线:(1)合理选择变量;(2)设而不求,整体代换;(3)韦达定理。
二、例题讲解1.若圆上一点A (2,3)关于直线G +2P =0的对称点仍在圆上,且圆与直线G -P +1=0相交的弦长为22,则圆的方程是________.2.(1)已知对称中心为坐标原点的椭圆与双曲线有共同的焦点,其左、右焦点都在G 轴上,分别设为F 1,F 2,它们在第一象限的交点为P ,△PF 1F 2是以PF 2为底边的等腰三角形,若|PF 2|=3,且椭圆的离心率为23,则双曲线的离心率为( )A.32B.2C.52 D.3 (2)平面直角坐标系GOP 中,双曲线C 1:x 2a 2-y2b 2=1(a >0,b >0)的渐近线与抛物线C 2:G 2=2pP (p >0)交于点O ,A ,B .若△OAB 的垂心为C 2的焦点,则C 1的离心率为________. 3.椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,若F 关于直线3G +P =0的对称点A 是椭圆C 上的点,则椭圆C 的离心率为( ) A.12 B.3-12 C.32 D.3-1 4.如图,设抛物线P 2=4G 的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在P 轴上,则△BCF 与△ACF 的面积之比是( ) A.|BF |-1|AF |-1 B.|BF |2-1|AF |2-1C.|BF |+1|AF |+1 D.|BF |2+1|AF |2+15.如图,椭圆x 2a 2+y2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆于P 、Q 两点,且PQ ⊥PF 1. (1)若|PF 1|=2+2,|PF 2|=2-2,求椭圆的标准方程;(2)若|PF 1|=|PQ |,求椭圆的离心率e . 6.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)过点(0,2),且离心率e =22.(1)求椭圆E 的方程;(2)设直线l :G =mP -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.7.如图,在平面直角坐标系GOP 中,已知椭圆x 2a 2+y 2b2=1(a>b >0)的离心率为22,且右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线与椭圆交于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.8.已知抛物线22x py =上点P 处的切线方程为10x y --=.(Ⅰ)求抛物线的方程;(Ⅱ)设11(,)A x y 和22(,)B x y 为抛物线上的两个动点,其中12y y ≠且124y y +=,线段AB 的垂直平分线l 与y 轴交于点C ,求ABC ∆面积的最大值.三、总结1.确定圆的方程时,常用到圆的几个性质:(1)直线与圆相交时应用垂径定理构成直角三角形(半弦长,弦心距,圆半径); (2)圆心在过切点且与切线垂直的直线上; (3)圆心在任一弦的中垂线上;(4)两圆内切或外切时,切点与两圆圆心三点共线;(5)圆的对称性:圆关于圆心成中心对称,关于任意一条过圆心的直线成轴对称. 2.椭圆、双曲线的方程形式上可统一为AG 2+BP 2=1,其中A ,B 是不等的常数,A >B >0时,表示焦点在P 轴上的椭圆;B >A >0时,表示焦点在G 轴上的椭圆;AB <0时表示双曲线.3.对涉及圆锥曲线上点到焦点距离或焦点弦问题,恰当选用定义解题,会效果明显,定义中的定值是标准方程的基础.4.在椭圆焦点三角形PF 1F 2,∠F 1PF 2=α,则S △PF 1F 2=c |P 0|=b 2·tanα2.5.求双曲线、椭圆的离心率的方法:方法一:直接求出a ,c ,计算e =ca;方法二:根据已知条件确定a ,b ,c 的等量关系,然后把b 用a ,c 代换,求ca.6.通径:过双曲线、椭圆、抛物线的焦点垂直于对称轴的弦称为通径,双曲线、椭圆的通径长为2b 2a,过椭圆焦点的弦中通径最短;抛物线通径长是2p ,过抛物线焦点的弦中通径最短.椭圆上点到焦点的最长距离为a +c ,最短距离为a -c .四、例题解答1.解:设圆的方程为(G -a )2+(P -b )2=r 2,点A (2,3)关于直线G +2P =0的对称点仍在圆上,说明圆心在直线G +2P =0上,即有a +2b =0,又(2-a )2+(3-b )2=r 2,而圆与直线G -P +1=0相交的弦长为22,故r 2-⎝⎛⎭⎪⎪⎫a -b +122=2, 依据上述方程,解得⎩⎪⎨⎪⎧a =6,b =-3,r 2=52或⎩⎪⎨⎪⎧a =14,b =-7,r 2=244.所以,所求圆的方程为(G -6)2+(P +3)2=52或(G -14)2+(P +7)2=244.思路二:点A 恰好在直线G-P+1=0上,设直线G-P+1=0与所求圆另一个交点是B ,线段AB 中点是M ,分析得M (1,2)或M (3,4),从而求出线段AB 中垂线的方程,将线段AB 中垂线的方程与直线G+2P=0联立可求出圆心坐标。
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx
(完整版)圆锥曲线知识点+例题+练习含答案(整理).docx圆锥曲线⼀、椭圆:( 1)椭圆的定义:平⾯内与两个定点F1 , F2的距离的和等于常数(⼤于| F1 F2 |)的点的轨迹。
其中:两个定点叫做椭圆的焦点,焦点间的距离叫做焦距。
注意: 2a | F1F2 | 表⽰椭圆;2a | F1F2|表⽰线段F1F2; 2a| F1F 2 |没有轨迹;(2)椭圆的标准⽅程、图象及⼏何性质:中⼼在原点,焦点在x 轴上中⼼在原点,焦点在y 轴上标准⽅程图形x2y2y2x2a2b 21( a b 0)a 2b21(ab 0)yB 2yB 2P F2 PA 1 A 2x A 1xA 2OF1O F21B 1FB 1顶点对称轴焦点焦距离⼼率通径2b2aA1 (a,0), A2 (a,0)A1( b,0), A2 (b,0)B1 (0, b), B2(0, b)B1( 0,a), B2 (0, a) x 轴,y轴;短轴为2b,长轴为2aF1 (c,0), F2(c,0)F1 ( 0,c), F2 (0,c)| F1 F2 | 2c(c 0)c2 a 2 b 2(0 e 1) (离⼼率越⼤,椭圆越扁)a(过焦点且垂直于对称轴的直线夹在椭圆内的线段)3.常⽤结论:(1)椭圆x2y21(a b 0) 的两个焦点为F1, F2,过F1的直线交椭圆于A, B两a2 b 2点,则ABF 2的周长=(2)设椭圆x2y2221( a b 0)左、右两个焦点为 F1, F2,过 F1且垂直于对称轴的直线a b交椭圆于 P, Q 两点,则 P, Q 的坐标分别是| PQ |⼆、双曲线:( 1)双曲线的定义:平⾯内与两个定点F1 , F2的距离的差的绝对值等于常数(⼩于| F1F2 | )的点的轨迹。
其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。
注意: | PF1 || PF2 | 2a 与 | PF2 | | PF1 |2a ( 2a| F1F2 | )表⽰双曲线的⼀⽀。
(完整word版)圆锥曲线专题
圆锥曲线的综合问题直线和圆锥曲线问题解法的一般规律“联立方程求交点,根与系数的关系求弦长,根的分布找范围,曲线定义不能忘”.【一】.直线与圆锥曲线的位置关系(1)从几何角度看,可分为三类:无公共点,仅有一个公共点及有两个相异的公共点.(2)从代数角度看,可通过将表示直线的方程代入二次曲线的方程消元后所得一元二次方程解的情况来判断. 1。
设直线l 的方程为Ax +By +C =0,圆锥曲线方程f (x ,y )=0.由Ax+0(,)0{By c f x y +==,消元。
如消去y 后得ax 2+bx +c =0. ①若a =0,当圆锥曲线是双曲线时,直线l 与双曲线的渐近线平行或重合;当圆锥曲线是抛物线时,直线l 与抛物线的对称轴平行或重合. ②若a ≠0,设Δ=b 2-4ac 。
a .Δ > 0时,直线和圆锥曲线相交于不同两点;b .Δ = 0时,直线和圆锥曲线相切于一点;c .Δ < 0时,直线和圆锥曲线没有公共点.2。
“点差法”的常见题型求中点弦方程、求(过定点、平行弦)弦中点轨迹、垂直平分线问题.必须提醒的是“点差法”具有不等价性,即要考虑判别式Δ〉0是否成立.3.直线与圆锥曲线相交时的弦长问题(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2| = 或|P 1P 2|= .(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用轴上两点间距离公式).1+k 2|x 1-x 2|1+1k 2|y 1-y 2|4.圆锥曲线的中点弦问题遇到中点弦问题常用“根与系数的关系”或“点差法”求解.在椭圆错误!+错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k=-错误!;在双曲线错误!-错误!=1中,以P(x0,y0)为中点的弦所在直线的斜率k =错误!;在抛物线y2=2px (p〉0)中,以P(x0,y0)为中点的弦所在直线的斜率k=错误!.题型一圆锥曲线中的范围、最值问题【例1】已知抛物线C:y2=4x,过点A(-1,0)的直线交抛物线C于P、Q两点,设错误!=λ错误!.(1)若点P关于x轴的对称点为M,求证:直线MQ经过抛物线C的焦点F;(2)若λ∈错误!,求|PQ|的最大值.[思维启迪](1)可利用向量共线证明直线MQ过F;(2)建立|PQ|和λ的关系,然后求最值.解析:(1)证明设P(x1,y1),Q(x2,y2),M(x1,-y1).∵错误!=λ错误!,∴x1+1=λ(x2+1),y1=λy2,∴y错误!=λ2y错误!,y错误!=4x1,y错误!=4x2,x1=λ2x2,∴λ2x2+1=λ(x2+1),λx2(λ-1)=λ-1,∵λ≠1,∴x2=错误!,x1=λ,又F(1,0),∴错误!=(1-x1,y1)=(1-λ,λy2)=λ错误!=λ错误!,∴直线MQ经过抛物线C的焦点F。
(完整word版)高中数学圆锥曲线结论(最完美版本)
1 .点P处的切线PT平分△PF1F2在点P 处的外角.2 . PT平分△PF1F2在点P处的外角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相离.4 .以焦点半径PF i为直径的圆必与以长轴为直径的圆内切.2 25 .假设P o(X o, y o)在椭圆与yY 1上,那么过P0 a b的椭圆的切线方程是警缪1. a b2 26 .假设P0(X o, y o)在椭圆占4 1外,那么过a bP0作椭圆的两条切线切点为P1、P2, 那么切点弦P1P2的直线方程是x o x y o y-2~ ~2~1.a b2 27.椭圆\ 4 1 (a>b>0)的左右焦点a b分别为F1, F2,点P为椭圆上任意一点F1PF2 ,那么椭圆的焦点角形的面积为S F PF b2 tan-. 1 222 28 .椭圆=yr 1 (a>b>0)的焦半径公a b式:IMF I | a ex0,|MF2 | a e%(F1( c,0),F2(C,0) M(x0,y.)).9 .设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N 两点,那么MF XNF.10 .过椭圆一个焦点F的直线与椭圆交于两点P、Q,A I、A2为椭圆长轴上的顶点,A I P和A2Q交于点M, A2P和A I Q交于点N,那么MFXNF.2 211. AB是椭圆与当1的不平行于对称轴a b的弦,M(x°,y°)为AB的中点,那么b2k OM k AB _2,a即K AB整.a V.双曲线1 .点P处的切线PT平分△PF1F2在点P处的内角.2 . PT平分△PF1F2在点P处的内角, 那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相交.4 .以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)2 25 .假设P o(%,y.)在双曲线与3 1 (a>a b0,b>0〕上,那么过B的双曲线的切为AB 的中点,那么K OM K AB 线方程是粤.当1.a b2 26.假设R〔X°,y.〕在双曲线与匕ab 1 (a>0,b>0〕外,那么过Po作双曲线的两条切线切点为P「P2,那么切点弦P1P2的直线方程是X0X y0 y 1.即K ABb2X.-20a y.212.右P Q〔X.,y.〕在双曲线—2ab2X.-2 )a y.1 (a>0,b>0〕内,那么被Po所平分的中点弦的方程是2 2X Q X y°y X0 y2 27.双曲线 : 〕a b 右焦点分别为线上任意一点1 〔a>0,b>o〕的左F 2,点P为双曲F1PF2 ,那么双曲线2 . 2 2aba213.假设P0(x0,y0)在双曲线—ab2 yb7 1(a>的焦点角形的面积为S2 2 F1PF2b2cot—.20,b>0〕内,那么过Po的弦中点的轨2 2迹方程是3线誓岑.a2b2a2b28 .双曲线: I 1 〔a>0,b>o〕的焦a b半径公式:〔F1〔 c,0〕, F2〔c,0〕当M〔X0,y°〕在右支上时,|MF1| ex0 a ,| MF2 | ex0 a.当M〔X0, y°〕在左支上时,|MF1| eX0 a,|MF2| eX0 a9 .设过双曲线焦点F作直线与双曲线椭圆与双曲线的对偶性质-椭1.相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别2.交相应于焦点F的双曲线准线于M、N 两点,那么MFXNF.10.过双曲线一个焦点F的直线与双曲3.线交于两点P、Q, A「A2为双曲线2 2椭圆三-yy 1 〔a>b>o〕的两个顶 a b 点为A〔 a,0〕,A2〔a,0〕,与y轴平行的直线交椭圆于P r P2时A1P1与A2P22 2交点的轨迹方程是3多1. a b2 2过椭圆与与1 〔a> 0, b>0〕上任 a b 一点A〔X0,y.〕任意作两条倾斜角互补的直线交椭圆于B,C两点,那么直线BC有定向且k Bc骆〔常数〕.a y.2 2假设P为椭圆33 1 〔a>b>0〕上 a b实轴上的顶点,A1P和A2Q交于点异于长轴端点的任一点,F1, F 2是焦M, A2P和A1Q交于点N,那么MF点, PFE PF2F1±NF.tan — cot —.2 11. AB是双曲线三a2纭 1 (a> 0,b> 0) b 4. 设椭圆得a24 1 (a>b>0)的两个b2的不平行于对称轴的弦,M 〔X., y°〕焦点为F I、F2,P 〔异于长轴端点〕为椭圆上任意一点,在△ PF1F2中, 记F1PF2 ,PF1F2 , F i F2P ,那么有点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,贝E|MN |210.椭圆与ae.22yb21 ( a> b>0)sin c --- ----- e.sin sin a ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点25.假设椭圆与a 2 y_b21 (a> b>0)的左、右焦点分别为F i、F2,左准线为L,2 .2P(x°,0),那么a211.设P点是椭圆三aX2 ,2a baa> b>0)那么当0<e<点1时,可在椭圆上求一点P,使得PF i是P到对应准线距离d与PF2的比例中项.2 26. P为椭圆二与1 (a>b>0)上任a b 上异于长轴端点的任一点,F i、F2 为其焦点记F1PF2 ,那么八2b21) 1P削0、一点,F i,F2为二焦点,A为椭圆内一定点,那么2) S PF1F2 b2tan-.1 2 2212.设A、B是椭圆与a 1 ( a> b2a |AF2 11PA | | PF i | 2a |AF1 |,当且仅当A,F2,P三点共线时,等号成立>0)的长轴两端点,P是椭圆上的一点, PAB ,PBA , BPA , c、e分别是椭圆的半焦距离心率,那么有2 27.椭圆区舁1与直线a bAx By C 0有公共点的充要条件是A2a2B2b2(Ax0 By0 C)2.2 28.椭圆一4 1 (a>b>0), O a b为坐标原点,P、Q为椭圆上两动点,且OP OQ .(1)|PA|tan tanS PAB2 . .2ab |cos |2a2bb213.椭圆9. 1)2)3)2 2c cos1 e2.(3)2.(2)2a2xacot2yb21 ( a>b>0)的右准线l与X轴相交于点E ,过椭圆1 1 1 1 .| OP |2|OQ |2a2b2;|OP2+|OQ|2的最大值为2 2S OPQ的最小值是告红a b右焦点F的直线与椭圆相交于A、B2 24a2b2 .~~2 ,a b2冬i (a>b>0)的右焦b两点,点C在右准线l上,且BC x轴,那么直线AC经过线段EF的中点.14 .过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过椭圆焦半径的端点作椭圆的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17 .椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18 .椭圆焦三角形中,半焦距必为内、外点到椭圆中央的比例中项.椭圆与双曲线的对偶性质一双曲线2 21 .双曲线二4 1 (a>0,b>0) a b的两个顶点为A( a,0) , A2(a,0), 与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹2 2方程是x2 4 1.a b2 22 .过双曲线与4 1 (a>0,b>o)a b上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,那么直线BC有定向且k Bc 辂(常数).a V.23 .假设P为双曲线与a>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点,PF1F2 , PF2F1,那么c-a tan—cot—(或c a 2 2c a x----- tan—cot —7.c a 2 22 24.设双曲线与与1 (a>0,b>0) a b的两个焦点为F「F2,P (异于长轴端点)为双曲线上任意一点,在△PF1F2 中,记F1PF2 ,PF1F2 , \F2P ,那么有sin c--------------------- --- e.(sin sin ) a2 25 .假设双曲线-2 -V2- 1 (a>0,b>0) a b的左、右焦点分别为F「F2,左准线为L,那么当1<ew V2 1时,可在双曲线上求一点巳使得PF1是P到对应准线距离d与PF2的比例中项. 2 26 . P为双曲线与4 1 (a>0,b> a b2£ 1( a> 0,b0)上任一点,F I,F2为二焦点,A 为双曲线内一定点,那么2 ,SPF1F2b COt二.22 212.设A、B是双曲线与与a b 1 (aIAF2I 2a |PA| |PF i|,当且仅当>0,b>0)的长轴两端点,P是双曲线上的一点,PABA,F2,P三点共线且P和A, F2在y PBA , BPA , C、e 分别是轴同侧时,等号成立双曲线的半焦距离心率,那么有2 7.双曲线x2 a与直线Ax2y2 1 (a> 0,b> 0) b By C 0有公共点的充要条件是A2a2B2b2C2.2 28.双曲线tI 1 (b>a >a b0), O为坐标原点,P、Q为双曲线上两动点,且OP OQ .1)2)3)2 . .2ab | cos ||PA|「2-N | a c cos |2tan tan 1 e .SPAB2, 22a b ,2一 2 cotb a 213.双曲线占a2j 1 (a> 0,b>(1)| OP |2|OQ I2(2) |OP2+|OQ|2的最小值为2,2(3) S OPQ的最小值是-2巴b2a2 2 4a b . ~22 ;b a2 29.过双曲线与匕1 (a>0,b>0)a b的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,那么|PF | e .|MN | 22 210.双曲线 \ 4 1 (a>0,b>a b0) ,A、B是双曲线上的两点, 线段AB的垂直平分线与x轴相2 .2交于点P(x°,0),那么x.a~^或 a2 ,2a b x-- .a2 211.设P点是双曲线与与1 (a>a2b20,b> 0)上异于实轴端点的任一点,F1、F2为其焦点记F1PF2 ,那么⑴|PF1||PF2|产一.⑵1 cos0)的右准线l与x轴相交于点E , 过双曲线右焦点F的直线与双曲线相交于A、B两点,点C在右准线l上,且BCx轴,那么直线AC经过线段EF的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过双曲线焦半径的端点作双曲线的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).〔注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点〕.17 .双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18 .双曲线焦三角形中,半焦距必为内、外点到双曲线中央的比例中项.圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种根底知识、采用多种数学手段来处理问题.熟记各种定义、根本公式、法那么固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧.一.紧扣定义,灵活解题灵活运用定义,方法往往直接又明了.例1.点A (3, 2), F (2, 0),双曲线2X2匕1,P为双曲线上一点.31求|PA| 1|PF|的最小值.2解析:如下图,双曲线离心率为2, F为右焦点,由第1二定彳t知1|PF|即点P到准线距离.1 5|PA| |PF| |PA| |PE| AM -2 2二.引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决.例2.求共焦点F、共准线l的椭圆短轴端点的轨迹方程.解:取如下图的坐标系,设点F到准线l的距离为p (定值),椭圆中央坐标为M (t, 0) (t为参数) ,叫.2 .b pc pt再设椭圆短轴端点坐标为P (x, y),那么X c ty b ..pt消去t,得轨迹方程y2 px三 .数形结合,直观显示将“数〞与“形〞两者结合起来,充分发挥“数〞的严密性和“形〞的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化.熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题.例3.x,y R,且满足方程x2 y2 3(y 0),又m --3 ,求m 范围.解析:m —-的几何意义为,曲线x 3x2 y2 3(y 0)上的点与点(—3, — 3)连线的斜率,如下图四.应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几〞题中的一些图形性质就和“平几〞知识相关联,要抓住关键,适时引用,问题就会迎刃而解.例4.圆(x 3)2 y2 4和直线y mx的交点为P、Q,那么|OP||OQ|的值为.解:OMP ~ OQN|OP||OQ| |OM||ON| 5五.应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具.例5.椭圆:工y- 1 ,直线l :24 16y12 81, P是l上一点,射线OP交椭圆于六.应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功 倍之效.所以灵活运用曲线系是解析几何中重要 的解题方法和技巧之一.例6.求经过两圆x 2 y 2 6x 4 0和 22x y 6y 28 0的父点,且圆心在直线x y 4 0上的圆的方程.点R,点Q 在OP 上且满足|OQ||OP| |OR|2 ,当 点P 在l 上移动时,求点Q 的轨迹方程.解:设所求圆的方程为:22_22_x 2y 26x 4 (x 2y 26y 28) 0 (1 )x 2 (1)y 2 6x 6 y (284) 0分析:考生见到此题根本上用的都是解析 几何法,给解题带来了很大的难度,而如果用向 量共线的条件便可简便地解出. 解:如图,OQ, OR, OP 共线,设 OR OQ , OP OQ , OQ (x, y),贝U 那么圆心为(」_ , _J_),在直线11x y 4 0 上解得 7故所求的方程为x 2 y 2 x 7y 32 0OR ( x, y) , OP ( x, y) 2七.巧用点差,简捷易行在圆锥曲线中求线段中点轨迹方程,往往采用 点差法,此法比其它方法更简捷一些.例7.过点A (2, 1)的直线与双曲线2x 2 — 1相交于两点P 1、P 2,求线段P 1P 2中点2的轨迹方程.解:设 P ,(x1,Y I ) , P 2(x 2, y 2),那么2X I 2 X22 Y I2 2Y 2 2|OQ||OP| |OR| <2> —<1> 得(X 2 X I )(X I X 2)1 2(Y 2 Y I )(Y I2Y 2)2 22 |OQ|2 2|OQ|22点R 在椭圆上,P 点在直线l 上 2 222———匕1,三△ 12416 12 8 2 2即士 L 二y241612 8化简整理得点Q 的轨迹方程为: 22 _(x 1) (y 1) 2 … -—广1(直线y — x 上万 5 5 323局部) 即 Y 2 Y I2( X I X 2) X 2 X IY I Y 2设P 1P 2的中点为M(X O , y 0),那么kP 1P 2Y 2 Y Ix 2 X 12xY O又,而P I 、A 、M 、P 2共线k P 1P2k AM,即^X O 2Y O的轨迹方程是2x 2 y 2 4x y 0P 1P 2中点M解析几何题怎么解高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解做题),共计30分左右,考查的 知识点约为20个左右.其命题一般紧扣课本,突出重点,全面考查.选择题和填空题考查直线,圆, 圆锥曲线,参数方程和极坐标系中的根底知识.解做题重点考查圆锥曲线中的重要知识点,通过知识 的重组与链接,使知识形成网络,着重考查直线与圆车t 曲线的位置关系,求解有时还要用到平几的基 本知识,这点值得考生在复课时强化.例1点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形 AA B B ,使AA 垂直且等于AT,使BB 垂直且等于BT , A B 交半圆于P 、Q 两点,建立如图所 示的直角坐标系.⑴写出直线A B 的方程; (2)计算出点P 、Q 的坐标;(3)证实:由点P 发出的光线,经AB 反射后,反射光线 通过点Q.饼斛:通过I 卖图,看出A , B 点的坐标. 一…' ' .'一 ,.…(1 )显然A 1,1 t , B 1,1 t ,于是直线A B 的方程为ytx 1 ;222(2)由方程组 x y 1,解出 P(0,1)、Q(1/,」^); y tx 1, 1 t 1 t由直线PT 的斜率和直线QT 的斜率互为相反数知,由点 P 发出的光线经点T 反射,反射光线通 过点Q.需要注意的是,Q 点的坐标本质上是三角中的万能公式,有趣吗?22例2直线l 与椭圆\ J 1(a b 0)有且仅有一个交点Q,且与x 轴、y 轴分别交于R 、S, a b 求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.讲解:从直线l 所处的位置,设出直线l 的方程,由,直线l 不过椭圆的四个顶点,所以设直线l 的方程为y kx m(k 0). 代入椭圆方程 b 2x 2 a 2y 2 a 2b 2,得 b 2x 2 a 2(k 2x 2 2kmx m 2)a 2b 2.化简后,得关于x 的一■兀二次方程 (a 2k 2b 2)x 2 2ka 2mxa 2m 2 a 2b 20.于是其判别式(2ka 2m)2 4(a 2k 2 b 2)(a 2m 2 a 2b 2) 4a 2b 2(a 2k 2 b 2 m 2).由,得^ 二0 .即a 2k 2 b 2 m 2.①在直线方程y kx m 中,分别令y=0, x=0,求得R ( —,0),S(0,m). k(3) k PTk QT2t1t(it 2昌m I, y x—, k — 令顶点P 的坐标为(x, y), 由,得 k解得 xym.m y.2, 2代入①式并整理,得 a 2 b 2 1,即为所求顶点P 的轨迹方程.x 2 3 y 22. 2方程土上1形似椭圆的标准方程,你能画出它的图形吗?22x y例3双曲线x 2 4 1的离心率e .,过A (a,0),B(0, b)的直线到原点的距离是 —.a 2b 2 32(1)求双曲线的方程;的值.设C(x i ,y i ),D(x 2,y 2),CD 的中点是 E(x o ,y o ),那么2(2)考虑直线l 的斜率的存在性,可分两种情况:解出 e i)当k 存在时,设l 的方程为y k(x c)于是椭圆方程可转化为x 2 2y 2 2c 2 0 ................................. ②(2)直线y kx5(k 0)交双曲线于不同的点 C, D 且C, D 都在以B 为圆心的圆上,求k讲解::( 1) £ a2卡原点到直线AB:二 1的距离dab ■..a 2 1, ab 2■、.ab c、3~2~故所求双曲线方程为x 2 2V y 1.(2)把y kx 5代入x 23y 23中消去y,整理得(12 23k 2)x 230kx 78x .x 1x 22 15 k U y 0kx 05; : । 2 , kBE1 3ky 01x 0x 0 ky 0 k0,即15 k 3k 25 k---------- - k 0,又 k 1 3k 20, k故所求k= ± a.为了求出 k 的值,需要通过消元,想法设法建构k 的方程.例4椭圆 C 的中央在原点,焦点F I 、F 2在x 轴上,点P 为椭圆上的一个动点, 的最大值为90° ,直线l 过左焦点F I 与椭圆交于A 、B 两点,4ABF 2的面积最大值为 且/ 12.F 1PF 2(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解: (D 设IPF I I「I ,|PF 2| "F I F 2|2c ,对PF I F 2,由余弦定理,得cos F 1PF 21 22r 1 r 2 4c2rj 2(.L)22r 1r 2 4c 2 2rj 24a 4c 1------------- 1 1 r 1 r 2 2 2(七壬卜面给出此题的另一解法,请读者比拟二者的优劣: 设过左焦点的直线方程为:x my c (这样设直线方程的好处是什么?还请读者进一步反思反思 2 2椭圆的方程为:x ^ \ 1,A(x 1,y 1),B(x 2,y 2) a b 由e 字得:a 2 2c 2,b 2 c 2,于是椭圆方程可化为: 把①代入②并整理得:(m 2 2)y 2 2mcy c 2 于是y 〞y 2是上述方程的两根. AB 边上的高h 一c1 m 2当且仅当m=0取等号,即S max 收02. 由题意知v2c 2 12,于是b 2 c 2 66,a 2 12V2 .故当△ ABF 2面积最大时椭圆的方程为: 上 工12. 262将①代入②,消去y 得 x 2 2k 2(x c)2 2c 20,整理为x 的一元二次方程,得._2、22_2.2、 一(1 2k )x 4ck x 2c (k 1) 0.那么x i 、x 2是上述方程的两根.且 | x 2 x i | 2 .. 2c1 k AB 边上的高 h | FR | sin BF 1 F 21 2c |k|,2,1 k2kk 2| x 2 x i |2 2c(1 k 2);~2,1 2k厂也可这样求解:2c 1cc/1 k 2、 |k | c S -2 2c( 2) |—| 22c212k1 k 212产区| M y 2|2.2c 2.rviki 1 2k 2k 2k 4k 24k 42'2"1 1 42k k,2c 2.c | k | | x ix 2 |ii)当k 不存在时,把直线x c 代入椭圆方程得 y£c ,|AB|由①②知S 的最大值为V2c 2由题意得2c 2 = 12所以c 2 6 2 b 212 2故当△ ABF 2面积最大时椭圆的方程为: 上12. 2 2V 1.6 2x 2 2y 2 2c 2 0 .................. (2|AB| \(x 1、2 z、2x ) (y1 m2 | y 2 y 1|1 m2 4m2 2, 2,2c 4c (m 2)2m 2-22 2c(1 m 2)从而 S l|AB|h 二2 2c(1m2)22 m 2 22c221 m22 2c 21m2c(m 2)22 2c 2■ m1 1 122m 212c 2. 1.2 2例5直线y x 1与椭圆之与1〔a b 0〕相交于A、B两点,且线段AB的中点在直 a b 线l :x 2y 0上.〔1〕求此椭圆的离心率;〔2 〕假设椭圆的右焦点关于直线l的对称点的在圆x2y24上,求此椭圆的方程.y 讲解:〔1〕设A、B两点的坐标分别为A〔x1,y〕 BM, y?〕.那么由x2-2 a2 2、 2 2 2 2(a b )x 2a x a a,- 4.2如果| AB | ——,求直线MQ的万程;〔2〕求动弦AB的3中点P的轨迹方程.、… r 4、2讲解:〔1〕由1A Bi可,可得|MP| J MA |2 (LA%2J12(迪)2 1,由射影定理,得2 . 3 3|MB |2|MP | |MQ |,得|MQ | 3,在RtAMOQ 中,|OQ | <| MQ |2 |MO |2、32 2 2 M5 ,故a 盘或a <5 ,所以直线AB方程是2x J5y 2运 0或2x 岛2匹 0; x 1, y2行2_ 1 b2根据韦达定理,得x1 x2与,,y2函 a bX2)2b2a2b2「•线段AB的中点坐标为〔2 .2a b~2 -2 , -2 ~2 a b a b2由得二Ja2b22b-2 a 厂0, a2 2b2 2(a2 c2) 2c2,故椭圆的离心率为〔2〕由〔1〕知 b c,从而椭圆的右焦点坐标为F〔b,0〕,设F〔b,0〕关于直线l:x 2y 0的对称点为(x°, y°),那么也x0 b 2 f 0,解得X. 3 b且y°2 b5 5由得4,3 2(b)52 2(-b)2 4, b24,故所求的椭圆方程为—1 .5 8 4.M:x2(y 2〕2 1,Q是x轴上的动点,QA, QB分别切.M于A, B两点, (DC............ I _ z — I 1............................... ~~z 2 y_2(2)连接MB, MQ,设P(x,y),Q(a,0),由点M, P, Q 在一直线上,得一 -一,(*) a x由射影定理得| MB |2 |MP | | MQ |,即 &一(y 2)2 商—4 1,(**)7 c 1把(*)及(**)洎去a,并注意到y 2,可得x2(y -)2—(y 2).4 16适时应用平面几何知识,这是快速解答此题的要害所在,还请读者反思其中的微妙a—例- 如图,在Rt^ABC 中,/CBA=90° , AB=2 , AC=旧.2DO=2 ,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设-DM ,试确定DNDO LAB 于.点,OA=OB ,实数讲解: 的取值范围.(1)建立平面直角坐标系,如下图 : | PA |+| PB |=| CA |+|CB | V=得 22 ( 22)22V2「•动点P的轨迹是椭圆;、区b 1,c 1;曲线E的方程是(2)设直线L的方程为y kx 2,代入曲线E的方程x i 2y2 2,得(2k22(8k)2 4(2k 1)8k x2x〔x22 ,2k2 162 .2k 1i) L与y轴重合时, ii) L与y轴不重合时, x2x1 0,.(x〔x2)2x1 x2xx2x2x i1)x2 8kx 0设M1 ( 〞乂), N(x2, y),0,| DM |rDNu由①得DMDNxD X MX D X Nx1x2 x1 0, .,.0< < 1 ,1 2-.(x x2)2x1 x264k226(2k2 1)3213(2 -7)k那抛物线有两个不同的交点,因此l 与l 不重合,l 不是CD 的垂直平分线.此题是课此题的深化,你能够找到它的原形吗?知识在记忆中积累,水平在联想中提升 .课本是 高测试题的生长点,复课切忌忘掉课本!1,A(x 1,y 1),B(x 2,y 2)由 e / 得 a 2 2c 2,b21 .,・•・ 6 3(2-2) 8.■ ■ 432V~ 3(2 -r) k16 ・二 4 16 31,10 32, 1.的取值范围是10 3值得读者注意的是,直线 L 与y 轴重合的情况易于遗漏,应当引起警惕.例8直线l 过抛物线y 22 Px(p 0)的焦点,且与抛物线相交于 A (x 1, y 1)和B(x 2, y 2)两点.(1)求证:4x 1x 2p 2; (2)求证:对于抛物线的任意给定的一条弦 CD,直线l 不是CD 的垂直平分线.讲解:(1)易求得抛物线的焦点F (£°). 2,2 …・右l ,x 轴,那么l 的方程为x P 显然x 1x 2 —.右l 不垂直于x2,八〞 4 轴,可设y k(x P),代入抛物线方程整理得 2__ _ 2x 2P(1 ,)x — k 4 0,那么x 1x 2—.综上可知 4X I X 24.2. 2(2)设C(J c) D(L d)且c d ,那么CD 的垂直平分线l 的万程为y Jd 2p' ' 2p' 2c d——(x 2P2 2〞) 4P假设l 过F,那么0,2, 2一3(R c d )整理得 (c d)(2p 2 c 2 d 2) 2p 2 4p2p 2 c 2 d 2 0 ,d 0.这时l 的方程为y=0,从而l 与抛物线y 2 Px 只相交于原点.而l 与。
圆锥曲线知识点全归纳完整精华版
圆锥曲线知识点全归纳精华版圆锥曲线包括椭圆;双曲线;抛物线..其统一定义:到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线..当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线..一、圆锥曲线的方程和性质:1椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e..定点是椭圆的焦点;定直线是椭圆的准线;常数e 是椭圆的离心率..标准方程:1.中心在原点;焦点在x轴上的椭圆标准方程:x^2/a^2+y^2/b^2=1其中a>b>0;c>0;c^2=a^2-b^2.2.中心在原点;焦点在y轴上的椭圆标准方程:x^2/b^2+y^2/a^2=1其中a>b>0;c>0;c^2=a^2-b^2.参数方程:X=acosθ Y=bsinθ θ为参数 ;设横坐标为acosθ;是由于圆锥曲线的考虑;椭圆伸缩变换后可为圆此时c=0;圆的acosθ=r2双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e..定点是双曲线的焦点;定直线是双曲线的准线;常数e是双曲线的离心率..标准方程:1.中心在原点;焦点在x轴上的双曲线标准方程:x^2/a^2-y^2/b^2=1其中a>0;b>0;c^2=a^2+b^2.2.中心在原点;焦点在y轴上的双曲线标准方程:y^2/a^2-x^2/b^2=1. 其中a>0;b>0;c^2=a^2+b^2.参数方程:x=asecθ y=btanθ θ为参数3抛物线标准方程:1.顶点在原点;焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点;焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点;焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点;焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt t为参数t=1/tanθtanθ为曲线上点与坐标原点确定直线的斜率特别地;t可等于0直角坐标y=ax^2+bx+c 开口方向为y轴; a<>0 x=ay^2+by+c 开口方向为x轴; a<>0圆锥曲线二次非圆曲线的统一极坐标方程为ρ=ep/1-e×cosθ 其中e表示离心率;p为焦点到准线的距离..二、焦半径圆锥曲线上任意一点到焦点的距离称为焦半径..圆锥曲线左右焦点为F1、F2;其上任意一点为Px;y;则焦半径为:椭圆 |PF1|=a+ex |PF2|=a-ex双曲线 P在左支;|PF1|=-a-ex |PF2|=a-exP在右支;|PF1|=a+ex |PF2|=-a+exP在下支;|PF1|= -a-ey |PF2|=a-eyP在上支;|PF1|= a+ey |PF2|=-a+ey抛物线 |PF|=x+p/2三、圆锥曲线的切线方程圆锥曲线上一点Px0;y0的切线方程以x0x代替x^2;以y0y代替y^2;以x0+x/2代替x;以y0+y/2代替y 即椭圆:x0x/a^2+y0y/b^2=1;双曲线:x0x/a^2-y0y/b^2=1;抛物线:y0y=px0+x四、焦准距圆锥曲线的焦点到准线的距离p叫圆锥曲线的焦准距;或焦参数.. 椭圆的焦准距:p=b^2/c双曲线的焦准距:p=b^2/c抛物线的准焦距:p五、通径圆锥曲线中;过焦点并垂直于轴的弦成为通径..椭圆的通径:2b^2/a双曲线的通径:2b^2/a抛物线的通径:2p六、圆锥曲线的性质对比见下图:七、圆锥曲线的中点弦问题已知圆锥曲线内一点为圆锥曲线的一弦中点;求该弦的方程⒈联立方程法..用点斜式设出该弦的方程斜率不存在的情况需要另外考虑;与圆锥曲线方程联立求得关于x的一元二次方程和关于y的一元二次方程;由韦达定理得到两根之和的表达式;在由中点坐标公式的两根之和的具体数值;求出该弦的方程..2.点差法;或称代点相减法..设出弦的两端点坐标x1;y1和x2;y2;代入圆锥曲线的方程;将得到的两个方程相减;运用平方差公式得x1+x2·x1-x2/a^2+y1+y2·y1-y2/b^2=0 由斜率为y1-y2/x1-x2可以得到斜率的取值..使用时注意判别式的问题补充:焦点三角形面积公式椭圆=b2tana/2=c|y0|双曲线=b2cota/2..。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【最新整理,下载后即可编辑】1.圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
比如:①已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是A.B. C.D.(答:C);②方程表示的曲线是_____(答:双曲线的左支)(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
如已知点及抛物线上一动点P(x,y),则y+|PQ|的最小值是_____(答:2)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。
比如:①已知方程表示椭圆,则的取值范围为____(答:);②若,且,则的最大值是____,的最小值是___(答:)(2)双曲线:焦点在轴上:=1,焦点在轴上:=1()。
方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。
比如:①双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);②设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:)(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
比如:①若椭圆的离心率,则的值是__(答:3或);②以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
比如:①双曲线的渐近线方程是,则该双曲线的离心率等于______(答:或);②双曲线的离心率为,则= (答:4或);③设双曲线(a>0,b>0)中,离心率e∈[,2],则两条渐近线夹角θ的取值范围是________(答:);(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。
如设,则抛物线的焦点坐标为________(答:);5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上=1;(3)点在椭圆内6.直线与圆锥曲线的位置关系:(1)相交:直线与椭圆相交;直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。
比如:①若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_______(答:(-,-1));②直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是_______(答:[1,5)∪(5,+∞));③过双曲线的右焦点直线交双曲线于A、B两点,若│AB︱=4,则这样的直线有_____条(答:3);(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。
特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。
如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线=1外一点的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
比如:①过点作直线与抛物线只有一个公共点,这样的直线有______(答:2);②过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为______(答:);③过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有____条(答:3);④对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_______(答:相离);⑤过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_______(答:1);⑥设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为___________(填大于、小于或等于) (答:等于);⑦求椭圆上的点到直线的最短距离(答:);⑧直线与双曲线交于、两点。
①当为何值时,、分别在双曲线的两支上?②当为何值时,以AB为直径的圆过坐标原点?(答:①;②);7、焦半径(圆锥曲线上的点P到焦点F的距离)的计算方法:利用圆锥曲线的第二定义,转化到相应准线的距离,即焦半径,其中表示P到与F所对应的准线的距离。
比如:①已知椭圆上一点P到椭圆左焦点的距离为3,则点P到右准线的距离为____(答:);②已知抛物线方程为,若抛物线上一点到轴的距离等于5,则它到抛物线的焦点的距离等于____;③若该抛物线上的点到焦点的距离是4,则点的坐标为_____(答:);④点P 在椭圆上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标为_______(答:); ⑤抛物线上的两点A 、B 到焦点的距离和是5,则线段AB 的中点到轴的距离为______(答:2); ⑥椭圆内有一点,F 为右焦点,在椭圆上有一点M ,使之值最小,则点M 的坐标为_______(答:);概念、方法、题型、易误点技巧总结——圆锥曲线(二)8、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。
设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ①=,且当即为短轴端点时,最大为=;②,当即为短轴端点时,的最大值为bc ;对于双曲线的焦点三角形有:①;②。
比如: ①短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A 、B 两点,则的周长为________(答:6);②设P 是等轴双曲线右支上一点,F 1、F 2是左右焦点,若,|PF 1|=6,则该双曲线的方程为 (答:);③双曲线的虚轴长为4,离心率e =,F 1、F 2是它的左右焦点,若过F 1的直线与双曲线的左支交于A 、B 两点,且是与等差中项,则=__________(答:);④已知双曲线的离心率为2,F 1、F 2是左右焦点,P 为双曲线上一点,且,.求该双曲线的标准方程(答:);9、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB 为焦点弦, M 为准线与x 轴的交点,则∠AMF =∠BMF ;(3)设AB 为焦点弦,A 、B 在准线上的射影分别为A ,B ,若P 为A B 的中点,则PA ⊥PB ;(4)若AO 的延长线交准线于C ,则BC 平行于x 轴,反之,若过B 点平行于x 轴的直线交准线于C 点,则A ,O ,C 三点共线。
10、弦长公式:若直线与圆锥曲线相交于两点A 、B ,且分别为A 、B 的横坐标,则=,若分别为A 、B 的纵坐标,则=,若弦AB 所在直线方程设为,则=。
特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
比如:①过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,若x 1+x 2=6,那么|AB|等于_______(答:8);②过抛物线焦点的直线交抛物线于A 、B 两点,已知|AB|=10,O 为坐标原点,则ΔABC 重心的横坐标为_______(答:3);11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。
在椭圆中,以为中点的弦所在直线的斜率k=-;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。
比如:①如果椭圆弦被点A (4,2)平分,那么这条弦所在的直线方程是 (答:);②已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:);③试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:);特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!12.你了解下列结论吗?(1)双曲线的渐近线方程为;(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。