数学分析课件
合集下载
数学分析完整版本ppt课件
返回
牛 顿(I.Newton 1642.12.25—1727.3.3)
英国数学家和物理学家出生在一个农民家庭,出生前父亲就去世了, 三岁母亲改嫁,由外祖母抚养。1661年入剑桥大学,1665年获学士学位, 1668年获硕士学位。由于他出色的成就,1669年巴鲁(Barrow)把数学 教授的职位让给年仅26岁的牛顿。1703 年被选为英国皇家学会会长。牛 顿一生成就辉煌,堪称科学巨匠。最突出的有四项重大贡献:创立微积 分,为近代数学奠定了基础,推动了整个科学技术的发展。他发现了力 学三大定律,为经典力学奠定了基础;他发现了万有引力为近代天文学 奠定了基础;他对光谱分析的实验,为近代光学奠定了基础 。他的巨著 《自然哲学的数学原理》影响深远,他被公认为历史上伟大的科学家。可 惜他晚年研究神学,走了弯路。
n
n
1
i
2
n
1 n
它的面积
ΔSi
(1
i2 n2
)
1 n
所求的总面积
Sn
n (1 i1
i2 n2
)
1 n
1
1 n3
n
i
2
i 1
1
2n
2 3n 6n 2
1
2 3
我 们 分 别 取 n=10, 50, 100 用 计 算 机 把 它 的 图 象 画 出 来 , 并 计
算出面积的近似值:
clf, n=10; x=0:1/n:1;
四.小结: 学习定积分,不仅要理解、记住定积分的定义,还要学习建立定积分概念
的基本思想,我们以后的学习中还会遇到其它类型的积分,比如勒贝格积分、
斯蒂疌斯积分等,只要理解了定积分的思想,其他类型的积分就很容易理解了。
现在我们再来总结一下定积分建立的的思想和方法:从定积分的实例和概念中
数学分析PPT课件第四版华东师大研制--第8章-不定积分 (2)可编辑全文
ln
|
x
a
|
1 2a
ln
|
x
a
|
1 ln x a C. 2a x a
前页 后页 返回
例3 求 x 1 x2dx.
解
x 1 x2dx 1
1
1 x2 2d(x2 )
2
1
1
1 x2 2d 1 x2
2
1 2 1 x2
3
2 C
23
1 1 x2
3
dx 所以(1)式成立.
前页 后页 返回
第一换元积分法亦称为凑微分法, 即
g(( x))( x)dx g(( x))d( x) G(( x)) C,
其中 G(u) g(u). 常见的凑微分形式有
(1) adx d(ax);
(2) dx d( x a);
(3)
xdx
1
1
d(x 1
a2 x2 dx a cos t d(a sin t)
a2
cos2t
dt
a2 2
(1 cos 2t)dt
a2 2
t
1 2
sin
2t
C
a2 2
arcsin
x a
x a
1
x a
2
C
1 2
a2
arcsin
x a
x
a2
x2
C.
前页 后页 返回
例8 求
解 设x
dx
a2 a tan
或 ( x) 0, x [a,b]. 因此 u ( x) 是严格单调
函数,从而 u ( x) 存在反函数 x 1(u), 且
前页 后页 返回
dx 1
.
数学分析第十六章课件偏导数与全微分
解: 已知
则
V 2 rh r r 2h
r 20, h 100, r 0.05, h 1
V 2 20100 0.05 202 (1) 200 (cm3)
即受压后圆柱体体积减少了
作业
• P192:1:(单数题) • P193:7;9 • P208:1:(双数题) • P208:3 • P209:9 • P217:1:(1;3);2:(2;4);6 • P223:2;3;8
定理16.1 3.全微分与偏导数的关系:
f (x, y) 设 (x0 , y0 ) 可微,在表达式中 分别令 f 0 x 0 和 x 0 y 0
得
定理16.2
从而:f 在 p0 的全微分可写成
dz |p0 fx (x0 , y0 )dx f y (x0 , y0 )dy
z f (x) 在某区域 G 内(x,y) 点的全微分为
f11,
f12,
f21,
f22
书上记号易混
链式法则的应用
偏微分方程的变换
目的
求解
2)复合函数的全微
设
u
f (x, y),若x, y为自变量,则
du f dx f dy x y
进一步,若x (s,t) y (s,t) 则有
du u ds u dt dx x ds x dt dy y ds y dt
r x 2
2x x2 y2 z2
x r
r z z r
4、计算
的近似值.
解: 设
,则
f x (x, y) y x y1 , f y (x, y) x y ln x
取
则 1.042.02 f (1.04, 2.02 )
1 2 0.04 0 0.02 1.08
数学分析第十八章隐函数定理及其应用省公开课一等奖全国示范课微课金奖PPT课件
第20页
§2 隐函数组
一、 隐函数组概念
设F (x, y,u,v)和G(x, y,u,v)为定义在区域V R4上的两个四元
函数. 若存在平面区域D, 对于D中每一点(x, y), 分别有区间J
和K上唯一的一对值u J , v K , 它们与x, y一起满足方程组
F (x, y,u,v) 0, G(x, y,u,v) 0,
1. 若方程(1)能确定隐函数,则交集非空. P0(x0 , y0 )使得 F(x0 , y0 ) 0.
2. 若F在点P0可微,且 (Fx (P0 ), Fy (P0 )) (0,0),
则z F (x, y)在点P0的切平面与z 0相交于直线l. 从而 z F (x, y) 在点P0与z 0相交成平面曲线.
(iv) Fy (x10 ,, xn0 , y0 ) 0, 则在点P0的某邻域U (P0 ) D内,方程F (x1,, xn, y) 0唯一地确定了 一个定义在Q0 (x10,, xn0 )的某邻域U (Q0 ) Rn内的n元连续函数(隐函数), y f (x1,, xn ),使得 1)当 (x1,, xn ) U (Q0 )时, (x1,, xn, f (x1,, xn )) U (P0 ), 且
,
x0
)内连续.
第12页
例1. 验证方程 sin y ex xy 1 0 在点(0,0)某邻域 可确定一个单值可导隐函数 y f (x) ,并求
dy dx
x0
,
d2y dx2
x0
解: 令 F (x, y) sin y ex xy 1, 则
F, Fx ex y, Fy cos y x 连续 ,
由连续函数的局部保号性, (0, ],使当x (x0 , x0 )时,
§2 隐函数组
一、 隐函数组概念
设F (x, y,u,v)和G(x, y,u,v)为定义在区域V R4上的两个四元
函数. 若存在平面区域D, 对于D中每一点(x, y), 分别有区间J
和K上唯一的一对值u J , v K , 它们与x, y一起满足方程组
F (x, y,u,v) 0, G(x, y,u,v) 0,
1. 若方程(1)能确定隐函数,则交集非空. P0(x0 , y0 )使得 F(x0 , y0 ) 0.
2. 若F在点P0可微,且 (Fx (P0 ), Fy (P0 )) (0,0),
则z F (x, y)在点P0的切平面与z 0相交于直线l. 从而 z F (x, y) 在点P0与z 0相交成平面曲线.
(iv) Fy (x10 ,, xn0 , y0 ) 0, 则在点P0的某邻域U (P0 ) D内,方程F (x1,, xn, y) 0唯一地确定了 一个定义在Q0 (x10,, xn0 )的某邻域U (Q0 ) Rn内的n元连续函数(隐函数), y f (x1,, xn ),使得 1)当 (x1,, xn ) U (Q0 )时, (x1,, xn, f (x1,, xn )) U (P0 ), 且
,
x0
)内连续.
第12页
例1. 验证方程 sin y ex xy 1 0 在点(0,0)某邻域 可确定一个单值可导隐函数 y f (x) ,并求
dy dx
x0
,
d2y dx2
x0
解: 令 F (x, y) sin y ex xy 1, 则
F, Fx ex y, Fy cos y x 连续 ,
由连续函数的局部保号性, (0, ],使当x (x0 , x0 )时,
数学分析课件
长度的计算
利用定积分可以计算曲线的长度,以及物体的周长。
06
高阶导数与高阶积分
高阶导数的计算与性质
高阶导数的计算方法
定义法:根据导数的定义,对函数进行多次求 导,适用于简单的函数。
莱布尼茨法则:利用已知的导数公式,通过递 推关系计算高阶导数,适用于较复杂的函数。
高阶导数的计算与性质
线性性质:若$f(x)$和$g(x)$的$n$阶导数存在 ,则$(a f+b g)^{(n)}=a f^{(n)}+b g^{(n)}$ 。
数学分析课件
目录
• 数学分析概述 • 数学分析的基本性质 • 极限理论及其应用 • 微分学及其应用 • 定积分及其应用 • 高阶导数与高阶积分 • 数学分析中的重要定理与问题
01
数学分析概述
定义与意义
定义
数学分析是研究函数、序列、极限、 微积分等概念与方法的分支,是数学 的基础学科。
意义
数学分析在数学领域中占据重要地位 ,为其他数学分支提供基础理论和工 具,也是许多实际应用领域的基础。
THANKS。
积分的基本性质
积分具有可加性、可减性、可乘性和可除性 。
积分的基本公式
积分的基本公式包括求导公式、微分公式、 乘积公式、幂函数公式等。
积分的方法
积分的方法包括换元法、分部积分法、有理 函数积分法等。
积分的应用:面积、体积、长度
面积的计算
利用定积分可以计算曲线下面积,以及平面图 形面积。
体积的计算
利用定积分可以计算旋转体的体积,以及立体 的体积。
分区求和法:将积分区间划分为若干小区间,在每个小 区间上应用牛顿-莱布尼茨公式计算积分,再求和得到 总积分值。
《数学分析》课件
函数与极限
函数
函数是数学分析中的基本概念之一,它是一个从定义域到值域的映射。根据定义域和值域的不同,函数可以分为 不同的类型,如连续函数、可微函数等。
极限
极限是数学分析中描述函数在某一点的行为的工具。极限的定义包括数列的极限和函数的极限,它们都是描述函 数在某一点附近的行为。极限的概念是数学分析中最重要的概念之一,它是研究函数的连续性、可导性、可积性 等性质的基础。
复合函数的导数
复合函数的导数是通过对原函数进行 求导,再乘以中间变量的导数得到的 。
微分及其应用
微分的定义
微分是函数在某一点附近的小变化量 ,可以理解为函数值的近似值。
微分的应用
微分在近似计算、误差估计、求切线 、求极值等方面有着广泛的应用。例 如,在求极值时,可以通过比较一阶 导数在极值点两侧的正负性来确定极 值点。
数列的极限
总结词
数列极限的定义与性质
详细描述
数列极限是数学分析中的一个基本概念,它描述了数列随 着项数的增加而趋近于某个固定值的趋势。极限具有一些 重要的性质,如唯一性、四则运算性质、夹逼定理等。
总结词
数列极限的证明方法
详细描述
证明数列极限的方法有多种,包括定义法、四则运算性质 、夹逼定理、单调有界定理等。这些方法可以帮助我们证 明数列的极限并理解其性质。
含参变量积分的概念与性质
含参变量积分的概念
含参变量积分是指在积分过程中包含一个或多个参数的积分。这种积分在处理一些具有参数的物理问题时非常有 用。
含参变量积分的性质
含参变量积分具有一些重要的性质,如参数可分离性、参数连续性、参数积分区间可变性等。这些性质使得含参 变量积分在解决实际问题时更加灵活和方便。
反常积分与含参变量积分的计算方法
数学分析课件 傅里叶级数
03
工程学
在工程学中,傅里叶级数可以用于分析和设计各种周期性结构,例如在
机械工程和土木工程等领域中,可以通过傅里叶级数来描述和分析周期
性振动和波动等问题。
02
傅里叶级数的基本性质
三角函数的正交性
三角函数的正交性是指在一周期内,任何两个不同的三角函 数都不相交,即它们的乘积在全周期内的积分值为零。这一 性质在傅里叶级数的展开和重构中起到关键作用,确保了频 谱的纯净性和分离性。
三角函数的周期性使得我们能够将无限长的信号转化为有限长的频谱,从而方便 了信号的分析和处理。
傅里叶级数的收敛性
傅里叶级数的收敛性是指一个信号的傅里叶级数展开在一 定条件下能够无限接近原信号。这一性质保证了傅里叶级 数展开的精度和可靠性,使得我们能够通过有限项的级数 展开来近似表示复杂的信号。
收敛性的判定是数学分析中的重要问题,涉及到级数的收 敛半径、收敛域等概念。在实际应用中,我们需要根据信 号的特性和精度要求来选择合适的收敛域和级数项数,以 保证傅里叶级数展开的准确性。
首先,确定函数的周期和定义域;其次,计算正弦和余弦函数的系数;最后,将得到的系数代入正弦和余弦函数的线 性组合中,得到函数的傅里叶级数表示。
傅里叶级数的表示方法的优缺点
傅里叶级数具有简洁、易计算等优点,能够将复杂的周期函数分解为简单的正弦和余弦函数。然而,傅 里叶级数也存在着一些缺点,例如在非周期函数的情况下,傅里叶级数可能无法得到正确的结果。
图像增强
利用傅里叶级数,可以对图像进行增 强处理,如锐化、降噪等,提高图像 的视觉效果。
数值分析中的傅里叶级数
数值逼近
傅里叶级数可以用于求解某些函数的 数值逼近问题,如求解函数的零点、 极值等。
数学分析课件
算一些复杂的极限表达式。
连续性
01 02
连续性的定义
连续性是函数的一种性质,它描述了函数在某一点处的变化情况。如果 函数在某一点处的左右极限相等且等于该点的函数值,则函数在该点处 连续。
连续性的性质
连续性具有一些重要的性质,如局部保序性、介值定理等。这些性质在 数学分析中有着广泛的应用。
03
连续性的判定
判定一个函数是否连续,可以通过计算该函数的左右极限并检查它们是
否相等来实现。此外,还可以利用连续性的性质进行判定。
导数
导数的定义
导数是函数的一种性质,它描述了函 数在某一点处的切线斜率。导数的定 义包括函数在某一点的导数和函数在 某区间的导数。
导数的性质
导数的计算
计算导数的方法有很多种,如直接法、 乘积法则、复合函数求导法则等。这 些方法可以帮助我们计算一些复杂的 导数表达式。
电子工程
在电子工程中,数学分析用于信号处理、图像处 理和通信系统设计。
计算机科学
在计算机科学中,数学分析用于算法设计、数据 分析和人工智能等领域。
06 数学分析的习题与解答
CHAPTER
习题的选择与解答
精选习题
选择具有代表性的数学分析题目,涵盖各个知识点,难度适中, 适合学生巩固所学内容。
详细解答
极限的计算方法
计算极限的方法有很多种,如直接代入法、分解因式法、等价无穷小替换法、洛必达法则 等。根据不同的情况选择合适的方法可以简化计算过程。
导数问题
导数的定义
导数描述了函数在某一点处的切线斜率,是函数局部性质的一种体现。导数可以分为一阶导数、二阶导数等,高阶导 数可以用来研究函数的拐点、凸凹性等性质。
03 数学分析的定理与证明
连续性
01 02
连续性的定义
连续性是函数的一种性质,它描述了函数在某一点处的变化情况。如果 函数在某一点处的左右极限相等且等于该点的函数值,则函数在该点处 连续。
连续性的性质
连续性具有一些重要的性质,如局部保序性、介值定理等。这些性质在 数学分析中有着广泛的应用。
03
连续性的判定
判定一个函数是否连续,可以通过计算该函数的左右极限并检查它们是
否相等来实现。此外,还可以利用连续性的性质进行判定。
导数
导数的定义
导数是函数的一种性质,它描述了函 数在某一点处的切线斜率。导数的定 义包括函数在某一点的导数和函数在 某区间的导数。
导数的性质
导数的计算
计算导数的方法有很多种,如直接法、 乘积法则、复合函数求导法则等。这 些方法可以帮助我们计算一些复杂的 导数表达式。
电子工程
在电子工程中,数学分析用于信号处理、图像处 理和通信系统设计。
计算机科学
在计算机科学中,数学分析用于算法设计、数据 分析和人工智能等领域。
06 数学分析的习题与解答
CHAPTER
习题的选择与解答
精选习题
选择具有代表性的数学分析题目,涵盖各个知识点,难度适中, 适合学生巩固所学内容。
详细解答
极限的计算方法
计算极限的方法有很多种,如直接代入法、分解因式法、等价无穷小替换法、洛必达法则 等。根据不同的情况选择合适的方法可以简化计算过程。
导数问题
导数的定义
导数描述了函数在某一点处的切线斜率,是函数局部性质的一种体现。导数可以分为一阶导数、二阶导数等,高阶导 数可以用来研究函数的拐点、凸凹性等性质。
03 数学分析的定理与证明
《数学分析》PPT课件
2 345
当n无限增大时,xn 无限接近于1.
8
数列的极限
研究数列{1 (1)n1 }当 n 时的变化趋势. n
当n无限增大时, xn无限接近于1.
“无限接近”意味着什么?
如何用数学语言刻划它.
|
xn
1|
(1 (1)n1
1)1 n
1 n
xn 1 可以要多么小就多么小,只要n充分大,
则要看 xn 1小到什么要求.
n
yn
b,
且 a b, 则存在 N , 当 n N时,有 xn yn .
26
• Thm 3.6 若对任意正整数 n, 有xn yn ,
且
lim
n
xn
a,
lim
n
yn
b,
则 a b.
• Remark
(1)因为数列的前有限项不影响数列的 极限,故上不等式的条件可减弱为:
“若 N 0,
当 n N 时,xn yn ”;
积仍为无穷大;
∗ 用无零值有界变量去除无穷大仍为无穷大.
例 求 lim ( x 1 x) x
解 lim ( x 1 x) x
32
无穷小与无穷大
注 (1) 无穷大是变量,不能与很大的数混淆; (2)切勿将 lim f ( x) 认为极限存在.
x x0
(3) 无穷大与无界函数的区别: 它们是两个不同的概念. 无穷大一定是无界函数, 但是无界函数 未必是某个过程的无穷大.
9
数列的极限
|
xn
1 |
1 n
给定
1 100
,
由
1 n
1, 100
只要 n 100时,有
xn
1
1, 100
当n无限增大时,xn 无限接近于1.
8
数列的极限
研究数列{1 (1)n1 }当 n 时的变化趋势. n
当n无限增大时, xn无限接近于1.
“无限接近”意味着什么?
如何用数学语言刻划它.
|
xn
1|
(1 (1)n1
1)1 n
1 n
xn 1 可以要多么小就多么小,只要n充分大,
则要看 xn 1小到什么要求.
n
yn
b,
且 a b, 则存在 N , 当 n N时,有 xn yn .
26
• Thm 3.6 若对任意正整数 n, 有xn yn ,
且
lim
n
xn
a,
lim
n
yn
b,
则 a b.
• Remark
(1)因为数列的前有限项不影响数列的 极限,故上不等式的条件可减弱为:
“若 N 0,
当 n N 时,xn yn ”;
积仍为无穷大;
∗ 用无零值有界变量去除无穷大仍为无穷大.
例 求 lim ( x 1 x) x
解 lim ( x 1 x) x
32
无穷小与无穷大
注 (1) 无穷大是变量,不能与很大的数混淆; (2)切勿将 lim f ( x) 认为极限存在.
x x0
(3) 无穷大与无界函数的区别: 它们是两个不同的概念. 无穷大一定是无界函数, 但是无界函数 未必是某个过程的无穷大.
9
数列的极限
|
xn
1 |
1 n
给定
1 100
,
由
1 n
1, 100
只要 n 100时,有
xn
1
1, 100
数学分析PPT课件第四版华东师大研制--第11章-反常积分可编辑全文
(i) 若 0 c ,则 f ( x)dx与 g( x)dx 收敛性相同;
a
a
前页 后页 返回
(ii) 若c 0, 则由 g( x)dx收敛可得 f ( x)dx收敛;
a
a
(iii) 若c , 则由 g( x)dx 发散可得 f ( x)dx 发散.
a
a
证 (i) 由 lim f ( x) c 0, 故存在 G a,使 x G,有
u a
则称此极限 J 为函数 f 在 a , 上的无穷限反
常积分(简称无穷积分),记作
J a f (x)dx,
并称 f ( x)dx 收敛, 否则称 f ( x)dx 发散.
a
a
前页 后页 返回
类似定义
b
b
f ( x)dx lim f ( x)dx,
u u
a
f ( x)dx f ( x)dx f ( x)dx.
t e pt dt
0
p 0 的收敛性.
解
t e ptdt
t e pt p
1 p2
e
pt
C,
因此
t e ptdt 0
t e pt p
1 p2
e
pt
0
前页 后页 返回
1 1
(0 0) 0
p2
p2 .
例3
讨论瑕积分
1 dx
0 xq
q 0 的收敛性.
解
1 dx
u xq
显然
5
1 x6 1
1 x6 5
. 由于
dx 收敛,因此 1 x6 5
dx 收敛. 1 5 x6 1
例3 设 f (x), g(x) 是 [a,) 上的非负连续函数. 证
《数学分析》课件 (完整版)
第十一章 广义积分
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得
则
时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得
则
时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。
数学分析ppt课件
有限覆盖定理
总结词
有限覆盖定理是实数完备性定理中的另一个 重要结论,它涉及到实数集的覆盖问题。
详细描述
有限覆盖定理说明,任意一个开覆盖${(a_n, b_n)}$的实数集都可以被有限个开区间覆盖 。换句话说,对于任意一个实数集$S$,都 存在有限的开区间${(a_1, b_1), (a_2, b_2), ldots, (a_n, b_n)}$,使得$S subseteq cup_{i=1}^{n} (a_i, b_i)$。这个定理在证 明紧空间的性质和实数完备性中起到了关键 作用。
3
实数系中的基本运算
实数系中可以进行加法、减法、乘法和 除法等基本运算,这些运算具有交换律 、结合律、分配律等性质。此外,实数 系中还可以定义绝对值、最大值、最小 值等概念。
极限理论
01
极限的定义
极限是数学分析中的一个基本概念,它描述了当自变量趋向某一值时,
函数值的变化趋势。极限的定义包括数列极限和函数极限两种形式。
详细描述
介绍向量值函数和空间曲线的定义,通过实例说明向量值函 数和空间曲线的性质,并解释其在数学分析中的重要性和应 用。
06
实数完备性定理
区间套定理
总结词
区间套定理是实数完备性定理中的一个 重要组成部分,它描述了闭区间套的性 质。
VS
详细描述
区间套定理指出,如果存在一个闭区间套 ,即一列闭区间${[a_n, b_n]}$,满足 $a_n < b_n$且$a_n < a_{n+1} < b_{n+1} < b_n$(对任意$n$),则该区 间套中至少存在一个实数。这个定理在数 学分析中有着广泛的应用,例如在证明连 续函数的性质和极限理论中。
1-6章数学分析课件第3章函数极限3-1
f ( x ) → A ( x → x0 ).
x +1 2 1 例5 证明 lim . = x →1 x 1 2 2
分析 对于任意正数 ε ,要找到 δ > 0, 当 0 < | x 1 | < δ 时, 使
前页 后页 返回
x +1 2 1 = x 1 2 2
1 1 x+1+ 2 2 2
x 1
x→∞
f ( x ) 定义在 ∞ 的一个邻域内,则 的一个邻域内,
的充要条件是: lim f ( x ) = A 的充要条件是:
x→ ∞
lim f ( x ) = lim f ( x ) = A.
x→ +∞
例如
π π lim arctan x = , lim arctan x = , x → ∞ 2 x →+∞ 2
前页 后页 返回
1 = 0. 例4 求证 lim 2 x →∞ 1 + x
证 对于任意正数 ε , 可取 M =
1
ε
, 当 x > M 时, 有
1 1 0 < 2 <ε, 2 1+ x x
所以结论成立. 所以结论成立.不难得到: 从定义 、2 、3 不难得到 定理 3.1
x → x0
右极限与左极限统称为单侧极限, 为了方便起见, 右极限与左极限统称为单侧极限 为了方便起见, 有时记
f ( x0 + 0) = lim+ f ( x ) , f ( x0 0) = lim f ( x ).
前页 后页 返回
在上面例题中 需要注意以下几点: 在上面例题中, 需要注意以下几点: 题中 1. 对于 δ , 我们强调其存在性 换句话说 对于固定 我们强调其存在性. 换句话说, 对于固定 的 ε , 不同的方法会得出不同的δ , 不存在哪一个更 好的问题. 好的问题 那么比它更小的正 是不惟一的, 2. δ 是不惟一的 一旦求出了δ , 那么比它更小的正 数都可以充当这个角色. 都可以充当这个角色 是任意的,一旦给出 它就是确定的常数. 一旦给出,它就是确定的常数 3. 正数 ε 是任意的 一旦给出 它就是确定的常数
第一章 实数集与函数
证明 用反证法 .假若结论不成立 , 则根据实数的有序性
有 a > b.令 e a b , 则 e为正数且 a b e , 这与假设 a b e矛盾 .从而必有 a b.
二. 绝对值与不等式
绝对值定义:
|
a
|
a a
, ,
a0 a0
从数轴上看的绝对值就是到原点的距离:
有严格不等式 (1 x)n > 1 nx. 证 由 1 x > 0且
1 x 0, (1 x)n n 1 (1 x)n 11L1 >
> n n (1 x) n n (1 x).
(1 x)n > 1 nx.
⑷ 利用二项展开式得到的不等式:
规定 空集为任何集合的子集.
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b} 称为开区间, 记作 (a,b)
例1 设x, y为实数,证明: 存在有理数r满足 : x r y.
证明
由于 x
y, 故存在非负整数n,使得 x n
yn.令r
1 2
(xn
yn )
则r为有理数,且有x xn r yn y,即得x r y.
例2 设a,b R,证明: 若对任何正数e有a b e ,则a b.
数,再在无限小数前加负号.如: -8=-7.999
2.两个实数的大小关系
1)定义1
给定两个非负实数
x a0 .a1a2 L an L, y b0 .b1b2 Lbn L, 其中 a0 , b0为非负整数 , ak , bk (k 1,2,L)为整数 ,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L, 则称x与y相等,记为x y;
数学分析课件之第二章数列极限
02
数列极限的运算性质
数列极限的四则运算性质
01
02
03
04
加法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n + y_n) =
a + b$。
减法性质
若$lim x_n = a$且$lim y_n = b$,则$lim (x_n - y_n) =
a - b$。
数列极限的性质
总结词
数列极限具有一些重要的性质,如唯一性、收敛性、保序性等。
详细描述
数列极限具有一些重要的性质。首先,极限具有唯一性,即一个数列只有一个极限值。其次,极限具有收敛性, 即当项数趋于无穷时,数列的项逐渐接近极限值。此外,极限还具有保序性,即如果一个数列的项小于另一个数 列的项,那么它们的极限也满足这个关系。
指数性质
若$lim x_n = a$且$0 < |a| < 1$ ,则$lim a^{x_n} = 1$。
幂运算性质
若$lim x_n = a$,则$lim x_n^k = a^k$(其中$k$为正整数)。
数列极限的运算性质在数学中的应用
解决极限问题
利用数列极限的运算性质,可以 推导和证明一系列数学定理和公 式,如泰勒级数、洛必达法则等
无穷小量是指在某个变化过程中,其 值无限趋近于0的变量。
性质
无穷小量具有可加性、可减性、可乘 性和可除性,但不可约性。
无穷大量的定义与性质
定义
无穷大量是指在某个变化过程中,其值无限增大的变量。
性质
无穷大量具有可加性、可减性、可乘性和可除性,但不可约性。
无穷小量与无穷大量的关系
1 2
无穷量是无穷大量的极限状态
18-3 数学分析全套课件
在 P0( x0 , y0, z0 ) ( x(t0 ), y(t0 ), z(t0 ))处的切线为
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 曲面:F ( x, y, z) 0 在P0( x0, y0, z0 ) 的切平面方程为
Fx (P0 )( x x0 ) Fy (P0 )( y y0 ) Fz (P0 )(z z0 ) 0.
隐函数组求导法 F(x, y, z) 0 G( x, y, z) 0
(1)确定自变量、因变量 (2)两边求导(偏导):因变量为自变量函数
前页 后页 返回
§3 几 何 应 用
F(x, y, z) 0
F(x, y, z) 0 G( x, y, z) 0
一、平面曲线的切线与法线
二、空间曲线的切线与法平面 三、曲面的切平面与法线
前页 后页 返回
1
求曲线
:
x
t
0
e
u
cos
udu,
y
2sin
t
cost,z 1 e3t 在t 0处的切线和法平面方程.
2 求曲线 x2 y2 z2 6, x y z 0在点 (1,2, 1)处的切线及法平面方程.
3 求曲面 z ez 2xy 3在点(1,2,0)处的切
平面及法线方程.
把方程看成
y
y( x)
z z( x)
例 求曲线
(F ,G) ( y, z)
0
L : x2 y2 z2 50, x2 y2 z2
在点 P0(3,4,5) 处的切线与法平面.
前页 后页 返回
三、曲面的切平面与法线
曲面:F ( x, y, z) 0 在P0( x0 , y0, z0 ) 满足 ( Fx (P0 ), Fy (P0 ), Fz (P0 ) ) ( 0,0,0 ),
x x0 y y0 z z0 . x(t0 ) y(t0 ) z(t0 ) 曲面:F ( x, y, z) 0 在P0( x0, y0, z0 ) 的切平面方程为
Fx (P0 )( x x0 ) Fy (P0 )( y y0 ) Fz (P0 )(z z0 ) 0.
隐函数组求导法 F(x, y, z) 0 G( x, y, z) 0
(1)确定自变量、因变量 (2)两边求导(偏导):因变量为自变量函数
前页 后页 返回
§3 几 何 应 用
F(x, y, z) 0
F(x, y, z) 0 G( x, y, z) 0
一、平面曲线的切线与法线
二、空间曲线的切线与法平面 三、曲面的切平面与法线
前页 后页 返回
1
求曲线
:
x
t
0
e
u
cos
udu,
y
2sin
t
cost,z 1 e3t 在t 0处的切线和法平面方程.
2 求曲线 x2 y2 z2 6, x y z 0在点 (1,2, 1)处的切线及法平面方程.
3 求曲面 z ez 2xy 3在点(1,2,0)处的切
平面及法线方程.
把方程看成
y
y( x)
z z( x)
例 求曲线
(F ,G) ( y, z)
0
L : x2 y2 z2 50, x2 y2 z2
在点 P0(3,4,5) 处的切线与法平面.
前页 后页 返回
三、曲面的切平面与法线
曲面:F ( x, y, z) 0 在P0( x0 , y0, z0 ) 满足 ( Fx (P0 ), Fy (P0 ), Fz (P0 ) ) ( 0,0,0 ),
(完整版)数学分析全套课件(华东师大)
证明
由于x
<
y, 故存在非负整数n,使得x n
< yn.令r
1 2
(xn
yn
)
则r为有理数,且有x xn < r < yn y,即得x < r < y.
例2 设a,b R,证明: 若对任何正数e有a < b e ,则a b.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b,则e为正数且a b e , 这与假设 a < b e矛盾.从而必有a b.
§3 函数概念
1.函数概念
❖定义
设数集DR, 则称映射f : D R为定义在D上的函数, 通常简记为
yf(x), xD, 其中x称为自变量, y称为因变量, D称为定义域, 记作Df, 即DfD.
说明:
记为函号了数f叙的和述记f(x方号)的便是区可, 常别以用:任前记意者号选表“取示f(的x自), 变除x量了Dx用”和或f因“外变y, 还量f(可xy)之,用x间“D的g””对来 应表、法示“则 定F”义,、而在“后D者”上表等的示,函此与数时自, 函这变数时量就应x对记理应作解的y为函g由(数x它)、值所.y确F定(x的)、函y数f(x.)
的集合, RR常记作R2.
3.实数集 ❖两个实数的大小关系
• 定义1
给定两个非负实数
x a0.a1a2 Lan L, y b0 .b1b2 Lbn L,其中a0 ,b0为非负整数, ak ,bk (k 1,2,L)为整数,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L,则称x与y相等,记为x y;
称有理数xn a0.a1a2 Lan为实数x的n 位不足近似,
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2)任取点 (ξ i ,ηi ) ∈ ∆σ i , )
n n
z
∆vi ≈ f (ξ i ,ηi ) ∆σ i (i = 1,2,L, n )
i =1 i =1
3)作和 v = ∑ ∆vi ≈ ∑ f (ξ i ,ηi ) ∆σ i ) 4)取极限 令 λ = max {∆ σ i的直径 } ) 1≤ i ≤ n 则
二重积分的概念与性质 二重积分的计算 二重积分的应用 三重积分的概念及其计算
∫
b
∫∫ f ( x, y )dσ
f ( x )dx
D
a
∫∫∫ f ( x, y, z )dv
Ω
1
第一节 二重积分的概念与性质
一、二重积分的概念 引例1 引例 曲顶柱体的体积 ∆ 1)将区域D任意分割 任意分割成n个小区域: σ 1 , ∆σ 2 ,L, ∆σ n . ) 任意分割 ∆σ i 也表第i块小区域的面积 z = f ( x, y )
∆σ i 也表第i块小区域的面积. 任取点 (ξi ,ηi ) ∈ ∆σ i (i = 1,2,L, n )
作
∑ f (ξ ,η )∆σ ,
i =1 i i i
n
令 λ = max{∆σ i的直径}
1≤i ≤ n
若极限 lim
λ →o
存在, ∑ f (ξ ,η ) 存在
i =1 i i
n
则称此极限值为 记作: 即
∫∫ f ( x, y )dσ ≤ ∫∫ g ( x, y )dσ
D
D
5.估值定理 设 M 和 m 是 f ( x, y ) 在闭区域 D 上的最大值和最小值, 估值定理
σ 为 D 的面积,则 mσ
≤
∫∫ f ( x, y )dσ ≤ Mσ
D
σ 6.中值定理 设函数 f ( x, y ) 在闭区域 D上连续, 为 D 的面积, 中值定理
ln( x + y ) > [ln( x + y )]
2
o
x+ y=2 D x 1
2
ln( x + y )dσ > ∫∫ [ln( x + y )]2 dσ 所以, ∫∫
D D
x + y =1
8
D
f ( x, y ) 在区域 上的二重积分 在区域D上的二重积分 上的二重积分.
n
∫∫ f ( x, y )dσ
∫∫ f ( x, y )dσ = lim ∑ f (ξ ,η )∆σ λ
D
→0
i =1
i
i
i
P2
4
可积条件: 可积条件:若 f ( x, y ) 在闭区域D上连续, 则 几何意义: 几何意义 1) 若 f ( x, y ) ≥ 0 ,
则至少存在一点(ξ ,η ) ∈ D 使得
∫∫ f ( x, y )dσ =
D
f (ξ , η )σ
7
x
例1 比较积分大小: ln( x + y )dσ 与
∫∫
D
[ln( x + y )]2 dσ ∫∫
D
其中D 是顶点为(1,0), (1,1), ( 2,0) 的三角形区域. y 解 在D上, < x + y < 2 1 (1,1)
1≤ i ≤ n
m = lim ∑ ρ (ξi ,ηi )∆σ i = ∫∫ ρ ( x, y )dσ
λ →o
i =1
n
D
3
定义: 定义: f ( x, y ) 是定义在有界闭区域 设 有界闭区域D上的有界 函数 有界闭区域 有界 函数,
∆ 将D任意分割 任意分割成n个小区域: σ 1 , ∆σ 2 ,L, ∆σ n 任意分割
D
z
z = f ( x, y )
o
x
5
二、二重积分的性质
1.线性性质 线性性质
∫∫ [kf ( x, y ) + mg ( x, y )]dσ = k ∫∫ f ( x, y )dσ
D
&于积分区域的可加性 若 D = D1 + D2 关于积分区域的可加性: 关于积分区域的可加性 则
ρ ( x, y )
(ξi ,ηi )
2)任取点 (ξ i ,ηi ) ∈ ∆σ i , )
n n
∆mi ≈ ρ (ξ i ,ηi ) ∆σ i (i = 1,2,L, n )
i =1 i =1
x
3)作和 m = ∑ ∆mi ≈ ∑ ρ (ξ i ,ηi ) ∆σ i ) 4)取极限 令 λ = max {∆ σ i的直径 } )
o
v = lim∑ f (ξi ,ηi )∆σ i = ∫∫ f ( x, y )dσ
λ→0
i =1
D
n
x
(ξi ,ηi )
2
y 引例2 引例 非均匀平面薄片的质量 1)将区域D任意分割 ) 任意分割成n个小区域: 任意分割 ∆σ 1 , ∆σ 2 ,L, ∆σ n . ∆σ i 也表第i块小区域的面积
∫∫ f ( x, y )dσ
D
必存在.
∫∫ f ( x, y )dσ 表曲顶柱体的体积.
D
2) 若 f ( x, y ) ≤ 0 , ∫∫ f ( x, y )dσ 表曲顶柱体体积的相反值.
D
3) 若 f ( x, y ) 在D的部分区域上大于0,在部分区域上小于0,
∫∫ f ( x, y )dσ 表体积的代数和,上方取正,下方取负.
∫∫ f ( x, y )dσ = ∫∫ f ( x, y )dσ + ∫∫ f ( x, y )dσ
D
D1
D2
3.若在 上, f ( x, y ) = 1, 则, 若在D上 若在
σ = ∫∫ dσ ,σ 为区域D的面积.
D
6
4.不等性 若在 D上,恒有 f ( x, y ) ≤ g ( x, y ), 不等性 则有