球的内切和外接问题

合集下载

内切球和外接球常见解法

内切球和外接球常见解法

内切球和外接球常见解法内切球和外接球是在几何学中常用的概念,它们分别指的是一个几何体内切或外接于另一个几何体的球。

在实际问题中,内切球和外接球常常用于优化问题和几何问题的求解,其解法也有多种。

以下将介绍一些常见的解法。

1. 解法一:利用勾股定理求解。

内切球和外接球都可以利用勾股定理求解。

以内切球为例,我们可以考虑任意三角形ABC,设其内切球的半径为r,以I为内切圆心,则:AB + AC = 2r;AC + BC = 2r;AB + BC = 2r。

整理可得:r = [ABC] / (s + a + b + c),其中s为半周长,a、b、c为三角形ABC的三边长,[ABC]为三角形ABC的面积。

而外接球的半径r'则可用公式r'=[ABC] / (4S),其中S为三角形ABC的外接圆半径。

欧拉定理是内切球和外接球求解的另一个重要工具。

欧拉定理有两种形式,分别为:对于任意四面体,其四个顶点、三条棱的中点和六面体质心共九个点在同一球面上。

对于任意三角形ABC,其外接圆心、垂足交点、垂心、重心四点在同一圆上,且圆心为外接球心。

利用欧拉定理可以求得内切球半径:点O为六面体质心,点I为内切圆心,则IO等于内切球半径r。

点O为三角形外心,点H为垂心,点G为重心,则OG等于外接球半径r'。

对于一些优化问题,内切球和外接球也可以通过线性规划求解。

例如,对于一个凸多面体,求其内切球或外接球的半径最大值,可以将问题转化为线性规划问题,即:max rs.t. A_i * x <= b_i, i=1,2,...,mx_i >= 0, i=1,2,...,n其中,A_i是多面体的几何信息,b_i是多面体中某一点到各个面的距离,x是优化变量,r就是所需要求的内切球或外接球半径。

可以使用线性规划求解器求解其最优解。

立体几何中球的内切和外接问题完美版

立体几何中球的内切和外接问题完美版

性质
内切球的球心位于旋转体 的轴线上,且球的半径等 于旋转体半径。
应用
在几何和工程领域中,内 切球常用于研究旋转体的 体积和表面积。
旋转体的外接球
定义
旋转体的外接球是指与旋 转体外侧相切的球。
性质
外接球的球心位于旋转体 外侧,且球的半径等于旋 转体轴线到旋转体外侧的 垂直距离。
应用
在几何ቤተ መጻሕፍቲ ባይዱ工程领域中,外 接球常用于研究旋转体的 空间位置和关系。
立体几何中球的内 切和外接问题完美 版
目 录
• 球与多面体的内切和外接问题 • 球与旋转体的内切和外接问题 • 球与几何体的内切和外接问题实例 • 总结与展望
01
CATALOGUE
球与多面体的内切和外接问题
多面体的内切球
01
02
03
04
多面体的内切球是指与多面 体的所有顶点和面都相切的
球。
内切球半径的求法:设多面体的 每个面为$S_i$,内切球的半径
03
CATALOGUE
球与几何体的内切和外接问题实例
多面体内切球实例
总结词
多面体内切球是指一个球完全内切于一个多面体,且与多面体的每个面都相切 。
详细描述
多面体内切球的问题可以通过几何定理和公式来解决,例如欧拉公式和球内切 定理。例如,一个正方体的内切球就是其中心,半径等于正方体边长的一半。
旋转体外接球实例
外接球的性质:外接球与 多面体的每个顶点都相切 ,且外接球的直径等于多 面体的对角线长度。
外接球的应用:在几何、 物理和工程领域中,外接 球的概念被广泛应用于研 究多面体的性质和计算。
02
CATALOGUE
球与旋转体的内切和外接问题

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型

立体几何外接球和内切球十大题型
立体几何中的外接球和内切球是常见的题型,下面我将列举十个常见的题型并进行解答。

1. 求立方体的外接球和内切球的半径。

外接球的半径等于立方体的对角线的一半,内切球的半径等于立方体的边长的一半。

2. 求正方体的外接球和内切球的半径。

外接球的半径等于正方体的对角线的一半,内切球的半径等于正方体的边长的一半。

3. 求圆柱体的外接球和内切球的半径。

外接球的半径等于圆柱体的底面半径,内切球的半径等于圆柱体的高的一半。

4. 求圆锥的外接球和内切球的半径。

外接球的半径等于圆锥的底面半径,内切球的半径等于圆锥的高的一半。

5. 求球的外接球和内切球的半径。

外接球的半径等于球的半径的根号3倍,内切球的半径等于球的半径的一半。

6. 求棱锥的外接球和内切球的半径。

外接球的半径等于棱锥的底面边长的一半,内切球的半径等于棱锥的高的一半。

7. 求棱柱的外接球和内切球的半径。

外接球的半径等于棱柱的底面边长的一半,内切球的半径等于棱柱的高的一半。

8. 求四面体的外接球和内切球的半径。

外接球的半径等于四面体的外接圆的半径,内切球的半径等
于四面体的内切圆的半径。

9. 求正六面体的外接球和内切球的半径。

外接球的半径等于正六面体的对角线的一半,内切球的半径等于正六面体的边长的一半。

10. 求正八面体的外接球和内切球的半径。

外接球的半径等于正八面体的对角线的一半,内切球的半径等于正八面体的边长的一半。

以上是关于立体几何中外接球和内切球的十个常见题型及其解答。

希望能对你有所帮助。

与球有关的内切、外接问题

与球有关的内切、外接问题

(2)三棱锥A-BCD,侧棱长为2 5 ,底面是边长为2 3 的等边三角形, 125
则该三棱锥外接球的体积为___6__π__.
解析 如图所示,该三棱锥为正三棱锥,O为底面 BCD的中心且AO垂直于底面BCD,O′在线段AO上, O′为外接球球心, 令 O′A=O′D=R,OD=23DE=23×2 3× 23=2, AD=2 5,
(2) 三 棱 锥 A - BCD 的 四 个 面 都 是 直 角 三 角 形 , 且 侧 棱 AB 垂 直 于 底 面
BCD,BC⊥CD,AB=BC=2,且VA-BCD=
4 3
,则该三棱锥A-BCD外接
球的体积为__4___3_π__.
解析 因为AB⊥BC,BC⊥CD,构造如图所示的长方体, 则AD为三棱锥A-BCD的外接球的直径. 设外接球的半径为R. ∵VA-BCD=13×12×BC×CD×AB=16×2×CD×2=43, ∴CD=2,∴该长方体为正方体,∴AD=2 3,∴R= 3, 外接球体积为 V=43πR3=4 3π.
B,C,D都在同一球面上,则此球的体积为___3__.
解析 如图,设正四棱锥的底面中心为O1, ∴SO1垂直于底面ABCD,令外接球球心为O, ∴△ASC的外接圆就是外接球的一个轴截面圆, 外接圆的半径就是外接球的半径. 在△ASC 中,由 SA=SC= 2,AC=2,
得SA2+SC2=AC2. ∴△ASC是以AC为斜边的直角三角形. ∴A2C=1 是外接圆的半径,也是外接球的半径. 故 V 球=43π.
∴AO= AD2-OD2=4,∴OO′=4-R,
又OO′2+OD2=O′D2, ∴(4-R)2+4=R2,解得 R=52,∴V 球=43πR3=1625π.
反思 感悟

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳

外接球和内切球问题总结归纳外接球和内切球问题总结归纳在几何学中,外接球和内切球问题是一个重要的概念。

它们不仅在数学领域有着重要的应用,同时也被广泛运用在物理学、工程学以及计算机科学等领域。

本文将对外接球和内切球问题进行深入探讨,从基础概念到应用实例,帮助读者全面理解这一主题。

一、外接球和内切球的定义1. 外接球外接球是指一个球与给定的多边形的所有顶点相切于球面的情况。

在数学中,外接球常常与三角形、四边形等几何图形相关联,其特点是与多边形的各个顶点相切,并且球心通常位于多边形的某个重要位置。

2. 内切球内切球则是指一个球完全被给定的多边形所包围,且球与多边形的边界相切。

在实际应用中,内切球往往能够最大化地利用多边形所包围的空间,因此在工程设计和优化问题中具有重要意义。

二、外接球和内切球的性质1. 外接球的性质外接球的半径通常与多边形的边或者角有着特定的关系。

以三角形为例,外接圆的半径等于三角形三条边的乘积除以其周长的两倍。

这一性质在计算三角形的外接圆时具有重要意义,同时也为几何问题的解决提供了基础。

2. 内切球的性质内切球的半径与多边形的边界有着紧密的联系。

以正方形为例,内切圆的半径等于正方形的边长的一半。

这一性质在优化问题中有着重要的应用,能够帮助设计者最大化地利用空间,提高效率和节约成本。

三、外接球和内切球的应用1. 工程设计外接球和内切球在工程设计中有着广泛的应用。

例如在建筑设计中,内切球可以帮助设计者合理利用建筑空间,提高使用效率;在机械设计中,外接球则可以帮助设计者确定零部件的匹配度和适用性。

2. 计算机科学外接球和内切球也在计算机科学领域有着重要的应用。

例如在计算机图形学中,外接球和内切球经常被用来描述物体的外形和几何特征,同时也可以用于物体的碰撞检测和三维建模。

个人观点和总结外接球和内切球作为一个基础的数学概念,在几何学、工程学和计算机科学等领域有着重要的应用。

通过对外接球和内切球的定义、性质和应用进行深入探讨,我们可以更好地理解其在实际问题中的作用和意义,进一步拓展其在更多领域的应用。

球的内切、外接问题

球的内切、外接问题
2、三棱锥的各个棱长度均为a ,求其
6a
内切球的半径为 12
新课导入
• 例2.已知△ABC为等边三角形,边长为a.⊙O为
△ABC的外接圆,求⊙O的半径.
解:设⊙O的半径为R,连结OA,OC,
过A做三角形的高AD,点O在AD上.
A
3 AD= a OA=OB=R
2
OD=AD-OA= 3 a-R
2
O
在RtODC中OB2 =OD2 +DC2
S1S2 S2 )
球(半径为r)
S=4 r2
V= 4 r3
3
课前检测
• 二、做得对 • 1.球的体积与其表面积的数值相等,则球的半
径等于( C)
• A. 1 B.2 C.3 D.4 • 2.火星的半径约是地球的一半,地球表面积是
火星表面积的_4__倍. • 3.若一个球的体积为4 3 ,则它的表面积为
3 32
3
PE= PA2 -AE2
O
PE= 2 3 3
OA=R OE=PE-OP= 2 3 -R
3
A
在RtOAE中OA2 =OE2 +AE2
E
D
F
B
即R2 =( 2 3 -R)2 + 2
3
3
R= 3 S=4 R2 =3
2
课堂小结
解决与球有关的内切与外接问题的
关键是:
1、将多面体分割成多个三棱锥 2、通过寻找恰当的过球心的截面,把立体问 题转化为平面问题,通过解三角形求出球的 半径R.
1_2_π___. • 4.已知球的半径为 10 cm,若它的一个截面圆
的面积是36π cm2,则球心与截面圆周圆心的距 离是__8_c_m__.

球的内切、外接问题

球的内切、外接问题
例 10 若棱长为 a 的正四面体的各个顶点都在半径为 R 的球面上,求
P
球的表面积.
解1:作出截面图如图示. 由图可知,
3
AD
a,
2
2
3
AO AD
a.
3
3
a
6
2
2


∴PO PA AO
a.
3
6
∴OO PO PO
a R.
3
P
a
R
R
A
A
R O•
O•

O′
解得R
时,球内切于圆锥,如图所示,
O为球心,M为球O与母线PB的切点,E为底面圆心,
设球O的半径为R,底面圆E的半径为r,
因为圆锥侧面积为2π,
LOGO
(4)正棱锥、圆锥 ②外接球
例8 正四棱锥的五个顶点在同一个球面上,若该正
四棱锥的底面边长为4,侧棱长为2 6,求这个球
P
的表面积. 36π
PO′= 4,OO′=4-R,AO=R
2 6
AO2 = OO′ 2 + AO′ 2,
R=3

O′
R
R
A
O
O•

O′
O′

O
LOGO
(4)正棱锥、圆锥 ②外接球
正棱锥外接球半径求法——轴截面法
1.球心在棱锥的高所在的直线上
2.球心到底面外接圆圆心的距离d等于锥体的高h 减去球半径R的绝对值
d= |h -R |
P
3. R 2 r 2 (h R ) 2
4
9
O
1
, 解得r= 3
轴截面法

球的内切与外接问题

球的内切与外接问题

02 球的外接问题
球的外接几何体
球的外接三角形
一个球的外接三角形是指 一个内接于球的三角形, 其三条边的中点都在球的 球面上。
球的外接多边形
一个球的外接多边形是指 一个内接于球的n边形,其 所有顶点都在球的球面上。
球的外接圆柱
一个球的外接圆柱是指一 个内接于球的圆柱,其底 面圆心与球心重合。
球的外接线与半径
球的内切与外接问
目录
• 球的内切问题 • 球的外接问题 • 球的内切与外接问题的应用 • 球的内切与外接问题的数学原理 • 球的内切与外接问题的实际案例
01 球的内切问题
球的内切几何体
01
02
03
球的内切正方体
球心与正方体的一个顶点 重合,正方体的对角线等 于球的直径。
球的内切长方体
长方体的一个角顶点位于 球心,长方体的体对角线 等于球的直径。
球的外接圆
一个球的外接圆是指一个内接于 球的圆,其圆心位于球的球面上 。
球的半径
球的半径是指从球心到球面的距 离。
球的外接多面体
球的外接正多面体
一个球的外接正多面体是指一个内接 于球的n面体,其所有面都是等边三 角形或等边四边形。
球的外接非正多面体
一个球的外接非正多面体是指一个内 接于球的n面体,其面可以是等边三角 形、等边四边形或等腰三角形等。
根据球的外接定理,推导出多面体的所有顶点都在球面上, 以及多面体的所有边都与球的半径相等的条件。
05 球的内切与外接问题的实 际案例
建筑设计中的球内切与外接问题
建筑设计中的球内切问题
在建筑设计领域,球内切问题通常涉及到如何将一个球体完美地放入一个给定的空间内,使得球体与 空间边界相切。例如,在建造穹顶或大型球形结构时,需要精确计算球体的大小和位置,以确保其与 周围结构相切。

球的内切和外接问题

球的内切和外接问题

接球。
性质
02
圆锥体的外接球的半径等于圆锥体母线长度的一半。
应用
03
在几何学中,圆锥体的外接球的概念常用于解决与圆锥体相关
的问题,如计算圆锥体的表面积、体积等。
03
球的内切和外接问题的 应用
在几何学中的应用
确定球与平面、球与多面体的位置关系
通过球的内切和外接问题,可以确定球与平面、球与多面体的位置关系,进一步研究球的相关性质。
当一个球恰好与圆柱体的上底面和下 底面相切,这个球被称为圆柱体的外 接球。
性质
应用
在几何学中,圆柱体的外接球的概念 常用于解决与圆柱体相关的问题,如 计算圆柱体的表面积、体积等。
圆柱体的外接球的半径等于圆柱体高 的一半。
球与圆锥体的外接
定义
01
当一个球恰好与圆锥体的顶点相切,这个球被称为圆锥体的外
解决几何问题
利用球的内切和外接问题,可以解决一些与球相关的几何问题,如计算球的表面积、体积等。
在物理学中的应用
确定天体的运动轨迹
在天文学中,通过研究天体与地球之 间的球内切和外接问题,可以确定天 体的运动轨迹和运行规律。
解决物理实验问题
在物理实验中,利用球的内切和外接 问题可以解决一些与球相关的物理实 验问题,如研究球的滚动摩擦等。
02
球的外接问题
球与多边形的外接
01
02
03
定义
当一个球恰好与一个多边 形的各顶点相切,这个球 被称为多边形的外接球。
性质
多边形的外接球的半径等 于多边形各顶点到其外接 圆圆心的距离。
应用
在几何学中,外接球的概 念常用于解决与多边形相 关的问题,如计算多边形 的面积、体积等。

内切球外接球问题

内切球外接球问题

外接球与内切球问题一、外接球问题简单多面体外接球问题是立体几何中的难点和重要的考点,此类问题实质是解决球的半径尺或确定球心0的位置问题,其中球心的确定是关键.(一)由球的定义确定球心在空间,如果一个定点与一个简单多面体的所有顶点的距离都相等,那么这个定点就是该简单多面体的外接球的球心.由上述性质,可以得到确定简单多面体外接球的球心的如下结论.结论1:正方体或长方体的外接球的球心其体对角线的中点.结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的中点.结论4:正棱锥的外接球的球心在其高上,具体位置可通过计算找到.结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共斜边的中点就是其外接球的球心.(二)构造正方体或长方体确定球心长方体或正方体的外接球的球心是在其体对角线的中点处.以下是常见的、基本的几何体补成正方体或长方体的途径与方法.途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面都是是直角三角形的三棱锥都分别可构造正方体.途径2:同一个顶点上的三条棱两两垂直的四面体、相对的棱相等的三棱锥都分别可构造长方体和正方体.途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体或正方体.途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方体或正方体.(三)由性质确定球心利用球心O与截面圆圆心O1的连线垂直于截面圆及球心O与弦中点的连线垂直于弦的性质,确定球心.二、内切球问题若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球。

1、内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等。

2、正多面体的内切球和外接球的球心重合。

3、正棱锥的内切球和外接球球心都在高线上,但不重合。

4、基本方法:构造三角形利用相似比和勾股定理。

5、体积分割是求内切球半径的通用做法。

球的内切、外接问题(优秀经典专题及答案详解)

球的内切、外接问题(优秀经典专题及答案详解)

积为 16,则这个球的表面积是( )
A.16π
B. 20π
C. 24π
D.32π
8 答案及解析: 答案:C 解析:由题意知正四棱柱的底面积为 4,所以正四棱柱的底面边长为 2,正四棱柱的底面对 角线长为 2 2 ,正四棱柱的对角线为 2 6 而球的直径等于正四棱柱的对角线,即2R 2 6 所
以 R 6 ,所以 S球 4πR2 24π .
时, f(' t) 0 , (f t)单调递减,所以当 t 6 时, (f t)最大,即长方体的体积最大,此时
a 2 3,V 12 3 ,故选 A.
球的直径等于正方体的棱长 2,
则球的半径 R=1,
则球的体积V 4 π R3 4π
3
3
故选 A.
6、平面四边形 ABCD 中, AB AD CD 1, BD 2, BD CD ,将其沿对角线 BD 折成四面体 A' BCD ,使平面 A'BD 平面 BCD ,若四面体 A' BCD 顶点在同一个球面上,则该球的体积 为( )
接圆的半径为 3 ∵△ABC 和△DBC 所在平面相互垂直,
∴球心在 BC 边的高上,
设球心到平面 ABC 的距离为 h,则 h2 3 R2 ( 3 2 3 h)2 2
∴h=1,R=2,∴球 O 体积为 4 π 23 32 π 故选:D
3
3
2、三棱锥的三条侧棱两两垂直,其长分别为 3, 2,1 ,则该三棱锥的外接球的表面积( )
2
∴ OA2 OA2 OO2 ,即 R2 3 2 3 R2 ,解得 R 2 故选:D
5、将棱长为 2 的正方体木块削成一个体积最大的球,则该球的体积为( )
A. 4π 3

空间正方体的外接球和内切球问题

空间正方体的外接球和内切球问题

空间正方体的外接球和内切球问题外接球
外接球是一个与正方体相切于所有顶点的球体。

换句话说,外接球的球心与正方体的顶点相重合,并且球体的半径刚好与正方体的边长相等。

由于正方体的六个顶点之间的距离是相等的,所以外接球也是一个等边球体。

外接球的性质有以下几点:
1. 外接球的球心与正方体的中心重合。

2. 外接球的半径等于正方体的边长。

内切球
内切球是一个与正方体的六个面相切的球体。

换句话说,内切球的球心位于正方体的中心,并且球体的半径刚好与正方体的边长的一半相等。

内切球的性质有以下几点:
1. 内切球的球心与正方体的中心重合。

2. 内切球的半径等于正方体的边长的一半。

外接球和内切球的关系如下:
1. 外接球的半径等于内切球半径的两倍。

2. 外接球的球心和内切球的球心重合。

外接球和内切球的问题在几何学和工程学中具有一定的应用价值。

通过研究它们的性质和特点,可以帮助我们更好地理解立体几何和球体的关系。

本文只是简单介绍了空间正方体的外接球和内切球问题,希望能对您有所帮助。

如需深入了解此问题,还需进一步研究和探索。

高考球的外接、内接球问题

高考球的外接、内接球问题
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方体 或正方体或直棱柱.
途径4:若三棱锥的三个侧面两两垂直,则可将三棱锥补成长方 体或正方体.
途径1:正四面体、三条侧棱两两垂直的正三棱锥、四个面 都是是直角三角形的三棱锥都分别可构造正方体.
例1、如下图所示,在等腰梯形ABCD中,AB=2CD=2,DAB 60
.
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
例3、在三棱锥中A-BCD中,AB 平面BCD ,CD BC ,
AB=3,BC=4,CD=5, 则三棱锥A-BCD外接球的表面

. 50
途径3:若已知棱锥含有线面垂直关系,则可将棱锥补成长方 体或正方体或直棱柱.
.( 1)6
结论2:正棱柱的外接球的球心是上下底面中心的连线的中点.
例2、一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该
正六棱柱的顶点都在同一个球面上,且该六棱柱的体积为 9 ,底
面周长为3,则这个球的体积为 4 .
8
3
结论3:直三棱柱的外接球的球心是上下底面三角形外心的连线的 中点.
(1)截面图为正方形的内切圆EFGH,得

(2)与正方体各棱相切的球:球与正方体的各棱相切,切点为各棱的中点,
如图4作截面图,圆o为正方形EFGH的外接圆,易得

(3)正方体的外接球:正方体的八个顶点都在球面上,如图5,以对角面AA1
作截面图得,圆O为矩形AA1C1C的外接圆,易得

图3
图4
图5
2.棱锥的内切球(分割法)
.
4
3
结论5:若棱锥的顶点可构成共斜边的直角三角形,则公共
斜边的中点就是其外接球的球心.

超全的外接球与内切球问题

超全的外接球与内切球问题

第二章:外接球与内切球1.空间几何体的内切球几何体示例图像截面图对应性质圆柱r h 、分别为圆柱的底面圆半径和高,R 为内切球半径.R r =且2h R =;正三棱柱r h 、分别为柱体的底面三角形内切圆半径和高,R 为内切球半径.R r =且2h R =;正棱锥PE 为锥体的斜高,h r 、分别为锥体的高和底面内切圆半径,R 为内切球半径.1POF PEO △∽△可得R OP h R r PE PE -==“钻石”PE 为锥体的斜高,h r 、分别为锥体的高和底面内切圆半径,R 为内切球半径.在Rt POE △中,满足h rR PE⋅=一般三棱锥记R 为内切球半径,三棱锥的四个面面积分别为1234S S S S 、、、,则1234VR S S S S =+++【示例1】1.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切,记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V =__________.【解析】记内切球半径为R ,底面圆半径为r ,圆柱高为h ;则R r =且2h R =;则23122V h s r r r ππ=⋅=⋅=,3324433V R r ππ==;∴1232V V =2.如果一个球的外切圆锥的高是这个球的半径的3倍,则圆锥的侧面面积和球的表面积之比为__________.【解析】轴截面如右图,记h r 、为圆锥的高和底面圆半径,R 为内切球半径;由题意,3h R =,同时由1POF PEO △∽△可得1OP OFPE EO =;即R r==,得r =,则PE =.∴在圆锥1O P 中,2212S PE r R ππ=⋅=侧,2=4S R π球;则:3:1S S =侧球【例1】1.已知正方体的内切球(球与正方体的六个面都相切)的体积是323π,则该正方体的表面积为__________.2.如果一个八面体各个面都是全等的正三角形,如图所示,则这个几何体叫正八面体,则棱长为4的正八面体的内切球半径是__________.3.在封闭的直三棱柱111ABC A B C -内有一个体积为V 的球,若AB BC ⊥,6AB =,8BC =,13AA =,则V 的最大值是__________.4.天津滨海文化中心地处天津滨海新区开发区,是天津乃至京津冀地区的标志性文化工程.其中滨海图书馆建筑独具特色,被称为“滨海之眼”,如图1所示,中心球状建筑引起了小明的注意,为了测量球的半径,小明设计了两个方案,方案甲,构造正三棱柱侧面均与球相切如图2所示,底面边长约为30米,估计此时球的完整表面积为平方米;方案乙,测量球被地面截得的圆的周长约为16π米,地面到球顶部高度约为16米,估计此时球的完整体积为立方米,你认为哪种方案好呢?课堂练习1:1.一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32,那么3这个球的半径是,三棱柱的体积是.2.正四棱锥的高与底面边长相等且体积为83,(1)以底面中心为球心,经过四棱锥四条侧棱中点的球的表面积为__________;(2)该正四棱锥的内切球体积为__________.3.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为1的正三角形构成的,将它沿虚线折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为;若该六面体内有一球,则该球体积的最大值为.2.柱体外接球问题概述具备外接球的柱体,一定是“直”的,即侧棱垂直于底面或圆柱体.其球心必在柱体上下底面外接圆圆心连线的中点.此时球心到柱体底面的距离d 等于柱体高h 的一半(即2h d =).示例图像圆柱长方体直三棱柱计算公式222224h R d r r =+=+22224R a b c =++2sin ar A=,222R d r =+问题设计①.先求出柱体高和底面相关信息,再求外接球半径;②.已知外接球半径,求柱体的高或底面相关变量.【示例2】1.如图,长方体1111ABCD A B C D -的底面是面积为2的正方形,该长方体的外接球体积为323π,点E 为棱AB 的中点,则三棱锥1D ACE -的体积是__________.【解析】Ⅰ.确定长方体的高→Ⅱ.求1D ACEV -3432233V R R ππ==→=球,则2222114222AB AD AA R AA AB AD ⎫++=⎪→=⎬==⎪⎭;∴在三棱锥1D ACE -中,122112ACE h AA S AE BC ⎧==⎪⎨=⋅=⎪⎩△;得112233D ACE ACE V h S -=⋅=△2.已知直三棱柱111ABC A B C -的外接球半径为4,同时BA BC ⊥,BA BC =则111ABC A B C -体积的最大值为__________.【解析】Ⅰ.找到侧棱和底面棱长的关系→Ⅱ.函数求最值显然Rt ABC △为等腰直角三角形,则22r AB =;此时212ABC S AB CB r =⋅=△;同时222224h R d r r =+=+可得22164h r =-;则()()23116640844ABCh V h S h h h h ⎛⎫=⋅=⋅-=-<< ⎪⎝⎭△;令()()36408f x x x x =-+<<,则()2364f x x '=-+;令()0f x '=得x =;∴()f x 在⎛ ⎝上递增,在⎫⎪⎭上递减,则()max 9f x f ==,则()max max14V f x ==【例2】1.若一个圆柱的轴截面是面积为4的正方形,则该圆柱的外接球的表面积为__________.2.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为,则正方体外接球的体积为__________.3.已知直三棱柱的各棱长都相等,三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为28π,则该三棱柱的体积为__________.4.如图,直三棱柱111ABC A B C -的六个顶点都在半径为1的半球面上,AB AC =,侧面11BCC B 是半球底面圆的内接正方形,则侧面11ABB A 的面积为__________.5.“迪拜世博会”于2021年10月1日至2022年3月31日在迪拜举行,中国馆建筑名为“华夏之光”,外观取型中国传统灯笼,寓意希望和光明.它的形状可视为内外两个同轴圆柱,某爱好者制作了一个中国馆的实心模型,已知模型内层底面直径为12cm ,外层底面直径为16cm ,且内外层圆柱的底面圆周都在一个直径为20cm 的球面上.此模型的体积为__________.课堂练习2:1.已知正方体的体积是8,则这个正方体的外接球的体积是__________.2.在正方体1111ABCD A B C D -中,三棱锥11A B CD -的表面积为,则正方体外接球的体积为__________.3.一直三棱柱的每条棱长都是2,且每个顶点都在球O 的表面上,则球O 的表面积为__________.4.已知一个体积为8的正方体内接于半球体,即正方体的上底面的四个顶点在球面上,下底面的四个顶点在半球体的底面圆内.则该半球体的体积为__________.3.侧棱垂直于底面的锥体外接球问题阐述若锥体有一条侧棱PA 满足PA ⊥底面ABC ,则该锥体必可还原成一个直棱柱.即侧棱垂直于底面的棱锥与还原之后的直棱柱具有相同的外接球.示例图像还原至长方体还原至长方体还原至直三棱柱对应条件AP AB AC 、、两两垂直AP AB BC 、、两两垂直PA ⊥面ABC 计算公式22224R AP AB AC =++22224R PA AB BC =++12sin AB r C =⋅且12d h =222R d r =+备注当锥体有三条棱两两垂直时,记这三条棱的棱长分别为a b c 、、,则22224R a b c =++.若锥体的底面不含直角,仅有侧棱垂直于底面时,用222R d r =+求出外接球半径【示例3】在三棱锥P ABC -中,90ACB ∠=︒,8AB =,PC ⊥面ABC 且6PC =,则该三棱锥外接球的表面积为__________.【解析】由题意可知CA CB CP 、、两两垂直;则222222222464410041006R CP CB CA CA CB AB R S R CP ππ⎫=++⎪+==→=→==⎬⎪=⎭【例3】1.在三棱锥A BCD -中,AB AC AD 、、两两垂直,且ACB ACD ABD △、△、△的面积分别为22A BCD -的外接球的表面积为__________.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC △为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积__________.3.如图,PA ⊥面ABCE ,其中ABCD 为正方形,2AD =,1ED =.若三棱锥P ADE -的外接球的体积为92π.则四棱锥P ABCD -的外接球的表面积为__________.课堂练习3:1.在边长为2的等边三角形ABC 中,点D 是BC 的中点.以AD 为折痕,将ABC △折成直二面角B AD C --,则过A B C D 、、、四点的球的表面积为__________.2.在四面体S ABC -中,SA ⊥平面ABC ,120BAC ∠=︒,1AB =,2AC =,3SA =,则该四面体外接球面积为__________.3.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称为阳马.已知四棱锥M ABCD -为阳马,侧棱MA ⊥底面ABCD ,且1MA =,2BC =,3AB =.若该四棱锥的顶在都在同一球面上,则该球的表面积为__________.4.正棱锥和圆锥的外接球补充:问题阐述①.正四面体内嵌于正方体,则两者具有相同的外接球.记正四面体的边长为a ,正方体的边长为b ,外接球半径为R ;②.两个具有相同底面,且顶点(P Q 、)在底面的射影均为底面外接圆圆心的锥体的外接球.记底面外接圆半径为r ,两个锥体的高分别为12h h 、,外接球半径为R示例图像对应计算①.2a b =且2243R b =;②.22342R a =①.122h h R +=且PA QA ⊥(PQ 为球的直径);②.212r h h =⋅(直角三角形内射影定理);【示例4】1.正三棱锥底面边长为3,侧棱与底面成60︒角,则其外接球的体积为__________.【解析】Ⅰ.确定正棱锥的高和底面外接圆半径ABC △是边长为3的等边三角形,则333r AB ==;在Rt POA △中,3360OA r OP h PAO ⎫==⎪→==⎬∠=︒⎪⎭;Ⅱ.求外接圆半径,并求其体积则2231243222633h r R V R h ππ+===→==2.两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为__________.【解析】Ⅰ.求出12R h h r→→、3432233V R R ππ==→=球,显然PQ 是球O 的直径,则PA QA ⊥,则212r h h =⋅;121122243331h h R h r h h h +===⎫⎧→→=⎬⎨==⎭⎩Ⅱ.求锥体的体积则()21211233V h S h h r ππ=⋅=+⋅=【例4】1.若一个四面体的所有棱长均为1,四个顶点在同一个球面上,则此球的表面积为__________.2.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为3,则该半球的体积为__________.3.已知圆锥的顶点和底面圆周都在球O 的球面上,圆锥的母线长为3,侧面展开图的面积为3π,则球O 的表面积等于__________.4.以ABC 为底的两个正三棱锥P ABC -和Q ABC -内接于同一个球,并且正三棱锥P ABC -的侧面与底面ABC 所成的角为45︒,记正三棱锥P ABC -和正三棱锥Q ABC -的体积分别为1V 和2V ,则12V V =__________.5.《九章算术》是我国古代的数学名著,其中有很多对几何体体积的研究,已知某囤积粮食的容器的下面是一个底面积为32π,高为h 的圆柱,上面是一个底面积为32π,高为h 的圆锥,若该容器有外接球,则外接球的体积为__________.6.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2的正三角形,E F 、分别是PA AB 、的中点,90CEF ∠=︒,则球O 的体积为__________.课堂练习4:1.正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为__________.2.底面是边长为1的正方形,侧面是等边三角形的四棱锥的外接球的体积为__________.3.已知正方体1111ABCD A B C D -的棱长为2,其各面中心分别为E F G H M N 、、、、、,则连接相邻各面中心构成的几何体的外接球表面积为__________.4.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且面积为D ABC -体积的最大值为__________.5.在正三棱锥P ABC -中,6AB BC AC ===,点D 是PA 的中点.若PB CD ⊥,则该三棱锥外接球的表面积为__________.5.其他模型问题阐述①.面ABC ⊥面BCD ;②.记12r r 、分别为ABC BCD △、△的外接圆半径,R 为三棱锥A BCD -外接球半径.①.三棱锥D ABC -中,AD 为外接球直径;②.记球面距1OO d =,ABC △的外接圆半径为r ,D ABC -的高为h .示例图像对应性质①.2h d =;②.2222124BC R r r =+-(BC 为交线长);①.AB DB AC DC ⊥⊥、(直径所对圆周角);②.222R d r =+且2h d =;解题步骤①.确定三棱锥A BCD -中的两个垂直平面;②.求出对应的外接圆半径和交线长;③.求外接球的半径;①.确定外接球的直径;②.求出底面三角形外接圆半径r ;③.22D ABC R r d h V --→→→;【示例5】1.将长、宽分别为4和3的长方形ABCD 沿对角线AC 折成直二面角,得到四面体A BCD -,则四面体A BCD -的外接球的表面积为__________.【解析】由题意,面ACD ⊥面ACB 且5AC =而ACD ACB △、△都是直角三角形,则12522AC r r ===;则2222122544AC R r r =+-=;得2425S R ππ==2.已知三棱锥S ABC -的所有顶点都在球O 的表面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此三棱锥的体积为__________.【解析】在ABC △中,2sin 3AB r C ==;同时112R SC ==,则d ==,则2h d ==∴111sin 33326V hS AB AC C ==⨯⋅⋅=【例5】1.已知三棱维A BCD -中,侧面ABC ⊥底面BCD ,ABC △是边长为6的正三角形,BCD ∆是直角三角形,且2BCD π∠=,4CD =,则此三棱锥外接球的表面积为__________.2.在三棱锥A BCD -中,BA AD ⊥,BC CD ⊥,且AD ==A BCD -外接球的体积为__________.3.已知球的直径4SC =,A ,B 是该球球面上的两点,AB =,30ASC BSC ∠=∠=︒,则棱锥S ABC -的体积为__________.4.已知球的直径4SC =,A ,B 是该球球面上的两点.2AB =,45ASC BSC ∠=∠=︒,则棱锥S ABC -的体积为__________.5.已知三棱锥S ABC -外接球的球心O 在线段SA 上,若ABC △与SBC △均为面积是的等边三角形,则三棱锥S ABC -外接球的体积为__________.6.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA AC =,SB BC =,三棱锥S ABC -的体积为9,则球O 的表面积为__________.课后作业:1.已知圆锥的底面圆周及顶点均在球面上,若圆锥的轴截面为正三角形,则圆锥的体积与球的体积之比为__________.2.已知一个圆柱的高是底面半径的2倍,且其上、下底面的圆周均在球面上,若球的体积为323π,则圆柱的体积为__________.3.已知在ABC ∆中,角A B C 、、所对的边分别为a b c 、、,且2a =,6A π=,又点A B C 、、都在球O 的球面上,且点O 到平面ABC ,则球O 的体积为__________.4.一个正三棱锥的底面边长等于一个球的半径,该正三棱锥的高等于这个球的直径,则球的体积与正三棱锥体积的比值为__________.5.正四面体A BCD -的棱长为4,点E 为BC 边上的中点,过点E 做其外接球的截面,则截面圆的面积最小值为__________.6.已知一个正三棱柱所有棱长均为3,若该正三棱柱内接于半球体,即正三棱柱的上底面的三个顶点在球面上,下底面的三个顶点在半球体的底面圆内,则该半球体的体积为__________.7.所有棱长都是3的直三棱柱111ABC A B C -的六个顶点都在同一球面上,则该球的表面积是__________.8.已知圆柱1OO 的两底面圆周上的所有点都在球C 的表面,且圆柱1OO 的底面半径为1,高为,则球C 的表面积为__________.9.已知某圆柱的轴截面为正方形,则此圆柱的表面积与此圆柱外接球的表面积之比为__________.10.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上,若1AB =,AC =,AB AC ⊥,14AA =,则球O 的表面积为__________.11.已知正三棱台的高为1,上、下底面边长分别为和,其顶点都在同一球面上,则该球的表面积为__________.12.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为__________.13.正三棱柱111ABC A B C -内接于半径为2的球,若A ,B 两点的球面距离为π,则正三棱柱的体积为__________.14.直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于__________.15.已知矩形ABCD 的顶点都在半径为2的球O 的球面上,且AB =,BC =,过点D作DE 垂直于平面ABCD ,交球O 于点E ,则棱锥E ABCD -的体积为__________.16.在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________.17.《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC-为鳖臑,PA⊥平面ABC,2==,4PA AB-的四个顶点都在球O的球AC=,三棱锥P ABC面上,则球O的表面积为__________.18.已知在半径为2的球面上有A、B、C、D四点,若2==,则四面体ABCD的AB CD体积的最大值为().A B C.D19.已知四棱锥P ABCD=====,且底面ABCD为正方形,则-满足2PA PB PC PD AB该四棱锥的外接球的体积为__________.20.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,PA PC ⊥,则球O 的体积为__________.21.高为1的圆锥内接于半径为1的球,则该圆锥的体积为__________.22.已知正四棱锥P ABCD -的高为2,AB =,过该棱锥高的中点且平行于底面ABCD的平面截该正四棱锥所得截面为1111A B C D ,若底面ABCD 与截面1111A B C D 的顶点在同一球面上,则该球的表面积为__________.23.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤,则该正四棱锥体积的取值范围是__________.24.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为__________.25.已知四棱锥S ABCD -的所有棱长均相等,且底面是边长为的正方形,其5个顶点都在直径为10的球面上,则该四棱锥的体积为__________.26.已知1111ABCD A B C D -是边长为1的正方体,S ABCD -是高为1的正四棱锥,若点1111S A B C D 、、、、在同一球面上,则该球的表面积为__________.27.已知三棱锥S ABC -的底面是以AB 为斜边的等腰直角三角形,2SA SB SC AB ====,设S ,A ,B ,C 四点均在以O 为球心的某个球面上,则O 到平面ABC 的距离为__________.28.现有一副斜边长相等的直角三角板.若将它们的斜边AB 重合,其中一个三角板沿斜边折起形成三棱锥A BCD -,如图所示,已知6DAB π∠=,4BAC π∠=,三棱锥的外接球的表面积为4π,该三棱锥的体积的最大值为().A B C D 29.已知三棱锥A BCD -的四个顶点A ,B ,C ,D 都在球O 的表面上,BC CD ⊥,AC ⊥平面BCD ,且AC =,2BC CD ==,则球O 的表面积为__________.30.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是__________.31.已知矩形ABCD的顶点都在半径为2的球O的球面上,且AB=,BC=,过点D 作DE垂直于平面ABCD,交球O于点E,则棱锥E ABCD-的体积为().32.已知圆锥底面圆的直径为3,圆锥的高为,该圆锥的内切球也是棱长为a的正四面2体的外接球,则此正四面体的棱长a为__________.33.设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且3PB=,PA=,6三棱锥P ABC-的体积为18,则球O的体积为__________.34.已知六棱锥P ABCDEFPA=,PA⊥底面-的七个顶点都在球O的表面上,若2ABCDEF,且六边形ABCDEF是边长为1的正六边形,则球O的体积为__________.35.已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为__________.36.如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、∆分别是以BC,CA,AB为底边的等腰三E、F为圆O上的点,DBC∆,ECA∆,FAB角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC∆,使得D、∆,FAB∆,ECAcm的最大E、F重合,得到三棱锥.当ABC△的边长变化时,所得三棱锥体积(单位:3)值为__________.37.已知底面边长为1的正四棱柱的各顶点均在同一球面上,则该球的体积为__________.38.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB ==,BC =O 的表面积等于__________.39.已知在半径为2的球面上有A 、B 、C 、D 四点,若2AB CD ==,则四面体ABCD 的体积的最大值为__________.40.已知点P A B C D 、、、、是球O 表面上的点,PA ⊥平面ABCD ,四边形ABCD 是边长为正方形.若PA =,则OAB ∆的面积为__________.41已知四面体P ABC -的外接球的球心O 在AB 上,且OP ⊥面ABC ,2AC =.若32P ABC V -=,则该球的体积为__________.。

立体几何中球的内切和外接问题(完美版)

立体几何中球的内切和外接问题(完美版)

C 1
注意:①割补法,② V多面体 3 S全 r内切球
变式训练:一个正方体内接于一个球,过球心作一截面,如 图所示,则截面的可能图形是( )




• A .①② B.②④ C.①②③ D.②③④
D A
D1 A1
C
B O
C1 B1
球的内接正方体的对角线等于球直径。
变式训练:已知正四面体内接于一个球,某人画出四 个过球心的平面截球与正四面体所得的图形如下,
的动点,当弦 MN 的长度最大时, PM • PN 的取值范围是

感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
• 感谢阅读
2023最新整理收集 do something
球与多面体的内切、外接
球的半径r和正方体 的棱长a有什么关系?
.r
a
一、 球体的体积与表面积


二、球与多面体的接、切
定义1:若一个多面体的各顶点都在一个球的球面上,
则称这个多面体是这个球的内接多面体,
这个球多是面这体个的外接球

定义2:若一个多面体的各面都与一个球的球面相切,
,即 为该四面体的外接球的球心
A
O
C
所以该外接球的体积为
03
破译规律-特别提

2 例题剖析-针对讲 解
04
举一反三-突破提

4 举一反三-突破提 升 1、(2015 海淀二模)已知斜三棱柱的三 视图如图所示,该斜三棱柱的体积为 ______.
4 举一反三-突破提 升
2、(2015 郑州三模) 正三角形ABC的2 边3 长
5 正棱锥的外接球的球心是在其 高上

球的内切和外接问题

球的内切和外接问题

正方体外接球的直径2R 3 2 a, R 6 a
2
4
S表
3 2
a 2
A B
O D
C
求正多面体外接球旳半径
求正方体外接球旳半径
球旳内切、外接问题
1、内切球球心到多面体各面旳距离均相等, 外接球球心到多面体各顶点旳距离均相等。 2、正多面体旳内切球和外接球旳球心重叠。 3、正棱锥旳内切球和外接球球心都在高线上,但不 重叠。
丙球外接于该正方体,则三球表面面积之比为( A )
A. 1:2:3
B. 1: 2: 3 C. 1:3 4:3 9 D. 1: 8: 27
图3
图4
图5
甲球为内切球直径=正方体棱长
设为1
S甲 4 R12 =
D
C
A
B
中截面
O
.
D1
C1
A1
B1
球内切于正方体旳棱
正方形旳对角线等于球旳直径= 2a
S乙 4 R22 =2
连 AO 延长交 PD 于 G
6a 3
P
则 OG ⊥ PD,且 OO1 = OG
3
∵ Rt △ PGO ∽ Rt △ PO1D
A
a 2
•O G
O1 D
R
6 a R 3
3a
3a
2
6
R 6 a 4
E 3a
6
S表
3 2
a2
求棱长为a的正四面体P ABC的外接球的表面积
解法2:
正方体的棱长为 2 a, 2
球与多面体旳内切、外接
球旳半径r和正方体 旳棱长a有什么关系?
.r
a
一、 球体旳体积与表面积

V球

球的内切外切解题技巧

球的内切外切解题技巧

球的“内切”、“外切”的解题技巧【方法技巧】类型一 球的内切问题 使用情景:有关球的内切问题解题模板:第一步 首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论. 类型二 球的外切问题 使用情景:有关球的外切问题解题模板:第一步 首先画出球及它的外切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论.【应用举例】【例题1】在底面半径为2,母线长为4的圆锥中内有一个高为3的圆柱.(1)求:圆柱表面积的最大值;(2)在(1)的条件下,求该圆柱外接球的表面积和体积.【答案】(1)π)(312+;(2)π7=S,677π=V .【解析】试题分析:(1)我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案;(2)求出圆柱的外接球半径,即可求该圆柱外接球的表面积和体积.试题解析:(1)当圆柱内接与圆锥时,圆柱的表面积最大.设此时,圆柱的底面R 半径为r ,高为h′.圆锥的高h 2242-3312h .∴2r 23323,∴r =1.∴S 表面积=2S底+S 侧=2πr 23=2(13)π.(2)设圆柱的外接球半径为R ,72R =,7S π=, 76V π=考点:1、球内接多面体;2、球的表面积和体积.【难度】较易【例题2】求球与它的外切圆柱、外切等边圆锥的体积之比.【答案】964∶∶∶∶锥柱球=V V V . 【解析】试题分析:设球的半径为R ,则外切圆柱的半径为R ,高为2R ;外切等边圆锥底面半径为R 3,高为3R , 所以334R V π=球 ,32R v π=柱, 33R V π=锥 9:6:4=∴锥柱球::V V V考点:本题考查空间几何体的体积。

点评:本题的关键是由球的半径求出外切圆柱、外切等边圆锥的半径和高。

考查了空间想象力。

首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系. 【难度】一般【例题3】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+. 【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h .而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 【点评】关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2. 考点:空间几何体的球体积和表面积. 【较易】【例题4】正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.【答案】322334sin 2(34sin )l παα--.【解析】解:如图,作PD 底面ABC 于D ,则D 为正△ABC 的中心。

球的内切外切解题技巧

球的内切外切解题技巧

球的“内切”、“外切”的解题技巧【方法技巧】类型一 球的内切问题 使用情景:有关球的内切问题解题模板:第一步 首先画出球及它的内切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论. 类型二 球的外切问题 使用情景:有关球的外切问题解题模板:第一步 首先画出球及它的外切圆柱、圆锥等几何体,它们公共的轴截面; 第二步 然后寻找几何体与几何体之间元素的关系 第三步 得出结论.【应用举例】【例题1】在底面半径为2,母线长为4的圆锥中内有一个高为3的圆柱. (1)求:圆柱表面积的最大值;(2)在(1)的条件下,求该圆柱外接球的表面积和体积.【答案】(1)π)(312+;(2)π7=S ,677π=V .【解析】 试题分析:(1)我们可计算出圆柱的底面半径,代入圆柱表面积公式,即可得到答案;(2)求出圆柱的外接球半径,即可求该圆柱外接球的表面积和体积.试题解析:(1)当圆柱内接与圆锥时,圆柱的表面积最大.设此时,圆柱的底面R 半径为r ,高为h′.圆锥的高h 2242-3312h .∴2r 23323,∴r =1.∴S 表面积=2S底+S 侧=2πr 23=2(13)π.(2)设圆柱的外接球半径为R ,72R =,7S π=, 76V π=考点:1、球内接多面体;2、球的表面积和体积.【难度】较易【例题2】求球与它的外切圆柱、外切等边圆锥的体积之比.【答案】964∶∶∶∶锥柱球=V V V . 【解析】试题分析:设球的半径为R ,则外切圆柱的半径为R ,高为2R ;外切等边圆锥底面半径为R 3,高为3R , 所以334R V π=球 ,32R v π=柱, 33R V π=锥 9:6:4=∴锥柱球::V V V考点:本题考查空间几何体的体积。

点评:本题的关键是由球的半径求出外切圆柱、外切等边圆锥的半径和高。

考查了空间想象力。

首先画出球及它的外切圆柱、等边圆锥,它们公共的轴截面,然后寻找几何体与几何体之间元素的关系. 【难度】一般【例题3】把四个半径都是1的球中的三个放在桌面上,使它两两外切,然后在它们上面放上第四个球,使它与前三个都相切,求第四个球的最高点与桌面的距离. 【答案】3622+. 【解析】由题意,四球心组成棱长为2的正四面体的四个顶点,则正四面体的高362)332(222=⋅-=h .而第四个球的最高点到第四个球的球心距离为求的半径1,且三个球心到桌面的距离都为1,故第四个球的最高点与桌面的距离为3622+. 【点评】关键在于能根据要求构造出相应的几何体,由于四个球半径相等,故四个球一定组成正四面体的四个顶点且正四面体的棱长为两球半径之和2. 考点:空间几何体的球体积和表面积. 【较易】【例题4】正三棱锥ABC P -的侧棱长为l ,两侧棱的夹角为α2,求它的外接球的体积.【答案】322334sin 2(34sin )l παα--.【解析】解:如图,作PD 底面ABC 于D ,则D 为正△ABC 的中心。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球与多面体的外接、内切
定义1:若一个多面体的各顶点都在一个球的球面上, 则称这个多面体是这个球的内接多面体, 这个球是这个多面体的外接球
定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球
一、直接法
1、求正方体的外接球的有关问题 例1、若棱长为3的正方体的顶点都在同一球面上,则该 球的表面积为 27.
3 2 6 2 3 a a a 12 3 12

1 3V A BCD S 表 r V A BCD r 3 S表
R=3r
2 3 3 a 6 12 a 2 12 3a
(1)正多面体存在内切球且正多面体的中心为内切球的球心. (2)求多面体内切球半径,往往可用“等体积法”.
2、构造长方体
, BC DC
A
AB 6, AC=2 13,AD=8 ,
则B、C两点间的球面距离是
. 4 3
B
O
C
D
图5
三、确定球心位置法
在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个 直二面角B-AC-D,则四面体ABCD的ห้องสมุดไป่ตู้接球的体积为( C )
125 A. 12
2、求长方体的外接球的有关问题
例2、一个长方体的各顶点均在同一球面上,且一个顶点上的 三条棱长分别为1,2,3 ,则此球的表面积为 .
二、构造法 1、构造正方体 例3、若三棱锥的三条侧棱两两垂直,且侧棱长均为 3 ,则其 外接球的表面积是 变式题(浙江高考题)已知球O的面上四点A、B、C、D, DA 平面ABC,AB BC, DA AB BC 3 则球O的体积等于
125 B. 9
125 C. 6
125 D. 3
D C B
A
O 图4
四、构造直角三角形 例、求棱长为1的正四面体外接球的体积.
解:设SO1是正四面体S ABCD的高,外接球的球心 O在SO1上,设外接球半径为 R, AO1 r , 则在ABC中,用解直角三角形知 识得,r 3 1 2 2 , 从而SO1 SA2 AO1 1 , 3 3 3
3 (3)正四面体内切球半径是高的 4 ,外接球半径是高的 4 .
(4)并非所有多面体都有内切球(或外接球).
1 V多 S表 R内切 3 1
解:设点o是内切球的球心,正四面体棱长为a. 由图形的对称性知,点o也是外接球的球心. 设内切球半径为r,外接球半径为R. 正四面体的表面积 S 表 4 3 a 2 3a 2
VA BCD 正四面体的体积 1 3 2 3 2 a AE a 3 4 12
O
4
AB 2 BE 2
D
O
A O C
C
A
B
图4
P
B
例4、 求棱长为 a 的正四面体 A – BCD 的外接球的表面积。 变式题:1、一个四面体的所有棱长都为 2 ,四个顶点在同一球面上,
3 则此球的表面积为_________
A B A B
O
D C C
O
D
求正多面体外接球的半径
求正方体外接球的半径
已知点A、B、C、D在同一个球面上, AB 平面BCD
2 2
2 3 6 ,解得R 在RtAOO1中,由勾股定理得, R2 R , 3 3 4 4 3 4 6 6 V球 R . 3 3 4 8
3
几何体的内切球
正四面体的棱长为a,则其内切球和外接球的半径 是多少?
相关文档
最新文档