圆心角,圆周角练习题

合集下载

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。

圆周角的练习题初三

圆周角的练习题初三

圆周角的练习题初三圆周角是指以圆心为顶点的角,它的度数等于所对弧的度数。

在初三的几何学中,圆周角是一个重要的概念,掌握圆周角的计算方法对于解决几何题目至关重要。

本文将为大家提供一些圆周角的练习题,帮助初三学生巩固和掌握这一知识点。

练习题一:已知直径AB的圆上一点C,连结AC和BC两条弦。

求∠ACB的度数。

解析:根据圆的性质可知,在圆上以弦为底的两个圆周角是等角,所以∠ACB = ∠AEB。

而直径AB是圆上的一条直径,它对应的圆周角为180度。

因此,∠ACB = ∠AEB = 180度。

练习题二:已知弧AC与弧BC分别是圆上的两个等分弧,且∠ACB = 20度。

求弧AC的度数。

解析:根据题目可知,∠ACB为圆周角,而弧AC和弧BC是等分弧,所以它们所对应的圆周角也相等,即∠ACB = ∠AEB。

而∠ACB 已知为20度,所以∠AEB = 20度。

而直径AB上的圆周角为180度,所以弧AC的度数为180度减去∠AEB的度数,即弧AC = 180度 - 20度 = 160度。

练习题三:已知直径AB的圆上一点C与D,连结AC和BD两条弦,交于点E。

若∠AEB = 70度,求证:∠ACD = 35度。

解析:要证明∠ACD = 35度,可以利用等角的性质。

根据题目已知,∠AEB = ∠AED = 70度。

而由圆周角的性质可知,∠ACD =∠AEB = 70度。

又∠ACD和∠ACB是同弦内角和对应的圆周角,所以有∠ACD = 180度 - ∠ACB。

将已知条件带入,∠ACD = 180度 - 70度= 110度。

由此可知,∠ACD的度数为35度。

练习题四:已知弦AB的长为8cm,圆心角∠AOB的度数为60度,求弦AB所对应的弧长。

解析:弦AB所对应的弧可以通过圆心角的度数与圆周长的比例来求解。

已知圆心角∠AOB的度数为60度,而整个圆的圆心角为360度,所以∠AOB所对应的弧所占圆周长的比例为60度/360度= 1/6。

圆周角与圆心角、直线和圆的位置关系练习题

圆周角与圆心角、直线和圆的位置关系练习题

ABCD EPO圆周角与圆心角、确定圆的条件、直线和圆的位置关系周检测题一、知识点:1、圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。

2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

3、圆心角度数定理:圆心角的度数和它所对的弧的度数相等。

4、圆内接四边形的对角互补;外角等于它的内对角.5、圆的切线性质:圆的切线垂直于过切线的半径。

常用辅助线:见切线,连半径,得垂直。

6、圆的切线判定定理:经过半径的外端且垂直于半径的直线是圆的切线。

证切线,常用辅助线:有交点,连半径,证垂直。

二、根底训练:1.下面命题中,正确的命题个数为〔〕(1)顶点在圆周上的角是圆周角.(2)圆周角的度数等于圆心角度数的一半.(3)90°的圆周角所对的弦是直径.(4)圆周角相等,那么它们所对的弧也相等.A.1个B.2个C.3个D.4个2、如图1,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.假设AB=8,CD=2,那么EC的长为〔〕A.2B.8C.2D.23、如图2,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,那么DC=.图1 图24.如图5,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.假设∠AOC=60°,BE=3,那么点P到弦AB的距离为。

5.在⊙O中,同弦所对的圆周角〔〕A.相等B.互补C.相等或互补D.都不对6.以下说法正确的选项是〔〕A.顶点在圆上的角是圆周角B.两边都和圆相交的角是圆周角。

C.圆心角是圆周角的2倍。

D.圆周角度数等于它所对圆心角度数的一半7.以下说法错误的选项是〔 〕A .等弧所对圆周角相等 B .同弧所对圆周角相等C .同圆中,相等的圆周角所对弧也相等.D .同圆中,等弦所对的圆周角相等8、以下说法:①在同圆或等圆中,相等的弦所对的弧相等; ②同圆或等圆中,同弦或等弦所对的圆周角相等; ③等弧所对的圆周角相等; ④圆心角相等,所对的弦相等,其中正确的说法有〔 〕A .1个B .2个C .3个D .4个9、如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,且AE =CD =8,∠ BAC =∠ BOD ,那么⊙O 的半径为 。

垂径定理和圆心角,圆周角练习题

垂径定理和圆心角,圆周角练习题

垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

推论:平分(非直径)弦的直径垂直于弦,并且平分弦所对的两条弧.练习:1.如图,在⊙O中,弦AB的长为8 cm.圆心O到AB的距离为3cm.求⊙O的半径.2.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,并且CD=4m,EM=6m.求⊙O的半径。

圆心角:顶点在圆心的角叫做圆心角。

圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等、所对的弦也相等.推论:(1)在同圆或等圆中,如果两条弧相等、那么它们所对的圆心角相等.所对的弦相等;(2)在同圆或等圆中,如果两条弦相等。

那么它们所对的圆心角相等,所对的优弧和劣弧分别相等.练习:1.如图,在⊙O中,AB=AC,∠ACB=60°,求证:AOB=∠BOC=∠AOC.圆周角:顶点在圆上,并且两边都与圆相交,所形成的角为圆周角。

圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。

推论:(1)同弧或等弧所对的圆周角相等;(2)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;(3)同弦或等弦所对的圆周角相等或互补;练习:1.如图,⊙O的直径AB为10 cm,弦AC为6cm,∠ACB的平分线交⊙O于点D,求BC,AD, BD的长。

2.如图,圆内接四边形ABCD的对角线AC、BD把它的4个内角分成8个角,这些角中哪些相等?为什么?如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。

圆内接四边形性质:圆内接四边形的对角互补。

练习:1.如图,四边形ABCD内接于⊙O,E为CD延长线上一点.若∠B=110°,求∠ADE的度数。

2.如图,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°,判断△ABC的形状,并证明你的结论.。

圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题(含答案)

圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。

圆周角定理 专题练习

圆周角定理 专题练习

圆周角定理专题练习1.在圆周角定理中,已知∠CBO=45°,∠CAO=15°,求∠AOB的度数。

答案:B.60°。

2.在平面直角坐标系中,已知⊙A经过原点O,并且分别与x轴、y轴交于B、C两点,已知B(8,),C(,6),求⊙A的半径。

答案:C.5.3.在圆周角定理中,已知点A,B,C在⊙O上,且∠A=50°,求∠BOC的度数。

答案:A.130°。

4.已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,求∠BCD的度数。

答案:A.116°。

5.已知圆心角∠BOC=78°,求圆周角∠BAC的度数。

答案:A.156°。

6.在圆周角定理中,已知OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,求∠XXX的度数。

答案:D.20°。

7.在圆周角定理中,已知AB是半圆的直径,点D是AC 的中点,∠ABC=50°,求∠DAB的度数。

答案:XXX°。

8.在圆周角定理中,已知A、B、C三点在⊙O上,且∠AOB=80°,求∠XXX的度数。

答案:D.40°。

9.已知AB是⊙O的直径,弦CD交AB于点E,且AE=CD=8,∠BAC=12∠BOD,求⊙O的半径。

答案:B.5.10.在圆周角定理中,已知DC是⊙O直径,XXX⊥CD于F,连接BC,DB,判断下列结论错误的是:答案:B.AF=XXX。

11.在圆周角定理中,已知点A,B,C,D为⊙O上的四个点,AC平分∠BAD,AC交BD于点E,CE=4,CD=6,求AE的长。

答案:B.5.12.在圆周角定理中,已知点A、B、C在⊙O上,且∠C=30°,求∠AOB的度数。

答案:XXX°。

13.在圆周角定理中,已知⊙O中∠BAC=∠CDA=20°,求∠ABO的度数。

答案:B.70°。

浙教版九年级数学上册《圆心角、圆周角》练习题

浙教版九年级数学上册《圆心角、圆周角》练习题

2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。

人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。

圆心角与圆周角的关系(1)

圆心角与圆周角的关系(1)

O.
B
y= -
1 x 2
+900
D
2.如图,在⊙O中,点A、B、C在圆上, ∠C=300,AB=4cm. C 求⊙O的半径. .
O A B

二、能力提升:

一、基础演练: 课本P111习题3.4
在圆中,若一条弦所对的圆心角是500 ,求其所 对的圆周角.
三、问题解决: 当球员站在B,D, E的位置(点B、D、E在 同一个圆上)射球时,对 球门AC的张角的大小相 等吗?
练一练(一) 1.下列各图形中的角是不是圆周角? 请说明理由.
A
B
C D
D
2.点A、B、C、D在同一个 圆上,AC、BD交于点E,请找 A 出图中的圆周角.
C E
B
做一做:
在圆上确定一条劣弧,画出它所对的圆 心角与圆周角。 A
A C C A C O
O B ① B ②
O
B

猜一猜:
∠ABC与∠AOC有什么等量关系?
1 ∠ABC= ∠AOC。 2
证明: 作直径BD ∵ ∠AOD是△ABO的外角
A D O C
∴ ∠AOD=∠A+∠ABO
∵ OA=OB
∴ ∠A=∠ABO
1 ∴ ∠ABO= ∠AOD 2 1 同理 ∠CBO= ∠COD 2 1 2 1 即∠ABC= ∠AOC 2
B ②
∴ ∠ABO +∠CBO=
( ∠AOD+ ∠COD)
如图,在射门游戏中,球员射中球门的
难易与他所处的位置(如点B)对球门AC的
张角(∠ABC)有关.
当他站在B,D,E的位置(点B、D、E 在同一个圆上)射球时,对球门AC的张角的大 小相等吗?

圆周角圆心角垂径定理练习

圆周角圆心角垂径定理练习

江苏通海中学周飞初三数学周末练习班级:姓名:学号:一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()5C2.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()则OP的长为()4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE是()二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=_________度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=_________.11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为_________度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=_________.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为_________厘米.14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=_________.15.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为____.16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为_________.三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.19.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.2013年10月hylzf的初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()AB=×OC==62.(2012•茂名)如图,AB是⊙O的直径,AB⊥CD于点E,若CD=6,则DE=()AB=×3.(2012•陕西)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()OM=ON=4.(2013•黄石)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()..==5=AB,)AM=,.6.(2007•仙桃)如图,已知:AB是⊙O的直径,C、D是上的三等分点,∠AOE=60°,则∠COE 是()是二.填空题(共8小题)9.(2009•郴州)如图,在⊙O中,,∠A=40°,则∠B=70度.10.如图,在⊙O中,=,如果∠AOC=65°,则∠BOD=65°.=,可得,继而求得∠中,=++,=11.(2011•阜新)如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线交于E点,若AB=2DE,∠E=18°,则∠AOC的度数为54度.12.(2010•湘西州)如图,在⊙O中,半径为5,∠AOB=60°,则弦长AB=5.13.(2013•漳州)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.AB=×cm故答案为:14.(2013•西宁)如图,AB为⊙O的直径,弦CD⊥AB于点E,若CD=6,且AE:BE=1:3,则AB=4.x=AB=4x=415.(2013•上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为.AB=×==故答案为:16.(2012•遵义)如图,AB是⊙O的弦,AB长为8,P是⊙O上一个动点(不与A、B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为4.ABAB=×三.解答题(共8小题)17.(2011•佛山)如图,已知AB是⊙O的弦,半径OA=20cm,∠AOB=120°,求△AOB的面积.∠AC=BC=AOC=∠ABOA=10cm=10cm=××cm18.(2010•长春)如图,将一个两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D,E,量出半径OC=5cm,弦DE=8cm,求直尺的宽.DM=OM==319.(2006•青岛)某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.BD=AB=AB=×20.如图所示,在⊙O中,AB与CD是相交的两弦,且AB=CD,求证:.就是已知,要证明,可以转化为证明=21.如图在⊙O中,AC=BC,OD=OE,求证:∠ACD=∠BCE.22.已知:如图,A、B、C、D是⊙O上的点,∠1=∠2,AC=3cm.(1)求证:=;(2)求BD的长.,根据在同圆或等圆中,相等的圆心角所对的弧相等得到=)由,根据在同圆或等圆中,等弧所对的弦相等得到=++,==23.如图,点A、B、C、D在⊙O上,AB与OC、OD分别相交于E、F,AE=BF,说明AC=BD的理由.,24.(2012•长春一模)如图,四边形ABCD是矩形,以AD为直径的⊙O交BC边于点E、F,AB=4,AD=12.求线段EF的长.的长度为。

2019-2020【提分必做】九年级数学下册 第二章 2.2 圆心角、圆周角练习 (新版)湘教版

2019-2020【提分必做】九年级数学下册 第二章 2.2 圆心角、圆周角练习 (新版)湘教版

2.2 圆心角、圆周角2.2.1 圆心角基础题知识点1 认识圆心角1.下面四个图中的角,是圆心角的是(D)A B C D2.将一个圆分成四个扇形,它们的圆心角的度数比为4∶4∶5∶7,则这四个扇形中,圆心角最大的是(D) A .54° B .72°C .90°D .126°知识点2 圆心角、弧、弦之间的关系 3.下列说法中,正确的是(B) A .等弦所对的弧相等 B .等弧所对的弦相等 C .圆心角相等,所对的弦相等 D .弦相等所对的圆心角相等4.如图,在⊙O 中,AB ︵=AC ︵,∠AOB=122°,则∠AOC 的度数为(A) A .122°B .120°C .61°D .58°5.如图,A ,B ,C ,D 是⊙O 上的四点,且AD =BC ,则AB 与CD 的大小关系为(B) A .AB>CD B .AB =CD C .AB<CDD .不能确定6.如图,已知在⊙O 中,BC 是直径,AB ︵=DC ︵,∠AOD=80°,则∠ABC 等于(B) A .40°B .65°C .100°D .105°7.如图所示,在⊙O 中,AC ,BC 是弦,根据条件填空: (1)若AC =BC ,则AC ︵=BC ︵,∠AOC=∠BOC; (2)若AC ︵=BC ︵,则AC =BC ,∠AOC=∠BOC; (3)若∠AOC=∠BOC,则AC ︵=BC ︵,AC =BC .8.如图,在⊙O 中,点C 是AB ︵的中点,∠OAB=50°,则∠BOC 等于40°.9.如图所示,在⊙O 中,AB ︵=AC ︵,∠B=70°,则∠A =40°.10.(教材P49练习T2变式)如图所示,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠COD=34°,求∠AEO 的度数.解:∵BC ︵=CD ︵=DE ︵, ∠COD=34°, ∴∠BOE=102°. ∵OA=OE ,∴∠AEO=∠EAO=12∠BOE=51°.中档题11.如图,AB 是⊙O 的直径,BC ,CD ,DA 是⊙O 的弦,且BC =CD =DA.则∠BCD 等于(C) A .100°B .110°C .120°D .135°12.如图,在⊙O 中,已知弦AB =DE ,OC⊥AB,OF⊥DE,垂足分别为C ,F ,则下列说法中,正确的个数为(D)①∠DOE=∠AOB;②AB ︵=DE ︵;③OF=OC ;④AC=EF. A .1B .2C .3D .413.已知AB ︵,CD ︵是同圆的两段弧,且AB ︵=2CD ︵,则弦AB 与2CD 之间的关系为(B)A .AB =2CD B .AB <2CDC .AB >2CD D .不能确定提示:如图,在圆上截取DE ︵=CD ︵,连接DE ,CE ,则有AB ︵=CE ︵.∴AB=CE.又CD +DE =2CD>CE =AB ,∴AB<2CD ,故选B.14.如图,A ,B ,C 是⊙O 上的三点,且有AB ︵=BC ︵=CA ︵. (1)求∠AOB,∠BOC,∠AOC 的度数; (2)连接AB ,BC ,CA ,试确定△ABC 的形状.解:(1)∵AB ︵=BC ︵=CA ︵, ∴∠AOB=∠BOC=∠AOC.又∵∠AOB+∠BOC+∠COA=360°, ∴∠AOB=∠BOC=∠AOC=120°. (2)∵AB ︵=BC ︵=CA ︵, ∴AB=BC =CA.∴△ABC 是等边三角形.15.如图,AB ,CD 是⊙O 的两条直径,过点A 作AE∥CD 交⊙O 于点E ,连接BD ,DE ,求证:BD =DE.证明:连接OE , ∵OA=OE , ∴∠A=∠OEA. ∵AE∥CD,∴∠BOD=∠A,∠DOE=∠OEA. ∴∠BOD=∠DOE. ∴BD=DE.16.如图,已知AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点,CM⊥AB,DN⊥AB.求证:AC ︵=BD ︵.证明:连接OC ,OD ,∵AB 是⊙O 的直径,M ,N 分别是AO ,BO 的中点, ∴OM=ON.∵CM⊥AB,DN⊥AB, ∴∠OMC=∠OND=90°.在Rt△OMC 和Rt△OND 中,⎩⎪⎨⎪⎧OM =ON ,OC =OD ,∴Rt△OMC≌Rt△OND(HL). ∴∠COM=∠DON. ∴AC ︵=BD ︵. 综合题17.如图,在⊙O 中,AB ,CD 是两条弦,OE⊥AB,OF⊥CD,垂足分别为E ,F. (1)如果∠AOB=∠COD,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE =OF ,那么AB ︵与CD ︵的大小有什么关系?为什么?解:(1)OE =OF.理由:∵OE⊥AB,OF⊥CD,OA =OB ,OC =OD ,∴∠OEB=∠OFD=90°,∠EOB=12∠AOB,∠FOD=12∠COD.∵∠AOB=∠COD,∴∠EOB=∠FOD. 在△EOB 和△FOD 中, ⎩⎪⎨⎪⎧∠OEB=∠OFD,∠EOB=∠FOD,OB =OD ,∴△EOB≌△FOD(AAS). ∴OE=OF. (2)AB ︵=CD ︵.理由:∵OE⊥AB,OF⊥CD,AO =BO ,CO =DO , ∴∠OEB=∠OFD=90°.∴点E ,F 分别是AB ,CD 的中点.在Rt△BEO 和Rt△DFO 中,⎩⎪⎨⎪⎧OB =OD ,OE =OF ,∴Rt△BEO≌Rt△DFO(HL). ∴BE=DF.∵AB=2BE ,CD =2DF , ∴AB=CD. ∴AB ︵=CD ︵.2.2.2 圆周角第1课时圆周角定理及其推论1基础题知识点1 认识圆周角1.下列四个图中,∠x是圆周角的是(C)知识点2 圆周角定理2.(2018·衢州)如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是(B)A.75° B.70° C.65° D.35°3.如图,△ABC内接于⊙O.若∠A=α,则∠OBC等于(D)A.180°-2αB.2αC.90°+αD.90°-α4.如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A,B两点,P是优弧AB上任意一点(与A,B不重合),则∠APB=30°.5.(2018·广东)在同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.知识点3 圆周角定理推论16.如图,点A ,B ,C ,D 都在⊙O 上,AC ,BD 相交于点E ,则∠ABD=(A) A .∠ACD B .∠ADB C .∠AEDD .∠ACB7.如图,已知AB ,CD 是⊙O 的两条直径,∠ABC=28°,那么∠BAD=(A) A .28°B .42°C .56°D .84°8.(教材P52练习T3变式)如图,在⊙O 中,弦AB ,CD 相交于点P.若∠A=30°,∠APD=70°,则∠B 等于(C) A .30°B .35°C .40°D .50°9.如图,BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB=60°,则∠BDC 的度数是(D) A .60°B .45°C .35°D .30°10.如图所示,弦AB ,CD 相交于点O ,连接AD ,BC ,在不添加辅助线的情况下,请在图中找出一对相等的角,它们是答案不唯一,如:∠A=∠C,∠B=∠D,∠AOD=∠BOC,∠AOC=∠BOD.11.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.证明:∵AB=BC , ∴AB ︵=BC ︵. ∴∠BDC=∠ADB. ∴DB 平分∠ADC.易错点 忽略弦所对的圆周角不唯一而致错12.已知某个圆的弦长等于它的半径,则这条弦所对的圆周角的度数为30°或150°. 中档题13.如图,P 是⊙O 外一点,PA ,PB 分别交⊙O 于C ,D 两点,已知AB ︵和CD ︵所对的圆心角分别为90°和50°,则∠P=(D) A .45°B .40°C .25°D .20°14.(2018·菏泽)如图,在⊙O 中,OC⊥AB,∠ADC=32°,则∠OBA 等于(D) A .64°B .58°C .32°D .26°15.如图,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正弦516.如图所示,在⊙O 中,已知∠BAC=∠CDA=20°,则∠ABO 的度数为50°.17.(教材P52练习T3变式)如图,在⊙O 中,A ,B 是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC ,则∠BAC=35°.18.如图,点A ,B ,C 三点在⊙O 上,过C 作CD∥AB 与⊙O 相交于D 点,E 是CD ︵上一点,且满足AD =DE ,连接BD 与AE 相交于点F.求证:△AFD∽△ABC.证明:∵AB∥CD, ∴∠BAC=∠ACD. ∵AD=DE ,∴AD ︵=DE ︵. ∴∠DAE=∠AED.∴∠DAE=∠AED=∠ACD=∠BAC.∵∠ADF=∠ACB,∠DAE=∠BAC, ∴△AFD∽△ABC. 综合题19.如图,⊙O 的半径为1,A ,P ,B ,C 是⊙O 上的四个点,∠APC=∠CPB=60°. (1)判断△ABC 的形状,并证明你的结论;(2)试探究线段PA ,PB ,PC 之间的数量关系,并证明你的结论.证明:(1)△A BC 是等边三角形. 在⊙O 中,∵∠BAC 与∠CPB 是BC ︵所对的圆周角, ∠ABC 与∠APC 是AC ︵所对的圆周角, ∴∠BAC=∠CPB,∠ABC=∠APC. 又∵∠APC=∠CPB=60°, ∴∠ABC=∠BAC=60°. ∴△ABC 为等边三角形.(2)在PC 上截取PD =AP ,连接AD , ∵∠APC=60°, ∴△APD 是等边三角形. ∴AD=AP =PD ,∠ADP=60°, 即∠ADC=120°.又∵∠APB=∠APC+∠B PC =120°, ∴∠ADC=∠APB. 在△APB 和△ADC 中,⎩⎪⎨⎪⎧∠APB=∠ADC,∠ABP=∠ACD,AP =AD ,∴△APB≌△ADC(AAS). ∴BP=CD. 又∵PD=AP.∴CP=CD +PD =BP +AP.第2课时圆周角定理推论2及圆内接四边形的性质基础题知识点1 圆周角定理推论21.(2017·福建)如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.则下列四个角中,一定与∠ACD互余的角是(D)A.∠A DC B.∠ABDC.∠BAC D.∠BAD2.如图,小华同学设计了一个量直径的测量器,标有刻度的尺子OA,OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位长度,OF=6个单位长度,则圆的直径为(B)A.12个单位长度B.10个单位长度C.4个单位长度D.15个单位长度3.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为(C)A.20° B.40° C.50° D.70°4.如图,CD是⊙O的直径,已知∠1=30°,则∠2=(C)A.30° B.45° C.60° D.70°5.如图,把直角三角形的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M,N,量得OM=8 cm,ON=6 cm,则该圆玻璃镜的半径是(B)A.10 cmB.5 cmC.6 cmD.10 cm6.如图,AB是⊙O的直径,点D在⊙O上,∠AOD=130°,BC∥OD交⊙O于C,求∠A的度数.解:∵∠AOD=130°,∴∠BOD=50°.∵BC∥OD,∴∠B=∠BOD=50°.∵AB是⊙O的直径,∴∠ACB=90°.∴∠A=90°-∠B=40°.知识点2 圆内接四边形对角互补7.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是(B)A.115° B.105° C.100° D.95°8.(教材P55例4变式)(2018·邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是(B)A.80° B.120° C.100° D.90°9.如图,四边形ABCD为⊙O的内接四边形,已知∠BCD=110°,则∠BAD=70°.10.如图,已知∠EAD是圆内接四边形ABCD的一个外角,并且BD=DC.求证:AD平分∠EAC.证明:∵∠EAD+∠BAD=180°,∠DCB+∠BAD=180°,∴∠EAD=∠DCB.∵BD=DC,∴∠DBC=∠DCB.又∵∠DBC=∠DAC,∴∠EAD=∠DAC,即AD平分∠EAC.易错点对圆内接四边形的概念理解不清导致错误11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=140°.中档题12.在圆内接四边形ABCD中,若∠A∶∠B∶∠C=1∶2∶5,则∠D等于(B)A .60°B .120°C .140°D .150°13.如图,AB 为⊙O 的直径,关于角p ,q ,r ,s 之间的关系:①p=2q ;②q=r ;③p+s =180°中,正确的是(A) A .只有①和② B .只有①和③ C .只有②和③D .①②③14.(2018·白银)如图,⊙A 过点O(0,0),C(3,0),D(0,1),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是(B) A .15°B .30°C .45°D .60°15.(2018·北京)如图,点A ,B ,C ,D 在⊙O 上,CB ︵=CD ︵,∠CAD=30°,∠ACD=50°,则∠ADB =70°.16.如图,已知点A ,B ,C ,D 均在⊙O 上,CD 为∠ACE 的平分线. (1)求证:△ABD 为等腰三角形;(2)若∠DCE =45°,BD =6,求⊙O 的半径.解:(1)证明: ∵CD 平分∠ECA,∴∠ECD=∠DCA.∵∠ECD+∠DCB=180°,∠DCB+∠BAD=180°,∴∠ECD=∠DAB.又∵∠DCA=∠DBA,∴∠DBA=∠DAB.∴DB=DA.∴△ABD是等腰三角形.(2)∵∠DCE=∠DCA=45°,∴∠ECA=∠ACB=90°.∴∠BDA=90°.∴AB是直径.∵BD=AD=6,∴AB=BD2+DA2=62+62=6 2.∴⊙O的半径为3 2.17.(2018·宜昌)如图,在△ABC中,AB=AC.以AB为直径的半圆交AC于点D,交BC于点E.延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.解:(1)证明:∵AB为半圆的直径,∴∠AEB=90°,∵AB=AC,∴CE=BE.又∵EF=AE,∴四边形ABFC是平行四边形.又∵AB=AC,(或∠AEB=90°)∴平行四边形ABFC是菱形.(2)连接BD.∵AD=7,BE =CE =2, 设CD =x ,则AB =AC =7+x. ∵AB 为半圆的直径, ∴∠ADB=90°. ∴AB 2-AD 2=CB 2-CD 2. ∴(7+x)2-72=42-x 2. ∴x 1=1或x 2=-8(舍去). ∴S 半圆=12×π×42=8π.∴BD=15. ∴S 菱形ABFC =815. 综合题18.如图,在⊙O 中,直径AB 的两侧有定点C 和动点P ,点P 在AB ︵上运动(不与A ,B 重合),过点C 作CP 的垂线,与PB 的延长线交于点Q.(1)试猜想:△PCQ 与△ACB 具有何种关系?(不要求证明) (2)当点P 运动到什么位置时,△ABC≌△PCB?并给出证明.解:(1)△PCQ∽△ACB. (2)当CP ︵为半圆时, △ABC≌△PCB. 证明:∵AB 是直径, ∴∠ACB=90°. ∵CP ︵为半圆,∴CP是直径.∴∠PBC=90°,AB=CP.∵CB是公共边,∴Rt△ABC≌Rt△PCB(HL).。

圆周角和圆心角的关系练习题-基础

圆周角和圆心角的关系练习题-基础

圆周角和圆心角的关系—巩固练习(基础)一、选择题1.(2016•张家界)如图,AB是⊙O的直径,BC是⊙O的弦.若∠OBC=60°,则∠BAC 的度数是()A.75°B.60°C.45° D.30°2.如图所示,∠1,∠2,∠3的大小关系是().A.∠1>∠2>∠3 B.∠3>∠1>∠2 C.∠2>∠1>∠3 D.∠3>∠2>∠13.如图,AC是⊙O的直径,弦AB∥CD,若∠BAC=32°,则∠AOD等于( ).A.64°B.48°C.32°D.76°4.如图,弦AB,CD相交于E点,若∠BAC=27°,∠BEC=64°,则∠AOD等于( ).A.37°B.74°C.54°D.64°(第3题图)(第4题图)(第5题图)5.如图,四边形ABCD内接于⊙O,若∠BOD=138°,则它的一个外角∠DCE等于( ).A.69°B.42°C.48°D.38°6.(2015•酒泉)△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80°B.160°C.100°D.80°或100°二、填空题7.在同圆或等圆中,两个圆心角及它们所对的两条弧、两条弦中如果有一组量相等,那么_ _________.8. (2016•嘉定区一模)在⊙O中,已知=2,那么线段AB与2AC的大小关系是.(从“<”或“=”或“>”中选择)9.如图,AB 是⊙O的直径,弦CD⊥AB于H ,BD∥OC,则∠B的度数是 .10.如图,△ABC内接于⊙O,AB=BC,∠BAC=30°,AD为⊙O的直径,AD=2,则BD = .11.如图,已知⊙O的直径MN=10,正方形ABCD四个顶点分别在半径OM、OP和⊙O上,且∠POM=45°,则AB= .(第11题图)(第12题图)ODA BC(第10题图)12.如图,已知A、B、C、D、E均在⊙O上,且AC为直径,则∠A+∠B+∠C=________度.三、解答题13. 如图所示,AB,AC是⊙O的弦,AD⊥BC于D,交⊙O于F,AE为⊙O的直径,试问两弦BE与CF的大小有何关系,说明理由.14.(2015•嵊州市一模)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.(1)若∠D=70°,求∠CAD的度数;(2)若AC=8,DE=2,求AB的长.15.如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.【答案与解析】一、选择题1.【答案】D【解析】∵AB 是⊙O 的直径,∴∠ACB=90°,又∵∠OBC=60°,∴∠BAC=180°﹣∠ACB ﹣∠ABC=30°.故选D .2.【答案】D ;【解析】圆内角大于圆周角大于圆外角.3.【答案】A ;【解析】∵弦AB ∥CD ,∠BAC=32°,∴∠C=∠A=32°,∠AOD=2∠C=64°.4.【答案】B ;【解析】 ∠ACD=64°-27°=37°,∠AOD=2∠ACD=74°.5.【答案】A ;【解析】 ∠BAD=∠BOD=69°,由圆内接四边形的外角等于它的内对角得∠DCE=∠BAD=69°.6.【答案】D ;【解析】如图,∵∠AOC=160°,∴∠ABC=∠AOC=×160°=80°,∵∠ABC+∠AB′C=180°,∴∠AB′C=180°﹣∠ABC=180°﹣80°=100°. 12∴∠ABC的度数是:80°或100°.故选D.二、填空题7.【答案】它们所对应的其余各组量也分别相等;8.【答案】<【解析】如图,∵=2,∴=,∴AC=BC,在△ABC中,AC+BC>AB,∴AB<2AC,故答案为:<.9.【答案】60°;10.;11.【答案】;【解析】如图,设AB=x,在Rt⊿AOD 中:x²+(2x)²=5²,x=, 即AB的长=.第11题 第12题12.【答案】90° ; 【解析】如图,连结AB 、BC ,则∠CAD + ∠EBD +•∠ACE=∠CBD +∠EBD +•∠ABE=∠ABC=90°.三、解答题13.【答案与解析】BE=CF .理由:∵AE 为⊙O 的直径,AD ⊥BC ,∴∠ABE=90°=∠ADC ,又∠AEB=∠ACB ,∴∠BAE=∠CAF ,∴.∴BE=CF .14.【答案与解析】BE CF解:(1)∵OA=OD,∠D=70°,∴∠OAD=∠D=70°,∴∠AOD=180°﹣∠OAD﹣∠D=40°,∵AB是半圆O的直径,∴∠C=90°,∵OD∥BC,∴∠AEO=∠C=90°,即OD⊥AC,∴=,∴∠CAD=∠AOD=20°;(2)∵AC=8,OE⊥AC,∴AE=AC=4,设OA=x,则OE=OD﹣DE=x﹣2,∵在Rt△OAE中,OE2+AE2=OA2,∴(x﹣2)2+42=x2,解得:x=5,∴OA=5,∴AB=2OA=10.15.【答案与解析】(1)如图,作OH ⊥CD 于H ,利用梯形中位线易证OF=OE ,OA=OB , 所以AF=BE ,AF+EF=BE+EF ,即AE=BF .(2)四边形CDEF 的面积是定值. 连结OC ,则, =54(cm 2).11()2O 6922S CF DE CD H CD =+⋅=⋅⋅⋅=⨯。

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题

初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°【答案】A【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵∠BOC=100°∴∠BAC=50°故选A.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC="140°," ∠CBD的度数是( )A.40°B.50°C.70°D.110°【答案】C【解析】先求得弧ABC所对的圆周角的度数,再根据圆内接四边形的对角互补可得∠ABC的度数,即可求得结果.∵∠AOC=140°∴弧ABC所对的圆周角的度数为70°∴∠ABC=110°∴∠CBD=70°故选C.【考点】圆周角定理,圆内接四边形的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.【答案】(1)相等;(2)∠CP′D+∠COB=180°【解析】(1)连接OD,根据垂径定理可得∠COB=∠DOB,再结合圆周角定理即可得到结果;(2)连接P′P,则可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,从而可以得到结果.从而∠CP′D+∠COB=180°.(1)连接OD,∵AB⊥CD,AB是直径,∴,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠C P′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.【考点】垂径定理,圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.。

圆周角和圆心角的关系-练习题

圆周角和圆心角的关系-练习题

第3章第4节圆周角和圆心角的关系同步检测一.选择题1.如图,正方形ABCD的四个顶点分别在⊙O上,点P在CD上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°答案:A解析:解答:连接OB,OC,∵正方形ABCD的四个顶点分别在⊙O上,:∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选A.分析:首先连接OB,OC,由正方形ABCD的四个顶点分别在⊙O上,可得∠BOC=90°,然后由圆周角定理,即可求得∠BPC的度数.2.如图,都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.28°B.31°C.38°D.62°答案:A解析:解答:∵AB⊥CD,∴∠DPB=90°,'∵∠CDB=62°,∴∠B=180°-90°-62°=28°,∴∠ACD=∠B=28°.故选A.分析:利用垂直的定义得到∠DPB=90°,再根据三角形内角和定理求出∠B=180°-90°-62°=28°,然后根据圆周角定理即可得到∠ACD的度数.3.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°答案:B解析:解答::∵AB是⊙O的直径,、∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=180°-90°-35°=55°,∴∠ADC=∠ABC=55°.故选B.分析:先根据圆周角定理求出∠ACB=90°,再由三角形内角和定理得出∠ABC的度数,根据圆周角定理即可得出结论.4.下列命题中,正确的命题个数是()①顶点在圆周上的角是圆周角;②圆周角度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等.A.1个B.2个C.3个D.4个…答案:A解析:解答:解:①中,该角还必须两边都和圆相交才行.错误;②中,必须是同弧或等弧所对,错误;③正确;④中,必须在同圆或等圆中,错误.故选A.分析:根据圆周角的概念和定理,逐条分析判断.5.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C)答案:A解析:解答:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.分析:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.根据圆周角定理,可得∠AOB=2∠C.6.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55°B.40°C.35°D.30°答案:A解析:解答:∵∠ACD与∠B是AD对的圆周角,∴∠B=∠ACD=35°,~∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠B=55°.故选A.分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由AB 是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ADB=90°,继而可求得∠BAD的度数.7.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°答案:D 解析:解答:∵⊙O 是△ABC 的外接圆,∠ABC =40°,!∴∠AOC =2∠ABC =80°.故选:D .分析:由⊙O 是△ABC 的外接圆,若∠ABC =40°,根据圆周角定理,即可求得答案.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .55B . 255C .2D .12答案:D解析:解答:∵∠E=∠ABD ,∴tan ∠AED=tan ∠ABD=12AC AB . 故选D .、分析:根据同弧或等弧所对的圆周角相等来求解.9.如图,△ABC 的顶点均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A .30°B .45°C .60°D .70°答案:C解析:解答:∵∠ABC=12∠AOC , 而∠ABC+∠AOC=90°,∴12∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.】分析:先根据圆周角定理得到∠ABC=12∠AOC,由于∠ABC+∠AOC=90°,所以12∠AOC+∠AOC=90°,然后解方程即可.10.如图,AB是⊙O的直径,CD是⊙O的弦,连接,若∠CAB=35°,则∠ADC的度数为()A.35°B.45°C.55°D.65°答案:C解析:解答:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=35°,》∴∠B=55°,∴∠ADC=55°.故选C.分析:连接BC,推出Rt△ABC,求出∠B的度数,即可推出∠ADC的度数.11.若四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=1:3:8,则∠D的度数是()A.10°B.30°C.80°D.120°答案:D解析:解答:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,:即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D.分析:本题可设∠A=x,则∠B=3x,∠C=8x;利用圆内接四边形的对角互补,可求出∠A.∠C 的度数,进而求出∠B和∠D的度数,由此得解.12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是()A.115°B.l05°C.100°D.95°答案:B`解析:解答:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.分析:根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.13.如图,⊙C过原点,且与两坐标轴分别交于点A.点B,点A的坐标为(0,3),M是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.2、答案:C解析:解答:∵四边形ABMO 是圆内接四边形,∠BMO =120°,∴∠BAO =60°,∵AB 是⊙C 的直径,∴∠AOB =90°,∴∠ABO =90°-∠BAO =90°-60°=30°,∵点A 的坐标为(0,3),∴OA =3,∴AB =2OA =6,{∴⊙C 的半径长=2AB =3. 故选:C . 分析:先根据圆内接四边形的性质求出∠OAB 的度数,由圆周角定理可知∠AOB =90°,故可得出∠ABO 的度数,根据直角三角形的性质即可得出AB 的长,进而得出结论.14.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE =70°,则∠BOD =( ) A .35° B .70° C .110° D .140°答案:D解析:解答:∵四边形ABCD 内接于⊙O ,∴∠A =∠DCE =70°,∴∠BOD =2∠A =140°.}故选D . 分析:由圆内接四边形的外角等于它的内对角知,∠A =∠DCE =70°,由圆周角定理知,∠BOD =2∠A =140°.15.如图,已知经过原点的⊙P 与轴分别交于两点,点C 是劣弧OB 上一点,则∠ACB =( )A.80°B.90°C.100°D.无法确定答案:B解析:解答:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.、故选B.分析:由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.二.填空题16.如图,△ABC的顶点均在⊙O上,∠OAC=20°,则∠B的度数是答案:70°解析:解答:解:∵OA=OC,∠OAC=20°,∴∠ACO=∠OAC=20°,∴∠AOC=180°-∠ACO-∠OAC=180°-20°-20°=140°,∴∠B=12∠AOC=12×140°=70°.}故答案为:70°.分析:先根据等腰三角形的性质求出∠ACO的度数,再由三角形内角和定理求出∠AOC的度数,由圆周角定理∠B的度数即可.17.如图,△ABC内接于⊙O,∠ABC=70°,∠CAB=50°,点D在⊙O上,则∠ADB的大小为.答案:60°解析:解答:∵∠ABC=70°,∠CAB=50°,∴∠ACB=180°-∠ABC-∠CAB=60°,∴∠ADB=∠ACB=60°.故答案为60°.&分析:先根据三角形内角和定理计算出∠ACB的度数,然后根据圆周角定理求解.18.如图,都在⊙O上,∠B=130°,则∠AOC的度数是答案:100°解析:解答:∵都在⊙O上,即四边形ABCD为⊙O内接四边形,∴∠D+∠B=180°,又∠B=130°,∴∠D=180°-∠B=180°-130°=50°,又∠D为⊙O的圆周角,∠AOC为⊙O的圆心角,且两角所对的弧都为,则∠AOC=2∠D=100°.故答案为:100°;分析:由四个点都在圆O上,得到四边形ABCD为圆O的内接四边形,根据圆内接四边形的对角互补得到∠B与∠D互补,由∠B的度数求出∠D的度数,∠D为圆O的圆周角,所求的角∠AOC是圆O的圆心角,且两角所对的弧为同一条弧,根据同弧所对的圆心角等于所对圆周角的2倍,由∠D的度数可求出∠AOC的度数.19.如图,四点在⊙O上,OC⊥AB,∠AOC=40°,则∠BDC的度数是答案:20°解析:解答:∵OC⊥AB,∴AC BC∴∠CDB=12∠AOC,而∠AOC=40°,∴∠CDB=20°.故答案为20°.;分析:由OC⊥AB,根据垂径定理得到弧AC=弧BC,再根据圆周角定理得∠CDB=12∠AOC,而∠AOC=40°,即可得到∠BDC的度数.20.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD 的度数是度.答案:100解析:解答:∵在△ABC中,∠B=60°,∠C=70°,∴∠A=50°,∵∠BOD=2∠A,∴∠BOD=100°.故答案为:100.分析:先根据三角形内角和定理求出∠A的度数,再根据圆周角定理即可求得∠BOD的度数.$三.解答题21.请用科学的方法证明圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.答案:①如图(1),当点O在∠BAC的一边上时,∵OA=OC,∴∠A=∠C,∵∠BOC=∠A+∠C,∴∠BAC=12∠BOC;②如图(2)当圆心O在∠BAC的内部时,延长BO交⊙O于点D,连接CD,则—∠D=∠A(同弧或等弧所对的圆周角都相等),∵OC=OD,∴∠D=∠OCD,∵∠BOC=∠D+∠OCD(三角形的一个外角等于与它不相等的两个内角的和),∴∠BOC=2∠A,即∠BAC=12∠BOC.③如图(3),当圆心O在∠BAC的外部时,延长BO交⊙O于点E,连接CE,则∠E=∠A(同弧或等弧所对的圆周角都相等),∵OC=OE,∴∠E=∠OCE,/∵∠BOC=∠E+∠OCE(三角形的一个外角等于与它不相邻的两个内角的和),∴∠BOC=2∠A,即∠BAC=12∠BOC.解析:分析:分别从当点O在∠BAC的一边上时,当圆心O在∠BAC的内部时与当圆心O 在∠BAC的外部时,去分析证明,即可证得结论.22.如图所示,∠BAC是⊙O的圆周角,且∠BAC=45°,BC=22,试求⊙O的半径大小.答案:∵∠BAC=45°,∴∠B0C=90°,∵BC2∴OB=OC=2..即⊙O的半径为2.解析:分析:根据圆周角定理,可求∠B0C=90°,即可知△BOC为等腰直角三角形,故可求0B=OC=1.23.已知⊙O中,弦AB的长等于⊙O的半径,求弦所对的圆心角和圆周角的度数.答案:画出图形:连接,∵AB=OA=OB,∴∠AOB=60°.分两种情况:①在优弧上任取一点C,连接CA,CB,{则∠C=12∠AOB=30°,②在劣弧上任取一点D,连接,∵四边形ADB C是⊙O的内接四边形,∴∠C+∠ADB=180°,∴∠ADB=180°-∠C=150°.综上所述,弦AB所对的圆心角是60°,圆周角是30°或150°.解析:分析:根据已知条件得出△OAB是等边三角形,则∠AOB=60°,再根据弦AB所对的弧有两段,一段是优弧,一段是劣弧,然后分类讨论,即可得出答案.24.如图,在⊙O中,弦AB=3cm,圆周角∠ACB=60°,求⊙O的直径.答案:3$解析:解答:过A点作直径AD,连接BD,如图,∠ABD=90°,又∵∠ADB=∠ACB=60°,∴∠BAD=30°,而AB=3cm,∴BD=3,∴AD=2BD=23(cm),即⊙O的直径为23cm.故答案为:23.分析:过A点作直径AD,则∠ABD=90°,∠ADB=∠ACB=60°,在Rt△ABD中,AB=3cm,利用三边的数量关系可求出AD.25.如图,在半径为6cm的圆中,弦AB长63cm,试求弦AB所对的圆周角的度数.答案:如图,设弦AB在优弧上所对的圆周角为∠P,劣弧上所对的圆周角为∠P′,连接OA,OB,过O点作OC⊥AB,垂足为C,由垂径定理,得AC=12AB3,在Rt△AOC中,OA=6,sin∠AOC=33362 ACOA==,解得∠AOC=60°,所以,∠AOB=2∠AOC=120°,根据圆周角定理,得∠P =12∠AOB =60°, 又APBP ′为圆内接四边形,所以,∠P′=180°-∠P=120°,故弦AB 所对的圆周角的度数为60°或120°解析:分析:设弦AB 在优弧上所对的圆周角为∠P ,劣弧上所对的圆周角为∠P ′,连接OA ,OB ,过O 点作OC ⊥AB ,垂足为C ,由垂径定理可知AC =12AB ,解直角三角形得∠AOC 的度数,由垂径定理可知,∠AOB =2∠AOC ,由圆周角定理得∠P =12∠AOB ,利用∠P 与∠P ′的互余关系求∠P ′.|。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

如图所示,圆O的直径为10,弦AB的长为6, M是弦AB上的一动点, 则线段的OM的长的取值范围是( )

直径为1Om的圆柱形油槽内装入一些油后,截 面如图所示,如果油面宽AB=8m,那么油的最大 深度是 多少?

如图,EF是⊙O直径,OE=5cm,弦AB=8cm, EF两点到MN的距离之和等于( )
已知:AB交圆O于C、D,且AC=BD. 你认为OA=OB吗?为什么?
.
1
已知:如图,AB、CD是⊙O的两,已知AB是⊙O直径,M、N分别是 AO、BO的中点,CM⊥AB,DN⊥AB,求 证.弧AC=弧BD
如图所示,OA是圆O的半径, 弦CD⊥OA于点P, 已知OC=5,OP=3, 则弦CD=____________________。
C
A D
P
O
. 如图所示,在圆O中,AB、AC为互相垂直且相等的两条弦,
OD⊥AB,OE⊥AC,垂足分别为D、E,若AC=2cm,则圆O 的半径为____________cm。
C
E A D
O B
如图所示,在△ABC中,∠C=90°,AB=10, AC=8, 以AC为直径作圆与斜边交于点P, 则BP的长为________________。
相关文档
最新文档