CNN(卷积神经网络) ppt课件
合集下载
卷积神经网络ppt课件
6. F6层有84个单元(之所以选这个数字的原因来自于输出层的设计),与C5层 全相连。有10164个可训练参数。如同经典神经网络,F6层计算输入向量 和权重向量之间的点积,再加上一个偏置。然后将其传递给sigmoid函数 产生节点的输出。
16
LetNet-5
比特面编码:将一个灰度图像为8 bit/像素中每个像素的第j个比特抽取出来,就得到一个称为比特平面的二值 图像,于是图像完全可以用一组共8个比特平面来表示,对灰度图像的编码转为对比特平面的二值化方块编码。 为此,将每个比特面分为不重叠的m×n个元素的子块。
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
5. C5层是一个卷积层,有120个特征图。每个单元与S4层的全部16个单元的5*5邻 域相连,故C5特征图的大小为1*1:这构成了S4和C5之间的全连接。之所以仍 将C5标示为卷积层而非全连接层,是因为如果LeNet-5的输入变大,而其他的 保持不变,那么此时特征图的维数就会比1*1大。C5层有48120个可训练连接。
17
卷积层的训练
layer l-1
L-1
层
?
的
误
差
L-1
层 的
输 出
layer l
L
层 的 误 差
L
层 的 输 入
18
卷积层的误差传播
19
卷积层的误差传播
20
卷积层的误差传播
卷积操作 21
卷积层filter权重梯度的计算
22
卷积层filter权重梯度的计算
16
LetNet-5
比特面编码:将一个灰度图像为8 bit/像素中每个像素的第j个比特抽取出来,就得到一个称为比特平面的二值 图像,于是图像完全可以用一组共8个比特平面来表示,对灰度图像的编码转为对比特平面的二值化方块编码。 为此,将每个比特面分为不重叠的m×n个元素的子块。
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
5. C5层是一个卷积层,有120个特征图。每个单元与S4层的全部16个单元的5*5邻 域相连,故C5特征图的大小为1*1:这构成了S4和C5之间的全连接。之所以仍 将C5标示为卷积层而非全连接层,是因为如果LeNet-5的输入变大,而其他的 保持不变,那么此时特征图的维数就会比1*1大。C5层有48120个可训练连接。
17
卷积层的训练
layer l-1
L-1
层
?
的
误
差
L-1
层 的
输 出
layer l
L
层 的 误 差
L
层 的 输 入
18
卷积层的误差传播
19
卷积层的误差传播
20
卷积层的误差传播
卷积操作 21
卷积层filter权重梯度的计算
22
卷积层filter权重梯度的计算
深度学习CNN卷积神经网络入门PPT课件
softmax
softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映射成为 (0,1)的值,而这些值的累和为1
VGG刺猬特征图可视化
第一层卷积核学 到的图片特征
VGG刺猬特征图可视化
第一层特征图的细节比较清晰和输入图片较为相似,提取出了输入 图片的边缘。
VGG刺猬特征图可视化
结束语
当你尽了自己的最大努力时,失败也是伟大的, 所以不要放弃,坚持就是正确的。
When You Do Your Best, Failure Is Great, So Don'T Give Up, Stick To The End
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
参数数目计算
C1有156个参数:(5*5+1)*6=156
S2有12个参数:因为S2中每个map中的每个点都与C1的四个点相连接进行池化,一般做完 池化操作比如取最大或平均,还要乘以一个数,再加一个bias,再非线性变换
C3有1516个参数:C3也是通过5*5的卷积核由14*14的map得到10*10的map,不过这里连接 方式有点复杂,共有(5*5*3+1)*6+(5*5*4+1)*9+(5*5*6+1)*1=1516个参数。
逻辑回归
过拟合与欠拟合
基础知识
过拟合与欠拟合
正则化
λ=1
λ=0
λ=100
过拟合与欠拟合解决方案
解决欠拟合(高偏差)的方法 1.增加神经网络的隐藏层数和隐藏单元数等 2.增加更多的特征 3.调整参数和超参数 超参数包括: 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、batch_size、正则化参数λ等 4.降低正则化约束
深度卷积神经网络ppt课件
简洁、普适的结构模型。 特征提取与分类器可以一起学习。
神经网络简要介绍
人类视觉机理:
David Hubel 和 TorstenWiesel 发现了视觉系 统的信息处理 方式,即视皮 层的分级特性, 获得1981年诺 贝尔生理学或 医学奖。
Low-level sensing
Preprocessing
人工神经网络发展历程
• 发展基础:
数据爆炸:图像数据、文本数据、语音数 据、社交网络数据、科学计算等
计算性能大幅提高
• 为什么有效
– 浅层神经网络可以近似任意函数,为何多层?
深层网络结构中,高层可以综合应用低层信息。 低层关注“局部”,高层关注“全局”、更具有语
义化信息。 为自适应地学习非线性处理过程提供了一种可能的
感知机(Perceptron)
通过查找超平面解决二类分类问题(通过二值函数解决二类分类问题)
公式表达:
f (x) sign(w x)
w x 可看作对输入的空间变换
四种空间变换:维度、缩放、旋转、平移
感知机中的线性映射限制了模型的表达能力,线 性变化的组合仍为线性变化。
神经网络简要介绍
ANN基本构成:感知机(Perceptron)+激活函数
1、计算每层中每个节点的输出
y
m j
h(s
m j
)
h(
wimj
y m1 i
)
h()
为激活函数
2、在输出层计算损失
m j
h' (smj )(Tj
yi m j
)
Tj 为目标参考输出,一般从样本训练中得到。
神经网络简要介绍
神经网络简要介绍
人类视觉机理:
David Hubel 和 TorstenWiesel 发现了视觉系 统的信息处理 方式,即视皮 层的分级特性, 获得1981年诺 贝尔生理学或 医学奖。
Low-level sensing
Preprocessing
人工神经网络发展历程
• 发展基础:
数据爆炸:图像数据、文本数据、语音数 据、社交网络数据、科学计算等
计算性能大幅提高
• 为什么有效
– 浅层神经网络可以近似任意函数,为何多层?
深层网络结构中,高层可以综合应用低层信息。 低层关注“局部”,高层关注“全局”、更具有语
义化信息。 为自适应地学习非线性处理过程提供了一种可能的
感知机(Perceptron)
通过查找超平面解决二类分类问题(通过二值函数解决二类分类问题)
公式表达:
f (x) sign(w x)
w x 可看作对输入的空间变换
四种空间变换:维度、缩放、旋转、平移
感知机中的线性映射限制了模型的表达能力,线 性变化的组合仍为线性变化。
神经网络简要介绍
ANN基本构成:感知机(Perceptron)+激活函数
1、计算每层中每个节点的输出
y
m j
h(s
m j
)
h(
wimj
y m1 i
)
h()
为激活函数
2、在输出层计算损失
m j
h' (smj )(Tj
yi m j
)
Tj 为目标参考输出,一般从样本训练中得到。
神经网络简要介绍
卷积神经网络(纯净版)ppt课件
Convolutional Neural Networks 卷积神经网络
1
Contents
• 机器学习,神经网络,深度学习之间的关系 • 什么是神经网络 • 梯度下降算法 • 反向传播算法 • 神经网络的训练 • 什么是卷积 • 什么是池化 • LeNet-5 • 其它的工作
2
Convolutional Neural Networks
5
Convolutional Neural Networks
反向传播算法(Back Propagation)
• 反向传播算法是计算多层复合函数的所有变量的偏导数的利器,上面梯度下降的例子中就是求梯度, 简单的理解就是链式法则
根据链式法则,我们求e对a的偏导和e对d的偏导是如下所示:
可以看出,它们都求了e对c的偏导。对于权值动则数万的深度模型 中的神经网络,这样的冗余所导致的计算量是相当大的 BP算法则机智地避开了这种冗余,BP算法是反向(自上往下)来求偏 导的。
• 神经元:
,
• 每个连接都有一个权值
4
图1.一个全连接的神经网络
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别 卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量 黄色部分是卷积核
11
Convolutional Neural Networks
1
Contents
• 机器学习,神经网络,深度学习之间的关系 • 什么是神经网络 • 梯度下降算法 • 反向传播算法 • 神经网络的训练 • 什么是卷积 • 什么是池化 • LeNet-5 • 其它的工作
2
Convolutional Neural Networks
5
Convolutional Neural Networks
反向传播算法(Back Propagation)
• 反向传播算法是计算多层复合函数的所有变量的偏导数的利器,上面梯度下降的例子中就是求梯度, 简单的理解就是链式法则
根据链式法则,我们求e对a的偏导和e对d的偏导是如下所示:
可以看出,它们都求了e对c的偏导。对于权值动则数万的深度模型 中的神经网络,这样的冗余所导致的计算量是相当大的 BP算法则机智地避开了这种冗余,BP算法是反向(自上往下)来求偏 导的。
• 神经元:
,
• 每个连接都有一个权值
4
图1.一个全连接的神经网络
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别 卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量 黄色部分是卷积核
11
Convolutional Neural Networks
卷积神经网络PPT课件
15
多层感知器预测
将光栅化后的向量连接到多层感知器
16
CNN参数更新
17
多层感知器层
• 残差定义 • 使用多层感知器的参数估计方法,得到其最低的一个隐层 s 的残差向量 • δs 。 • 现在需要将这个残差传播到光栅化层 r ,光栅化的时候并没有对向量的
值做修改,因此其激活函数为恒等函数,其导数为单位向量。
6
隐层输出层
可以视为级联在隐层上的一个感知器。若为二分类,则常用 LogisticRegression;若为多分类,则常用Softmax Regression。
7
核心!权值、偏置估计(结论如下,推导见“卷积神经网络全面 解析”)
• 残差定义:
假设有层 p, q, r ,分别有 l, m, n 个节点,
对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1 的目标输出,从而实现对输人矢量分类的目的。
3
单层感知器作用范围
• 感知器是一个简单的二类分类的线性分类模型,要求我们的样本是线性可 分的。
4
多层感知器
多层感知器的思路是,尽管原始数据是非线性可分的,但是可以通过某种方 法将其映射到一个线性可分的高维空间中,从而使用线性分类器完成分类。 图1中,从X到O这几层,正展示了多层感知器的一个典型结构,即输入层隐 层输出层。
20
• 对权值和偏置的更新:
卷积层
• 其中,rot180 是将一个矩阵旋转180度; Oq'是连接到该卷积层前的池化 层的输出。
•
21
卷积层的残差反传?
22
整体思路
• 以层为单位,分别实现卷积层、池化层、光栅化层、MLP隐层、分类层这 五个层的类。其中每个类都有output和backpropagate这两个方法。
多层感知器预测
将光栅化后的向量连接到多层感知器
16
CNN参数更新
17
多层感知器层
• 残差定义 • 使用多层感知器的参数估计方法,得到其最低的一个隐层 s 的残差向量 • δs 。 • 现在需要将这个残差传播到光栅化层 r ,光栅化的时候并没有对向量的
值做修改,因此其激活函数为恒等函数,其导数为单位向量。
6
隐层输出层
可以视为级联在隐层上的一个感知器。若为二分类,则常用 LogisticRegression;若为多分类,则常用Softmax Regression。
7
核心!权值、偏置估计(结论如下,推导见“卷积神经网络全面 解析”)
• 残差定义:
假设有层 p, q, r ,分别有 l, m, n 个节点,
对网络权值的训练,可以使感知器对一组输人矢量的响应达到元素为0或1 的目标输出,从而实现对输人矢量分类的目的。
3
单层感知器作用范围
• 感知器是一个简单的二类分类的线性分类模型,要求我们的样本是线性可 分的。
4
多层感知器
多层感知器的思路是,尽管原始数据是非线性可分的,但是可以通过某种方 法将其映射到一个线性可分的高维空间中,从而使用线性分类器完成分类。 图1中,从X到O这几层,正展示了多层感知器的一个典型结构,即输入层隐 层输出层。
20
• 对权值和偏置的更新:
卷积层
• 其中,rot180 是将一个矩阵旋转180度; Oq'是连接到该卷积层前的池化 层的输出。
•
21
卷积层的残差反传?
22
整体思路
• 以层为单位,分别实现卷积层、池化层、光栅化层、MLP隐层、分类层这 五个层的类。其中每个类都有output和backpropagate这两个方法。
卷积神经网络ppt课件
Convolutional Neural Networks 卷积神经网络
ppt课件.
1
Contents
机器学习,神经网络,深度学习之间的关系 什么是神经网络 梯度下降算法 反向传播算法 神经网络的训练 什么是卷积 什么是池化 LeNet-5 其它的工作
ppt课件.
2
Convolutional Neural Networks
ppt课件.
6
Convolutional Neural Networks
梯度下降算法+反向传播算法
ppt课件.
7
Convolutional Neural Networks
ppt课件.
8
Convolutional Neural Networks
ppt课件.
9
Convolutional Neural Networks
ppt课件.
10
Convolutional Neural Networks
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别
卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量
黄色部分是卷积核
ppt课件.
11
Convolutional Neural Networks
图1.一个全连接的神经网络
ppt课件.
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法
• 每次沿着梯度的反方向,即函数值下降最快的方向,去 修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
ppt课件.
1
Contents
机器学习,神经网络,深度学习之间的关系 什么是神经网络 梯度下降算法 反向传播算法 神经网络的训练 什么是卷积 什么是池化 LeNet-5 其它的工作
ppt课件.
2
Convolutional Neural Networks
ppt课件.
6
Convolutional Neural Networks
梯度下降算法+反向传播算法
ppt课件.
7
Convolutional Neural Networks
ppt课件.
8
Convolutional Neural Networks
ppt课件.
9
Convolutional Neural Networks
ppt课件.
10
Convolutional Neural Networks
什么是卷积?
右图展示了卷积的过程,和信号处理的卷积有所区别
卷积降低了网络模型的复杂度(对于很难学习的深层 结构来说,这是非常重要的),减少了权值的数量
黄色部分是卷积核
ppt课件.
11
Convolutional Neural Networks
图1.一个全连接的神经网络
ppt课件.
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法
• 每次沿着梯度的反方向,即函数值下降最快的方向,去 修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
CNN(卷积神经网络) ppt课件
Notes: 式1:
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
目录
Contents
3. CNN实现(tensorflow)
3.1.主流CNN模型介绍 3.2.使用tensorflow实现CNN 3.3.使用tensorflow实现其它模型
使用tensorflow搭建CNN
TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。节点 在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组, 即张量(tensor)。
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
目录
Contents
3. CNN实现(tensorflow)
3.1.主流CNN模型介绍 3.2.使用tensorflow实现CNN 3.3.使用tensorflow实现其它模型
使用tensorflow搭建CNN
TensorFlow™ 是一个采用数据流图,用于数值计算的开源软件库。节点 在图中表示数学操作,图中的线则表示在节点间相互联系的多维数据数组, 即张量(tensor)。
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
深度学习-CNN卷积神经网络PPT课件
1
0
8
Sparse Connectivity
这么做是有道理的,就是根据一些生物学的研究 我们的视觉感知细胞其实是局部感知的,比如我 们用很小的卷积核来提取整幅图像的布局边缘信 息,这时候采用全连接的意义并不大,不能学到 很好的图像特征信息,而且模型复杂度还很高。
上图中红色框里面的表示稀疏连接 上图中蓝色框里面表示非稀疏连接
上图就是max pooling导致的局部平移不变性,我们可以看到下面的卷积层的输入向右平移了 一个神经元,即输入层对应神经元的值都变了,可是上面的pooling层的值只有部分改变了。 这里只是对一个feature map做池化,其实对多个feature map做池化还可能解决旋转不变性的 问题。
14
17
Equivariant Representation
现在还只有一个思想没有讲,就是不变性,前面在池化的时候已经提到过,池化可以实现局部 平移不变性的效果,甚至可以通过变化实现旋转不变性。但是如果有大范围的平移怎么办那, 是否还存在平移不变性那。这里卷积层和全连接层就对平移不变性起到了很大的作用。
和传统的前馈神经网络类似,整个网络的模型有几种因素决定。我们传统的前馈神经网络 隐藏层一般是全连接的,而CNN的隐藏层又分为convolutional layer,pooling layer和最后的 fully-connected layer,这些隐藏层的区别是CNN之所以为CNN的重要原因,而另外各个神经 元激活函数的选择以及整个网络损失函数的选择都与FNN类似。下面我们主要讲解LeNet-5。
如图所示,一个卷积操作就是指卷积核和同样 大小的一个图像矩阵相乘,然后再向下或者向 右滑动卷积核,执行下一个卷积操作。这样用 卷积核在整个图像上面滑动一遍便生成了一个 卷积层。
卷积神经网络ppt课件
23
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
25
Thank you
26
2. S2层是一个下采样层,即池化层。在斯坦福关于深度学习的 教程中,这个过程叫做Pool 。但在LeNet-5系统,下采样层比 较复杂,由4个点下采样的加权平均为1个点,,因为这4个加 权系数也需要学习得到,这显然增加了模型的复杂度。
14
LeNet-5
3. 根据对前面C1层同样的理解,我们很容易得到C3层的大小为10x10. 只不过,C3层的变成了16个 10x10网络,有16个卷积核。 如果S2层只有1个平面,那么由S2层得到C3就和由输入层得到C1层是 完全一样的。但是,S2层由多层,那么,只需要按照一定的顺利组合这些层就可以了。具体的组合 规则,在 LeNet-5 系统中给出了下面的表格:
C3层feature map
S2层feature map
简单的说,例如对于C3层第0张特征图,其每一个节点与S2层的第0张特征图,第1张特征图,第2张 特征图,总共3个5x5个节点相连接。后面依次类推,C3层每一张特征映射图的权值是相同的
15
LeNet-5
4. S4 层是在C3层基础上下采样,前面已述。 神Fra bibliotek元:,
每个连接都有一个权值
图1.一个全连接的神经网络
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
池化层的误差传递
大部分池化层没有需要训练的参数,只需要将误差传递。以Max Pooling为 例
Layer l-1
Layer l
24
池化层的误差传递
25
Thank you
26
2. S2层是一个下采样层,即池化层。在斯坦福关于深度学习的 教程中,这个过程叫做Pool 。但在LeNet-5系统,下采样层比 较复杂,由4个点下采样的加权平均为1个点,,因为这4个加 权系数也需要学习得到,这显然增加了模型的复杂度。
14
LeNet-5
3. 根据对前面C1层同样的理解,我们很容易得到C3层的大小为10x10. 只不过,C3层的变成了16个 10x10网络,有16个卷积核。 如果S2层只有1个平面,那么由S2层得到C3就和由输入层得到C1层是 完全一样的。但是,S2层由多层,那么,只需要按照一定的顺利组合这些层就可以了。具体的组合 规则,在 LeNet-5 系统中给出了下面的表格:
C3层feature map
S2层feature map
简单的说,例如对于C3层第0张特征图,其每一个节点与S2层的第0张特征图,第1张特征图,第2张 特征图,总共3个5x5个节点相连接。后面依次类推,C3层每一张特征映射图的权值是相同的
15
LeNet-5
4. S4 层是在C3层基础上下采样,前面已述。 神Fra bibliotek元:,
每个连接都有一个权值
图1.一个全连接的神经网络
4
Convolutional Neural Networks
梯度下降算法
• 梯度下降算法是用来求函数最小值的算法 • 每次沿着梯度的反方向,即函数值下降最快的方向,去
修改值,就能走到函数的最小值附近(之所以是最小值 附近而不是最小值那个点,是因为我们每次移动的步长 不会那么恰到好处,有可能最后一次迭代走远了越过了 最小值那个点)
[课件]卷积神经网络CNNPPT
23
1998年LeNet——数字/字符识别
LeNet-5
Feature
map
a set of units whose weighs are constrained to be identical.
24
1998年LeNet——数字/字符识别
例如:C3层参数个数
(3*6+4*9+6*1)*25
33
VGG Net (2014)
K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014
34
140948422014sparseinteractions有限连接kernel比输入小连接数少很多学习难度小计算复杂度低sparseinteractions有限稀疏连接局部连接连接数少很多计算复杂度低层级感受野生物启发parametersharing参数共享tiedweights进一步极大的缩减参数数量equivariantrepresentations等变性配合pooling可以获得平移不变性三个步骤卷积突触前激活net非线性激活detectorpoolinglayer的两种定义复杂定义简单定义pooling10定义没有需要学习的参数replacescertainlocationsummarystatisticnearbyoutputs种类maxpoolingweightedaveragepoolingwhypooling
30
AlexNet for ImageNet
深度的重要性
图文并茂的 CNN 介绍 PPT
Convolution Neural Network CNN ver. 4.11a 13
Architecture (exercise: write formulas for A1(i=4) and A2(k=3)
A1
P(j=1) P(j=2) P(j=9) P(j=1) P(j=2)
1 A 2 1 e (W2 (i 1,k 1) A1 ( k 1) W2 (i 2,k 1) A2 ( k 1)... b 2 ( k 1)) 1 e W1 ( j 1,i 1) P1 W1 ( j 2,i 1) P2 ... b1 (i 1)
图文并茂的 cnn介绍 ppt convolutionneural network cnn tutorialkh wong convolution neural network cnn ver. 4.11a verypopular: toolboxes:cuda-convnet caffe(user friendlier) highperformance classifier (multi- class) handwrittenoptical character ocr recognition, speech recognition, image noise removal etc. learningconvolution neural network cnn ver. 4.11a fullyconnected back propagation neural networks (bpnn) part1a: feed forward processing part1a: feed backward processing convolutionneural networks (cnn) part2a: feed forward part2b: feed backward cnnconvolution neural network cnn ver. 4.11a fullyconnected back propagation (bp) neural net convolution neural network cnn ver. 4.11a theoryfully connected back propagation neural net (bpnn) usemany samples weights,so unknowninput differentclasses aftertraining: forward pass biases(using forward backwardpasses) convolution neural network cnn ver. 4.11a (useforward, backward passes) iter=1:all_epocks (each forwardpass eachoutput neuron: usetraining samples: feedforward backward
Architecture (exercise: write formulas for A1(i=4) and A2(k=3)
A1
P(j=1) P(j=2) P(j=9) P(j=1) P(j=2)
1 A 2 1 e (W2 (i 1,k 1) A1 ( k 1) W2 (i 2,k 1) A2 ( k 1)... b 2 ( k 1)) 1 e W1 ( j 1,i 1) P1 W1 ( j 2,i 1) P2 ... b1 (i 1)
图文并茂的 cnn介绍 ppt convolutionneural network cnn tutorialkh wong convolution neural network cnn ver. 4.11a verypopular: toolboxes:cuda-convnet caffe(user friendlier) highperformance classifier (multi- class) handwrittenoptical character ocr recognition, speech recognition, image noise removal etc. learningconvolution neural network cnn ver. 4.11a fullyconnected back propagation neural networks (bpnn) part1a: feed forward processing part1a: feed backward processing convolutionneural networks (cnn) part2a: feed forward part2b: feed backward cnnconvolution neural network cnn ver. 4.11a fullyconnected back propagation (bp) neural net convolution neural network cnn ver. 4.11a theoryfully connected back propagation neural net (bpnn) usemany samples weights,so unknowninput differentclasses aftertraining: forward pass biases(using forward backwardpasses) convolution neural network cnn ver. 4.11a (useforward, backward passes) iter=1:all_epocks (each forwardpass eachoutput neuron: usetraining samples: feedforward backward
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了处理一维序列数据,便有了循环神经网络,以及基于循环神经网络 优化而来的lstm,attention机制等.
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
CNN处理图像
卷积神经网络的计算效率提升,参数量:10^12 -> 10^6
卷积神经网络池化有最大池化(max_pool)和平均池化(avg_pool),顾名 思义,最大池化取区域内最大值,平均池化取区域内平均值.其它池化包 括L 2 范数以及依靠据中心像素距离的加权平均池化.
CNN池化过程
CNN 特性-池化
为什么要池化?
1.减少参数的量,提高计算效率. 2.最大池化能显著增强局部特征,平均池化可减少噪声.
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
CNN特性-权值共享和多卷积核
卷积神经网络之所以计算效率高,对特征提取的效果好,主要是由于卷 积神经网络具有以下三个特性:权值共享,多卷积核,池化.
权值共享
请在这里输入论文答辩
多通道多卷积核
2016-08-
CNN多通道和多卷积核
CS231N http://cs231n.github.io/convolutional-networks/
在20世纪90年代,AT&T的神经网络研究小组开发了一个用于读取支票的卷积神 经网络,到90年代末,NEC部署的这个系统用于读取美国所有支票的10%.后来,微 软部署了若干个基于卷积神经网络的OCR和手写识别系统(MNIST).
卷积神经网络也被用来赢得许多比赛.当前对深度学习的商业热潮始于2012年,当 时Alex Krizhevsky使用新型卷积神经网络(AlexNet)赢得了当年的ImageNet大赛第一名, TOP-5分类错误率比第二名小约10%,引起轰动.
CNN 特性-局部平移不变性
为什么最大池化能做到? 上图下半部分的输入像素向右平移一个单位,下图对应位置像
素值全部改变,若对输入像素做池化处理,当原始像素平移一个 单位后,只有一半的像素值改变.
CNN 特性-局部平移不变性
学习不变性的示例。使用分离的参数学得多个特征,再使用池化单元进行 池化,可以学得对输入的某些变换的不变性。这里我们展示了用三个学得 的过滤器(卷积核)和一个最大池化单元可以学得对旋转变换的不变性。这 三个过滤器都旨在检测手写的数字 5。每个卷积核尝试匹配稍微不同方向 的 5。当输入中出现 5 时,相应的卷积核会匹配它并且在探测单元(激活函 数)中引起大的激活。然后,无论哪个探测单元被激活,最大池化单元都具有 大的激活。我们在这里展示网络如何处理两个不同的输入,导致两个不同 的探测单元被激活。然而对池化单元的影响大致相同。空间位置上的最 大池化对于平移是天然不变的;这种多通道方法在学习其他变换时是必要 的。
请在这里输入论文答辩
2016-08-
CNN中基于权值共享的多卷积核算法
卷积的矩阵转换
感受野和卷积核是卷积运算的一种特殊设定和直观表示,卷积核和 感受野之间的卷积运算使用向量矩阵的形式实现,提高了计算效率.
请在这里输入论文答辩
2016-08-
卷积的矩阵运算形式(im2txt)
CNN 特性-池化
(最大池化提取轮廓特征,平均池化可模糊图像) 3.提高局部平移不变性.(不考虑空间,时间位置.-张民)
局部平移不变性是一个很重要的性质,尤其是当我们关心某个特 征是否出现而不关心它出现的具体位置时,这对于图像中的目标检 测至关重要,同时,在图像识别中,同一类别的图像往往会有细微 的差别,局部平移不变性大大提高了图像分类的准确度.
Notes: 式1:
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础Leabharlann 卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
CNN处理图像
边缘检测的效率。右边的图像是通过获得原始图像中的每个像素并减去左边相邻 像素的值而形成的。这对目标检测是有用的操作。两个图像都是 280 像素的高 度。输入图像宽 320 像素,而输出图像宽 319 像素。这个变换可以通过包含两个 元素的卷积核来描述,并且需要 319 × 280 × 3 = 267, 960 个浮点运算(每个输出 像素需要两次乘法和一次加法)。不使用卷积,需要 320 × 280 × 319 × 280 个 或者说超过 80 亿个元素的矩阵,这使得卷积对于表示这种变换更有效 40 亿倍。 直接运行矩阵乘法的算法将执行超过 160 亿个浮点运算,这使得卷积在计算上大 约有 60,000 倍的效率。将小的局部区域上的相同线性变换应用到整个输入上,卷 积是描述这种变换的极其有效的方法。照片来源:Paula Goodfellow。
卷积神经网络(CNN)
汇报人:吴建宝 2017.06.12
目录
Contents
1. 神经网络计算 2. 卷积神经网络 3. CNN实现(tensorflow)
目录
Contents
1. 神经网络计算
1.1.神经网络信息流动 1.2.神经网络结点计算 1.3.神经网络梯度传播(链式法则)
神经网络信息流动
解析:(x,y)是给定的带标签数据,通常,x为特征,y为标签,固定不变.W为权重(网络 参数),随机初始化(正态分布),且随时变化.一次前向计算过程,通过score function, 得到预测结果,与标签数据对比,计算loss值,通常,loss是规则化项(redularization loss) 和均方差项(data loss)的加权和(见式1),其目的是减小权重的幅度,防止过度拟合.在反向 计算时,使用均方差项更新权重.
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
CNN处理图像
卷积神经网络的计算效率提升,参数量:10^12 -> 10^6
卷积神经网络池化有最大池化(max_pool)和平均池化(avg_pool),顾名 思义,最大池化取区域内最大值,平均池化取区域内平均值.其它池化包 括L 2 范数以及依靠据中心像素距离的加权平均池化.
CNN池化过程
CNN 特性-池化
为什么要池化?
1.减少参数的量,提高计算效率. 2.最大池化能显著增强局部特征,平均池化可减少噪声.
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
CNN特性-权值共享和多卷积核
卷积神经网络之所以计算效率高,对特征提取的效果好,主要是由于卷 积神经网络具有以下三个特性:权值共享,多卷积核,池化.
权值共享
请在这里输入论文答辩
多通道多卷积核
2016-08-
CNN多通道和多卷积核
CS231N http://cs231n.github.io/convolutional-networks/
在20世纪90年代,AT&T的神经网络研究小组开发了一个用于读取支票的卷积神 经网络,到90年代末,NEC部署的这个系统用于读取美国所有支票的10%.后来,微 软部署了若干个基于卷积神经网络的OCR和手写识别系统(MNIST).
卷积神经网络也被用来赢得许多比赛.当前对深度学习的商业热潮始于2012年,当 时Alex Krizhevsky使用新型卷积神经网络(AlexNet)赢得了当年的ImageNet大赛第一名, TOP-5分类错误率比第二名小约10%,引起轰动.
CNN 特性-局部平移不变性
为什么最大池化能做到? 上图下半部分的输入像素向右平移一个单位,下图对应位置像
素值全部改变,若对输入像素做池化处理,当原始像素平移一个 单位后,只有一半的像素值改变.
CNN 特性-局部平移不变性
学习不变性的示例。使用分离的参数学得多个特征,再使用池化单元进行 池化,可以学得对输入的某些变换的不变性。这里我们展示了用三个学得 的过滤器(卷积核)和一个最大池化单元可以学得对旋转变换的不变性。这 三个过滤器都旨在检测手写的数字 5。每个卷积核尝试匹配稍微不同方向 的 5。当输入中出现 5 时,相应的卷积核会匹配它并且在探测单元(激活函 数)中引起大的激活。然后,无论哪个探测单元被激活,最大池化单元都具有 大的激活。我们在这里展示网络如何处理两个不同的输入,导致两个不同 的探测单元被激活。然而对池化单元的影响大致相同。空间位置上的最 大池化对于平移是天然不变的;这种多通道方法在学习其他变换时是必要 的。
请在这里输入论文答辩
2016-08-
CNN中基于权值共享的多卷积核算法
卷积的矩阵转换
感受野和卷积核是卷积运算的一种特殊设定和直观表示,卷积核和 感受野之间的卷积运算使用向量矩阵的形式实现,提高了计算效率.
请在这里输入论文答辩
2016-08-
卷积的矩阵运算形式(im2txt)
CNN 特性-池化
(最大池化提取轮廓特征,平均池化可模糊图像) 3.提高局部平移不变性.(不考虑空间,时间位置.-张民)
局部平移不变性是一个很重要的性质,尤其是当我们关心某个特 征是否出现而不关心它出现的具体位置时,这对于图像中的目标检 测至关重要,同时,在图像识别中,同一类别的图像往往会有细微 的差别,局部平移不变性大大提高了图像分类的准确度.
Notes: 式1:
神经网络的结点计算
前向计算:
反向传播:
神经网络梯度传播(链式法则)
Notes:
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础Leabharlann 卷积神经网络和深度学习的历史
卷积神经网络在深度学习的历史中发挥了重要作用.它们是将研究大脑获得的深 刻理解成功应用于机器学习应用的关键例子,也是第一个表现良好的深度模型之 一.是第一个解决重要商业应用的神经网络,并且仍然是当今深度学习应用的前沿.
CNN处理图像
边缘检测的效率。右边的图像是通过获得原始图像中的每个像素并减去左边相邻 像素的值而形成的。这对目标检测是有用的操作。两个图像都是 280 像素的高 度。输入图像宽 320 像素,而输出图像宽 319 像素。这个变换可以通过包含两个 元素的卷积核来描述,并且需要 319 × 280 × 3 = 267, 960 个浮点运算(每个输出 像素需要两次乘法和一次加法)。不使用卷积,需要 320 × 280 × 319 × 280 个 或者说超过 80 亿个元素的矩阵,这使得卷积对于表示这种变换更有效 40 亿倍。 直接运行矩阵乘法的算法将执行超过 160 亿个浮点运算,这使得卷积在计算上大 约有 60,000 倍的效率。将小的局部区域上的相同线性变换应用到整个输入上,卷 积是描述这种变换的极其有效的方法。照片来源:Paula Goodfellow。
卷积神经网络(CNN)
汇报人:吴建宝 2017.06.12
目录
Contents
1. 神经网络计算 2. 卷积神经网络 3. CNN实现(tensorflow)
目录
Contents
1. 神经网络计算
1.1.神经网络信息流动 1.2.神经网络结点计算 1.3.神经网络梯度传播(链式法则)
神经网络信息流动
解析:(x,y)是给定的带标签数据,通常,x为特征,y为标签,固定不变.W为权重(网络 参数),随机初始化(正态分布),且随时变化.一次前向计算过程,通过score function, 得到预测结果,与标签数据对比,计算loss值,通常,loss是规则化项(redularization loss) 和均方差项(data loss)的加权和(见式1),其目的是减小权重的幅度,防止过度拟合.在反向 计算时,使用均方差项更新权重.