电化学超级电容器电极材料的研究进展
超级电容器研究综述
一、超级电容器的发展与进步(一)概述在古代,人们发现了与琥珀及橡皮相摩擦,引起表面贮存电荷的可能性。
然而这一效应的缘由直到18世纪中叶方被人们理解。
140年后,人们开始对电有了分子原子级的了解。
早期的有关莱顿瓶的发现和研究,开启了电容器的序幕。
之后,电容器不断的发展起来,现如今,其发展起来的电化学超级电容器,已经应用于国防设备、电力设备、通讯设备、铁路设施、电子产品、汽车工业等方方面面,成为当代社会不可缺少的一部分。
电能能够以两种截然不同的方式存贮:一种间接方式是作为潜在可用的化学能,存贮在电池里。
另一种直接的方式,则是以静电学形式将正负电荷置于一个电容器的不同极板之间来存贮电能。
超级电容器在存贮电荷时有着两种原理,一种是通过双电层原理,以非法第模式来存贮电能;而另一种则是法拉第模式,通过发生氧化还原反应来产生赝电容。
目前双电层型超级电容器一般采用碳材料做电极,通过碳材料的大的比表面积来增加双电层的面积,而赝电容型超级电容器一般采用氧化物或聚合物的材料来做为电极。
同时,二者在制作超级电容器的时候也可以并用,从而使得超级电容器也可以划分为对称超级电容器和非对称超级电容器,对称即指电容器的两极的材料相同,非对称则不同。
在电解质方面,超级电容器绝大多数均采用液体电解质,如水及其它有机溶剂。
超级电容器的电化学性能分析有很多方法,但通常都包括以下四种图:循环伏安曲线,恒流充放电曲线,交流阻抗谱,循环稳定性曲线。
通过这四种图可以比较明确地判断出一个超级电容器的电化学性能的好坏,具体判断方法之后会详细说明。
超级电容器有着非常高的功率密度,但是其能量密度却比较低,它有着极好的循环充放电稳定性但是电压窗口却比较窄。
但是人们也在对其进行着不断的研究来改善超级电容器的这些弊端。
(二)超级电容器的原理超级电容器又称为电化学电容器,是介于传统电容器和电池之间的新型电化学储能器件,它的出现填补了Ragone图中传统电容器的高比功率和电池的高比能量之间的空白。
超级电容器电极材料的研究进展
2011年第3期 新疆化工 11 超级电容器电极材料的研究进展摆玉龙(新疆化工设计研究院,乌鲁木齐830006)摘要:超级电容器既具有超大容量,又具有很高的功率密度,因此它在后备电源、替代电源、大功率输出等方面都有极为广泛的应用前景。
超级电容器的性能主要取决于电极材料,近年来各国学者对于超级电容器的电极材料进行了大量的研究。
关键词:超级电容器;电极材料1 前言超级电容器的种类按其工作原理可以分为双电层电容器、法拉第准电容器(也称为赝电容电容器)以及二者兼有的混合电容器。
双电层电容器基于双电层理论,利用电极和电解质之间形成的界面双电层电容来储存能量。
法拉第准电容器则基于法拉第过程,即在法拉第电荷转移的电化学变化过程中产生,不仅发生在电极表面,而且可以深入电极内部。
根据这两种原理,目前作为超级电容器的电极材料的主要分为三类[1]:碳材料、金属氧化物及水合物材料、导电聚合物材料。
2 碳材料类电极材料在所有的电化学超级电容器电极材料中,研究最早和技术最成熟的是碳材料。
其研究是从1957年Beck发表的相关专利开始的。
碳电极的研究主要集中在制备具有大的比表面积和较小内阻的多孔电极材料上,可用做超级电容器电极的碳材料主要有:活性炭、纳米碳纤维、玻璃碳、碳气凝胶、纳米碳管等。
活性炭(AC)是超级电容器最早采用的碳电极材料[2]。
它是碳为主,与氢、氧、氮等相结合,具有良好的吸附作用。
其特点是它的比表面积特别大,比容量比铂黑和钯黑高五倍以上[3]。
J.Gamby[4]等对几种不同比表面积的活性炭超级电容器进行测试,其中比表面积最大为2315m2·g的样品得到的比容量最高,达到125F/g,同时发现比表面积和孔结构对活性炭电极的比容量和内阻有很大影响。
活性炭纤维(ACF)是性能优于活性炭的高效活性吸附材料和环保工程材料。
ACF的制备一般是将有机前驱体纤维在低温(200℃~400)℃下进行稳定化处理,随后进行炭化、活化(700℃~1000)℃。
MXene基超级电容器电极材料的制备与电化学性能研究共3篇
MXene基超级电容器电极材料的制备与电化学性能研究共3篇MXene基超级电容器电极材料的制备与电化学性能研究1随着人们对于无线电子产品的需求越来越高,电容器这种能够存储电荷的器件就显得格外重要。
近些年来,MXene基超级电容器电极材料在电容器领域中备受瞩目,因其高电导率和大的比表面积而被认为是一种有前途的电极材料。
MXene是一类具有极高导电性和良好的机械韧性的二维材料,在MXene中的极性化学官能团使其具有极高的表面积。
在此基础上,MXene基超级电容器电极材料的制备与电化学性能研究已经成为研究人员们的热点之一。
MXene基超级电容器电极材料的制备主要采用水解或氧化剂的化学反应,将MXene制成大小不同而多孔的结构;或通过物理蚀刻的方式,用激光或电子束在MXene表面定位刻蚀出微小孔洞。
在制备过程中,要控制好反应条件,如PH值和反应温度等参数,以使得制得的MXene基超级电容器电极材料具有更好的电化学性能。
关于MXene基超级电容器电极材料的电化学性能研究,主要首先关注其比电容和能量密度等性能指标,以探究其在电容器领域中的优势。
实验发现,MXene具有很高的比电容和能量密度,这使得其在超级电容器领域具备很好的潜力。
同时,在稳定性和循环寿命等方面也表现出了较好的性能,具有很强实用价值。
总的来说,MXene基超级电容器电极材料的制备和电化学性能研究已经得到了很大的发展和突破。
但是要想将其真正应用于商业化生产中,还需进行更深入的探究和完善。
未来,通过不断进行研究和改进,MXene基超级电容器电极材料的应用必将进一步拓展,为无线电子产品的发展提供更好的支持综上所述,MXene基超级电容器电极材料作为一种新型电化学能量储存材料,具有制备简单、比电容高、能量密度大、稳定性好、循环寿命长等优良性能。
其在无线电子产品等领域的应用前景广阔,但仍需继续深入研究和完善,以促进其商业化生产的进一步发展MXene基超级电容器电极材料的制备与电化学性能研究2MXene基超级电容器电极材料的制备与电化学性能研究电化学超级电容器是未来节能环保的关键技术之一,因为它们能够在几秒钟内存储和释放大量的电能。
超级电容器及其相关材料的研究
超级电容器及其相关材料的研究一、本文概述随着科技的不断进步和可持续发展理念的深入人心,超级电容器作为一种高效、环保的储能器件,正日益受到全球科研人员和工业界的广泛关注。
超级电容器以其高功率密度、快速充放电、长循环寿命等诸多优点,在新能源汽车、电子设备、航空航天等领域展现出广阔的应用前景。
本文旨在全面综述超级电容器及其相关材料的研究现状和发展趋势,分析超级电容器的性能特点,探讨新型电极材料的研发与应用,以期推动超级电容器技术的进一步发展,并为相关领域的研究人员提供有益的参考和启示。
本文首先介绍了超级电容器的基本原理、分类及性能特点,为后续研究提供理论基础。
随后,重点综述了近年来超级电容器电极材料的研究进展,包括碳材料、金属氧化物、导电聚合物等,并分析了各类材料的优缺点及适用场景。
本文还关注了电解质材料、隔膜材料等关键组件的研究现状,以及超级电容器的制造工艺和应用领域。
结合当前面临的挑战和未来发展趋势,本文展望了超级电容器技术的创新方向和应用前景,以期为未来相关研究提供有益的借鉴和指导。
二、超级电容器的基本原理与分类超级电容器,又称电化学电容器,是一种介于传统电容器和电池之间的新型储能器件。
它具有极高的电荷储存能力,能在极短的时间内释放出大量的能量,从而满足了现代电子设备对高功率、快速充放电的需求。
基本原理:超级电容器的基本原理与传统的平行板电容器类似,都涉及到电荷的储存和释放。
然而,超级电容器的电极材料通常是具有高比表面积的纳米多孔材料,如活性炭、金属氧化物和导电聚合物等。
这些高比表面积的电极材料使得超级电容器能在极小的体积内储存大量的电荷,从而实现了高能量密度。
同时,超级电容器的电解质通常具有高的离子电导率,这有助于实现快速的充放电过程。
碳基超级电容器:以活性炭、碳纳米管、石墨烯等碳材料为电极,利用碳材料的高比表面积和良好的导电性实现高能量密度和高功率密度。
金属氧化物超级电容器:以金属氧化物(如RuO₂、MnO₂、NiO等)为电极,利用金属氧化物的高赝电容特性实现更高的能量密度。
基于碳材料的超级电容器电极材料的研究
基于碳材料的超级电容器电极材料的研究一、本文概述随着能源需求的日益增长和环境保护的迫切需求,高效、环保的能源存储技术已成为当今科研领域的热点之一。
超级电容器,作为一种新型的电化学储能器件,因其具有高功率密度、快速充放电、长循环寿命等优点,在电动汽车、移动通讯、航空航天等领域具有广泛的应用前景。
而电极材料作为超级电容器的核心组成部分,其性能直接决定了超级电容器的电化学性能。
因此,研究和开发高性能的电极材料对于提高超级电容器的性能和应用领域具有重要意义。
本文旨在探讨基于碳材料的超级电容器电极材料的研究进展。
文章将概述超级电容器的基本原理、分类及其应用领域,进而介绍碳材料作为超级电容器电极材料的优势,包括其高导电性、高比表面积、良好的化学稳定性等。
随后,文章将重点综述近年来基于碳材料的超级电容器电极材料的研究进展,包括不同种类的碳材料(如活性炭、碳纳米管、石墨烯等)在超级电容器中的应用,以及通过结构设计、表面修饰等方法优化碳材料电化学性能的研究。
文章还将讨论当前研究面临的挑战以及未来的发展趋势,以期为基于碳材料的超级电容器电极材料的研究提供参考和借鉴。
二、碳材料概述碳材料,以其独特的物理和化学性质,已成为众多领域研究的热点。
作为构成生命的重要元素,碳在自然界中的存在形式多种多样,如石墨、金刚石等。
这些碳的同素异形体各有特色,如石墨具有优良的导电性和层状结构,金刚石则以其极高的硬度著称。
在材料科学领域,碳材料以其高比表面积、良好的化学稳定性、优良的导电性以及丰富的可调控性,被广泛应用于电极材料、催化剂载体、吸附材料等多个方面。
在超级电容器领域,碳材料作为电极材料具有显著优势。
碳材料具有高比表面积,能够提供更多的活性位点,有利于电荷的存储和释放。
碳材料具有良好的导电性,能够快速传递电子,保证超级电容器的快速充放电性能。
碳材料还具有良好的化学稳定性,能够在各种环境下保持稳定的性能。
碳材料在超级电容器中的应用主要包括活性炭、碳纳米管、石墨烯等。
超级电容器的发展现状
超级电容器的发展现状超级电容器(Supercapacitor),又称超级电容、超级电池、电化学超级电容等,是一种新型的能量存储装置。
与传统的电化学电池不同,超级电容器能够以更高的功率进行快速的充放电,其理论上的寿命更长,并且可以进行成千上万次的充放电循环。
目前,超级电容器的发展进展如下:1. 提高能量密度:超级电容器的能量密度一直是其发展中的关键问题。
近年来,研究人员通过改进电极材料、电解质和结构设计等方面的创新,使得超级电容器的能量密度获得了显著提高。
目前商业化的超级电容器已经能够达到100 Wh/kg,高能量密度的材料和结构设计研究也在不断进行中。
2. 提高功率密度:超级电容器的功率密度是其另一个重要指标。
功率密度指的是电容器能够在短时间内释放大量电能的能力。
近年来的研究表明,通过设计新的纳米结构和提高电解质导电性等方法,已经能够将超级电容器的功率密度提高到几千瓦/千克以上。
这使得超级电容器在需求瞬时高能量输出的领域,例如电动汽车的启动和制动系统,具有广阔的应用前景。
3. 提高循环寿命:超级电容器的循环寿命(即充放电循环次数)也是一个重要指标。
通过改善电极材料的结构和化学稳定性等方面的研究,已经成功地提高了超级电容器的循环寿命。
目前,一些商业化的超级电容器已经可以进行百万次的充放电循环,这使得超级电容器相比传统电化学电池更加持久耐用。
4. 增加应用领域:超级电容器因其快速充放电和长寿命的特点,在一些特定的领域已经开始商业化应用。
例如,超级电容器已经被广泛应用于电动车、电力电子设备、可再生能源储能系统等。
此外,超级电容器还在智能电网、医疗设备、航空航天等领域也有广阔的发展前景。
综上所述,超级电容器在能量密度、功率密度和循环寿命等方面都取得了显著的进展。
未来,随着科学技术的不断进步,超级电容器有望在更多领域发挥重要作用,并逐渐替代传统的电化学电池,成为一种重要的能量存储装置。
超级电容器材料的研究及应用
超级电容器材料的研究及应用超级电容器是一种利用电场存储电能的能量存储器,其在电化学和电磁学理论上都有一定的发展。
超级电容器具有高能量密度、快速充放电、长寿命等优点,在现代航空、汽车、宇航和智能电网等领域有着广泛的应用。
而超级电容器的核心是电极材料,所以先进的电极材料能够带来超级电容器工作性能更好的表现。
一、超级电容器电极材料的研究现状目前,超级电容器电极材料的研究集中在以下领域:(1)金属氧化物材料的研究。
金属氧化物,如钼酸锂、钴酸镍等,具有优异的电极电化学性能,同时元素资源广泛,价格低廉,因此在超级电容器电极材料领域得到了广泛的研究与应用。
(2)碳材料的研究。
碳材料是制备超级电容器电极材料的主要原材料之一,具有良好的导电性和热稳定性。
而以活性炭为代表的多孔碳材料还具有大表面积、高比电容等优良性质,因此在超级电容器电极材料以及电池、传感器等领域应用广泛。
(3)二维材料的研究。
二维材料,如石墨烯和硼氮化物,具有高比表面积、方便处理的优势,已被广泛研究作为超级电容器电极材料。
尤其石墨烯由于其优异的导电性、机械强度和化学稳定性等特性,在超级电容器电极材料研究中被广泛关注。
(4)金属有机骨架材料的研究。
金属有机骨架材料,即MOFs,是由金属离子和有机配体组成的晶态材料,具有极大的内孔体积以及可调控的孔径和结构。
这种新型材料具有极高的表面积和储能密度,是超级电容器电极材料研究的热点之一。
二、超级电容器电极材料的制备方法超级电容器电极材料的制备方法主要分为化学还原法、水热法、煅烧法、氧化还原电位法等。
其中化学法是制备超级电容器电极材料的常规方法,其通过调节反应条件,可控制电化学行为,实现材料的优异电化学性能;而水热合成是在相对低的温度和压力下,通过压剂或表面修饰剂,实现材料形貌和结构的微观调控;氧化还原电位法是通过扫描电位电化学法控制电位,调控材料的化学反应,从而实现精准控制。
三、超级电容器材料的应用超级电容器在现代工业、航空、军事、医学等领域得到了广泛的应用。
超级电容器电极材料的制备及电化学性能研究
超级电容器电极材料的制备及电化学性能研究超级电容器作为一种能够存储大量电能的新型电池,其电化学性能和高功率性能在目前的电子器件中得到了广泛的应用。
而超级电容器的性能和稳定性主要受制于电极材料的选择和制备方法。
因此,超级电容器电极材料的制备及电化学性能研究成为目前材料化学研究的热点和难点之一。
超级电容器的电极材料可以分为碳基材料及金属氧化物材料两种类别。
碳基材料可以通过炭化、氧化石墨或活性炭等方法制备得到。
其中,活性炭是一种常用的碳基电极材料,其呈三维独立孔结构,具有较大的比表面积,因此具有良好的电容性能和高倍率放电能力。
此外,石墨烯也是一种常用的碳基电极材料,其呈二维层状结构,具有超高的比表面积和优异的电导率,能够有效地提高超级电容器的电池性能和循环寿命。
而金属氧化物电极材料也是超级电容器电极材料的一种常见类型。
它们通常由过渡金属氧化物、贵金属氧化物、铁氧化物及锰氧化物等材料组成,其中,九氧化二铝和锰氧化物是比较常用的金属氧化物电极材料。
九氧化二铝具有较高的比电容和较好的热稳定性,可以在高温环境中工作。
但是,它的电化学稳定性较差,循环寿命较短。
锰氧化物是一种新型金属氧化物电极材料,其优异的电容性能和高倍率放电能力得到了广泛的研究和应用。
锰氧化物可以通过合成流程中的物理和化学方法制备得到,如水热法、溶胶凝胶法、共沉淀法等。
在电极材料的制备过程中,其中的微观结构和形态也对电极材料的性能产生着很大的影响。
如锰氧化物的微观结构对超级电容器的电导率和电化学性能有重要的影响。
研究表明,锰氧化物的微观结构越完整,其电导率越高,因此能够更好地提高超级电容器的电容性能和稳定性。
除此之外,超级电容器电极材料的制备方法也是其电化学性能的重要影响因素之一。
传统的电极材料制备方法包括物理法、化学法和生物法。
而与此相比较,一些新型材料制备方法也在近年来得到了广泛的关注,如激光烧结法、电化学还原法、自组装法等。
这些新型制备方法可不仅可以提高材料的比表面积和孔结构的可控性,还能够制备出具有特殊形态结构的材料。
超级电容器用MOFs衍生纳米电极材料的研究进展
第52卷第11期2023年11月人㊀工㊀晶㊀体㊀学㊀报JOURNAL OF SYNTHETIC CRYSTALS Vol.52㊀No.11November,2023超级电容器用MOFs 衍生纳米电极材料的研究进展郭容男1,李太文1,王㊀栋1,王天汉1,裴㊀琪1,王媛媛2(1.河南农业大学机电工程学院,郑州㊀450002;2.河南农业大学园艺学院,郑州㊀450002)摘要:超级电容器因具有功率密度高㊁充放电速度快和循环寿命长等优点而备受关注,但是较低的能量密度限制了其广泛应用㊂开发新型高效电极材料对改善超级电容器电化学性能至关重要㊂金属有机框架材料(MOFs)具有比表面积大㊁结构孔径可控和活性位点丰富等特点,故在能量转化和储存领域受到了广泛关注㊂但是由于MOFs 的结构稳定性和导电性较差,其作为超级电容器的电极材料时,无法获得满意的电化学性能㊂以MOFs 为前驱体制得的MOFs 衍生物的稳定性和导电性优于原生MOFs,显著提高了超级电容器的电化学性能㊂本文综述了超级电容器用纳米MOFs 衍生碳化物㊁氧化物㊁氢氧化物㊁磷化物㊁硫化物电极材料的研究现状,总结了MOFs 衍生超级电容器电极材料的合成策略,为超级电容器用MOFs 衍生纳米材料的研究提供指导意义㊂关键词:超级电容器;电极材料;MOF;衍生材料;碳材料;策略选择;结构调制中图分类号:TM53;TB332㊀㊀文献标志码:A ㊀㊀文章编号:1000-985X (2023)11-1922-09Research Progress of MOFs-Derived Nano-Electrode Materials for SupercapacitorsGUO Rongnan 1,LI Taiwen 1,WANG Dong 1,WANG Tianhan 1,PEI Qi 1,WANG Yuanyuan 2(1.School of Mechanical and Electrical Engineering,Henan Agricultural University,Zhengzhou 450002,China;2.College of Horticulture,Henan Agricultural University,Zhengzhou 450002,China)Abstract :Supercapacitors have attracted much attention because of their high power density,fast charging /discharging speed,and long cycle life.However,the low energy density restricted their wide application.Developing novel and efficient electrode materials is imperative to improve the electrochemical performance of supercapacitors.Metal-organic frameworks (MOFs)have attracted extensive attention in the field of energy conversion and storage,owing to their large specific surface area,controllable pore size,rich active sites and easy synthesis.Nevertheless,due to the inferior structural stability and low conductivity of MOFs,the electrochemical performance of supercapacitors with MOFs electrode materials is unsatisfactory.MOFs derivatives,prepared from the MOFs precursor,possess excellent structural stability and conductivity,thus prominently improve the electrochemical performance of supercapacitors.This work mainly focuses on the MOFs-derived electrode materials for supercapacitors,including MOFs-derived carbides,oxides,hydroxides,phosphides and sulfides.The synthesis strategies of electrode materials for supercapacitors are discussed,providing guidance for the research of nano-MOFs-derived materials for supercapacitors.Key words :supercapacitor;electrode material;MOF;derivative material;carbon material;strategy selection;structural modulation㊀㊀㊀收稿日期:2023-04-28㊀㊀基金项目:河南省高等学校重点科研项目计划(23A430016);河南省自然科学基金(232300421332);中国科学院战略性先导科技专项(B 类,XDB44000000-6)㊀㊀作者简介:郭容男(1987 ),女,陕西省人,博士,讲师㊂E-mail:guorn@0㊀引㊀㊀言超级电容器因具有功率密度高㊁充放电速度快和循环寿命长等优点而备受关注㊂超级电容器根据储能原理分为电化学双层电容器(electrical double-layer capacitor,EDLC)㊁法拉第赝电容器和混合型超级电容器㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1923㊀三类,其充放电机理如图1所示㊂其中,EDLC充电时,通过极化电极吸引电解质中的阴阳离子在电极/电解质界面聚集并形成电势差,使其达到储能要求;法拉第赝电容器则是通过电极在外加电场中极化后,电解质中的阴阳离子被吸引到电极附近,在电极表面发生界面反应,在电极内部和电解质中发生体相反应,界面反应和体相反应使大量的电荷储存在电极上,从而实现储能目的;混合型超级电容器的负极通常以EDLC储能原理储能,正极为法拉第赝电容器,通过氧化还原反应进行储能,从而获得更宽的电势窗口,电化学性能得到提升㊂优异的电极材料可使超级电容器具有出色的功率密度㊁循环性能和能量密度㊂电极材料的优劣主要通过其比表面积㊁孔结构㊁活性位点和导电性进行评判[1]㊂金属有机骨架(metal-organic framworks,MOFs)是一种是由金属离子或金属簇和有机配体通过二价或多价配位键构建的三维结构,由于其具有比表面积高(1000~10000m2/g)和孔分布均匀(5~10nm)等优点[2],被广泛应用于吸附[3]㊁催化[4]与传感[5]等领域㊂但是较差的导电性和结构稳定性,限制了其在超级电容器中的应用㊂为此,研究人员以MOFs作为牺牲模板制得MOFs衍生物,MOFs衍生物作为超级电容器的电极材料时,比原生MOFs具有更优异的电化学性能,这主要得益于MOFs衍生物保留了原生MOFs丰富的孔结构和大的比表面积,同时拥有更稳定的结构和更快的载流子传输速度㊂相比普通的MOFs衍生物,纳米MOFs衍生物具有更为特殊的结构和各组分间的协同作用,其构建的超级电容器可以实现快速㊁稳定和高效的电荷储存[6]㊂本文总结了近年来MOFs衍生的纳米材料在超级电容器电极中的应用,详细阐述了策略选择和结构调制对其孔结构㊁载流子传输动力学㊁电化学性能㊁结构稳定性及机械性能的影响,为超级电容器用MOFs衍生纳米材料的研究提供指导㊂图1㊀超级电容器的分类及其充放电机理示意图[7]Fig.1㊀Classification of supercapacitors and their schematic illustration of charge-discharge mechanism[7]1㊀MOFs衍生纳米碳材料纳米多孔碳材料因其高比表面积㊁良好的导电性被广泛应用到EDLC[7]中(见图1)㊂以MOFs作为牺牲模板制备的纳米多孔碳(nano porous carbons,NPCs)保留了原生MOFs的多孔结构,故NPCs具有有序多孔网络结构,广泛作为超级电容器电极[8]㊂NPCs通常通过高温热解直接碳化获得㊂Zhuang等[9]在氩气气氛下高温碳化MIL-100(Fe)纳米颗粒,获得了具有高度石墨化的中空碳多面体(HCPs)㊂HCPs继承了原生铁基MOF的分级孔隙结构,故离子迁移速率快㊂当电流密度为50A/g时,HCPs超级电容器经过5000次充放电循环后,电容仍保持在较高水平㊂虽然NPCs可以继承原生MOFs的孔结构,但是碳化过程可能导致金属纳米颗粒在微孔为主的多孔结构中扩散和不可逆聚集,影响载流子在电极内部的吸附㊁反应㊁缓冲及通过[10]㊂Shang等[11]通过介孔二氧化硅保护煅烧,获得分散良好的ZIF衍生Co和N掺杂碳纳米框架Co,N-CNF㊂如图2(a)所示,以正硅酸四乙酯和十六烷基三甲基溴化铵(CTAB)作为孔导向剂,将mSiO2壳均匀涂覆在ZIF表面,进行高温热解,最后通过蚀刻去除mSiO2壳㊂mSiO2壳能有效防止Co,N-CNF纳米颗粒聚集和融合,故所得Co,N-CNF纳米结构具有清晰的分级孔结构㊁高比表面积(1170m2/g)和高累积孔体积(1.52m3/g)㊂结构调制赋予Co,N-CNF优越的孔结构和比表面积,保障了载流子在电极内部的活动和快速迁移,使超级电容器表现出优异的电化学1924㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷性能㊂MOFs碳化时的反应温度也至关重要㊂Yao等[12]将Zn基MOF在不同碳化温度(即850㊁950和1050ħ)下进行处理,得到MOF衍生的纳米多孔碳(MOF-NPC,分别表示为MNC850㊁MNC950和MNP1050)㊂研究表明,高温有利于增加纳米多孔碳的石墨化程度和导电性,但过高的温度会导致结构破坏,影响其稳定性和电化学性能(见图2(b)~(d))㊂NPCs材料通常亲水性较差,而N元素的引入有效改善了其在水性电解质中的润湿性㊂同时,N掺杂的NPCs具有更优秀的电催化活性㊂Zhu等[13]以ZIF-67为前驱体,在800ħ下碳化2h获得具有丰富孔结构的Co修饰氮掺杂多孔碳(Co-NPC),再进行磷化得到CoP修饰氮掺杂多孔碳(CoP-NPC)㊂最后将CoP-NPC锚定在还原氧化石墨烯片上获得超级电容器用复合材料(CoP-NPC/RGO)㊂由于CoP-NPC/RGO的3D互连多孔结构,CoP与氮掺杂碳基体之间的协同效应,故制备的超级电容器在1和20A/g的电流密度下,比电容高达466.6和252.0F/g㊂Fang等[14]以尿素为外加氮源,在氮气气氛下热解Zn-bioMOFs,获得了具有手风琴状分层结构的N掺杂类石墨烯碳纳米片(H-NCNs)㊂通过改变尿素用量,调节H-NCNs的氮掺杂程度和孔隙率,提升H-NCNs组装成超级电容器的比电容㊁倍率性能和能量密度㊂图2㊀mSiO2保护煅烧法合成Co,N-CNF过程[11](a)及Zn基MOF不同碳化温度产物MNC850(b)㊁MNC950(c)和MNC1050(d)的SEM照片[12]Fig.2㊀Synthetic procedure of the Co,N-CNF by the mSiO2protected calcination strategy[11]㊀(a)and SEM images ofMNC850(b),MNC950(c)and MNC1050(d)[12]聚合物和表面活性剂等也可调控MOFs衍生NPCs的结构㊂聚合物可作为MOFs衍生纳米多孔碳的结构导向剂和碳源㊂Wang等[15]以聚多巴胺(PDA)为ZIF-8NP的涂层材料,制备中空结构的氮掺杂碳(NC)㊂热解过程中,PDA层为ZIF-8 向外 拉动提供了驱动力,同时ZIF-8体积减小,形成中空结构㊂阴离子表面活性剂(如十二烷基硫酸钠)㊁阳离子表面活性剂(如CTAB)和非离子表面活性剂等也被广泛用于控制MOFs 衍生物的形态和大小[16]㊂SiO2㊁聚合物或表面活性剂在MOFs表面形成壳,诱导MOFs生长为中孔㊁中空㊁蛋黄壳㊁多维中空或多孔结构的MOF衍生纳米多孔碳㊂尽管聚合物和表面活性剂优化了NPCs的结构,提高了NPCs的电化学性能,但这些策略也存在一些问题,例如SiO2辅助策略需要清除模板,步骤繁多㊁条件苛刻;聚合物辅助仅限于一些特定环境中;表面活性剂易引入杂原子等㊂故研究人员通过声化学[17]㊁盐模板[18]和有机化学蚀刻[19]等方法调制MOFs衍生的纳米多孔碳的结构,但是这些策略目前只用于特殊种类的MOFs㊂此外,研究人员还提出了利用零维材料和MOFs复合制备衍生纳米多孔碳,以期进一步提高超级电容器的电化学性能㊂Tang等[20]使用内部支持策略将零维石墨烯量子点(GQD)作为MOFs刚性支架,获得了高效的MOFs衍生纳米碳材料(GMPC)㊂高度结晶的GQD降低了衍生NPCs的缺陷密度,并构建了内部导电网络㊂当GQD和对苯二甲酸的质量比为0.35时,GMPC获得了优异的比表面积和导电率㊂这种多维耦合内㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1925㊀部支持策略显著提高了超级电容器的电化学性能㊂表1总结了其他高效MOFs衍生纳米碳材料及其复合材料的结构调制策略,以及调制后的表面形貌和电化学性能,为后续通过结构调制提升电极电化学性能和开发新策略提供帮助㊂表1㊀超级电容器电极材料用部分高效MOFs衍生纳米碳材料Table1㊀Some highly efficient MOF-derived nano-carbon materials for supercapacitor electrodes电极材料形貌制备策略或方法比表面积/(m2㊃g-1)电解液电流密度/(A㊃g-1)比电容/(F㊃g-1) HC-40-4[21]分级纳米结构碳化2837EMIMBF40.5206 Mn@ZnO/CNF[22]多孔十二面体碳化 6mol/L KOH1501Ni/Co-MOF-NPC-2ʒ1[23]空心微球纳米棒碳化1135ʃ272mol/L KOH11214N-NPC-850[24]互联微孔碳化12446mol/L KOH1479UT-CNS[25]超薄纳米片自底向上合成1535.246mol/L KOH0.5347 MOF525-NC1.35[26]立方体碳化和酸化7861mol/L H2SO42425HZC-2M-2h[27]中空十二面体葡萄糖辅助水热7456mol/L KOH0.5220NiO x@NPC[28]立方结构溶剂热15236mol/L KOH1534NGCA[29]蜂窝状干法冷冻和连续高温10856mol/L KOH1244DUT-5-CN[30]二维纳米结构煅烧415.26mol/L KOH0.5100 Zn/Co-MOF-NPC[31]分级多孔结构煅烧和酸洗11376mol/L KOH0.5270Ni-Fe-O/NPC@PCNFs-400[32]四面体纳米棒自模板MOF合成52.953mol/L KOH11419 ZIF-8-NC/rGO[33]碳纳米纸煅烧和酸浸489.36mol/L KOH1280C-S-900[34]三维分层海绵一步热解法1356.36mol/L KOH20226HZ-NPC[35]多面体结构高温碳化约2026mol/L KOH2545 CTAs@NCBs-700(T)[36]纳米棒阵列乙醇原位催化蒸发9051mol/L H2SO41mA/cm2244㊀㊀注:参考文献22㊁24㊁33㊁34的材料采用双电极体系进行电化学性能测试,其余材料测试均采用三电极体系㊂2㊀其他MOFs衍生的纳米材料基于金属氧化物㊁氢氧化物㊁硫化物及磷化物构建的赝电容超级电容器(见图1(b))在充放电过程中主要通过氧化还原反应进行能量储存,故这些材料比NPCs构筑的超级电容器具有更高的能量密度㊂因此研究人员以MOFs为牺牲模板,合成了MOFs衍生的氧化物㊁氢氧化物㊁硫化物和磷化物㊂这些MOFs衍生的纳米材料继承了原生MOFs的有序孔道结构,作为超级电容器的电极材料时,具有更优异的电化学性能㊂其与NPCs组成的非对称超级电容器以及使用单一材料的对称超级电容器相比,拥有更宽的工作电压窗口㊁更高的能量密度以及更优越的循环稳定性[37]㊂Li等[38]向ZIF-67中添加适当比例的钴和镍离子,制备了衍生自双金属咪唑骨架的化合物空心NiCo2O4和片状Co3O4/NiCo2O4,得益于其独特的片状结构以及镍钴两种金属元素的协同作用,Co3O4/NiCo2O4电极在0.5A/g的电流密度下显示出846F/g的高比电容㊂具有丰富活性位点和独特结构的层状双氢氧化物(layered double hydroxides,LDHs)展现出超高理论电容,故LDHs成为混合超级电容器(hybrid supercapacitor,HSC)的理想电极材料之一㊂然而,当一些环境条件发生变化时,离子之间的相互作用增强,导致LDHs团聚,影响了载流子的储存㊁交换和释放[39],影响了LDHs超级电容器的电化学性能㊂为了缓解LDHs的团聚,研究人员利用MOFs和LDHs制得了MOFs衍生的纳米层状氢氧化物(MOFs-LDHs)㊂Zhang等[40]在MOF的分级结构中原位蚀刻/电沉积,构建了界面扩散电极HKUST-1@CoNiLDH(见图3(a))㊂在1A/g的电流密度下,其比电容为297.23mA㊃h/g㊂HKUST-1@CoNiLDH 与活性炭阳极制成的HSC具有相当可观的能量密度和功率密度(39.8W㊃h/kg和799.9W/kg)㊂Hu等[41]使用电化学阴离子交换方法控制MOFs的水解,合成了多孔Ni/Co氢氧化物纳米片㊂电化学阴离子交换后, MOFs纳米片的有机配体可以循环再利用㊂当NiʒCo的摩尔比为7ʒ3时,多孔Ni/Co氢氧化物电极的能量密度和功率密度高达74.7W㊃h/kg和5990.6W/kg,经过8000次充放电循环后仍具有较高电容保持率㊂在电化学阴离子交换方法控制MOFs水解策略中,可循环利用的有机配体降低了电极的制备成本,这种结构调制方法为后续制备成本更低和更环保的电极材料提供了参考㊂除了MOFs衍生的氧化物和LDHs被广泛作为超级电容器电极,MOFs衍生的硫化物也受到了较多的关注㊂MOFs衍生的硫化物比MOFs衍生的氧化物和LDHs的结构更灵活,与过渡金属之间的配位能力更好㊂1926㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷Acharya等[42]采用MOFs介导硫化合成了瘤状Ni-Co-S纳米材料,并将中空和多孔NiMoO4纳米管集成到rGO 涂覆的泡沫镍上,制备了NiMoO4@Ni-Co-S超级电容器电极材料㊂经过硫化和刻蚀后,NiMoO4@Ni-Co-S电极独特的开放框架和管状结构极大缩短了载流子迁移路径,促进了复合电极的法拉第反应速率㊂在2mol/L 的KOH电解质中,1A/g的电流密度下,获得了318mA㊃h/g的高比容量;经过10000次充放电循环后,初始电容保持率仍高达88.87%,展现了其优异的循环性能㊂磷化物自然丰度高㊁环境友好㊁价格低廉㊂MOFs衍生的金属磷化物纳米材料用作超级电容器电极时,由于多组分的协同作用,增强了电极材料的电导率㊁氧化还原反应动力学和循环性能[43]㊂He等[44]通过水热法实现了层状砖堆叠NiCo-MOF组件的局部磷化,制备了由镍/钴MOF(NiCo-MOF)和磷化物(NiCoP)组成的功能异质结构(NiCoP-MOF)㊂NiCoP-MOF中P-O可以有效防止NiCoP晶体在离子储存和交换时被破坏,赋予了NiCoP-MOF极佳的结构稳定性㊂以其制备的超级电容器的比电容㊁能量密度和功率密度远优于NiCo-MOF㊂Chhetri等[45]通过核-壳静电纺丝技术制备了中空碳纳米纤维(HCNF),然后进行连续稳定和碳化㊂在HCNF内外合成了双金属MOF(Ni和Fe基),并通过磷化转化为双金属磷化物(Ni-Fe-P)㊂HCNF独特的高孔隙率和中空通道,极大提升了电解质离子/电子的传输速率㊂故(Ni-Fe)-P-C@HCNFs电极展现出优异的电化学性能㊂图3㊀HKUST-1@CoNiLDH[40](a)和MOF/MXene/NF[46](b)基电极的合成示意图Fig.3㊀Schematic illustration of synthesis process of HKUST-1@CoNiLDH(a)[40]and MOF/MXene/NF(b)based electrodes[46]尽管MOFs衍生的金属氧化物㊁氢氧化物㊁硫化物和磷化物等纳米材料展现出了优异的电化学性能,但是这些衍生物仍存在金属离子与有机配体之间的弱配位键和不稳定性㊁活性位点利用率低以及晶格失配等诸多问题,导致在储能领域的应用受到了诸多限制㊂针对这些问题,研究人员使用不同的合成策略和结构调制方法开发了MOFs衍生的多元材料和复合材料㊂通过不同元素之间的协同作用和更高效的纳米结构来改善电极材料的电化学性能[47]㊂Li等[48]使用电沉积和CVD制备了阵列结构材料㊂在MOF-CVD过程中,树状阵列之间的自由空间有效缓解了体积膨胀,保证了阵列结构的结构完整性和稳定性㊂在20A/g的高电流密度下,比电容高达368F/g;在经过10000次循环后,电容保持率高达95.9%㊂此外,可利用界面工程构建异质纳米结构,调整混合MOFs衍生纳米材料和其他材料形态,提高超级电容器的电化学性能[49]㊂Yang等[46]通过温度控制退火工艺在泡沫镍(NF)(即MOF/MXene/NF)上制备Ni-MOF/V2CTx-MXene-300复合材料㊂随后在不改变晶体结构的情况下,构建了分级多孔纳米棒复合材料㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1927㊀的异质结构(见图3(b))㊂其构建的异质结结构与活性炭/NF作为阳极组成的超级电容器的能量密度和功率密度分别为46.3W㊃h/kg和746.8W/kg,循环15000次后,初始容量保持率高达118.1%,这得益于Ni O V键的界面相互作用可以有效地调节组件的电子结构,增强电子传导性和反应性㊂MOFs衍生超级电容器电极材料的合成策略主要包括模板碳化策略㊁表面修饰策略㊁衍生金属化合物策略等㊂在模板碳化策略中,将MOFs直接高温热解或水热处理生成碳骨架,这种方法可以获得具有高比表面积的和多孔结构的碳材料[50]㊂在表面修饰策略中,通过一些化学修饰将纳米颗粒引入到MOFs的表面或内部,改善MOFs的电化学性能和储能性能[51-52]㊂在衍生金属化合物策略中,将MOFs衍生成金属氧化物㊁双层氢氧化物㊁金属磷化物以及金属硫化物,这些金属化合物具有优异的电化学活性,是超级电容器电极极具潜力的材料[53-54]㊂值得注意的是,具体的合成策略可能会根据具体的MOFs材料和应用需求而有所差异,在设计和合成过程中,需要综合考虑材料的电化学性能㊁稳定性和成本等因素㊂结构调制在MOFs衍生超级电容器电极材料的合成过程中也十分重要,其中经结构调制后的MOFs衍生的多元材料和复合材料所展现的电化学性能尤为突出㊂Pathak等[55]通过同轴静电纺丝合成了具有足够柔韧性㊁导电性和高度功能化的含有中空碳纳米纤维(MXHCNF)的MXenes,并在MXHCNF内外装饰聚吡咯层得到PPy@MXHCNF㊂PPy@MXHCNF作为独立电极的高效基底,均匀生长了ZnCoMOF㊂该材料作为超级电容器电极(ZCO@PPy@MXHCNF)时,在1A/g的电流密度下具有1567.5F/g的超高比电容㊂ZCO@PPy@MXHCNF 电极的高比电容主要源于其独特的三层结构形态学㊁自行设计的高效基底以及双金属MOFs提供的协同作用㊂当前不同种类材料的耦合受到了研究人员的广泛关注,在超级电容器的电极设计方面,电极材料之间的协同作用可提升离子载流子传输动力学㊁结构稳定性以及电容性能等[56-57]㊂Jayakumar等[58]将MOF衍生的双金属氧化物与石墨烯3D水凝胶耦合,通过连续且多孔的石墨烯导电网络实现了2870.8F/g的高比电容㊂Shao等[59]在UiO-66的孔中生长聚苯胺分子链(PANI/UiO-66),形成固定的互穿网络结构㊂PANI/UiO-66通过多种协同作用增强了其电导率和电化学性能,以其为电极材料制备的柔性超级电容器在800个180ʎ的弯曲周期后,其性能仅下降10%,这种柔性超级电容器在储能装置中显示出了巨大的潜力㊂3㊀结语与展望本文综述了目前MOFs衍生碳材料㊁氧化物㊁氢氧化物㊁硫化物以及磷化物作为高效超级电容器电极材料的研究进展,概括和总结了目前超级电容器电极用MOFs衍生材料的合成策略和结构调制方法㊂在孔结构的设计中,微孔用于EDLC载流子的吸附和赝电容的体相反应,介孔用于载流子的交换,大孔主要用于载流子的储存扩散㊂通过结构调制调整MOFs衍生材料的结构尺寸㊁孔隙率和载流子通道对提高超级电容器的电化学性能至关重要㊂尽管目前MOFs衍生物具有高比电容㊁高功率密度㊁快充放电及长循环寿命等优异的超级电容行为,但后续电极材料的开发仍存在合成策略选择的多样性㊁结构调制不确定性和不稳定性㊁合成过程消耗能量大,以及环境问题等,限制了其在超级电容器中的商业化应用㊂为了进一步提高超级电容器用MOFs衍生材料的电化学性能,促进超级电容器的商业化,需从以下几个方面进行进一步的探究㊂对于MOFs衍生碳材料,可将其与杂原子进行掺杂,在原子水平上调节材料的原子/分子结构,通过改变材料的电子结构来提高超级电容器的性能㊂此外,进一步深入研究MOFs衍生碳材料的储能机理㊂通过先进的表征方法获得其在循环过程中的形貌㊁价态㊁结构和组分变化,建立研究模型,通过计算机模拟手段对其建立材料模型以及材料数据库,并结合机器学习和大数据模型对材料进行更直观的表达和预测㊂对于MOFs衍生氧化物㊁氢氧化物㊁硫化物以及磷化物纳米材料,首先可通过不同过渡金属离子与配体结合,构建新型拓扑结构的原生MOFs,再通过硫化或磷化调节组分活性,提升MOFs衍生纳米电极材料电容特性和结构稳定性㊂其次,尝试MOFs衍生的多元材料与不同维度㊁不同种类以及不同特性的材料耦合,提升电化学性能和机械性能㊂最后MOFs衍生的多元材料在复合时存在缺陷和引入杂原子等问题,故需系统研究异质原子掺杂量和位错缺陷浓度之间的关系,并深入探究位错缺陷浓度对电极材料的导电性㊁电化学活性以及结构稳定性的影响㊂此外,MOFs衍生氧化物㊁氢氧化物㊁硫化物㊁磷化物和其复合所得的材料在不同电解质中电容表现不同,故需通过合理匹配电极和电解质,降低电极在循环过程中的衰变㊂1928㊀综合评述人工晶体学报㊀㊀㊀㊀㊀㊀第52卷参考文献[1]㊀XU B,ZHANG H B,MEI H,et al.Recent progress in metal-organic framework-based supercapacitor electrode materials[J].CoordinationChemistry Reviews,2020,420:213438.[2]㊀ZHAO Y,SONG Z X,LI X,et al.Metal organic frameworks for energy storage and conversion[J].Energy Storage Materials,2016,2:35-62.[3]㊀EMAM H E,ABDELHAMEED R M,AHMED H B.Adsorptive performance of MOFs and MOF containing composites for clean energy and safeenvironment[J].Journal of Environmental Chemical Engineering,2020,8(5):104386.[4]㊀ADEGOKE K A,MAXAKATO N W.Porous metal-organic framework(MOF)-based and MOF-derived electrocatalytic materials for energyconversion[J].Materials Today Energy,2021,21:100816.[5]㊀DOLGOPOLOVA E A,RICE A M,MARTIN C R,et al.Photochemistry and photophysics of MOFs:steps towards MOF-based sensingenhancements[J].Chemical Society Reviews,2018,47(13):4710-4728.[6]㊀ZHANG X Q,CHENG X B,ZHANG Q.Nanostructured energy materials for electrochemical energy conversion and storage:a review[J].Journal of Energy Chemistry,2016,25(6):967-984.[7]㊀MILLER E E,HUA Y,TEZEL F H.Materials for energy storage:review of electrode materials and methods of increasing capacitance forsupercapacitors[J].Journal of Energy Storage,2018,20:30-40.[8]㊀YANG W P,LI X X,LI Y,et al.Applications of metal-organic-framework-derived carbon materials[J].Advanced Materials,2018:1804740.[9]㊀ZHUANG J L,LIU X Y,MAO H L,et al.Hollow carbon polyhedra derived from room temperature synthesized iron-based metal-organicframeworks for supercapacitors[J].Journal of Power Sources,2019,429:9-16.[10]㊀WANG C H,KIM J,TANG J,et al.New strategies for novel MOF-derived carbon materials based on nanoarchitectures[J].Chem,2020,6(1):19-40.[11]㊀SHANG L,YU H J,HUANG X,et al.Carbon nanoframes:well-dispersed ZIF-derived co,N-co-doped carbon nanoframes through mesoporous-silica-protected calcination as efficient oxygen reduction electrocatalysts[J].Advanced Materials,2016,28(8):1712.[12]㊀YAO M Y,ZHAO X,JIN L,et al.High energy density asymmetric supercapacitors based on MOF-derived nanoporous carbon/manganese dioxidehybrids[J].Chemical Engineering Journal,2017,322:582-589.[13]㊀ZHU J,SHEN X P,KONG L R,et al.MOF derived CoP-decorated nitrogen-doped carbon polyhedrons/reduced graphene oxide composites forhigh performance supercapacitors[J].Dalton Transactions,2019,48(28):10661-10668.[14]㊀FANG H,BIAN H,ZHANG H,et al.Hierarchical porous nitrogen-doped carbon nanosheets derived from zinc-based bio MOF as flexiblesupercapacitor electrode[J].Applied Surface Science,2023,614:156154.[15]㊀WANG M J,MAO Z X,LIU L,et al.Preparation of hollow nitrogen doped carbon via stresses induced orientation contraction[J].Small,2018,14(52):1804183.[16]㊀LI C J,YANG W H,HE W,et al.Multifunctional surfactants for synthesizing high-performance energy storage materials[J].Energy StorageMaterials,2021,43:1-19.[17]㊀BAI P Y,WEI S L,LOU X X,et al.An ultrasound-assisted approach to bio-derived nanoporous carbons:disclosing a linear relationship betweeneffective micropores and capacitance[J].RSC Advances,2019,9(54):31447-31459.[18]㊀ZHANG Z,FENG J Z,JIANG Y G,et al.Self-sacrificial salt templating:simple auxiliary control over the nanoporous structure of porous carbonmonoliths prepared through the solvothermal route[J].Nanomaterials,2018,8(4):255.[19]㊀ZHANG W,JIANG X F,ZHAO Y Y,et al.Hollow carbon nanobubbles:monocrystalline MOF nanobubbles and their pyrolysis[J].ChemicalScience,2017,8(5):3538-3546.[20]㊀TANG T T,YUAN R L,GUO N N,et al.Improving the surface area of metal organic framework-derived porous carbon through constructing innersupport by compatible graphene quantum dots[J].Journal of Colloid and Interface Science,2022,623:77-85.[21]㊀LIU W H,WANG K,LI C,et al.Boosting solid-state flexible supercapacitors by employing tailored hierarchical carbon electrodes and a high-voltage organic gel electrolyte[J].Journal of Materials Chemistry A,2018,6(48):24979-24987.[22]㊀SAMUEL E,JOSHI B,KIM M W,et al.Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbonnanofiber electrodes for high performance flexible supercapacitors[J].Chemical Engineering Journal,2019,371:657-665.[23]㊀ZHOU P,WAN J F,WANG X R,et al.Nickel and cobalt metal-organic-frameworks-derived hollow microspheres porous carbon assembled fromnanorods and nanospheres for outstanding supercapacitors[J].Journal of Colloid and Interface Science,2020,575:96-107. [24]㊀ZHANG S,SHI X Z,WEN X,et al.Interconnected nanoporous carbon structure delivering enhanced mass transport and conductivity towardexceptional performance in supercapacitor[J].Journal of Power Sources,2019,435:226811.[25]㊀ZHAO K M,LIU S Q,YE G Y,et al.High-yield bottom-up synthesis of2D metal-organic frameworks and their derived ultrathin carbonnanosheets for energy storage[J].Journal of Materials Chemistry A,2018,6(5):2166-2175.[26]㊀LI Q A,DAI Z W,WU J B,et al.Fabrication of ordered macro-microporous single-crystalline MOF and its derivative carbon material forsupercapacitor[J].Advanced Energy Materials,2020,10(33):1903750.㊀第11期郭容男等:超级电容器用MOFs衍生纳米电极材料的研究进展1929㊀[27]㊀WANG J E,LUO X L,YOUNG C,et al.A glucose-assisted hydrothermal reaction for directly transforming metal-organic frameworks into hollowcarbonaceous materials[J].Chemistry of Materials,2018,30(13):4401-4408.[28]㊀AL-ENIZI A M,UBAIDULLAH M,AHMED J,et al.Synthesis of NiO x@NPC composite for high-performance supercapacitor via waste petplastic-derived Ni-MOF[J].Composites Part B:Engineering,2020,183:107655.[29]㊀PING Y J,YANG S J,HAN J Z,et al.N-self-doped graphitic carbon aerogels derived from metal-organic frameworks as supercapacitor electrodematerials with high-performance[J].Electrochimica Acta,2021,380:138237.[30]㊀LIU Y,XU J,LIU S C.Porous carbon nanosheets derived from Al-based MOFs for supercapacitors[J].Microporous and Mesoporous Materials,2016,236:94-99.[31]㊀HE D P,GAO Y,YAO Y C,et al.Asymmetric supercapacitors based on hierarchically nanoporous carbon and ZnCo2O4from a single biometallicmetal-organic frameworks(Zn/co-MOF)[J].Front Chem,2020,8:719.[32]㊀ACHARYA D,PATHAK I,DAHAL B,et al.Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbonnanofibers as freestanding electrode for asymmetric supercapacitors[J].Carbon,2023,201:12-23.[33]㊀LU H Y,LIU S L,ZHANG Y F,et al.Nitrogen-doped carbon polyhedra nanopapers:an advanced binder-free electrode for high-performancesupercapacitors[J].ACS Sustainable Chemistry&Engineering,2019,7(5):5240-5248.[34]㊀CAO X M,SUN Z J,ZHAO S Y,et al.MOF-derived sponge-like hierarchical porous carbon for flexible all-solid-state supercapacitors[J].Materials Chemistry Frontiers,2018,2(9):1692-1699.[35]㊀KIM J,YOUNG C,LEE J,et al.Nanoarchitecture of MOF-derived nanoporous functional composites for hybrid supercapacitors[J].Journal ofMaterials Chemistry A,2017,5(29):15065-15072.[36]㊀TANG Z Y,ZHANG G H,ZHANG H,et al.MOF-derived N-doped carbon bubbles on carbon tube arrays for flexible high-rate supercapacitors[J].Energy Storage Materials,2018,10:75-84.[37]㊀LIU H,LIU X,WANG S L,et al.Transition metal based battery-type electrodes in hybrid supercapacitors:a review[J].Energy StorageMaterials,2020,28:122-145.[38]㊀LI J N,ZHANG C Y,WEN Y P,et al.Design of ZIF-67MOF-derived Co3O4/NiCo2O4nanosheets for supercapacitor electrode materials[J].Journal of Chemical Research,2021,45(11-12):983-991.[39]㊀ZHANG X,WANG S L,XU L,et al.Controllable synthesis of cross-linked CoAl-LDH/NiCo2S4sheets for high performance asymmetricsupercapacitors[J].Ceramics International,2017,43(16):14168-14175.[40]㊀ZHANG Y N,CHEN J L,SU C Y,et al.Enhanced ionic diffusion interface in hierarchical metal-organic framework@layered double hydroxidefor high-performance hybrid supercapacitors[J].Nano Research,2022,15(10):8983-8990.[41]㊀HU Q,CHAI Y R,ZHOU X Y,et al.Electrochemical anion-exchanged synthesis of porous Ni/Co hydroxide nanosheets for ultrahigh-capacitancesupercapacitors[J].Journal of Colloid and Interface Science,2021,600:256-263.[42]㊀ACHARYA J,OJHA G P,KIM B S,et al.Modish designation of hollow-tubular rGO-NiMoO4@Ni-co-S hybrid core-shell electrodes withmultichannel superconductive pathways for high-performance asymmetric supercapacitors[J].ACS Applied Materials&Interfaces,2021,13(15):17487-17500.[43]㊀LIU Z C,ZHANG G,ZHANG K,et al.Low electronegativity Mn bulk doping intensifies charge storage of Ni2P redox shuttle for membrane-freewater electrolysis[J].Journal of Materials Chemistry A,2020,8(7):4073-4082.[44]㊀HE S X,GUO F J,YANG Q,et al.Design and fabrication of hierarchical NiCoP-MOF heterostructure with enhanced pseudocapacitive properties[J].Small,2021,17(21):2100353.[45]㊀CHHETRI K,KIM T,ACHARYA D,et al.Hollow carbon nanofibers with inside-outside decoration of Bi-metallic MOF derived Ni-Fephosphides as electrode materials for asymmetric supercapacitors[J].Chemical Engineering Journal,2022,450:138363.[46]㊀YANG X F,TIAN Y H,LI S A,et al.Heterogeneous Ni-MOF/V2CT x-MXene hierarchically-porous nanorods for robust and high energy densityhybrid supercapacitors[J].Journal of Materials Chemistry A,2022,10(22):12225-12234.[47]㊀HUANG Y C,ZHOU T,LIU H,et al.Do Ni/Cu and Cu/Ni alloys have different catalytic performances towards water-gas shift?A densityfunctional theory investigation[J].ChemPhysChem,2014,15(12):2490-2496.[48]㊀LI Y,XIE H Q,LI J,et al.Metal-organic framework-derived CoO x/carbon composite array for high-performance supercapacitors[J].ACSApplied Materials&Interfaces,2021,13(35):41649-41656.[49]㊀LI D X,WANG J A,GUO S J,et al.Molecular-scale interface engineering of metal-organic frameworks toward ion transport enables high-performance solid lithium metal battery[J].Advanced Functional Materials,2020,30(50):2003945.[50]㊀LIU Y,XU X M,SHAO Z P,et al.Metal-organic frameworks derived porous carbon,metal oxides and metal sulfides-based compounds forsupercapacitors application[J].Energy Storage Materials,2020,26:1-22.[51]㊀LI Z W,MI H Y,LIU L,et al.Nano-sized ZIF-8anchored polyelectrolyte-decorated silica for nitrogen-rich hollow carbon shell frameworkstoward alkaline and neutral supercapacitors[J].Carbon,2018,136:176-186.[52]㊀YAN C X,WEI J,GUAN J,et al.Highly foldable and free-standing supercapacitor based on hierarchical and hollow MOF-anchored cellulose。
超级电容器复合电极材料制备及电化学性能研究
超级电容器复合电极材料制备及电化学性能研究1. 本文概述随着现代科技的发展,能源存储技术正面临着前所未有的挑战和机遇。
超级电容器作为一种重要的能源存储设备,因其高功率密度、快速充放电能力、长寿命周期和环境友好性而受到广泛关注。
在超级电容器的构造中,复合电极材料的研发尤为关键,其直接决定了超级电容器的电化学性能和整体效能。
本文旨在探讨超级电容器复合电极材料的制备方法及其电化学性能。
本文将对目前广泛研究的几种复合电极材料,如碳材料、金属氧化物、导电聚合物等,进行系统的综述。
这些材料在超级电容器中的应用优势和面临的挑战将被详细讨论。
接着,本文将重点介绍几种创新的复合电极材料制备技术,包括化学气相沉积、水热合成、溶胶凝胶法等。
这些方法在制备过程中对材料结构和形貌的控制,以及对电化学性能的影响将被深入分析。
本文将通过实验数据,评估所制备的复合电极材料在超级电容器中的实际应用性能,包括比电容、能量密度、循环稳定性等关键指标。
通过这些研究,本文旨在为超级电容器复合电极材料的发展提供新的视角和技术路径,推动能源存储技术的进步。
2. 文献综述超级电容器,也称为电化学电容器,是一种介于传统电容器和电池之间的能量存储设备。
它们的主要特点是具有高功率密度、长循环寿命和快速充放电能力。
超级电容器的储能机制主要是双电层电容,涉及电极材料与电解质之间的电荷分离。
这一领域的研究起始于20世纪50年代,随着材料科学和电化学技术的进步,超级电容器在能量存储领域的重要性日益凸显。
超级电容器的性能在很大程度上取决于电极材料的性质。
近年来,研究者们广泛关注复合电极材料,因其能够结合不同材料的优点,从而提高超级电容器的整体性能。
常见的复合电极材料包括碳基材料、金属氧化物、导电聚合物等。
这些材料通过不同的复合策略(如物理混合、化学接枝、层层自组装等)进行组合,旨在提高比电容、能量密度和循环稳定性。
电化学性能是评估超级电容器电极材料的关键指标。
MnO_2作为超级电容器电极材料的研究进展
第卷第期年月MnO 2作为超级电容器电极材料的研究进展于文强,易清风(湖南科技大学化学化工学院,湖南湘潭411201)摘要:主要介绍了目前国内外研究MnO 2作为电化学超级电容器电极材料的最新进展和几个主要研究动向;并简要介绍了研究电化学超级电容器的几种主要的表征手段。
关键词:超级电容器;MnO 2;电极材料;表征中图分类号:TM912.9文献标志码:A文章编号:1008-7923(2009)04-0285-04Research progress on manganese dioxide for electrodematerial of supercapacitorYU Weng-qiang,YI Qing-feng(College of Chemistry and Chemical Engineering,Hunan University of Science and Technology,Xiangtan,Hunan 411201,China )Abstract:The latest progress and research field about the electrochemical supercapacitor materials at home and abroad were introduced in this paper.And the characterization methods in the research were also briefly discussed.Key words:electrochemical supercapacitor;manganese dioxide;electrode material;characterization methods收稿日期:2009-03-19基金项目:国家自然科学基金项目(20876038)和湖南科技大学研究生创新基金项目(S080109)作者简介:于文强(1983-),男,山东省人,硕士生。
超级电容器有机导电聚合物电极材料的研究进展
超级电容器有机导电聚合物电极材料的研究进展3陈光铧,徐建华,杨亚杰,蒋亚东,葛 萌(电子科技大学光电信息学院,成都610051)摘要 有机导电聚合物是一类重要的超级电容器电极材料。
有机聚合物掺杂状态下,因具有共轭结构,从而提高了电子的离域性,对外表现可以导电。
根据掺杂类型和组合的不同,超级电容器有机聚合物电极可分为3种基本类型。
阐述了有机聚合物电极的导电原理和分类,介绍了有机聚合物电极的研究现状和发展趋势。
关键词 电化学超级电容器 导电聚合物 聚苯胺 聚噻吩 混合类型电容器 全固态超级电容器Progress in Research on Conductive Polymer Elect rode Materials for SupercapacitorsC H EN Guanghua ,XU Jianhua ,YAN G Yajie ,J IAN G Yadong ,GE Meng(College of Opto 2electronic Information ,University of Electronic Science and Technology of China ,Chengdu 610051)Abstract Conducting polymer is a kind of important supercapacitor electrode materials.The electronic deloca 2lization of polymer will be enhanced for the conjugate structure in doped state.Conducting polymers are divided into three kinds of basic types according to the kind of doping and association.The principle and classification of the con 2ducting polymer are introduced.Recent progress in research and development on conducting polymer electrode mate 2rials for supercapacitors is reviewed.K ey w ords electrochemical supercapacitor ,conducting polymer ,polyaniline ,polythiophene ,hybrid capacitor ,all 2solid 2state electrochemical supercapacitor 3国家自然科学基金(60771044);电子薄膜与集成器件国家重点实验室开放课题(KFJJ 200806) 陈光铧:男,1984年生,硕士,研究方向为有机高分子材料及器件 Tel :028********* E 2mail :ghchen4@ 徐建华:男,1966年生,教授,主要从事有机电子材料及器件研究 Tel :028********* E 2mail :xujh9913@0 引言超级电容器是一种性能介于电池与传统电容器之间的新型储能器件,具有功率密度高、充放电速度快、使用寿命长等优点,有着广阔的应用前景,如可用于便携式仪器设备、数据记忆存储系统、电动汽车电源及应急后备电源等。
导电聚噻吩作为超级电容器电极材料的研究进展_袁美蓉
CN
CN
S
S
S
S
CH3
1
2
CH3
CN
CN
S
CN
O
O
S
S
S
3
4
5
图 2 低 聚 物 的 结 构 式 [13] Fig.2 Structure of the oligomers[13]
S
"
S+.
DMT
-e-
Ionicliquid
图3 TPT 的结构式[19] Fig.3 Schematic strcuture of TPT[19]
Electrochemical Polymerization
PDMT Sn
#
-e-
x
Ionicliquid
S+. +y S+.
Electrochemical Copolymerization
S Sn
Poly(DMT-co-3MT)
S 3MT
!
-eIonicliquid
S+. Electrochemical Polymerization
为主,而聚噻吩既可以 p型 掺 杂 又 可 以 n型 掺 杂 。 [1] 本 文 主 要对聚噻吩超级电容器电极材料的研究成果做简要概述。
1 噻 吩 均 聚 物 类 电 极 材 料
噻吩类聚 合 物 作 为 发 光 材 料 的 研 究 早 已 被 人 们 报 道。 1996年 Pasquier等 在 [10] 电化学电容进 展 国 际 会 议 上 报 道 了 一种Ⅱ型超级电容器,它的 2个电极分别由聚 3-氟苯噻吩和 聚噻 吩 构 成。 另 外,Mastragostino 等 也 [11] 在 会 议 上 报 道 了 另一种 既 可 以 p 型 掺 杂 又 可 以 n 型 掺 杂 的 聚 3,4-双 噻 吩 基 噻吩,并与传统的 活 性 炭 材 料 进 行 性 能 对 比。 随 后,人 们 开 始关注聚噻吩类超级电容器电极材料的研究。
超级电容器材料的制备与应用研究
超级电容器材料的制备与应用研究超级电容器(supercapacitor)是一种新型的电化学储能器,将电能以静电形式储存于电容器的双电层上,其容量和电荷/放电速度都远高于传统的电化学电容器和蓄电池。
超级电容器具有无污染、高效率、长寿命、高功率密度和高能量密度等优点,尤其在储能系统和能源转换领域具有广泛的应用前景。
超级电容器的核心是电极材料,其储能性能受材料性质的制约,因此超级电容器材料的研究和开发是不断深入和拓展的课题。
本文将围绕超级电容器材料的制备和应用两个方面,探讨目前的研究进展和未来的发展趋势。
一、超级电容器材料的制备1、碳基材料碳基材料是超级电容器电极材料的主要代表之一,其特点是具有良好的导电性、化学稳定性、高表面积和可调控的孔径结构,可以形成高效地电荷传输通道和大面积双层电容器。
碳基材料的制备方法包括碳化法、活性炭法、碳纳米管法、石墨烯法等。
2、金属氧化物材料金属氧化物材料具有高比容量、高化学稳定性和较高的电导率等优点,是超级电容器材料的另一个重要分支。
常见的金属氧化物包括氧化锰、氧化钴、氧化钒等。
金属氧化物材料的制备方法多样,如化学共沉淀法、水热合成法、溶胶凝胶法等。
3、导电聚合物材料导电聚合物材料是近年来发展起来的一类超级电容器电极材料,其优缺点并存。
导电聚合物具有可控的电导率、化学稳定性和机械柔韧性等优点,但比容量相对较小。
导电聚合物材料的制备方法多样,如电化学聚合法、化学氧化法、物理吸附法等。
二、超级电容器材料的应用1、储能系统领域随着可再生能源的快速发展,储能系统的需求量也越来越大。
超级电容器作为一种高效的电化学储能器,受到了广泛的关注。
其中最具代表性的应用领域是电动汽车和混合动力汽车,超级电容器可以帮助达到高能量密度储能,并满足短时间高功率输出的需求。
此外,在可再生能源和智能电网等领域也有广泛的应用。
2、电子产品领域超级电容器在电子产品领域也有广泛的应用,如智能手机、平板电脑、电子手表等。
超级电容器的电极材料的研究进展
超级电容器的电极材料的研究进展一、本文概述随着科技的不断进步和新能源领域的飞速发展,超级电容器作为一种高效、快速储能器件,已逐渐引起科研工作者和工业界的广泛关注。
作为超级电容器的核心组件,电极材料的性能直接影响着超级电容器的电化学性能和实际应用效果。
研究和开发高性能的电极材料对于提升超级电容器的整体性能、推动其在新能源领域的应用具有十分重要的意义。
本文旨在对超级电容器的电极材料的研究进展进行全面的梳理和综述。
文章首先介绍了超级电容器的基本原理和电极材料在其中的作用,然后重点阐述了当前常用的电极材料类型,包括碳材料、金属氧化物、导电聚合物等,并分析了它们各自的优势和存在的问题。
接着,文章综述了近年来在电极材料研究方面取得的重要突破和进展,包括材料结构设计、复合材料的开发、表面改性等方面的研究。
文章对超级电容器电极材料的研究趋势和未来发展方向进行了展望,以期为相关领域的研究者提供参考和借鉴。
二、超级电容器概述超级电容器(Supercapacitor),亦称为电化学电容器(Electrochemical Capacitor),是一种介于传统电容器和电池之间的储能器件。
其具有高功率密度、快速充放电、长循环寿命以及良好的环境适应性等特点,因此在能源储存和转换领域引起了广泛关注。
超级电容器的储能原理主要基于电极材料表面和近表面的快速、可逆的法拉第氧化还原反应或非法拉第的静电吸附过程。
相比于传统电容器,超级电容器能够提供更高的能量密度而相较于电池,它又具备更高的功率密度和更快的充放电速度。
这些独特的性能使得超级电容器在电动汽车、可再生能源系统、移动通讯、航空航天等领域具有广泛的应用前景。
超级电容器的电极材料是其性能的决定性因素。
理想的电极材料应具备高比表面积、高电导率、良好的化学稳定性和环境友好性等特点。
目前,研究者们已经开发出多种类型的电极材料,包括碳材料、金属氧化物、导电聚合物等。
这些材料各有优势,但也存在一些问题,如比能量低、循环稳定性差等。
电化学超级电容器电极材料研究进展
3 . 黑龙江省科学院 , 哈尔 滨 1 5 0 0 0 1 ; 4 . 黑龙江省科学院高技术研究院 , 哈 尔 滨 1 5 0 0 2 0 ) 摘要 : 电化 学超 级 电容 器是 一 种 不 同 于 电池 和 传 统 电容 器 的 新 型储 能 器 件 , 它是 一 种 高 效 、 清 洁 的 能 源 。 主要 介 绍 了
( 1 . T e c h n i c a l P h y s i c s I n s t i t u t e o fH e i l o n g i f a n gA c a d e m yo fS c i e n c e s , H a r b i n 1 5 0 0 8 6 , C h i n a ; 2 . G e n e r a l P h a r m a c e u t i c a l F a c t o r y f o H a r b i n P h a r ac m e u t i c a l G r o u p , H a r b i n 1 5 0 0 8 6 , C h i n a ; 3 . H e i l o n g i f a n g A c a em d y o f S c i e n c e s , H a r b i n 1 5 0 0 0 1 , C h i n a ; 4 . H e i l o n g i f a n g P r o v i n c i a l A c a em d y fS o c i e ce n s H i g h—t e c h I st n i t u t e , H a r b i n , 1 5 0 0 2 0 , C h i n a )
超级电容器电极材料的设计与性能研究
超级电容器电极材料的设计与性能研究超级电容器 (Supercapacitor) 是一种高能量密度、高功率密度的新型电化学储能装置,被广泛应用于电动汽车、可穿戴设备和可再生能源等领域。
作为超级电容器的核心组成部分,电极材料的设计与性能研究对提高超级电容器的储能性能具有关键意义。
1. 介绍超级电容器的背景和发展超级电容器是基于双电层电容和赝电容机制工作的,具有高电容量、高电子传导速率和长循环寿命等优势。
随着可再生能源的快速发展和电动化趋势的加速推进,超级电容器作为储能装置备受关注。
然而,要实现超级电容器在能源存储和释放方面的更好性能,电极材料的设计与性能研究至关重要。
2. 电极材料的设计原则电极材料的设计需要兼顾电容量、电导率、表面积、孔径尺寸、化学稳定性等因素。
首先,电极材料应具有高比表面积,以增加双电层电容储能的有效表面积。
其次,电极材料应具有优异的导电性能,以实现电子的快速传输和离子的高效转移。
此外,电极材料的孔径尺寸应适合离子的扩散,并保持充分的电解液渗透性。
最后,电极材料应具有良好的化学稳定性和循环寿命,以确保超级电容器的长期可靠性。
3. 常用电极材料及其性能研究(1)活性碳:活性碳广泛用作超级电容器电极材料,具有较高的比表面积和优良的化学稳定性。
研究表明,通过调控活性碳的孔径尺寸和微观形貌,可提高其电容量和循环寿命。
此外,杂原子掺杂和纳米结构工程也被应用于活性碳的改性,进一步提高了其储能性能。
(2)氧化物:金属氧化物如二氧化锰、三氧化二铝等也是常用的电极材料。
这些氧化物具有良好的化学稳定性和较高的比容量。
然而,氧化物电极材料的电导率较差,限制了超级电容器的功率密度。
因此,研究者通过纳米材料制备、碳包覆等手段改善其电导率,进一步提高氧化物电极的储能性能。
(3)聚合物:聚合物电极材料近年来备受关注,因为它们具有高的表面积、优良的导电性能和良好的化学稳定性。
聚合物可以通过聚合反应、电化学聚合等方法合成,并进行结构调控和功能化改进。
超级电容器炭电极材料的研究
超级电容器炭电极材料的研究一、本文概述随着全球能源需求的持续增长以及环境问题的日益严重,高效、环保的能源存储技术成为了科学研究的热点。
超级电容器作为一种介于传统电容器和电池之间的新型储能器件,因其高功率密度、快速充放电性能以及长循环寿命等优点,在电动汽车、智能电网、便携式电子设备等领域具有广泛的应用前景。
炭电极材料作为超级电容器的核心组成部分,其性能直接决定了超级电容器的电化学性能。
因此,研究高性能的炭电极材料对于推动超级电容器技术的发展具有重要意义。
本文旨在探讨超级电容器炭电极材料的研究现状、发展趋势以及未来挑战。
我们将对超级电容器的基本原理和炭电极材料的分类进行简要介绍。
随后,重点分析不同类型炭电极材料的制备工艺、结构特征以及电化学性能,并对比其优缺点。
我们还将讨论炭电极材料在超级电容器应用中的实际问题,如循环稳定性、能量密度和功率密度等。
结合当前的研究热点和技术难点,展望超级电容器炭电极材料未来的发展方向,以期为相关领域的研究提供有益的参考和启示。
二、超级电容器炭电极材料概述超级电容器,作为一种介于传统电容器和电池之间的新型储能器件,因其具有高功率密度、快速充放电、长循环寿命以及宽广的工作温度范围等优点,受到了广泛的关注和研究。
而炭材料,因其优异的导电性、高比表面积、良好的化学稳定性以及低廉的成本,成为了超级电容器电极材料的理想选择。
炭电极材料主要包括活性炭、碳纳米管、石墨烯等。
活性炭是最早被用于超级电容器的炭材料,其具有高比表面积和良好的孔结构,可以提供大量的电荷存储位置。
碳纳米管因其独特的一维结构和优异的电子传输性能,成为了超级电容器电极材料的研究热点。
石墨烯,作为一种新兴的二维纳米材料,因其超高的比表面积、良好的导电性和化学稳定性,被认为是超级电容器炭电极材料的未来之星。
在超级电容器炭电极材料的研究中,如何提高其比表面积、优化孔结构、改善导电性能以及提高电化学稳定性是研究的重点。
通过物理或化学活化方法,可以增大活性炭的比表面积并改善其孔结构,从而提高其电荷存储能力。
超级电容器电极材料
超级电容器电极材料超级电容器是一种储能装置,它具有高能量密度、高功率密度、长循环寿命和快速充放电等优点,因此在电子产品、新能源汽车、医疗设备等领域具有广泛的应用前景。
而超级电容器的性能很大程度上取决于电极材料的选择和设计。
本文将重点介绍超级电容器电极材料的研究进展和应用前景。
目前,超级电容器的电极材料主要包括活性碳、金属氧化物和导电聚合物等。
活性碳是一种常用的电极材料,具有较高的比表面积和良好的孔隙结构,能够提供丰富的储能空间。
金属氧化物电极材料具有较高的比电容和良好的电化学稳定性,如氧化铁、氧化钼等。
而导电聚合物电极材料具有良好的导电性和柔韧性,如聚咔唑、聚吡咯等。
这些电极材料各具特点,可以根据超级电容器的具体应用需求进行选择和设计。
近年来,石墨烯作为一种新型碳基材料,受到了广泛关注。
石墨烯具有高导电性、高比表面积和优良的机械性能,被认为是一种理想的超级电容器电极材料。
研究表明,采用石墨烯作为超级电容器电极材料,可以显著提高电容器的能量密度和功率密度,同时具有良好的循环寿命和快速充放电特性。
因此,石墨烯在超级电容器领域具有巨大的应用潜力。
除了石墨烯,碳纳米管也是一种备受关注的电极材料。
碳纳米管具有优异的导电性和机械性能,能够有效提高超级电容器的电化学性能。
研究表明,将碳纳米管与其他电极材料复合使用,可以显著提高超级电容器的性能,如提高比电容、降低内阻等。
因此,碳纳米管在超级电容器电极材料中也具有重要的应用前景。
此外,金属有机骨架材料(MOFs)和碳化硅等新型材料也被广泛研究用于超级电容器电极材料。
MOFs具有高孔隙度和可调控的结构,能够提供丰富的储能空间和优异的电化学性能。
碳化硅具有优异的导电性和化学稳定性,能够有效提高超级电容器的性能。
因此,这些新型材料在超级电容器领域也具有广阔的应用前景。
总的来说,超级电容器的性能取决于电极材料的选择和设计。
目前,石墨烯、碳纳米管、MOFs和碳化硅等新型材料被广泛研究用于超级电容器电极材料,能够显著提高超级电容器的能量密度、功率密度和循环寿命,具有广阔的应用前景。
超级电容器电极用Ti3C2Tx_基复合材料的研究进展
第51卷2023年6月第6期第12-19页材料工程J o u r n a l o fM a t e r i a l sE n g i n e e r i n gV o l.51J u n.2023N o.6p p.12-19超级电容器电极用T i3C2T x基复合材料的研究进展R e s e a r c h p r o g r e s s o fT i3C2T x-b a s e d c o m p o s i t e sa p p l i c a t i o n i ne l e c t r o d e f o r s u p e r c a p a c i t o r s赵基钢1*,张帆1,郑俊生2,3*(1华东理工大学绿色能源化工国际联合研究中心,上海200237;2同济大学新能源汽车工程中心,上海201804;3同济大学汽车学院,上海201804)Z H A OJ i g a n g1*,Z H A N GF a n1,Z H E N GJ u n s h e n g2,3* (1I n t e r n a t i o n a l J o i n tR e s e a r c hC e n t e r f o rG r e e nE n e r g y C h e m i c a l E n g i n e e r i n g,E a s tC h i n aU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y,S h a n g h a i200237,C h i n a;2C l e a nE n e r g y A u t o m o t i v eE n g i n e e r i n g C e n t e r,T o n g j iU n i v e r s i t y,S h a n g h a i201804,C h i n a;3C o l l e g e o fA u t o m o t i v eS t u d i e s,T o n g j iU n i v e r s i t y,S h a n g h a i201804,C h i n a)摘要:碳化钛(T i3C2T x)作为一种M X e n e材料,具有独特的结构和优良的导电性㊁稳定性以及优越的电化学性能,常被用作超级电容器电极材料㊂本文结合碳化钛(T i3C2T x)材料层状结构的特性,梳理了超级电容器电极用T i3C2T x基复合材料的研究进展,重点阐述了T i3C2T x材料的结构㊁性能㊁制备以及通过不同技术手段与多类材料复合后的电化学性能;归纳了T i3C2T x基复合材料性能提升的原因,包括增大层间距㊁提供更多活性位点㊁提高坚韧性等;最后指出T i3C2T x基复合材料的未来研究重点,如探究新的基体母相㊁丰富刻蚀方法㊁改进现有复合材料㊁探究更多更高效的复合材料等㊂关键词:M X e n e;T i3C2T x;复合材料;电极材料d o i:10.11868/j.i s s n.1001-4381.2022.000238中图分类号:O613.71文献标识码:A 文章编号:1001-4381(2023)06-0012-08A b s t r a c t:T i t a n i u mc a r b i d e(T i3C2T x)a so n eo f M X e n e m a t e r i a l s,h a su n i q u es t r u c t u r e,e x c e l l e n t c o n d u c t i v i t y,s t a b i l i t y a n ds u p e r i o re l e c t r o c h e m i c a l p r o p e r t i e s.I t i so f t e nu s e da se l e c t r o d em a t e r i a l f o r s u p e r c a p a c i t o r s.B a s e do nt h ec h a r a c t e r i s t i c so f t h el a y e r e ds t r u c t u r eo fT i3C2T x m a t e r i a l s,t h e r e s e a r c h p r o g r e s si n T i3C2T x b a s e d c o m p o s i t e m a t e r i a l s u s e d f o r s u p e r c a p a c i t o r e l e c t r o d e w a s r e v i e w e d,a n d t h e s t r u c t u r e,p r o p e r t i e s,p r e p a r a t i o n a n d e l e c t r o c h e m i c a l p e r f o r m a n c e o f T i3C2T x m a t e r i a l sc o m p o u n d e d w i t h v a r i o u s t y p e s o f m a t e r i a l s t h r o u g h d i f f e r e n tt e c h n i c a l m e a n s w e r e e m p h a t i c a l l y d e s c r i b e d.T h e r e a s o n s f o r i m p r o v i n g t h e p r o p e r t i e so fT i3C2T x m a t r i xc o m p o s i t e sw e r e s u m m a r i z e d,i n c l u d i n g i n c r e a s i n g t h el a y e rs p a c i n g,p r o v i d i n g m o r ea c t i v es i t e s,a n di m p r o v i n g t h e t o u g h n e s s.F i n a l l y,t h e f u t u r e r e s e a r c h p r i o r i t i e s o fT i3C2T x m a t r i x c o m p o s i t e sw e r e p o i n t e d o u t,s u c h a s e x p l o r i n g n e w m a t r i x p a r e n t p h a s e s,e n r i c h i n g e t c h i n g m e t h o d s,i m p r o v i n g e x i s t i n g c o m p o s i t e s,a n d e x p l o r i n g m o r e a n dm o r e e f f i c i e n t c o m p o s i t e s.K e y w o r d s:M X e n e;T i3C2T x;c o m p o s i t em a t e r i a l;e l e c t r o d em a t e r i a l随着化石能源的日渐减少及其带来的一系列环境问题,人们逐渐将重心着眼于新能源㊂然而太阳能㊁风能等新能源虽然在一定程度上可以弥补化石能源产生的问题,但也存在不可忽视的缺点,主要包括成本过大㊁稳定性低㊁利用率和技术水平有限等[1]㊂因此,用储能系统将转化而来的能源保存起来待以使用成为解Copyright©博看网. All Rights Reserved.第51卷第6期超级电容器电极用T i3C2T x基复合材料的研究进展决能源问题的关键㊂超级电容器作为一种较新储能装置,相比于传统电池和传统电容器,具有高比功率㊁充放电迅速㊁循环寿命长等优势,备受科研工作者的广泛关注㊂超级电容器主要由电解液㊁隔膜和电极构成,而电极由导电剂㊁黏结剂和电极材料构成㊂电极材料是超级电容器的核心,直接决定超级电容器的性能㊂因此,设计并制备导电性优异㊁比表面积大㊁电化学活性高的电极材料至关重要㊂二维纳米材料是指在三个维度中,其中一个维度上的尺寸限定在0.1~100n m,而另外两个维度的尺寸可以无限延伸的材料[2],该材料自发现以来便受到广泛关注㊂对二维纳米材料的研究由单原子层石墨烯的成功分离而拉开序幕[3]㊂除石墨烯外,二维纳米材料还包括过渡金属二卤族化合物㊁过渡金属碳化物/氮化物(M X e n e)㊂M X e n e作为一种新型的二维纳米材料,其化学通式为M n+1X n T x,其中n=1,2,3,M为S c,T i,Z r,V等早期过渡金属元素;X为碳或/和氮元素;T x表示合成过程中出现在其表面的官能团,例如 O H, F或 O等[4]㊂目前合成的M X e n e材料有T i3C2T x,M o2C T x,T i4N3T x等,其中对T i3C2T x材料的研究最多[5-7]㊂T i3C2T x材料具有丰富的物理性能(如电子㊁磁性㊁热学㊁力学性能等)和独特的层状结构㊁高电导率㊁高比表面积㊁优异的亲水性[8-11]以及比碳材料更高的体积比电容,使其应用于超级电容器电极材料中表现出巨大潜力㊂但T i3C2T x材料也易出现团聚或堆叠现象,导致电化学性能降低㊂因此,将T i3C2T x材料与聚合物㊁金属氧化物等材料复合不但可以有效解决这一问题,而且可以很大程度地提高复合前各单一材料的性能,从而拓宽超级电容器电极材料的选择范围㊂本文将从T i3C2T x的结构㊁性能㊁制备方法及其复合材料应用于超级电容器电极材料的研究进展进行总结,并指出了该材料的未来发展方向㊂1T i3C2T x材料的结构与性能1.1结构M X e n e材料的母相为MA X相㊂MA X母相是P63/m m c对称的层状六边形,M层几乎是封闭的,X 原子构成八面体,M n+1X n层与A原子层交错排列,也可以理解为,MA X相结构是M层中的元素(早期过渡金属碳化物/氮化物)与A元素粘在一起构成二维层状结构[7,12](A代表化学元素周期表中第Ⅲ或第Ⅳ主族的元素,包括A l,G a,P b等)㊂MA X与石墨烯等其他二维纳米材料不同,石墨烯等其他二维纳米材料是由层间较弱的范德华力将结构固定在一起,较易分离;而MA X相层间存在较强的化学键,使得无法通过简单的机械手段让其分离㊂巧妙的是,可以利用M A 键比M X键较弱这一特点,通过化学方法在保证不破坏M X键的情况下选择性地刻蚀掉A层,从而获得二维M X e n e材料[13-14]㊂合成的M X e n e材料表面会有官能团的存在,即M X e n e通式中的T x,影响材料的性能发挥㊂表面官能团的种类和数量取决于材料的制备方法,例如,用H F处理MA X母相后,T x为 F, O H, O;经L I F/ H C l处理后为 F, C l, O H, O㊂对于单纯的T i3C2材料,每一个单分子层都是由T i(1) C T i (2) C T i(1)五元层堆叠而成(图1(a)[15]左)㊂对于T x为 F, O H官能团的T i3C2T x材料,有三种构型,第一种是官能团位于三个相邻C原子之间的空位点上方或直接指向T i3C2层两侧的T i(2)原子(图1 (b),(e)[15]);第二种是官能团位于T i3C2层两C原子的最顶端(图1(c),(f)[15]);第三种可以看作是第一种和第二种的结合(图1(d),(g)[15])㊂图1 T i3C2单分子层及氟化和羟基化结构的几何模型[15](a)无表面官能团的T i3C2单分子层侧视图(左)和计算的自旋密度分布(中);(b)~(g)T i3C2F2或T i3C2(O H)2不同构型时的侧视图;(h),(i)前两种T i3C2F2构型的俯视图F i g.1G e o m e t r i cm o d e l o fT i3C2m o n o l a y e r a n d f l u o r i n a t e da n dh y d r o x y l a t e d s t r u c t u r e[15](a)n o s u r f a c e f u n c t i o n a l g r o u p s o fT i3C2m o n o l a y e r e l e v a t i o n(l e f t)a n d c a l c u l a t i o no f t h e s p i nd e n s i t y d i s t r i b u t i o n(m i d d l e);(b)-(g)T i3C2F2 o rT i3C2(O H)2d i f f e r e n t c o n f i g u r a t i o n s o f e l e v a t i o n;(h),(i)t o p v i e wo f t h e f i r s t t w oT i3C2F2c o n f i g u r a t i o n s由上述可知,T i3C2T x材料的母相为T i3A l C2,层间距较小㊂经过刻蚀后的T i3C2T x材料相当于将T i3 A l C2相的层状结构打开,使其层间距增大,不仅增加31Copyright©博看网. All Rights Reserved.材料工程2023年6月了材料的比表面积,还提供了更开放的层空间[12],使其他离子或物质可以对其进行插层,从而制备T i3C2T x基复合材料㊂1.2性能1.2.1稳定性晶格能是指破坏1m o l晶体,使它变成完全分离的气态自由离子所需要消耗的能量,所以晶格能是判断晶体稳定性的重要参数,晶格能越大,表明晶体越稳定㊂S h e i n等[16]利用第一性原理能带结构计算表明T i n+1C n T x可以稳定存在,并且n值越大,稳定性越强㊂相比于同类型的T i2C T x和T i n+1N n T x(即二维过渡金属氮化物)MX e n e材料,T i3C2T x材料的稳定性更胜一筹㊂无独有偶,B a r s o u m团队也证明过渡金属碳化物类M X e n e比过渡金属氮化物类M X e n e的稳定性更强[5]㊂此外,在200k V电子束照射下,T i3C2T x纳米片层比石墨烯更为稳定,更耐受电子辐照[14]㊂1.2.2电子性质T i3C2T x的母相T i3A l C2中,A l元素与T i和C元素之间通过金属键连接,在制备T i3C2T x过程中,A l 元素被刻蚀掉使金属键断裂,导致电子重排,这时T i3 A l C2材料中的原子全部以共价键的形式被禁锢在层内,层与层之间相对独立,只存在较弱的范德华力,所以电子仅仅是在层内运动,而不会跑到层外,这不仅影响了电子迁移速率,还进一步影响T i3C2T x的电子特性㊂第一性原理计算表明T i3C2的近费米能态密度是其母相的2.5~4.5倍[16],这是由于被破坏的T i A l 键中的T i1的3d态转变为T i1 T i1金属键态,从而使T i3C2表现出金属特性㊂由于制备方法的限制,目前并不能制备出纯净的二维过渡金属碳化物,所制备的M X e n e多带有表面官能团,T i3C2也不例外㊂当T i3C2T x通式中的T x指 O H时,T i3C2T x材料具有优异的导电性;当T x指 F或 O时,T i3C2T x材料具有半导体特性[14]㊂此外,T i3C2T x材料的电导率还可以通过降低晶体缺陷得到显著增加,可达6000~ 8000S/c m,远高于石墨烯材料[17]㊂1.2.3电化学特性在电化学充放电过程中,T i3C2T x的电容行为受到电解液的显著影响㊂在中性以及碱性电解液中, T i3C2T x的C V曲线形状接近于矩形,表现出典型的双电层电容行为;在酸性电解液中,其C V曲线表明其既有双电层电容行为,又有赝电容行为㊂由于赝电容的贡献,T i3C2T x材料在酸性电解液下的比电容值明显高于中性和碱性电解液中的电容值㊂此外, T i3C2T x材料的体积比电容较高,例如,自组装少层T i3C2T x独立薄膜电极在2m V/s扫描速率下,其体积比电容可达442F/c m3,远高于多数碳材料[18]㊂1.2.4其他特性T i3C2T x材料的层状结构增大了材料的比表面积,同时也使活性位点增多;由于T i3C2T x材料的表面官能团呈现负电性,致使N a+,K+,N H4+等阳离子或有机溶剂的水解阳离子插入层内部后使层间距增大,从而有利于进一步的片层剥离和比表面积的增大;由于T i3C2T x材料表面存在 O H,很容易通过氢键与水分子连接,使T i3C2T x材料表现出优异的亲水性和电解液访问性㊂2T i3C2T x材料的制备2.1含氟刻蚀2011年,N a g u i b等用H F作为腐蚀剂,可除去T i3A l C2材料中的A l层,同时被 F, O H等官能团所取代㊂T i3A l C2在被H F腐蚀的过程中,会发生以下反应:T i3A l C2+3H F=A l F3+32H2+T i3C2(1)T i3C2+2H2O=T i3C2(O H)2+H2(2)T i3C2+2H F=T i3C2F2+H2(3)当反应(1)发生时,A l原子从层间被腐蚀掉,T i3 A l C2材料因此失去金属键,从而导致层间可以相互剥离,呈现出类似手风琴的层状结构(图2[12])㊂具体实验步骤如下:向一定量T i3A l C2粉末中逐滴加入一定浓度的H F溶液后在室温下搅拌24h,用蒸馏水和无水乙醇对其进行超声离心洗涤直至上清液的p H值在4~6之间,最后取沉淀物置于烘箱中真空干燥得到剥离后的T i3C2T x样品㊂图2 T i3C2T x样品的S E M图[12]F i g.2S E Mi m a g e o f t h eT i3C2T x s a m p l e[12]有研究表明,H F浓度㊁腐蚀时间与温度可以直接影响合成的T i3C2T x材料的形貌㊂A l h a b e b等[19]对不同浓度的H F溶液进行了研究,发现5%(质量分41Copyright©博看网. All Rights Reserved.第51卷 第6期超级电容器电极用T i 3C 2T x 基复合材料的研究进展数,下同)的H F 就可以刻蚀掉A l 原子,H F 浓度越小,所需的刻蚀时间越长㊂然而,经过对不同浓度H F 溶液所刻蚀的T i 3C 2T x 样品的S E M 图分析可得:H F 溶液的浓度越高,样品剥离越完全㊁层间距越大,需要说明的是,层间距越大越有利于其他原子或物质的插层,从而越有利于发挥其层状结构的优势㊂马亚楠等[20]探究了刻蚀时间与刻蚀温度对T i 3C 2T x 材料的影响,结果表明,40%H F 溶液在低温下刻蚀60h 后,其层状结构仍未完全打开,若继续延长刻蚀时间到80h ,会发生副反应生成其他物质;而使用50%H F 在50ħ下刻蚀24h 后,T i 3C 2T x 样品出现了明显的层状结构,且层与层之间基本分开㊂可见,提高刻蚀温度,有利于T i 3C 2T x 材料层状结构的剥离㊂除了采用氢氟酸刻蚀外,还可采用氟化锂和盐酸刻蚀;利用氟化氢铵溶液也可制备出T i 3C 2T x 材料㊂但无论采用何种含氟溶液刻蚀,其本质上都是先合成或电离出氢氟酸,最终发挥作用的仍然是氢氟酸㊂2.2 无氟刻蚀在利用氢氟酸制备T i 3C 2T x 材料的工艺中,会给环境带来一定的不利影响,并且会在末端引入 F 官能团,从而降低T i 3C 2T x 材料的电容性能㊂且H F 属于强酸,操作过程存在较大风险㊂鉴于此,2018年,L i等[21]受拜耳法精炼铝土矿工艺的启发,在氩气气氛中,利用氢氧化钠碱溶液辅助水热法(270ħ)成功制备出无氟T i 3C 2T x 材料,产率高达92%㊂实验结果表明,温度是生成T i 3C 2T x 材料的主导因素(反应温度降至100~220ħ时,均无T i 3C 2T x 材料生成),氢氧化钠的浓度影响T i 3C 2T x 材料的产率㊂Xi e 等[22]先用氢氧化钠溶液处理T i 3A l C 2材料,后将其放入硫酸溶液中进行水热处理,同样在块状T i 3A l C 2材料表面生成了无 F 官能团的T i 3C 2T x 材料㊂Y a n g 等[23]在碱性溶液中采用电化学刻蚀掉A l 原子,制备出仅含有 O H 和 O 官能团的T i 3C 2T x 材料,为制备无氟T i 3C 2T x 提供了新思路㊂目前,对于无 F 官能团T i 3C 2T x 材料制备的研究报道较少,因此设计开发新型制备方法也成为T i 3C 2T x 材料的研究热点㊂3 超级电容器电极用T i 3C 2T x 基复合材料的研究进展电极材料是超级电容器的核心,直接决定超级电容器的性能㊂T i 3C 2T x 材料本身可以作为电极材料,但是T i 3C 2T x 材料的层状结构在带来众多优势的同时,也会产生其他负面影响,例如:片层之间存在的范德华力导致材料内部结构出现再堆叠现象,当用作电极材料时会抑制电解液离子的传输,从而影响材料性能的发挥㊂复合材料是人们采用一定的技术手段将具有不同性质的材料优化组合而成的一种新材料,其中,复合材料不仅能保持各组分材料性能的优点,而且还可以将各组分性能互补和关联,从而使新材料具备更优异的性能[20]㊂将T i 3C 2T x 材料与具有其他优异性质的材料合成复合材料,可以达到优势互补的目的,从而提高材料的整体性能㊂当将其用于超级电容器电极材料时,可以使超级电容器的优势得到更大程度的发挥,从而有效提高超级电容器的性能㊂3.1 T i 3C 2T x/聚合物复合材料聚苯胺和聚吡咯都为典型的导电聚合物,它们的理论比电容值较高,但在充放电过程中会发生膨胀或收缩等体积变化,从而影响聚合物材料电化学性能方面的发挥㊂将T i 3C 2T x 和聚合物合成复合材料,一方面聚合物插到T i 3C 2T x 材料片层中,有效缓解了T i 3C 2材料片层间的堆叠现象,使T i 3C 2T x 材料充分发挥其比表面积大的优势;另一方面,T i 3C 2T x 材料缓解了聚合物材料在充放电过程中的体积变化,两者实现了优势互补㊂聚合物可以自行插到T i 3C 2T x 片层中,因此通常采用原位聚合法制备T i 3C 2T x/聚合物复合材料㊂任莹莹[24]采用原位聚合法制备T i 3C 2T x/聚苯胺复合材料(图3),通过循环伏安法和恒电流充放电法等电化学测试表明:T i 3C 2T x /聚苯胺复合材料的比电容值达到164F /g,高于两种纯物质,表明复合材料的电化图3 T i 3C 2T x/聚苯胺复合材料合成示意图F i g .3 S c h e m a t i c d i a g r a mo fT i 3C 2T x/p o l y a n i l i n e c o m p o s i t em a t e r i a l s 51Copyright ©博看网. All Rights Reserved.材料工程2023年6月学性能优异;官仕齐[25]在原位聚合之前,先用十六烷基三甲基溴化铵(C T A B)和二甲亚砜(D M S O)处理T i3C2T x样品,增大该样品的层间距,使聚苯胺更容易插层㊂结果表明,在0.5A/g的电流密度下,复合材料与纯T i3C2T x材料的比电容值分别为336.4F/g和75F/g,提高了大约4.5倍,在该领域已属于较高水平;王天琪[26]在合成过程中引入有机酸 酒石酸,任莹莹[24]引入草酸,这都有效提高了该复合材料的电化学性能㊂卫丹[27]采用原位聚合法制备T i3C2T x/聚吡咯复合材料并在较低温度中制备了异质结构超薄T i3C2纳米片/聚吡咯球纳米复合材料,测试表明,后者的性能远高于前者,说明后者更好地利用了两物质的协同效应;B o o t a等[28]在T i3C2T x片层间隙形成聚吡咯链,整齐的聚吡咯链状结构具有开放的网络通道,从而促使电荷得以快速传递,贡献出较大的赝电容;陈露等[29]提出将聚吡咯纳米线负载在T i3C2T x表面合成T i3C2T x/聚吡咯纳米线复合材料的新思路,创新点是在T i3C2T x材料表面引入新物质,而不是像以往一样在层间插入新物质㊂综上所述,制备T i3C2T x与聚苯胺或聚吡咯的复合材料均可以使电化学性能得以提高,而设法增大T i3C2T x材料层间距㊁引入有机酸㊁探索新的合成方法可以使复合材料的性能更加优异㊂3.2T i3C2T x/碳材料复合材料碳材料具有比表面积大㊁成本低㊁导电性优异等优点,与T i3C2T x材料复合后可以阻止片层之间的堆叠并提高材料的导电性,从而提升材料的整体性能㊂常见的碳材料有碳纳米管(C N T s)㊁石墨烯(G O)等[30]㊂Y a n等[31]研究了d-T i3C2/C N T s复合材料的电化学性能,在5m V/s的扫描速率下,体积比电容高达393F/c m3,当扫描速率增加到100m V/s时,复合材料的电容保留率约比纯d-T i3C2材料高30%,循环10000周次后,电容量几乎没有衰减,呈现出远高于金属氧化物的循环稳定性;Z h a o等[32]采用更加简单高效的交替过滤方法制备了三明治状的T i3C2T x/C N T s 复合材料,获得的结果同样优异㊂另外,利用同样的方法制备了T i3C2T x/洋葱状碳(O L C,0D),T i3C2T x/氧化石墨烯(r G O,2D)复合材料,后者的电化学性能比前者更加优异,其原因可能是同样作为二维层状材料的r G O与T i3C2T x复合后,使复合材料的有效比表面积和电导率显著提高,增强了材料的坚韧性,降低了内阻,增大了层间距并附带了大量的活性位点,从而促进电解液离子的高效传递;Y a n等[33]用带正电的物质修饰r G O后与带负电的T i3C2T x材料静电自组装制备柔性薄膜,结果表现出超高的电容量,例如,在2m V/s 的扫描速率下,T i3C2T x/r G O-5%复合材料的体积比电容为1040F/c m3,此外,还具有良好的循环稳定性㊂将其应用于无黏结对称型超级电容器中表现出超高的体积能量密度,此成果已成为该类复合材料在水电解质中的最高值之一;Y a n g团队[34]通过湿纺装备方法,利用r G O和M X e n e片之间的协同效应,合成T i3C2T x/r G O复合材料,实现M X e n e基纤维连续生长,当M X e n e含量为90%时,混合纤维内部结构排列良好,组装成柔性超级电容器时,体积电容远高于排列整齐的r G O纤维㊂综上可知,在与碳材料复合的过程中,复合材料呈现出的电化学性能较为理想,性能提高的主要原因是碳材料的插入使T i3C2T x材料的层间距增大㊁电导率提高等㊂如今随着科技的发展和人们对能源的需求,便携式可穿戴设备将迎来广阔的发展前景,柔性超级电容器作为可穿戴设备的储能器件表现出快速充放电㊁高功率密度㊁长循环寿命等优异性能,将T i3C2T x 材料与碳材料的复合材料作为柔性电极可谓是一个优质选择,完善对该复合材料的研究有望加快可穿戴设备的发展㊂3.3T i3C2T x/金属氧化物复合材料金属氧化物因具有比碳材料更高的能量密度,比导电聚合物更优异的化学稳定性,从而被广泛应用于电化学电容器领域㊂与T i3C2T x材料复合的金属氧化物主要有M n O2,T i O2等[35]㊂金属氧化物具有制备过程简单㊁对环境友好㊁电容性能优异等特点,但是它们存在导电性差㊁循环稳定性不佳等不足㊂将金属氧化物插到T i3C2T x材料片层中,不仅可以对后者起到支撑作用㊁提高比电容,还避免了片层结构的堆垛和塌陷等问题,同时也提高了前者的导电性,从而赋予复合材料优异的电化学性能㊂汤祎[36]利用简单的液相沉淀法和热处理法得到T i3C2T x/M n O2复合材料,经测试表明,复合材料的电化学性能相比于纯T i3C2T x材料有显著提高,并且表现出优良的充放电稳定性及长效循环性;张钊[37]在制备T i3C2T x/M n O2复合材料的过程中,先用二甲基亚砜(D M S O)处理T i3C2T x材料来增大层间距和比表面积,结果显示复合材料的比电容值提高了184%;易可心[38]探究了不同M n O2质量负载时的T i3C2T x/M n O2复合材料电化学性能,研究发现:M n O2的最佳负载量为1.76m g/c m2;M n O2的负载量上升至10.04m g/ c m2时电极仍能保持较高的质量比电容和面积比电容;即使是高质量负载,复合材料的性能仍能保持优异㊂对于T i3C2T x/T i O2复合材料中的T i O2大都通过61Copyright©博看网. All Rights Reserved.第51卷第6期超级电容器电极用T i3C2T x基复合材料的研究进展外加T i源或自氧化M X e n e两种方式获得㊂汤祎[36]以T i(S O4)2为T i源合成T i3C2T x/T i O2复合材料,发现T i O2均匀分布在T i3C2T x上,这有利于电解液离子的扩散,且经过10000次恒电流充放电后,电容量保持率高达94.8%,具有良好的循环稳定性㊂华中科技大学朱建锋团队[39]使用钛酸丁酯(T B O T)作为T i源通过简单搅拌烧结的方法合成T i3C2T x/T i O2复合材料,表现出良好的倍率性能和循环稳定性㊂赵倩楠[40]采用自氧化M X e n e制备T i3C2T x/T i O2复合材料,发现和外加T i源相比,原位生成的T i O2与T i3C2T x的结合更紧密,更有助于电化学性能的提高㊂刘宇等[41]探究出原位自氧化获得T i源从而合成T i3C2T x/T i O2复合材料的最佳反应温度为130ħ㊂表1为T i3C2T x/M n O2复合材料和T i3C2T x/T i O2复合材料与纯T i3C2T x材料电容值的对比提升[36,38-39]㊂表1T i3C2T x基复合材料与纯T i3C2T x材料比电容值对比[36,38-39]T a b l e1 C o m p a r i s o no f s p e c i f i c c a p a c i t a n c eb e t w e e nT i3C2T x c o m p o s i t e s a n d p u r eT i3C2T x[36,38-39]O b j e c t E l e c t r o l y t e S c a n r a t e/(m V㊃s-1)S p e c i f i c c a p a c i t a n c e/(F㊃g-1)T i3C2T x T i3C2T x/M n O2(T i O2)M n O23m o l/LK O H5951301m o l/LN a2S O4278448T i O26m o l/LK O H5931431m o l/LK O H595127由上述可知,T i3C2T x/金属氧化物复合材料可以有效解决T i3C2T x材料比电容值低的问题,无论是T i3C2T x/M n O2复合材料还是T i3C2T x/T i O2复合材料,制备方法都较为简单,并且循环性能良好,且对环境友好,有望发展为工业化超级电容器电极材料㊂4结束语T i3C2T x材料呈现层状结构,具有稳定性,再结合其电子性质和电化学特性等性能,被广泛用于超级电容器电极材料㊂T i3C2T x材料的层状结构可以增大比表面积并提供更多的活性位点,但是也带来了一些负面影响,例如:片层间易出现堆叠现象,这一方面影响电解液离子的传输,另一方面限制了层状结构优势的发挥㊂未来若要提高T i3C2T x材料的电化学性能,应向抑制层状结构带来的不利影响方向进一步发展㊂研究发现,若将T i3C2T x材料与聚合物㊁碳材料或金属氧化物等材料复合,可以有效解决T i3C2T x材料片层间的堆叠现象㊂因此,本文以T i3C2T x材料具有层状结构特性为出发点,梳理了T i3C2T x基复合材料用于超级电容器电极材料的研究进展;重点阐述了T i3C2T x材料的结构㊁性能㊁制备以及通过不同技术手段与多类材料复合后的电化学性能;通过总结T i3C2T x基复合材料的具体内容,归纳出复合材料性能得以提升的原因,可以概括为:(1)第二种物质的插入增大了层间距,使有效比表面积增大,同时活性位点增多并抑制了层间堆叠现象的发生;(2)提高了基体材料T i3C2T x的坚韧性;(3)提高了材料的导电性,同时降低了内阻,更有利于电解液离子的高效传输㊂同时,为T i3C2T x基复合材料的未来发展提供可以借鉴的发展方向及思路;最后指出为了拓展T i3C2T x基复合材料的应用,未来仍需深入系统地研究以下方面:(1)探究新的T i3C2T x母相,在含氟刻蚀和无氟刻蚀制备T i3C2T x材料的基础上,丰富T i3C2T x的刻蚀方法,降低工艺难度;(2)探究T i3C2T x材料表面官能团的精确排列方式,从而完善表面官能团对T i3C2T x材料性能影响的相关理论;(3)探究制备方法简单并且制备成本较低的T i3C2材料,丰富对不含 T x的T i3C2材料的研究;(4)在现有T i3C2T x基复合材料的基础上进一步改进,如在片层间引入新物质或探究复合材料的反应机理㊁性能突破点㊁最佳反应条件,从而达到提升复合材料性能和超级电容器性能的目的;(5)探究更多更高效的T i3C2T x 基复合材料,丰富超级电容器电极材料的选择,尽早实现工业化生产,并加快在柔性可穿戴超级电容器上的应用㊂参考文献[1]孟思辰,孙昕.浅析新能源的现状及发展趋势[J].数码世界,2018(5):513.M E N GSC,S U N X.A n a l y s i so n t h e c u r r e n t s i t u a t i o na n dd e v e-l o p m e n t t r e n do f n e we n e r g y[J].D i g i t a lW o r l d,2018(5):513.[2]高利芳,宋忠乾,孙中辉,等.新型二维纳米材料在电化学领域的应用与发展[J].应用化学,2018,35(3):247-258.G A OLF,S O N GZQ,S U NZ H,e t a l.A p p l i c a t i o na n dd e v e l o p-m e n t o fn o v e l t w o-d i m e n s i o n a ln a n o m a t e r i a l s i ne l e c t r o c h e m i s t r y [J].A p p l i e dC h e m i s t r y,2018,35(3):247-258.[3] N O V O S E L O V KS,G E I M A K,M O R O Z O VSV,e t a l.T w o-d i-m e n s i o n a l g a s o fm a s s l e s sD i r a c f e r m i o n s i n g r a p h e n e[J].N a t u r e, 2005,438(7065):197-200.[4] C H O ID,B L OMG R E N G E,K UMT A P N.F a s ta n dr e v e r s i b l es u r f a c er e d o xr e a c t i o n i nn a n o c r y s t a l l i n ev a n a d i u m n i t r i d es u p e r-c a p a c i t o r s[J].Ad v a n ce d M a t e r i a l s,2006,18(9):1178-1182.[5] N A G U I B M,MA S H T A L I RO,C A R L EJ,e t a l.T w o-d i m e n s i o n a lt r a n s i t i o nm e t a l c a r b i d e s[J].A C SN a n o,2012,6(2):1322-1331.[6] A N A S O R IB,N A G U I B M,G O G O T S IY,e ta l.L o o ka g a i n[J].71Copyright©博看网. All Rights Reserved.材料工程2023年6月MA R SB u l l e t i n,2012,37:176.[7] B A R S O UM M W.T h e M n+1A X n p h a s e s:an e wc l a s so f s o l i d s:t h e r m o d y n a m i c a l l y s t a b l en a n o l a m i n a t e s[J].P r o g r e s si n S o l i d S t a t eC h e m i s t r y,2000,28(1/4):201-281.[8]王剑,周榆力.二维纳米材料M X e n e s的性质及应用研究进展[J].西华大学学报(自然科学版),2020,39(3):76-89.WA N GJ,Z H O U Y L.R e s e a r c h p r o g r e s so f c h a r a c t e r i s t i c sa n da p p l i c a t i o n s o f t w o-d i m e n s i o n a l n a n o m a t e r i a lM X e n e s[J].J o u r n a lo fX i h u aU n i v e r s i t y(N a t u r a lS c i e n c eE d i t i o n),2020,39(3):76-89.[9]李正阳,周爱国,王李波,等.二维晶体M X e n e的制备与性能研究进展[J].硅酸盐通报,2013,32(8):1562-1566.L I Z Y,Z H O U A G,WA N G L B,e ta l.R e s e a r c h p r o g r e s so n p r e p a r a t i o na n d p r o p e r t i e s o f t w o-d i m e n s i o n a l c r y s t a lM X e n e[J].S i l i c a t eB u l l e t i n,2013,32(8):1562-1566.[10]党阿磊,方成林,赵曌,等.新型二维纳米材料M X e n e的制备及在储能领域的应用进展[J].材料工程,2020,48(4):1-14.D A N G A L,F A N G CL,Z H A O Z,e t a l.P r e p a r a t i o no f an e wt w o-d i m e n s i o n a ln a n o m a t e r i a l M X e n ea n di t sa p p l i c a t i o n p r o-g r e s s i ne n e r g y s t o r a g e[J].J o u r n a lo f M a t e r i a l sE n g i n e e r i n g,2020,48(4):1-14.[11] D I L L O N AD,G H I D I U MJ,K R I C K AL,e t a l.H i g h l y c o n d u c-t i v e o p t i c a l q u a l i t y s o l u t i o n-p r o c e s s e df i l m so f2Dt i t a n i u mc a r-b i d e[J].A d v a nc ed F u n c t i o n a l M a te r i a l s,2016,26(23):4162-4168.[12] N A G U I B M,MO C H A L I N V N,B A R S O UM M W,e ta l.25t ha n n i v e r s a r y a r t i c l e:M X e n e s:an e wf a m i l y o ft w o-d i m e n s i o n a lm a t e r i a l s[J].A d v a n c e d M a t e r i a l s,2014,26(7):992-1005. [13]S U N Z M,MU S I C D,A HU J A R,e ta l.E l e c t r o n i co r i g i n o fs h e a r i n g i n M2A C(M=T i,V,C r,A=A l,G a)[J].J o u r n a l o f P h y s i c s,2005,17(46):7169-7176.[14] N A G U I B M,K U R T O G L UM,P R E S S E R V,e ta l.T w o-d i m e n-s i o n a l n a n o c r y s t a l s p r o d u c e db y e x f o l i a t i o no fT i3A l C2[J].A d-v a n c e d M a t e r i a l s,2011,23(37):4248-4253.[15] T A N G Q,Z H O U Z,S H E N P.A r e M X e n e s p r o m i s i n g a n o d em a t e r i a l s f o rL i i o nb a t t e r i e s C o m p u t a t i o n a l s t u d i e so ne l e c t r o-n i c p r o p e r t i e s a n dL i s t o r a g e c a p a b i l i t y o fT i3C2a n dT i3C2X2(X=F,O H)m o n o l a y e r[J].J o u r n a l o f t h eA m e r i c a nC h e m i c a l S o c i e-t y,2012,134(40):16909-16916.[16]S H E I NIR,I V A N O V S K I I AL.G r a p h e n e-l i k e t i t a n i u mc a r b i d e sa n dn i t r i d e sT i n+1C n,T i n+1N n(n=1,2,a n d3)f r o md e-i n t e r c a-l a t e d MA X p h a s e s:f i r s t-p r i n c i p l e s p r o b i n g o ft h e i rs t r u c t u r a l,e l e c t r o n i c p r o p e r t i e sa n dr e l a t i v es t a b i l i t y[J].C o m p u t a t i o n a lM a t e r i a l s S c i e n c e,2012,65:104-114.[17] L I P A T O V A,A L H A B E B M,L U K A T S K A Y A M R,e t a l.E f f e c t o f s y n t h e s i so n q u a l i t y,e l e c t r o n i c p r o p e r t i e s a n de n v i r o n-m e n t a l s t a b i l i t y o f i n d i v i d u a lm o n o l a y e rT i3C2M X e n e f l a k e s[J].A d v a n c e dE l e c t r o n i cM a t e r i a l s,2016,2(12):1600255.[18] L U K A T S K A Y A M R,MA S H T A L I RO,R E NCE,e t a l.C a t i o ni n t e r c a l a t i o na n dh i g hv o l u m e t r i c c a p a c i t a n c eo f t w o-d i m e n s i o n a lt i t a n i u mc a r b i d e[J].S c i e n c e,2013,341(6153):1502-1505. [19] A L H A B E B M,MA L E S K IK,A N A S O R IB,e t a l.G u i d e l i n e s f o rs y n t h e s i sa n d p r o c e s s i n g o ft w o-d i m e n s i o n a lt i t a n i u m c a r b i d e(T i3C2T x M X e n e)[J].C h e m i s t r y o f M a t e r i a l s,2017,29(18): 7633-7644.[20]马亚楠,张传坤,罗啸,等.新型二维层状材料M X e n e的制备方法研究[J].材料科学,2017,7(4):463-468.MA Y N,Z HA N GCK,L U O X,e t a l.S y n t h e s i so f an o v e l t w od i me n s i o n a lm a t e r i a l:M X e n e[J].M a t e r i a l S c i e n c e s,2017,7(4):463-468.[21] L IT,Y A OL,L I U Q,e t a l.F l u o r i n e-f r e e s y n t h e s i s o f h i g h-p u r i-t y T i3C2T x(T=O H,O)v i a a l k a l i t r e a t m e n t[J].A n g e w a n d t eC h e m i e I n t e r n a t i o n a l E d i t i o n,2018,57(21):6115-6119.[22] X I EX,X U EY,L I L,e t a l.S u r f a c eA l l e a c h e dT i3A l C2a s a s u b-s t i t u t e f o r c a r b o n f o r u s e a s ac a t a l y s t s u p p o r t i nah a r s hc o r r o-s i v e e l e c t r o c h e m i c a l s y s t e m[J].N a n o s c a l e,2014,6(19):11035-11040.[23] Y A N GS,Z HA N GP,WA N GF,e t a l.F l u o r i d e-f r e e s y n t h e s i s o ft w o-d i m e n s i o n a l t i t a n i u mc a r b i d e(M X e n e)u s i n g b i n a r y a q u e o u s s y s t e m[J].A n g e w a n d t eC h e m i e I n t e r n a t i o n a l E d i t i o n,2018,130(47):15717-15721.[24]任莹莹.M X e n e-T i3C2基复合材料的制备及其在超级电容器上的应用[D].西安:陕西科技大学,2018.R E N Y Y.P r e p a r a t i o n a n d a p p l i c a t i o n i n s u p e r c a p a c i t o r o fM X-e n e-T i3C2m a t r i xc o m p o s i t e[D].X i a n:S h a a n x iU n i v e r s i t y o fS c i e n c e a n dT e c h n o l o g y,2018.[25]官仕齐.T i3C2T x基复合材料的制备及电容行为研究[D].武汉:湖北工业大学,2020.G U A NSQ.P r e p a r a t i o n a n d c a p a c i t i v e p e r f o r m a n c e o f T i3C2T x-b a s e dc o m p o s i t e s[D].W u h a n:H u b e iU n i v e r s i t y o fT e c h n o l o-g y,2020.[26]王天琪.导电聚合物基超级电容器电极材料的制备与电化学性能[D].青岛:山东科技大学,2018.WA N G T Q.P r e p a r a t i o na n d e l e c t r o c h e m i c a l p r o p e r t i e s o f c o n-d u c t i ve p o l y m e rb a s e ds u p e r c a p a c i t o re l e c t r o d e m a t e r i a l s[D].Q i n g d a o:S h a n d o n g U n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y,2018.[27]卫丹.M X e n e基复合材料的合成及其电化学性能研究[D].西安:陕西科技大学,2020.W E ID.S y n t h e s i sa n de l e c t r o c h e m i c a l p e r f o r m a n c eo f M X e n e-b a s e dc o m p o s i t e s[D].X i a n:S h a a n x iU n i v e r s i t y o f S c i e n c e a n dT e c h n o l o g y,2020.[28] B O O T A M,A N A S O R I B,V O I G T C,e ta l.P s e u d o c a p a c i t i v ee l e c t r o d e s p r o d u c e d b y o x i d a n t-f r e e p o l y m e r i z a t i o n o f p y r r o l e b e-t w e e n t h e l a y e r s o f2Dt i t a n i u mc a r b i d e(M X e n e)[J].A d v a n c e dM a t e r i a l s,2016,28(7):1517-1522.[29]陈露,简选,何敏,等.二维多层状T i3C2T x-M X e n e/聚吡咯纳米线复合材料的制备及电容性能研究[J].电化学,2019,25(2): 280-287.C H E NL,J I A N X,H E M,e t a l.P r e p a r a t i o na n dc a p a c i t i v e p r o-p e r t y o ft w o-d i m e n s i o n a l m u l t i l a y e r T i3C2T x-M X e n e/P P y-NWc o m p o s i t em a t e r i a l[J].E l e c t r o c h e m i c a l,2019,25(2):280-287.[30] L E EJY,L I A N G K,A N K H,e t a l.N i c k e l o x i d e/c a r b o nn a n o-t u b e sn a n o c o m p o s i t ef o re l e c t r o c h e m i c a lc a p a c i t a n c e[J].S y n-t h e t i cM e t a l s,2005,150(2):153-157.[31] Y A NP,Z HA N G R,J I AJ,e t a l.E n h a n c e ds u p e r c a p a c i t i v e p e r-f o r m a n c eo fd e l a m i n a t e dt w o-d i m e n s i o n a l t i t a n i u m c a r b i d e/c a r-81Copyright©博看网. All Rights Reserved.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R e c e n t a d v a n c e s i n t h e d e v e l o m e n t o f e l e c t r o d e m a t e r i a l s p f o r s u e r c a a c i t o r s p p
A b s t r a c t u e r c a a c i t o r s a r e e n e r s t o r a e d e v i c e s w h i c h o b t a i n e n e r f r o m t h e e l e c t r o c h e m i c a l d o u b S - - p p g y g g y o s s e s s o w e r l e l a e r o r t h e r e d o x t e r e a c t i o n s a t o r b e o n d t h e s u r f a c e o f t h e e l e c t r o d e . T h e h i h d e n - - - p p y y p y y g , , r i n c i l e s s i t a n d e n e r d e n s i t a n d h a v e a l o n l i f e c c l e .T h i s r e v i e w w i l l s u r v e t h e f u n d a m e n t a l p p y g y y g y y ,w c h a r a c t e r i s t i c s a n d a l i c a t i o n s o f e l e c t r o d e m a t e r i a l s f o r s u e r c a a c i t o r s i t h s e c i a l e m h a s i s o n t h e r e - p p p p p p ,m r o r e s s r a h e n e c e n t o f r e s e a r c h o n a n a n e s e o x i d e a n d t h e i r c o m o s i t e s a s e l e c t r o d e m a t e r i a l s . p g g p g p , , ,m , r a h e n e K e w o r d s s u e r c a a c i t o r s e l e c t r o d e m a t e r i a l s a n a n e s e o x i d e c o m o s i t e g p p p g p y
Z HAN G X i o n a n e i MA Y -W g
( I n s t i t u t e o E l e c t r i c a l E n i n e e r i n C h i n e s e A c a d e m o S c i e n c e s, B e i i n 0 0 1 9 0, C h i n a) f g g, y f j g1
·6 5 6·
国政府和企业界的高度关注 . 超级 电 容 器 ( s u e r c a a c i t o r s或 u l t r a c a a c i - p p p ) , 又称电化学电容器( t o r s e l e c t r o c h e m i c a l c a a c i - p [ 1—5] ) , 它是一种 介 于 常 规 电 容 器 与 二 次 电 池 之 t o r s , 间的新型储能 器 件 ( 见 图 1) 同时兼有常规电容器 功率密度大和二次电池能量密度高的优点 . 此外 , 超 级电容器还 具 有 对 环 境 无 污 染 、 效 率 高、 循环寿命 长、 使用温度范围 宽 、 安 全 性 高 等 特 点. 超级电容器 在新能源发电 、 电动汽车 、 信息技术 、 航空航天 、 国防 如超级电容器 科技等领域中具有 广 泛 的 应 用 前 景 . 用于可再生能源分 布 式 电 网 的 储 能 单 元 , 可以有效 提高电网的稳定性 . 单独运行时 , 超级电容器可作为 太阳能或风能发电 装 置 的 辅 助 电 源 , 可将发电装置
4] 图 1 各种电能贮存器件的功率密度与能量密度的关系图 [
短的离子传 具有窄的孔分布和相互交联的孔道结构 、 输距离以及可控的表面化学性质的活性炭材料 , 将有 同时又不影响功率 助于提高超级电容器的能量密度 , 密度和循环寿命 . 目前商品化超级电容器电极材料的 首选仍然是活性炭 , 不过随着其他新型碳材料如碳纳 米管 、 石墨烯等的不断发展 , 将来有可能替代活 性炭 材料 . 2. 1. 2 碳纳米管 碳纳米管是 2 0 世纪 9 0 年代初发现的一种纳米
4] 的双电层结构来存贮电荷 [ .
制备活性炭 的 原 料 来 源 非 常 丰 富 , 石 油、 煤、 木 材、 坚果壳 、 树脂等 都 可 用 来 制 备 活 性 炭 粉 . 原料经 活化方法分物理活化和化学活化 调制后进行活化 , 两种 . 物理活化通常是指在水蒸气 、 二氧化碳和空气 等氧化性气氛中 , 在7 对碳材 0 0-1 2 0 0℃ 的 高 温 下 , 即 原 料) 进 行 处 理. 化学活化是在4 料前体 ( 0 0- 采用磷酸 、 氢氧化钾 、 氢氧化钠和氯 7 0 0℃ 的温度下 , 采用活化工艺制备的活性炭孔 化锌等作为活化剂 . 结构通常具有一 个 孔 径 尺 寸 跨 度 较 宽 的 孔 分 布 , 包 , —5 括微 孔 ( 介孔( 和大孔( 2 n m) 2 0 n m) 5 0 n m) . < >
6] , 是由单层或多层石墨烯 尺寸 管 状 结 构 的 炭 材 料 [
2 超 级 电 容 器 电 极 材 料 的 最 新 研 究 进展
2. 1 碳材料 碳材料是目前研究和应用最为广泛的超级电容 器电极材料 , 它主 要 包 括 活 性 炭 、 活 性 炭 纤 维、 炭气 凝胶 、 模板炭 、 碳纳 米 管 和 石 墨 烯 等 . 碳材料具有比 表面积大 、 导电率 高 、 电 解 液 浸 润 性 好、 电位窗口宽 等优点 , 但 是 其 比 电 容 偏 低. 碳材料主要是利用电
能源材料专题
电化学超级电容器电极材料的研究进展 *
张 熊 马衍伟
( ) 中国科学院电工研究所 北京 1 0 0 1 9 0
摘 要 超级电容器是一种利用电化学双电层 储 能 或 在 电 极 材 料 表 面 及 近 表 面 发 生 快 速 可 逆 氧 化 还 原 反 应 而 储 具有高的比功率 、 比能量和长的循环寿命 . 文章综述了超级 电 容 器 电 极 材 料 的 储 能 机 理 、 特点及应用, 并重 能的装置 , 二氧化锰及其复合电极材料在超级电容器中应用的最新研究进展 . 点介绍了石墨烯 、 关键词 超级电容器 , 电极材料 , 石墨烯 , 二氧化锰 , 复合材料
认为是支撑可再生 能 源 普 及随着全球气候变暖 , 资源匮乏 , 生态环境日益恶 人类将更加关注太阳能 、 风能等清洁和可再生的 化, 新能源 . 但是 , 可再生 能 源 ( 主 要 包 括 风 能、 太阳能) 的本身特性决定了这些发电的方式和电能输出往往 受到季节 、 气象和地域条件的影响 , 具有明显的不连 续性和不稳定性 , 如太阳能可以在晴天发电 , 而在阴 天和晚上就无法工 作 , 风能发电也同样受到时间和 也就是说 , 可再生能源发出的电能波动 气象的影响 . 较大 , 可调节性差 , 从而为可再生能源的大规模利用 带来了诸多问题 , 如果接入电网 , 电网的稳定性将受 到影响 . 要解决这一问题 , 必须发展配套的高效储能 装置 , 以解决发电与 用 电 的 时 差 矛 盾 以 及 间 歇 式 可 再生能源发电直接并网时对电网的冲击 . 同时 , 储能 技术在离网的太阳 能 、 风能等可再生能源发电应用 目前 , 高效储能技术已被 中也具有至关重要的作用 .
2 / 值得注意的是 , 当比表面积高达 3 也只能 0 0 0 m g时 , 2 / ) , 获得相对较小的比电容 ( 小于其理论双 1 0 F c m < μ 2 —2 / ) , 这表明并非所有的 电层比电容的值 ( 1 5 5 F c m μ ] 5 孔结构都具备有效的电荷积累 [ 虽然比表面积是双 .
但孔分布 、 孔的形 电层电容器性能的一个重要参数 , 状和结构 、 导电率和表面官能化修饰等也会影响活性 炭材料的电化学性能 . 过度活化会导致大的孔隙率 , 同时也会降低材料的堆积密度和导电性 , 从而减小活 性炭材料的体积能量密度 . 另外 , 活性炭表面残存的 一些活性基团和悬挂键会使其同电解液之间的反应 活性增加 , 也会造成电极材料性能的衰减 . 因此 , 设计
: h t t www. w u l i . a c . c n 0卷 ( 2 0 1 1年) 1 0期 ? ? 物理 ·4 p
能源材料专题 所产生的能量以较 快 的 速 度 储 存 起 来 , 并按照设计 要求释放 , 如太阳能 路 灯 在 白 天 由 太 阳 能 提 供 电 源 晚上则由超级电容器提供电 并对超级电容器充 电 , 力. 此外 , 超级电容器还可以与充电电池组成复合电 源系统 , 既可满足电动车启动 、 加速和爬坡时的高功 率要求 , 又可延长蓄电池的循环使用寿命 , 实现电动 车动力系统性能的最优化 . 当前 , 国内外已实现了超级电容器的商品化生 但还存在着价 格 较 高 、 能 量 密 度 低 等 问 题, 极大 产, 地限制了超级电容 器 的 大 规 模 应 用 . 超级电容器主 要由集流体 、 电极 、 电 解 质 和 隔 膜 等 4 部 分 组 成, 其 中电极材料是影响超级电容器性能和生产成本的最 关键因素 . 研究和开发高性能 、 低成本的电极材料是 目前研究较多的 超级电容器研发工 作 的 重 要 内 容 . 超级电容器电极材料主要有碳材料 、 金属氧化物 ( 或 、 者氢氧化物 ) 导电 聚 合 物 等 , 而碳材料和金属氧化 是当前研究的热 物电极材料的商品 化 相 对 较 成 熟 , 点. 因此 , 本文将重 点 介 绍 碳 材 料 、 金属氧化物及其 复合材料等高性能电极材料的最新研究进展以及商 品化应用前景 . 称双电层电 极/溶 液 界 面 形 成 的 双 电 层 储 存 能 量 , 容. 增大电极活性物质的比表面积 , 可以增加界面双 从而提高双电层电容 . 电层面积 , 2. 1. 1 活性炭 活性 炭 材 料 由 于 具 有 稳 定 的 使 用 寿 命 、 低廉的 价格及大规模的工 业 化 生 产 基 础 , 已在商品化超级 电容器 的 生 产 中 被 广 泛 采 用 . 1 9 5 7 年, B e c k e r申 请 了第一个关于活性 炭 材 料 电 化 学 电 容 器 的 专 利 . 他 然 将具有高比表面积 的 活 性 炭 涂 覆 在 金 属 基 底 上 , 后浸渍在硫酸溶液 中 , 借助在活性炭孔道界面形成