高中数学 2.4等比数列(2)学案 新人教A版必修5

合集下载

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

高中数学 第二章 数列 24 等比数列学案(无答案)新人教A版必修5 学案

2.4等比数列【学习目标】理解等比数列、等比中项的概念,能推导并掌握通项公式,能熟练运用通项公式和一些常用性质解决有关问题. 【重点难点】重点:等比数列的定义和通项公式及其应用.难点:等比数列的通项公式的应用.【学法指导】学习本节一定要认真阅读教材,运用从特殊到一般和类比等差数列的定义、通项公式的方法归纳等比数列的定义、通项公式. 一.课前预习阅读课本4852P P 页,弄清下列问题:1.等比数列的概念: .2.用数学式子表示等比数列的定义: {}n a 是等比数列,则*1()n na q n N a +=∈. 强调:(1)“从第二项起,每一项与它的前一项的比都等于同一个常数”,要防止在求公比 时,把相邻两项比的次序颠倒.(3)当公比q = 时,等比数列是常数列,该数列也是等差数列.(4)等比数列的每一项都不为 .3.等比数列的通项公式: . 4.等比中项的定义: . 5.快乐体验:(1)若等比数列155,45a a ==,求公比q ; (2)若等比数列12,33a q ==,求4a .(3)若等比数列3312,2a q ==,求1a ; (4)若等比数列的12,54,3,n a a q ===求n .(5)若4,9a b ==,求,a b 的等比中项.二.课堂学习与研讨例1.某种放射性物质不断变化为其他物质,每经过一年剩留量是原来的84%.这种物质的半衰期为多长?(精确到1年)(参考数据:lg 20.3010,lg0.840.0757,0.30100.0757 3.98==-÷≈)练习1.(教材53P 练习5)某人买了一辆价值13.5万元的新车,专家预测这种车每年按10%的速度折旧. (1)用一个式子表示*()n n N ∈年后这辆车的价值;(2)如果他打算用满4年时卖掉这辆车,他大概能得到多少钱?例2.等比数列的第3项和第4项分别是12和18,求它的第1项和第2项.练习2. 在等比数列{}n a 中,473,81,n a a a ==求.小结:3.等比中项:若,,a G b 成等比数列,则2G ab =. 三.课堂检测1.若a ,22a +,33a +成等比数列,则实数a 的为 .2.在等比数列中,(1)若已知2514,2a a ==-求n a . (2)若253618,9,1n a a a a a +=+==,求n .四.作业 1. P53A1 2. 在83和272之间插入3个数,使这五个数成等比数列,求这三数?3. 在等比数列{}n a 中,已知1910185,100,a a a a =⋅=求.2.5等比数列的前n 项和公式【学习目标】1.掌握等比数列的前n 项和公式11,1(1),11n n na q S a q q q =⎧⎪=-⎨⎪≠-⎩2.在等比数列{}n a 中,n n s n d a a 、、、、1五个量中“知三求二”.3.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想和等价转化的思想. 【重点难点】重点:等比数列前n 项和公式的推导和运用.难点:等比数列前n 项和公式的推导. 【学法指导】学习本节时好好体会错位相减法求和的思路,分析等比数列的通项公式和前n 项和公式的特点,体会知三求二的方程思想. 一.课前预习 预习课本5557P P 页,回答下列问题:1.传说,很早以前,印度的一位宰相发明了国际象棋,当时的国王非常高兴,决定奖赏他,国王允许宰相提出任何要求,于是这位聪明的宰相便请国王在国际象棋棋盘的第一个格子里放入一颗麦粒,第二个格子里放入两颗麦粒,第三个……,就这样,依此类推,要求从第二个格子起,每个格子里的麦粒数是前一个格子里麦粒数的两倍,他请求国王给予他这些麦粒的总和。

高中数学:2.4《等比数列》教案(新人教A版必修5)

高中数学:2.4《等比数列》教案(新人教A版必修5)

2.4《等比数列》教案一、能力要求:1、掌握等比数列的概念,等比中项的概念,能利用定义判定等比数列;2、理解等比数列的通向公式及推导,并能简单的应用公式;3、了解等比数列的通向公式与指数函数的关系。

二、教学重点、难点:重点: 等比数列的概念和通向公式及其推导;等比数列通向公式的应用。

难点:等比数列通向公式的应用。

三、预习问题处理:1、等比数列的概念:一般的, ,那么这个数列叫做等比数列,这个常数叫做等比数列的 ,公比通常用字母q 表示。

2、若()为常数q n q a a n n ,21≥=-,则称数列{}n a 为 ,q 为 ,且≠q 。

3、若b G a ,,成等比数列,则 ;其中G 叫做a 与b 的 。

此时a 与b (填同号或异号)。

4、等比数列的通项公式为: 。

5、首项为正数的等比数列的公比1=q 时,数列为 数列;当0<q 时,数列为 数列;当10<<q 时,数列为 数列;当1>q 时,数列为 数列。

6、判断正误:①1,2,4,8,16是等比数列; ( ) ②数列 ,81,41,21,1是公比为2的等比数列; ( ) ③若c b b a =,则c b a ,,成等比数列; ( ) ④若()*1N n n a a n n ∈=+,则数列{}n a 成等比数列; ( ) 7、思考:如何证明一个数列是等比数列。

四、新课讲解:例1、 判断下列数列{}n a 是否为等比数列:(1)()()*1,31N n a n n n ∈-=-; (2)()*3,2N n a n n ∈-=-;(3)*,2N n n a n n ∈⨯= (4)*,1N n a n ∈-=例2、(1)求12+与12-的等比中项;(2)等比数列{}n a 中,若0>n a ,252645342=++a a a a a a ,求53a a +。

例3、已知等比数列{}n a ,若8,7321321==++a a a a a a ,求数列{}n a 的通向公式。

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5

高中数学 第二章 数列 2.4 等比数列(二)课件 新人教A版必修5
根据等比数列的性质 a5a6=a1a10=a2a9=a3a8=a4a7=9, ∴a1a2…a9a10=(a5a6)5=95, ∴log3a1+log3a2+…+log10.
名师点评
抓住各项序号的数字特征,灵活运用等比数列的性质,可以顺利地 解决问题.
1234
4.an=2n+3n,判断数列{an}是不是等比数列? 不是等比数列. ∵a1=21+31=5,a2=22+32=13,a3=23+33=35, ∴a1a3≠a22, ∴数列{an}不是等比数列.
1234
课堂小结
1.解题时,应该首先考虑通式通法,而不是花费大量时间找简便方法. 2.所谓通式通法,指应用通项公式,前n项和公式,等差中项,等比中 项等列出方程(组),求出根本量. 3.巧用等比数列的性质,减少计算量,这一点在解题中也非常重要.
探究点2 等比数列的性质
命题角度1 序号的数字特征 例2 {an}为等比数列. (1)假设an>0,a2a4+2a3a5+a4a6=25,求a3+a5;
a2a4+2a3a5+a4a6=a23+2a3a5+a25 =(a3+a5)2=25, ∵an>0, ∴a3+a5>0, ∴a3+a5=5.
(2)假设an>0,a5a6=9,求log3a1+log3a2+…+log3a10的值.
方法二 设这四个数依次为2qa-a,aq,a,aq(q≠0),
2qa-a+aq=16, 由条件得aq+a=12,
解得aq==82,
a=3, 或q=13.
当a=8,q=2时,所求的四个数为0,4,8,16;
当 a=3,q=13时,所求的四个数为 15,9,3,1. 故所求的四个数为0,4,8,16或15,9,3,1.
2.等比数列项的运算性质 在等比数列{an}中,若 m+n=p+q(m,n,p,q∈N*),则 am·an= ap·aq . ①特别地,当 m+n=2k(m,n,k∈N*)时,am·an= a2k . ②对有穷等比数列,与首末两项“等距离”的两项之积等于首末两项的 积 ,

高中数学新人教A版必修5第二章 2.4 第二课时 等比数列的性质

高中数学新人教A版必修5第二章   2.4  第二课时 等比数列的性质

第二课时 等比数列的性质预习课本P53练习第3、4题,思考并完成以下问题 等比数列项的运算性质是什么?[新知初探] 等比数列的性质(1)若数列{a n },{b n }是项数相同的等比数列,则{a n ·b n }也是等比数列.特别地,若{a n }是等比数列,c 是不等于0的常数,则{c ·a n }也是等比数列.(2)在等比数列{a n }中,若m +n =p +q ,则a m a n =a p a q .(3)数列{a n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项的积. (4)在等比数列{a n }中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等比数列,公比为q k +1.(5)当m ,n ,p (m ,n ,p ∈N *)成等差数列时,a m ,a n ,a p 成等比数列.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)有穷等比数列中,与首末两项“等距离”的两项之积等于首末两项的积( ) (2)当q >1时,{a n }为递增数列.( ) (3)当q =1时,{a n }为常数列.( )解析:(1)正确,根据等比数列的定义可以判定该说法正确. (2)错误,当q >1,a 1>0时,{a n }才为递增数列.(3)正确,当q =1时,数列中的每一项都相等,所以为常数列. 答案:(1)√ (2)× (3)√2.由公比为q 的等比数列a 1,a 2,…依次相邻两项的乘积组成的数列a 1a 2,a 2a 3,a 3a 4,…是( )A .等差数列B .以q 为公比的等比数列C .以q 2为公比的等比数列D .以2q 为公比的等比数列解析:选C 因为a n +1a n +2a n a n +1=a n +2a n =q 2为常数,所以该数列为以q 2为公比的等比数列.3.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( )A .35B .63C .21 3D .±21 3解析:选B ∵{a n }成等比数列. ∴a 4,a 6,a 8成等比数列∴a 26=a 4·a 8,即a 8=2127=63.4.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________.解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41,又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49,∵数列各项都是正数, ∴a 4+a 8=7. 答案:7等比数列的性质[典例] (1)在1与100之间插入n 个正数,使这n +2个数成等比数列,则插入的n 个数的积为( )A .10nB .n 10C .100nD .n 100(2)在等比数列{a n }中,a 3=16,a 1a 2a 3…a 10=265,则a 7等于________. [解析] (1)设这n +2个数为a 1,a 2,…,a n +1,a n +2, 则a 2·a 3·…·a n +1=(a 1a n +2)n 2=(100)n 2=10n .(2)因为a 1a 2a 3…a 10=(a 3a 8)5=265,所以a 3a 8=213, 又因为a 3=16=24,所以a 8=29. 因为a 8=a 3·q 5,所以q =2. 所以a 7=a 8q =256.[答案] (1)A (2)256有关等比数列的计算问题,基本方法是运用方程思想列出基本量a 1和q 的方程组,先解出a 1和q ,然后利用通项公式求解.但有时运算稍繁,而利用等比数列的性质解题,却简便快捷,为了发现性质,要充分发挥项的“下标”的指导作用.[活学活用]1.已知{a n }为等比数列,a 4+a 7=2,a 5a 6=-8,则a 1+a 10=( ) A .7 B .5 C .-5D .-7解析:选D 因为数列{a n }为等比数列,所以a 5a 6=a 4a 7=-8,联立⎩⎪⎨⎪⎧a 4+a 7=2,a 4a 7=-8,解得⎩⎪⎨⎪⎧ a 4=4,a 7=-2或⎩⎪⎨⎪⎧a 4=-2,a 7=4,所以q 3=-12或q 3=-2,故a 1+a 10=a 4q3+a 7·q 3=-7.2.在等比数列{a n }中,已知a 4a 7=-512,a 3+a 8=124,且公比为整数,则a 10=________. 解析:由a 4·a 7=-512,得a 3·a 8=-512.由⎩⎪⎨⎪⎧a 3·a 8=-512,a 3+a 8=124, 解得⎩⎪⎨⎪⎧ a 3=-4,a 8=128或⎩⎪⎨⎪⎧a 3=128,a 8=-4.(舍去). 所以q =5a 8a 3=-2.所以a 10=a 3q 7=-4×(-2)7=512. 答案:512灵活设元求解等比数列问题[典例] (1)有四个数成等比数列,将这四个数分别减去1,1,4,13成等差数列,则这四个数的和是________.(2)有四个实数,前三个数成等比数列,且它们的乘积为216,后三个数成等差数列,且它们之和为12,求这四个数.[解析] (1)设这四个数分别为a ,aq ,aq 2,aq 3,则a -1,aq -1,aq 2-4,aq 3-13成等差数列.即⎩⎪⎨⎪⎧2(aq -1)=(a -1)+(aq 2-4),2(aq 2-4)=(aq -1)+(aq 3-13),整理得⎩⎪⎨⎪⎧a (q -1)2=3,aq (q -1)2=6,解得a =3,q =2.因此这四个数分别是3,6,12,24,其和为45. [答案] 45(2)解:法一:设前三个数为aq ,a ,aq ,则a q ·a ·aq =216, 所以a 3=216.所以a =6. 因此前三个数为6q ,6,6q . 由题意知第4个数为12q -6. 所以6+6q +12q -6=12,解得q =23.故所求的四个数为9,6,4,2.法二:设后三个数为4-d,4,4+d ,则第一个数为14(4-d )2,由题意知14(4-d )2×(4-d )×4=216,解得4-d =6.所以d =-2.故所求得的四个数为9,6,4,2.几个数成等比数列的设法(1)三个数成等比数列设为aq ,a ,aq . 推广到一般:奇数个数成等比数列设为: …a q 2,aq,a ,aq ,aq 2… (2)四个符号相同的数成等比数列设为: a q 3,aq,aq ,aq 3. 推广到一般:偶数个符号相同的数成等比数列设为: …a q 5,a q3,aq ,aq ,aq 3,aq 5… (3)四个数成等比数列,不能确定它们的符号相同时,可设为:a ,aq ,aq 2,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或352B .4或352C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=352.等比数列的实际应用问题[典例] 某工厂2018年1月的生产总值为a 万元,计划从2018年2月起,每月生产总值比上一个月增长m %,那么到2019年8月底该厂的生产总值为多少万元?[解] 设从2018年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %.∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列.∴a n =a (1+m %)n -1.∴2019年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用] 如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝⎛⎭⎫22n ,故a 7=2×⎝⎛⎭⎫226=14. 答案:14层级一 学业水平达标1.等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12D .24解析:选A 由题意知(3x +3)2=x (6x +6),即x 2+4x +3=0,解得x =-3或x =-1(舍去),所以等比数列的前3项是-3,-6,-12,则第四项为-24.2.对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列解析:选D 设等比数列的公比为q ,因为a 6a 3=a 9a 6=q 3,即a 26=a 3a 9,所以a 3,a 6,a 9成等比数列.故选D.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7等于( )A.56B.65C.23D.32解析:选D 设公比为q ,则由等比数列{a n }各项为正数且a n +1<a n 知0<q <1,由a 2·a 8=6,得a 25=6.∴a 5=6,a 4+a 6=6q+6q =5. 解得q =26,∴a 5a 7=1q 2=⎝⎛⎭⎫622=32.4.已知公差不为0的等差数列的第2,3,6项依次构成一个等比数列,则该等比数列的公比q 为( )A.13 B .3 C .±13D .±3解析:选B 设等差数列为{a n },公差为d ,d ≠0.则a 23=a 2·a 6,∴(a 1+2d )2=(a 1+d )·(a 1+5d ),化简得d 2=-2a 1d , ∵d ≠0,∴d =-2a 1,∴a 2=-a 1,a 3=-3a 1,∴q =a 3a 2=3.5.已知各项均为正数的等比数列{a n }中,lg(a 3a 8a 13)=6,则a 1·a 15的值为( ) A .100 B .-100 C .10 000D .-10 000解析:选C ∵a 3a 8a 13=a 38,∴lg(a 3a 8a 13)=lg a 38=3lg a 8=6.∴a 8=100.又a 1a 15=a 28=10000,故选C.6.在3和一个未知数间填上一个数,使三数成等差数列,若中间项减去6,成等比数列,则此未知数是________.解析:设此三数为3,a ,b ,则⎩⎪⎨⎪⎧2a =3+b ,(a -6)2=3b , 解得⎩⎪⎨⎪⎧ a =3,b =3或⎩⎪⎨⎪⎧a =15,b =27.所以这个未知数为3或27. 答案:3或277.设数列{a n }为公比q >1的等比数列,若a 4,a 5是方程4x 2-8x +3=0的两根,则a 6+a 7=________.解析:由题意得a 4=12,a 5=32,∴q =a 5a 4=3.∴a 6+a 7=(a 4+a 5)q 2=⎝⎛⎭⎫12+32×32=18. 答案:188.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048. 答案:2 0489.在由实数组成的等比数列{a n }中,a 3+a 7+a 11=28,a 2·a 7·a 12=512,求q . 解:法一:由条件得⎩⎪⎨⎪⎧a 7q -4+a 7+a 7q 4=28, ①a 7q -5·a 7·a 7q 5=512, ② 由②得a 37=512,即a 7=8. 将其代入①得2q 8-5q 4+2=0.解得q 4=12或q 4=2,即q =±142或q =±42.法二:∵a 3a 11=a 2a 12=a 27, ∴a 37=512,即a 7=8.于是有⎩⎪⎨⎪⎧a 3+a 11=20,a 3a 11=64,即a 3和a 11是方程x 2-20x +64=0的两根,解此方程得x =4或x =16.因此⎩⎪⎨⎪⎧ a 3=4,a 11=16或⎩⎪⎨⎪⎧a 3=16,a 11=4.又∵a 11=a 3·q 8,∴q =±⎝⎛⎭⎫a 11a 318=±418=±42或q =±⎝⎛⎭⎫1418=±142. 10.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解:∵a 1a 5=a 23,a 3a 7=a 25, ∴由题意,得a 23-2a 3a 5+a 25=36, 同理得a 23+2a 3a 5+a 25=100,∴⎩⎪⎨⎪⎧ (a 3-a 5)2=36,(a 3+a 5)2=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧ a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧ a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =2n-2或a n =26-n .层级二 应试能力达标1.在等比数列{a n }中,T n 表示前n 项的积,若T 5=1,则( ) A .a 1=1 B .a 3=1 C .a 4=1D .a 5=1解析:选B 由题意,可得a 1·a 2·a 3·a 4·a 5=1,即(a 1·a 5)·(a 2·a 4)·a 3=1,又a 1·a 5=a 2·a 4=a 23,所以a 53=1,得a 3=1.2.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.3.已知数列{a n }为等差数列,a 1,a 2,a 3成等比数列,a 1=1,则a 2 016=( ) A .5B .1C .0D .-1解析:选B 设等差数列{a n }的公差为d ,则由a 1,a 2,a 3成等比数列得(1+d )2=1+2d ,解得d =0,所以a 2 016=a 1=1.4.设各项为正数的等比数列{a n }中,公比q =2,且a 1·a 2·a 3·…·a 30=230,则a 3·a 6·a 9·…·a 30=( )A .230B .210C .220D .215解析:选C ∵a 1·a 2·a 3·…·a 30=230,∴a 301·q1+2+3+…+29=a 301·q29×302=230, ∴a 1=2-272,∴a 3·a 6·a 9·…·a 30=a 103·(q 3)9×102=(2-272×22)10×(23)45=220. 5.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27,∴a 1a 2a 3…a 13=(a 27)6·a 7=a 137, 而a 7=-2.∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-2136.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1. 答案:-17.已知数列{a n }为等差数列,公差d ≠0,由{a n }中的部分项组成的数列ab 1,ab 2,…,ab n ,…为等比数列,其中b 1=1,b 2=5,b 3=17.求数列{b n }的通项公式.解:依题意a 25=a 1a 17,即(a 1+4d )2=a 1(a 1+16d ),所以a 1d =2d 2,因为d ≠0,所以a 1=2d ,数列{ab n }的公比q =a 5a 1=a 1+4d a 1=3,所以ab n =a 13n -1,①又ab n =a 1+(b n -1)d =b n +12a 1,② 由①②得a 1·3n -1=b n +12·a 1. 因为a 1=2d ≠0,所以b n =2×3n -1-1.8.容器A 中盛有浓度为a %的农药m L ,容器B 中盛有浓度为b %的同种农药m L ,A ,B 两容器中农药的浓度差为20%(a >b ),先将A 中农药的14倒入B 中,混合均匀后,再由B倒入一部分到A 中,恰好使A 中保持m L ,问至少经过多少次这样的操作,两容器中农药的浓度差小于1%?解:设第n 次操作后,A 中农药的浓度为a n ,B 中农药的浓度为b n ,则a 0=a %,b 0=b %.b 1=15(a 0+4b 0),a 1=34a 0+14b 1=15(4a 0+b 0);b 2=15(a 1+4b 1),a 2=34a 1+14b 2=15(4a 1+b 1);…;b n =15(a n -1+4b n -1),a n =15(4a n -1+b n -1).∴a n -b n =35(a n -1-b n -1)=…=35(a 0-b 0)·⎝⎛⎭⎫35n -1. ∵a 0-b 0=15,∴a n -b n =15·⎝⎛⎭⎫35n .依题意知15·⎝⎛⎭⎫35n <1%,n ∈N *,解得n ≥6.故至少经过6次这样的操作,两容器中农药的浓度差小于1%.。

人教A版高中数学高二必修5课件2.4等比数列(二)

人教A版高中数学高二必修5课件2.4等比数列(二)
(5)如果{an},{bn}均为等比数列,且公比分别为q1,q2,那 么 别数为列q11,a1nq1,q2{,anqq·b21,n},|q1|.bann,{|an|}仍 是 等 比 数 列,且 公 比 分
2.4 等比数列(二)
6
(6)等比数列的项的对称性:在有穷等比数列中,与首末两项
“等距离”的两项之积等于首末两项的积,即a1·an=
2.4 等比数列(二)
29
规律方法 (1)在等差数列与等比数列的综合问题中, 特别要注意它们的区别,避免用错公式.(2)方程思想的 应用往往是破题的关键.
2.4 等比数列(二)
30
跟踪演练4 已知{an}是首项为19,公差为-2的等差数列, Sn为{an}的前n项和. (1)求通项公式an及Sn; 解 因为{an}是首项为19,公差为-2的等差数列,所以an =19-2(n-1)=-2n+21,
的m的个数;若不存在,请说明理由.
解 若存在m,使b1,b4,bt成等差数列, 则2b4=b1+bt,
∴ 7 ×2= 1 + 2t-1 ,
7+m
1+m 2t-1+m
2.4 等比数列(二)
28
7m+1 7m-5+36
∴t=

=7+
36

m-5
m-5
m-5
由于m、t∈N*且t≥5. 令m-5=36,18,9,6,4,3,2,1, 即m=41,23,14,11,9,8,7,6时,t均为大于5的整数. ∴存在符合题意的m值,且共有8个.
2.4 等比数列(二)
26
(1)由 bn=an+an m(m∈N*)知 b1=1+1 m,b2=3+3 m,b8=151+5 m,
∵b1,b2,b8成等比数列,

人教A版高中数学必修五2.4《等比数列(二)》

人教A版高中数学必修五2.4《等比数列(二)》
解析:∵数列{an}成等比数列, ∴a6·a15=a9·a12, ∴a6·a15=15, ∴a1·a2·a3·a4·…·a20=(a1·a20)10=(a6·a15)10 =1510.
答案:1510
要点阐释
1.等比数列的性质 (1)在等比数列中,我们随意取出连续的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列. (2)在等比数列中,我们任取“间隔相同”的三项以上的数, 把它们重新依次看成一个数列,则仍是等比数列,如:等比 数列a1,a2,a3,… ,an,….那么a2,a5,a8,a11,a14,…; a3,a5,a7,a9,a11…各自仍构成等比数列.
已知等比数列an
满足
an>0,n=1,2,…,
且 a5·a2n-5=22n(n≥3),则当 n≥1 时,log2a1+log2a3+…
+log2a2n-1=
()
A.(n-1)2
B.n2
C.(n+1)2
D.n(2n-1)
错解:易得 an=2n,且 log2a1+log2a3+…+log2a2n-1 =log2(a1a3…a2n-1)=log221+3+…+(2n-1) =1+3+ …+(2n-1)=1+22n-1(2n-1) =n(2n-1).从而错选 D 错因分析:对等差数列1,3,…,2n-1的项数没 数清.
即aa1122-+22aa11aa55++aa5522==330422,, 两式相减得 a1a5=64,即 a32=64, 又 a5>a1,故 a3=8. 答案:A
2.在等
比数列an
中,
a8

a4
与________的等比中项
A.a9
B.a10
C.a11
() D.a12

高中数学教案-人教A版必修5--2.4等比数列(2)

高中数学教案-人教A版必修5--2.4等比数列(2)

2.4等比数列(2)教学目标:1、 能够应用等比数列的定义及通项公式,理解等比中项概念;2、 类比等差数列的性质推到等比数列的性质;3、 提升学生对数学知识的正迁移能力,增强学生的数学素养.教学重点:1.等比中项的理解与应用2.等比数列性质探究与应用.教学难点:灵活应用等比数列定义、通项公式及性质解决相关问题.教学过程:一、复习回顾等比数列定义,等比数列通项公式.(板书)二、讲授新课第一环节:类比等差中项,探究等比中项 .问题1:(1)若在2,8中插入一个数A ,使2,A ,8成等差数列,则A = .变式1.若在2,8中插入一个数G ,使2,G ,8成等比数列,则G = .变式2.若在-2, 4中插入一个数M ,能否使-2,M ,4成等比数列呢?归纳小结:1.等差中项:若a ,A ,b 成等差数列⇔A =a +b 2,A 为等差中项. 2.等比中项:(板书)如果在a 、b 中插入一个数G ,使a 、G 、b 成等比数列,则G 是a 、b 的等比中项。

ab G ab G Gb a G ±=⇒=⇒=2(注意两解且同号两项才有等比中项) 练习:完成教材课后练习P预设:学生在推导过程中,部分同学会忽略对等比中项的存在性的讨论,在等比中项存在时漏掉符号为负的那一项.(有利于培养学生的严谨性和批判性)问题2()()()(){}()213n 51937519283746n b b b b n n {a }.1 a a a2 a =3a =a =3 a a =a a =a a =a a 4{b }a a a a 5{a }{lg }. A.1ka ⋅⋅⋅⋅已知无穷数列 是等比数列,那么下列说法中正确个数的有( )是 和 的等比中项;若 ,6,则 12;;若是等差数列,则 是 和 的等比中项,并且 也是等比数列;若数列 的每项都是正数,则数列 为等差数列 B.2 C.3 D.4师问:同学们观察第(3)你发现什么规律了吗?类比等差数列{a n }中,若m +n =p +q ,则a m +a n =a p +a q ,在等比数列{a n }中,若m +n =p +q ,则,m n p q a a a a ,,之间又有怎样的关系呢?并说理.分析:由通项公式可得:a m =a 1q m -1,a n =a 1q n -1,a p =a 1q p -1,a q =a 1·q q -1不难发现:a m ·a n =a 12q m +n -2,a p ·a q =a 12q p +q -2归纳小结:若m +n =p +q ,则a m ·a n =a p ·a q (板书)师问:同学们观察第(4)你发现什么规律了吗?学生发现:在等比数列中,若项数成等差数列,则对应的项仍然成等比数列. 归纳小结:234,,,m m m m km a a a a a ⋅⋅⋅⋅⋅⋅ ,,成等比数列问题3n 115{}(1) 2 , 3 ,(2) 6 , 2 ,n n a a q a q a a q a ====已知数列 是首相 ,公比 为的等比数列,若 求 ;若 求 ;同学们思考:在等比数列中,已知1a q 首相,公比我们可以得到通项公式n a ,如果给出m a q ,公比,又如何表示通项公式n a ?归纳小结:通项公式的变形:11=n n m n m a a q a q --=⋅⋅(板书)师问:类比等差数列()11n a a n d =+-,可以看成是以n 为自变量n a 为因变量的一次函数,它的几何意义是该一次函数图像上的点,那么对于等比数列,已知1a q 首相,公比,变量n a 与变量n 是否存在函数关系?若存在属于哪个类型函数?归纳小结:(板书)当数列}a {n 为指数型函数当{}01n q q a >≠数列为指数且时,型函数;当q=1时,数列}a {n 为常数列;当q<0时,数列}a {n 为摆动数列.思考题1 {}{}44n n a b a b 等差数列与等比数列的首项和第8项为正且相等,试比较与的大小.归纳小结:构建两个函数,为借助函数图像解题奠定了基础,体现了函数思想在数列中的运用。

【高中教育】高中数学 2.4 等比数列教案2 新人教A版必修5.doc

【高中教育】高中数学 2.4 等比数列教案2 新人教A版必修5.doc

2.4等比数列教学目标知识与技能目标:等比中项的概念;掌握"判断数列是否为等比数列"常用的方法;进一步熟练掌握等比数列的通项公式、性质及应用.过程与能力目标:明确等比中项的概念;进一步熟练掌握等比数列的通项公式、1.通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2.通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.教学重点;等比数列的通项公式、性质及应用.教学难点:灵活应用等比数列的定义及性质解决一些相关问题. 教学过程 一、复习1.等比数列的定义. 2. 等比数列的通项公式:)0,(111≠⋅=-q a q a a n n ,)0,(≠⋅=-q a q a a m m n m n ,)0,(≠=B A AB a n n3.{an }成等比数列⇔)0,( 1≠∈=++q N n q a a n n4.求下面等比数列的通项公式:(1)5,-15,45,……;(2)1.2,2.4,4.8,……; 二、新课:思考:类比等差中项的概念,你能说出什么是等比中项吗?1.等比中项:如果在a 与b 中间插入一个数G ,使a, G ,b 成等比数列,那么称这个数G 为a 与b 的等比中项. 即G=±ab (a,b 同号) ,则ab G ab G G ba G ±=⇒=⇒=2,反之,若G 2=ab,则G ba G =,即a,G,b ∴a,G,b 成等比数列⇔G 2=ab (a ·b ≠0)例1.三个数成等比数列,它的和为14,它们的积为64,求这三个数. 解:设m,G,n 为所求的三个数, 有已知得m+n+ G =14,64=⋅⋅G n m , ,2mn G =,4643=⇒=∴G G⎩⎨⎧=⋅=+∴,16,10n m n m ⎩⎨⎧==⎩⎨⎧==∴.8,2,2,8n m n m 或 ∴这三个数为8,4,2或2,4,8.解法二:设所求三个数分别为,,,aq a q a则,4,643=∴=a a 又,14=++aq a q a 14444=++∴q q 解得,21,2==q q 或 ∴这三个数为8,4,2或2,4,8.生思考第53页练习第4题,猜测并推广,得 等比数列的性质:若m+n=p+k ,则kp n m a a a a =证明:由定义得:11n 11 --==n m m q a a q a a11k 11 --⋅==k p p q a a q a a221-+=⋅n m n m q a a a ,221-+=⋅k p k p q a a a则kp n m a a a a =例2. 已知{na }是等比数列,且252,0645342=++>a a a a a a a n , 求53a a +.解: ∵{na }是等比数列,∴ 2a 4a +23a 5a +4a 6a =(3a +5a )2=25,又na >0, ∴3a +5a =5;3.判断等比数列的常用方法:定义法,中项法,通项公式法 例3.已知{}{}n n b a ,是项数相同的等比数列,求证{}n n b a ⋅是等比数列. 证明:设数列{}n a 的首项是1a ,公比为1q ;{}n b 的首项为1b ,公比为2q ,那么数列{}n n b a ⋅的第n 项与第n+1项分别n n nnn n q q b a q q b a q b q a q b q a )()(2111121112111121111与即为与---⋅⋅⋅⋅⋅⋅.)()(2112111211111q q q q b a q q b a b a b a n n n n n n ==⋅⋅-++它是一个与n 无关的常数,所以{}n n b a ⋅是一个以q1q2为公比的等比数列.思考;(1){an }是等比数列,C 是不为0的常数,数列{}n ca 是等比数列吗?试证明。

高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)

高中数学第二章数列2.4等比数列第2课时等比数列的性质优化练习新人教A版必修5(2021年整理)

2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017-2018学年高中数学第二章数列2.4 等比数列第2课时等比数列的性质优化练习新人教A版必修5的全部内容。

第2课时等比数列的性质[课时作业][A组基础巩固]1.如果数列{a n}是等比数列,那么()A.数列{a错误!}是等比数列B.数列{2a n}是等比数列C.数列{lg a n}是等比数列D.数列{na n}是等比数列解析:设b n=a错误!,则错误!=错误!=错误!2=q2,∴{b n}为等比数列;2a n+12a n=2a n+1-a n≠常数;当a n〈0时,lg a n无意义;设c n=na n,则错误!=错误!=错误!·q≠常数.答案:A2.已知等差数列{a n}的公差为3,若a1,a3,a4成等比数列,则a2等于( )A.9 B.3C.-3 D.-9解析:a1=a2-3,a3=a2+3,a4=a2+3×2=a2+6,由于a1,a3,a4成等比数列,a错误!=a1a4,即 (a2+3)2=(a2-3)(a2+6),解得a2=-9。

答案:D3.在正项等比数列{a n}中,a1和a19为方程x2-10x+16=0的两根,则a8·a10·a12等于( )A.16 B.32C.64 D.256解析:由已知,得a1a19=16。

高中数学新人教A版必修5教案2.4等比数列2

高中数学新人教A版必修5教案2.4等比数列2

2.4 等比数列教课目知与技术目:等比中的观点;掌握"判断数列能否等比数列"常用的方法;一步熟掌握等比数列的通公式、性及用.程与能力目:明确等比中的观点;一步熟掌握等比数列的通公式、性及用.情感度与价1. 通等比数列更多性的研究,培育学生的优秀的思品和思,激学生知的研究精神和真的科学度,培育学生的比、的能力;2. 通生活中有关的剖析和解决,培育学生社会、认识社会的意,更多地知道数学的社会价和用价.教课要点;等比数列的通公式、性及用.教课点:灵巧用等比数列的定及性解决一些有关.教课程一、复1.等比数列的定.2.等比数列的通公式 :a n a q n 1( a , q 0),a a q n m(am,q 0),a AB n(A,B 0) 11nm nan 13.{ an}成等比数列a nq (n N , q0)4.求下边等比数列的通公式:(1) 5,- 15,45,⋯⋯;( 2) 1.2 , 2.4 , 4.8 ,⋯⋯;二、新:思虑:比等差中的观点,你能出什么是等比中?1.等比中:假如在 a 与 b 中插入一个数 G,使 a, G , b 成等比数列,那么称个数Ga 与b 的等比中 . 即 G=±ab( a,b 同号)G b G 2ab G ab, a G,G b2G,即 a,G,b成等比数列∴a,G,b 成等比数列2反之,若 G =ab,aG =ab( a·b≠ 0)例 1.三个数成等比数列, 它的和 14,它的64, 求三个数 .- 1 -解 : 设 m,G,n 为所求的三个数 ,有已知得 m+n+ G =14,m n G 64 , G 2 mn, G 3 64G4,m n 10, m 8, m2, m n16,n或n8.2,这三个数为 8,4,2 或 2,4,8.a, a, aq,则 a3解法二 : 设所求三个数分别为q64, a 4,a44q 14q1a aq 14,42,或 q ,又 qq解得2这三个数为 8,4,2 或 2,4,8.生思虑第 53 页练习第 4 题,猜想并推行,得等比数列的性质:若m+n=p+k ,则a m a n a p a k证明:由定义得:a m a 1q m 1 a n a 1q n 1 a p a 1q p 1 a k a 1 q k 1am aa 2q m n 2, a p a ka 12 q p k 2n1则a ma n apa k例 2. 已知 { a n} 是等比数列,且a n 0 , a 2 a 4 2a 3 a 5 a 4 a 625 , 求 a 3 a 5 . 解: ∵{a n} 是等比数列,∴a 2 a 4 + 2 a 3 a 5 + a 4 a 6 = ( a 3 + a 5 2) =25,又a n>0, ∴a3 +a5 =5;3.判断等比数列的常用方法:定义法,中项法,通项公式法例 3.已知a n, b n是项数同样的等比数列,求证a nb n 是等比数列 .证明:设数 列 a n 的首项是 a 1 ,公比为 q 1 ; b n 的首项为 b 1 ,公比为 q 2 ,那么数列 a n b na q n 1b q n 1与 a q nb q n 即为 a b (q q )n 1与 a b (qq)n 的第 n 项与第 n+1 项分别 1112 1 112 1 1 1 211 12an 1bn 1a 1b 1 (q 1 q 2 ) n q 1 q 2 .a nb na 1b 1 (q 1 q 2 )n 1它是一个与 n 没关的常数,因此a nb n 是一个以 q1q2 为公比的等比数列 .- 2 -思虑;(1){ an}是等比数列, C 是不为 0 的常数,数列can是等比数列吗?试证明。

高中数学 2.4 等比数列(第2课时)学案 新人教A版必修5

高中数学 2.4 等比数列(第2课时)学案 新人教A版必修5

2.4等比数列(第2课时)学习目标灵活应用等比数列的定义及通项公式;深刻理解等比中项的概念;熟悉等比数列的有关性质,并系统了解判断数列是否是等比数列的方法.通过自主探究、合作交流获得对等比数列性质的认识.充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣.合作学习一、设计问题,创设情首先回忆一下上一节课所学主要内容:1.等比数列:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),即: .2.等比数列的通项公式: .二、信息交流,揭示规律1.等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b 的等比中项.即G=±(a,b同号).如果在a与b中间插入一个数G,使a,G,b成等比数列,则,反之,若G2=ab,则,即a,G,b成等比数列.分析:(1)由{a n}是等比数列,知,所以有=a n-1a n+1(n≥2);(2)当数列为0,0,0,0,…时,仍有=a n-1a n+1,而等比数列的任一项都是不为零的,所以不一定;若数列{a n}中的每一项均不为零,且=a n-1a n+1(n≥2,n∈N),则数列{a n}是等比数列,反之成立.2.几个性质分析:由等比数列的定义可得=…==q.所以=…=,由此可以看出a n,a n-1,…,a2,a1是从第2项起,每一项与它的前一项的比值都等于,所以是首项为,公比为的等比数列.(2)已知无穷等比数列{a n}的首项为a1,公比为q.分析:①由=q,得a n+1=a n q,a3=a2q=a1q2,所以=q2;a5=a4q=a3q2,所以=q2;以此类推,可得,=q2,所以数列{a n}的所有奇数项组成的数列是首项为,公比为的等比数列.②因为=…==q,所以数列{ca n}(c≠0)是首项为ca1,公比为q的等比数列.(3)已知数列{a n}是等比数列.分析:①设数列{a n}的公比为q,则a3=a1q2,a5=a1q4,a7=a1q6,q8,a3a7=(a1q2)(a1q6)=q8,所以=a3a7,同理=a1a9.②=a n-1a n+1(n>1)成立.③=a n-k a n+k(n>k>0)成立.④由等比数列定义,得a m=a1q m-1,a n=a1q n-1,a p=a1q p-1,a k=a1q k-1,结论:若m+n=p+k,则.三、运用规律,解决问题【例1】等比数列{a n}中,(1)已知a2=4,a5=-,求数列{a n}的通项公式;(2)已知a3a4a5=8,求a2a3a4a5a6的值.【例3】设a,b,c,d成等比数列,求证:(b-c)2+(c-a)2+(d-b)2=(a-d)2.【例4】若a,b,c成等差数列,且a+1,b,c与a,b,c+2都成等比数列,求b的值.四、变式训练,深化提高变式训练3:已知数列{a n}为等比数列,且a n>0,a2a4+2a3a5+a4a6=25,则a3+a5= .变式训练4:三个数成等比数列,它们的和为14,它们的积为64,求这三个数.五、反思小结,观点提炼参考答案一、设计问题,创设情境1.=q(q≠0)二、信息交流,揭示规律1.⇒G2=ab⇒G=±2.(1)a n(2)①a1q2(3)a m a n=a p a k(m,n,p,k∈N*)三、运用规律,解决问题【例1】解:(1)∵a5=a2q5-2,∴q=-.∴a n=a2q n-2=4×.(2)∵a3a5=,a3a4a5==8,∴a4=2.又∵a2a6=a3a5=,∴a2a3a4a5a6==32.因为=q1q2,【例3】证明:法一:∵a,b,c,d成等比数列,∴,∴b2=ac,c2=bd,ad=bc,∴左边=b2-2bc+c2+c2-2ac+a2+d2-2bd+b2=2(b2-ac)+2(c2-bd)+(a2-2bc+d2)=a2-2ad+d2=(a-d)2=右边.证毕.法二:∵a,b,c,d成等比数列,设其公比为q,则b=aq,c=aq2,d=aq3,∴左边=(aq-aq2)2+(aq2-a)2+(aq3-aq)2=a2-2a2q3+a2q6=(a-aq3)2,=(a-d)2=右边证毕.【例4】解:设a,b,c分别为b-d,b,b+d,由已知b-d+1,b,b+d与b-d,b,b+d+2都成等比数列,有整理,得所以b+d=2b-2d,即b=3d,代入①,得9d2=(3d-d+1)(3d+d),解之,得d=4或d=0(舍d=0),所以b=12.四、变式训练,深化提高答案:25由a1+a2+a3=7得a1+a3=5, ②由①②解得当时,q==2,a n=2n-1,当时,q=,a n=4×=23-n.答案:2n-1或23-n变式训练3:解析:因为a2a4=a3a3=,a4a6=a5a5=,所以a2a4+2a3a5+a4a6=+2a3a5+=(a3+a5)2=25.又a n>0,所以a3+a5=5.答案:5变式训练4:解:设这三个数为,a,aq,由题意解得于是所求的三个数为2,4,8或8,4,2.五、反思小结,观点提炼略。

高中数学《2.4等比数列》第2课时评估训练 新人教A版必修5

高中数学《2.4等比数列》第2课时评估训练 新人教A版必修5

第2课时 等比数列的性质及应用双基达标 限时20分钟1.在等比数列{a n }中,a 4=4,则a 2·a 6等于( ).A .4B .8C .16D .32解析 由等比数列的性质得a 2·a 6=a 42=42=16. 答案 C2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ).A .-12B .-2C .2D.12解析 根据a n =a m ·q n -m,得a 5=a 2·q 3.∴q 3=14×12=18.∴q =12.答案 D3.已知a ,b ,c ,d 成等比数列,且曲线y =x 2-2x +3的顶点是(b ,c ),则ad 等于 ( ). A .3 B .2 C .1 D .-2解析 ∵y =(x -1)2+2,∴b =1,c =2.又∵a ,b ,c ,d 成等比数列,∴ad =bc =2. 答案 B4.在等比数列{a n }中,a 1+a 2=30,a 3+a 4=120,则a 5+a 6=________. 解析 根据等比数列的性质:a 1+a 2,a 3+a 4,a 5+a 6也成等比数列. ∴a 5+a 6=(a 3+a 4)·a 3+a 4a 1+a 2=120×12030=480. 答案 4805.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=________. 解析 由等比数列的性质得a 3a 11=a 72, ∴a 72=4a 7.∵a 7≠0,∴a 7=4. ∴b 7=a 7=4.再由等差数列的性质知b 5+b 9=2b 7=8. 答案 86.已知等比数列{a n }中,a 2a 6a 10=1,求a 3·a 9的值. 解 法一 由等比数列的性质,有a 2a 10=a 3a 9=a 62, 由a 2·a 6·a 10=1,得a 63=1,∴a 6=1,∴a 3a 9=a 62=1. 法二 由等比数列通项公式,得a 2a 6a 10=(a 1q )(a 1q 5)(a 1q 9)=a 13·q 15=(a 1q 5)3=1,∴a 1q 5=1,∴a 3a 9=(a 1q 2)(a 1q 8)=(a 1q 5)2=1.综合提高 限时25分钟7.已知各项为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于 ( ).A .5 2B .7C .6D .4 2解析 ∵a 1a 2a 3=a 23=5,∴a 2=35. ∵a 7a 8a 9=a 83=10,∴a 8=310. ∴a 52=a 2a 8=350=5013,又∵数列{a n }各项为正数,∴a 5=5016.∴a 4a 5a 6=a 53=5012=5 2.答案 A8.在等比数列{a n }中,a 3=12,a 2+a 4=30,则a 10的值为 ( ).A .3×10-5B .3×29C .128D .3×2-5或3×29解析 ∵a 2=a 3q,a 4=a 3q ,∴a 2=12q,a 4=12q .∴12q+12q =30.即2q 2-5q +2=0,∴q =12或q =2.当q =12时,a 2=24,∴a 10=a 2·q 8=24×⎝ ⎛⎭⎪⎫128=3×2-5;当q =2时,a 2=6, ∴a 10=a 2q 8=6×28=3×29. 答案 D9.在等比数列{a n }中,若a n >0,a 1·a 100=100,则lg a 1+lg a 2+lg a 3+…+lg a 100=________. 解析 由等比数列性质知:a 1·a 100=a 2·a 99=…=a 50·a 51=100.∴lg a 1+lg a 2+lg a 3+…+lg a 100=lg(a 1·a 2·a 3·…·a 100)=lg(a 1·a 100)50=lg 10050=lg 10100=100. 答案 10010.三个数a ,b ,c 成等比数列,公比q =3,又a ,b +8,c 成等差数列,则这三个数依次为________.解析 ∵a ,b ,c 成等比数列,公比是q =3, ∴b =3a ,c =a ·32=9a .又由等差中项公式有:2(b +8)=a +c , ∴2(3a +8)=a +9a .∴a =4. ∴b =12,c =36. 答案 4,12,3611.在正项等比数列{a n }中,a 1a 5-2a 3a 5+a 3a 7=36,a 2a 4+2a 2a 6+a 4a 6=100,求数列{a n }的通项公式.解 ∵a 1a 5=a 32,a 3a 5=a 42,a 3a 7=a 52, ∴由条件,得a 32-2a 42+a 52=36, 同理得a 32+2a 3a 5+a 52=100,∴⎩⎪⎨⎪⎧a 3-a 52=36,a 3+a 52=100.即⎩⎪⎨⎪⎧a 3-a 5=±6,a 3+a 5=10.解得⎩⎪⎨⎪⎧a 3=2,a 5=8或⎩⎪⎨⎪⎧a 3=8,a 5=2.分别解得⎩⎪⎨⎪⎧a 1=12,q =2或⎩⎪⎨⎪⎧a 1=32,q =12.∴a n =a 1qn -1=2n -2或a n =a 1qn -1=26-n.12.(创新拓展)互不相等的3个数之积为-8,这3个数适当排列后可以组成等比数列,也可组成等差数列,求这3个数组成的等比数列.解 设这3个数分别为a q,a ,aq ,则a 3=-8,即a =-2. (1)若-2为-2q 和-2q 的等差中项,则2q+2q =4,∴q 2-2q +1=0,解得q =1,与已知矛盾,舍去; (2)若-2q 为-2q 和-2的等差中项,则1q+1=2q ,∴2q 2-q -1=0,解得q =-12或q =1(与已知矛盾,舍去),∴这3个数组成的等比数列为4,-2,1;(3)若-2q 为-2q 与-2的等差中项,则q +1=2q,∴q 2+q -2=0,解得q =-2或q =1(与已知矛盾,舍去), ∴这3个数组成的等比数列为1,-2,4.故这3个数组成的等比数列为4,-2,1或1,-2,4.。

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5

高中数学第二章数列2.4等比数列第2课时教案新人教A版必修5一、教学目标:知识与技能1. 了解等比数列更多的性质;2. 能将学过的知识和思想方法运用于对等比数列性质的进一步思考和有关等比数列的实际问题的解决中;3. 能在生活实际的问题情境中,抽象出等比数列关系,并能用有关的知识解决相应的实际问题过程与方法1. 继续采用观察、思考、类比、归纳、探究、得出结论的方法进行教学;2. 对生活实际中的问题采用合作交流的方法,发挥学生的主体作用,引导学生探究问题的解决方法,经历解决问题的全过程;3. 当好学生学习的合作者的角色.情感态度与价值观1. 通过对等比数列更多性质的探究,培养学生的良好的思维品质和思维习惯,激发学生对知识的探究精神和严肃认真的科学态度,培养学生的类比、归纳的能力;2. 通过生活实际中有关问题的分析和解决,培养学生认识社会、了解社会的意识,更多地知道数学的社会价值和应用价值.二、教学重点:1.探究等比数列更多的性质;2.解决生活实际中的等比数列的问题.教学难点;渗透重要的数学思想(类比思想、归纳思想、数形结合思想、算法思想、方程思想以及一般到特殊的思想方法等.).三、学情及导入分析:这节课师生将进一步探究等比数列的知识,以教材练习中提供的问题作为基本材料,认识等比数列的一些基本性质及内在的联系,理解并掌握一些常见结论,进一步能用来解决一些实际问题.通过一些问题的探究与解决,渗透重要的数学思想方法.教学中以师生合作探究为主要形式,充分调动学生的学习积极性.教具准备多媒体课件、投影胶片、投影仪等四、教学过程:复习旧知识,引入新知归纳抽象形成概念1.温故知新师教材中第59页练习第3题、第4题,请学生课外进行活动探究,现在请同学们把你们的探究结果展示一下•师对各组的汇报给予评价•师出示多媒体幻灯片一:第3题、第4题详细解答:猜想:在数列{a n}中每隔m(m是一个正整数)取出一项,组成一个新数列,这个数列是以a i为首项、q m%一公比的等比数列.◊本题可以让学生认识到,等比数列中下标为等差数列的子数列也构成等比数列,可以让学生再探究几种由原等比数列构成的新等比数列的方法•第4题解答:(1) 设{a n}的公比是q , 则2, 4 2 2 8a s =( a i q ) =a i qh 2 6 2 8而a s • a7=a i q • a i q =a i q ,所以a s =a s • a7. 同理,a s =a i • a o.(2) 用上面的方法不难证明a2=a n-i • a n+i( n> i).由此得出,a n是a n-i和a n+i的等比中项,同理可证a n2=a n-k • a n+k( n>k > 0). a是a n-k和a n+k的等比中项(n> k学生回答;生由学习小组汇报探究结果.第3题解答:⑴将数列,{a n}的前k项去掉,剩余的数列为a k+i ,a k+2,….令b i =a<+i ,i=i,2,…,则数列a k+i, a k+2,…,可视为b i, b?,….因为b i i a k i i q (i >i),b i a k i所以,{b n}是等比数列,即a k+i, a k+2,…是等比数列.(2){a n}中每隔I0项取出一项组成的数列是a i, a ii ,a 2i,…, 则a ii a2i a i0k ii... ...qa i a ii a i0k 9(k >i). 所以数列a i,aii, a2i,…是以a i为首项,q i0为公比的等比数列.由复习引入,通过数学知识的内部提出问题。

人教a版必修5学案:2.4等比数列(含答案)

人教a版必修5学案:2.4等比数列(含答案)

2.4 等比数列自主学习知识梳理1.如果一个数列从第________项起,每一项与它的前一项的________都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的________,通常用字母q 表示(q ≠0).2.等比数列的通项公式:____________.3.等比中项的定义如果a 、G 、b 成等比数列,那么G 叫做a 与b 的________,且G =________.4.对于正整数m ,n ,p ,q ,若m +n =p +q ,则等比数列中a m ,a n ,a p ,a q 的关系是____________.5.证明一个数列是等比数列最基本的方法是定义,即________________(用数学式子表示).自主探究首项为a 1,公比为q 的等比数列在各条件下的单调性如下表:a 1 a 1>0 a 1<0q 范围 0<q <1 q =1 q >1 0<q <1 q =1q >1 {a n }的 单调性对点讲练知识点一 等比数列通项公式的应用例1 已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.总结 等比数列的通项公式a n =a 1q n -1中有四个量a 1,q ,n ,a n .已知其中三个量可求得第四个,简称“知三求一”.变式训练1 已知等比数列{a n },若a 1+a 2+a 3=7,a 1a 2a 3=8,求a n .知识点二 等比数列性质的应用例2 已知{a n }为等比数列.(1)若a n >0,a 2a 4+2a 3a 5+a 4a 6=25,求a 3+a 5;(2)若a n >0,a 5a 6=9,求log 3a 1+log 3a 2+…+log 3a 10的值.变式训练2 设{a n }是由正数组成的等比数列,公比q =2,且a 1·a 2·a 3·…·a 30=215,求a 2·a 5·a 8·…·a 29的值.知识点三 等比数列的判断与证明例3 已知数列{a n }的前n 项和为S n ,S n =13(a n -1) (n ∈N *). (1)求a 1,a 2;(2)求证:数列{a n }是等比数列.总结 利用等比数列的定义a n +1a n=q (q ≠0)是判定一个数列是否是等比数列的基本方法.变式训练3 设S n 为数列{a n }前n 项和,S n =kn 2+n ,n ∈N *,其中k 是常数.(1)求a 1及a n ;(2)若对于任意的m ∈N *,a m ,a 2m ,a 4m 成等比数列,求k 的值.1.等比数列的判断或证明(1)利用定义:a n +1a n =q (与n 无关的常数). (2)利用等比中项:a 2n +1=a n a n +2 (n ∈N *).2.如果证明数列不是等比数列,可以通过具有三个连续项不成等比数列来证明,即存在an 0,an 0+1,an 0+2,使a 2n 0+1≠an 0·an 0+2,也可以用反证法.3.等比数列{a n }的通项公式a n =a 1q n -1共涉及a n ,a 1,q ,n 四个量,已知其中三个量可求得第四个.课时作业一、选择题1.如果-1,a ,b ,c ,-9成等比数列,那么( )A .b =3,ac =9B .b =-3,ac =9C .b =3,ac =-9D .b =-3,ac =-92.在等比数列{a n }中,a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .27C .36D .813.在由正数组成的等比数列{a n }中,若a 4a 5a 6=3,log 3a 1+log 3a 2+log 3a 8+log 3a 9的值为( )A.43B.34C .2D .4334.一个数分别加上20,50,100后得到的三数成等比数列,其公比为( )A.53B.43C.32D.125.已知数列{a n }是公差为2的等差数列,且a 1,a 2,a 5成等比数列,则a 2为( ) A .-2 B .-3 C .2 D .3题 号1 2 3 4 5 答 案二、填空题6.在等比数列{a n }中,a 1=1,a 5=16,则a 3=________.7.首项为3的等比数列的第n 项是48,第2n -3项是192,则n =________.8.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.三、解答题9.等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.10.已知{a n }为等比数列,a 3=2,a 2+a 4=203,求{a n }的通项公式.§2.4 等比数列知识梳理1.2 比 公比2.a n =a 1q n -13.等比中项 ±ab4.a m ·a n =a p ·a q5.a n +1a n=q, (n ∈N *) 自主探究递减 常数列 递增 递增 常数列 递减对点讲练例1 解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q,a 4=a 3q =2q , ∴2q +2q =203.解得q 1=13,q 2=3. 当q =13时,a 1=18,∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29,∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ; 当q =3时,a n =2×3n -3.变式训练1 解 由等比数列的定义知a 2=a 1q ,a 3=a 1q 2代入已知得,⎩⎪⎨⎪⎧ a 1+a 1q +a 1q 2=7,a 1·a 1q ·a 1q 2=8,⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7,a 31q 3=8, ⇒⎩⎪⎨⎪⎧a 1(1+q +q 2)=7, ①a 1q =2, ② 将a 1=2q代入①得2q 2-5q +2=0,解得q =2或q =12. 由②得⎩⎪⎨⎪⎧ a 1=1,q =2;或⎩⎪⎨⎪⎧ a 1=4,q =12.当a 1=1,q =2时,a n =2n -1;当a 1=4,q =12时,a n =23-n . 例2 解 (1)a 2a 4+2a 3a 5+a 4a 6=a 23+2a 3a 5+a 25=(a 3+a 5)2=25,∵a n >0,∴a 3+a 5>0,∴a 3+a 5=5.(2)根据等比数列的性质a 5a 6=a 1a 10=a 2a 9=a 3a 8=a 4a 7=9.∴a 1a 2…a 9a 10=(a 5a 6)5=95.∴log 3a 1+log 3a 2+…+log 3a 10=log 3(a 1a 2…a 9a 10)=log 395=5log 39=10.变式训练2 解 ∵a 1·a 2·a 3·…·a 30=(a 1a 30)·(a 2a 29)·…·(a 15·a 16)=(a 1a 30)15=215, ∴a 1a 30=2.∴a 2·a 5·a 8·…·a 29=(a 2a 29)·(a 5a 26)·(a 8a 23)·(a 11a 20)·(a 14a 17)=(a 2a 29)5=(a 1a 30)5=25=32.例3 (1)解 由S 1=13(a 1-1), 得a 1=13(a 1-1), ∴a 1=-12.又S 2=13(a 2-1), 即a 1+a 2=13(a 2-1),得a 2=14. (2)证明 当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1), 得a n a n -1=-12,又a 2a 1=-12, 所以{a n }是首项为-12,公比为-12的等比数列. 变式训练3 解 (1)由S n =kn 2+n ,得a 1=S 1=k +1,a n =S n -S n -1=2kn -k +1(n ≥2).a 1=k +1也满足上式,所以a n =2kn -k +1,n ∈N *.(2)由a m ,a 2m ,a 4m 成等比数列,得(4mk -k +1)2=(2km -k +1)(8km -k +1), 将上式化简,得2km (k -1)=0,因为m ∈N *,所以m ≠0,故k =0或k =1.课时作业1.B [∵b 2=(-1)×(-9)=9且b 与首项-1同号,∴b =-3,且a ,c 必同号.]2.B [由已知a 1+a 2=1,a 3+a 4=9,∴q 2=9.∴q =3(q =-3舍),∴a 4+a 5=(a 3+a 4)q =27.]3.A [∵a 4a 6=a 25,∴a 4a 5a 6=a 35=3,得a 5=313. ∵a 1a 9=a 2a 8=a 25,∴log 3a 1+log 3a 2+log 3a 8+log 3a 9=log 3(a 1a 2a 8a 9)=log 3a 45=log 3343=43.] 4.A [设这个数为x ,则(50+x )2=(20+x )·(100+x ),解得x =25,∴这三个数为45,75,125,公比q 为7545=53.] 5.D [因为a 1,a 2,a 5成等比数列, 所以a 22=a 1·a 5, 即a 22=(a 2-2)·(a 2+6).解得a 2=3.]6.4解析 q 4=a 5a 1=16,∴q 2=4,a 3=a 1q 2=4. 7.5解析 设公比为q ,则⎩⎪⎨⎪⎧ 3q n -1=483q 2n -4=192⇒⎩⎪⎨⎪⎧ q n -1=16q 2n -4=64⇒q 2=4, 得q =±2.由(±2)n -1=16,得n =5. 8.5-12解析 设三边为a ,aq ,aq 2 (q >1), 则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 9.解 由题意可列关系式:⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168 ①a 1q (1-q )(1+q +q 2)=42 ② ②÷①得:q (1-q )=42168=14,∴q =12, ∴a 1=1681+12+⎝⎛⎭⎫122=168×47=96. 又∵a 6=a 1q 5=96×125=3, ∴a 5,a 7的等比中项为3.10.解 设等比数列{a n }的公比为q ,则q ≠0.a 2=a 3q =2q ,a 4=a 3q =2q , ∴2q +2q =203. 解得q 1=13,q 2=3. 当q =13时,a 1=18, ∴a n =18×⎝⎛⎭⎫13n -1=2×33-n . 当q =3时,a 1=29, ∴a n =29×3n -1=2×3n -3. 综上,当q =13时,a n =2×33-n ;当q=3时,a n=2×3n-3.。

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新

第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。

高中数学 2.4等比数列(2)导学案新人教A版必修5

高中数学 2.4等比数列(2)导学案新人教A版必修5

2.4 等比数列(2)【学习目标】1.回顾等比数列的定义、通项公式、以及推广公式2.熟记等差数列和等比数列性质的对比. 【重点难点】1.重点:等比数列的定义和通项公式2.难点:在具体的问题情境中,发现数列的等比关系,并能灵活运用这些公式解决相应的实际问题. 【学习过程】 一、自主学习:任务1: (预习教材,找出疑惑之处)复习:等比数列的通项公式n a = = . 公比q 满足的条件是 任务2: 等差数列有何性质? 二、合作探究归纳展示问题1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G bG ab G a G=⇒=⇒= 新知1:等比中项定义如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a 与b 的等比中项. 即G = (a ,b 同号). 试试:数4和6的等比中项是 . 问题2:1.在等比数列{n a }中,2537a a a =是否成立呢?2.211(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?3.2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?新知2:等比数列的性质在等比数列中,若m +n =p +q ,则m n p k a a a a =.试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a =三、讨论交流点拨提升例1已知{},{}n n a b 是项数相同的等比数列,仿照下表中的例子填写表格,从中你能得出什么结论?证明你的结论.例 自选1 自选2 n a 23()3n ⨯n b152n --⨯n n b a ⋅ 1410()3n --⨯}{n n b a ⋅是否等比是变式:项数相同等比数列{n a }与{n b },数列{nna b }也一定是等比数列吗?证明你的结论.小结:两个等比数列的积和商仍然是等比数列.例2在等比数列{n a }中,已知51274-=⋅a a ,且38124a a +=,公比为整数,求10a .变式:在等比数列{n a }中,已知5127=a a ,则=111098a a a a .四、学能展示课堂闯关公比为q 的等比数列{}n a 具有如下基本性质:1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则}{n n b a ⋅,{}n n ab 也等比.2. 若*m N ∈,则mn m n qa a -=. 当m =1时,便得到等比数列的通项公式.3. 若m n k l +=+,*,,,m n k l N ∈,则l k n m a a a a =.4. 若{}n a 各项为正,c >0,则{l o g }cn a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若{}n b 是以d 为公差的等差数列,则{}n b c 是以1b c 为首项,d c 为公比的等比数列.1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ).A. ±4B. 4C. 2D. 82. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)=( ).A .8B .-8C .±8D .983. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时, log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .5. 在各项都为正数的等比数列{}n a 中,965=a a , 则log 31a + log 32a +…+ log 310a = . 五、学后反思 1. 等比中项定义; 2. 等比数列的性质. 【课后作业】1. 在{}n a 为等比数列中,6491=a a ,3720a a +=,求11a 的值.2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求1392410a a a a a a ++++.。

(新课程)高中数学《2.4等比数列》导学案 新人教A版必修5

(新课程)高中数学《2.4等比数列》导学案 新人教A版必修5

2.4等比数列【学习目标】1.理解等比数列的概念,认识等比数列是反映自然规律的重要数列模型之一2.探索并掌握等比数列的通项公式。

【研讨互动 问题生成】1. 等比数列定义2. 等比数列通项公式3. 等比中项【合作探究 问题解决】1.公比q 是任意一个常数,不仅可以是正数也可以是负数。

2.当首项等于0时,数列都是0。

当公比为0时,数列也都是0。

所以首项和公比都不可以是0。

3.当公比q=1时,数列是怎么样的,当公比q 大于1,公比q 小于1时数列是怎么样的?4.等比数列和指数函数的关系5.思考:2537a a a =是否成立呢?2519a a a =成立吗?211(1)n n n a a a n -+=> 成立吗?6.思考:如果,n n a b 是两个等比数列,那么,n n a b 是等比数列吗?如果是为什么?n na b 是等比数列吗? 7.思考:在等比数列里,如果n p q m n p q a a a +=+=m ,a 成立吗? 如果是为什么?【点睛师例 巩固提高】例:已知等比数列{}n a ,22a =,5128a =(1)求通项n a ;(2)若2log n n b a =,数列{}n b 的前n 项的和为n S ,且360n S =,求n 的值【要点归纳 反思总结】1.等比数列的通项公式2.等比数列的性质【多元评价】自我评价: 小组成员评价: 小组长评价:学科长评价: 学术助理评价:【课后训练】1. 若等比数列的首项为4,公比为2,则其第3项和第5项的等比中项是______.2. 在等比数列{a n }中,(2)若S 3=7a 3,则q =______;(3)若a 1+a 2+a 3=-3,a 1a 2a 3=8,则S 4=____.3. 在等比数列{a n }中,(1)若a 7·a 12=5,则a 8·a 9·a 10·a 11=____;(2)若a 1+a 2=324,a 3+a 4=36,则a 5+a 6=______;(3)若q 为公比,a k =m ,则a k +p =______;(4)若a n >0,q=2,且a 1·a 2·a 3…a 30=230,则a 3·a 6·a 9…a 30=_____.4. 一个数列的前n 项和S n =8n -3,则它的通项公式a n =____.5. 已知等比数列}{n a 中,102=a ,203=a ,那么它的前5项和5S =__________。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省怀化市湖天中学高中数学 2.4等比数列(2)学案 新人教A
版必修5
学习目标
1.灵活应用等比数列的定义及通项公式;深刻理解等比中项概念;
2. 熟悉等比数列的有关性质,并系统了解判断数列是否成等比数列的方法.
学习重难点
1.重点: 通项公式及等比中项的运用
2.难点:等比数列的有关性质
一、课前回顾
复习1:等比数列的通项公式n a = = . 公比q 满足的条件是 复习2:等差数列有何性质? 二、新课探究 ※ 学习探究
探究1:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,则2G b
G ab G a G
=⇒=⇒=
新知1:等比中项定义
如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么称这个数G 称为a
与b 的等比
中项. 即G = (a ,b 同号). 试试:数4和6的等比中项是 .
探究2: 1)在等比数列{n a }中,2537a a a =是否成立呢?
2)2
11(1)n n n a a a n -+=>是否成立?你据此能得到什么结论?
3)2(0)n n k n k a a a n k -+=>>是否成立?你又能得到什么结论?
新知2:等比数列的性质
在等比数列中,若m +n =p +q ,则m n p k a a a a =.
试试:在等比数列{}n a ,已知19105,100a a a ==,那么18a = . ※试一试
习1已知{},{}n n a b 是项数相同的等比数 列,仿照表中的例子填写表格,从 中你能得出什么结论? 证明你的结论.
变式:项数相同等比数列{n a }与{n b },
数列{n n
a
b }也一定是等比数列吗?证明你的结论.
小结:两个等比数列的积和商仍然是等比数列.
习2在等比数列{n a }中,已知47512a a =-,且38124a a +=,公比为整数,求10a .

自选1 自选2 n a 23()3
n
⨯ n b 152n --⨯ n n a b 14
10()3n --⨯
{}n n a b 是否等比 是
变式:在等比数列{n a }中,已知7125a a =,则891011a a a a = .
※ 模仿练习
练1. 一个直角三角形三边成等比数列,则( ).
A. 三边之比为3:4:5
B. 三边之比为1:3:3
C. 较小锐角的正弦为512-
D. 较大锐角的正弦为51
2
-
练2. 在7和56之间插入a 、b ,使7、a 、b 、56成等比数列,若插入c 、d ,使7、c 、d 、56
成等差数列,求a +b +c +d 的值.
三、总结提升 ※ 学习小结
1. 等比中项定义;
2. 等比数列的性质. ※ 知识拓展
公比为q 的等比数列{}n a 具有如下基本性质:
1. 数列{||}n a ,2{}n a ,{}(0)n ca c ≠,*{}()nm a m N ∈,{}k n a 等,也为等比数列,公比分别为
2||,,,,m k q q q q q . 若数列{}n b 为等比数列,则{}n n a b ,{}n n a
b 也等比.
2. 若*m N ∈,则n m n m a a q -=. 当m =1时,便得到等比数列的通项公式.
3. 若m n k l +=+,*,,,m n k l N ∈,则m n k l a a a a =.
4. 若{}n a 各项为正,c >0,则{
l o g }c
n a 是一个以1log c a 为首项,log c q 为公差的等差数列. 若
{}n b 是以
d 为公差的等差数列,则{}n
b c 是以1
b c 为首项,d c 为公比的等比数列. 当一个数列既是等
差数列又
是等比数列时,这个数列是非零的常数列.
当堂检测
1. 在{}n a 为等比数列中,0n a >,224355216a a a a a ++=,那么35a a +=( ). A. ±4 B. 4 C. 2 D. 8
2. 若-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,
则b 2(a 2-a 1)=( ). A .8 B .-8 C .±8 D .9
8
3. 若正数a ,b ,c 依次成公比大于1的等比数列,则当x >1时,log a x ,log b x ,log c x ( ) A.依次成等差数列 B.各项的倒数依次成等差数列 C.依次成等比数列 D.各项的倒数依次成等比数列
4. 在两数1,16之间插入三个数,使它们成为等比数列,则中间数等于 .
5. 在各项都为正数的等比数列{}n a 中,569a a =,则log 31a + log 32a +…+ log 310a = .
课后作业
1. 在{}n a 为等比数列中,1964a a =,3720a a +=,求11a 的值.
2. 已知等差数列{}n a 的公差d ≠0,且1a ,3a ,9a 成等比数列,求139
2410
a a a a a a ++++.
课后反思。

相关文档
最新文档