超级电容器简介

合集下载

超级电容器

超级电容器

电极材料
电极材料是影响超级电容器性能的重要因素。 为了进一步提高超级电容器的容量和循环寿命,最主要的 是开发新的高比容量,高比功率的电极材料。 超级电容器的电极材料可以分为以下几类:炭电极材料, 金属氧化物电极材料,导电聚合物电极材料,复合电极材 料。
碳电极材料
目前已经开发用在双电层电容器上的碳材料有:活性炭 粉末、活性碳纤维、碳纳米管、膨胀性石墨、碳气凝胶、 炭黑和石墨烯等。 炭材料的性质中最为关键的几个影响因素为炭材料的表 面积和粒径分布,炭材料的电学稳定性,炭材料的导电 率。
在沿海岛屿、边远山区,地广人稀的草原牧场等地方, 风能和太阳能可作为解决生产和生活能源的一种可靠 途径。然而,这些能源还不能稳定地供给。将超级电 容器与风力发电装置或太阳能电池组成混合电源,超 级电容器在白天阳光充足或风力强劲的条件下吸收能 量以电能的形式存储起来,在夜晚或风力较弱时放电, 可解决上述问题。
超级电容器还可用作汽车的主电源。
(4)工业领域
超级电容器在工业不间断电源(UPs)、安全预防 设备以及仪器仪表等方面得到广泛应用。
(5)消费电子领域
使用超级电容器做为储能元件的手电筒,充电只 需90秒,循环寿命可达50万次,可使用约135年。电 子玩具常要求瞬时大电流,而电池无法提供,使用超 级电容器作为电源不仅可以解决这个问题,还可以降 低使用成本、减轻质量。一种自动的切管工具用于替 代一种己经有十年历史的旧式手持切管设备。考虑实 际应用,要求能提供瞬间高功率及长寿命,并且要求 快速充电,一次充电能满足100次的切割工作,超级 电容器与电池混联后能使产品满足应用的需求。
超级电容器的研究及应用现状
美国、日本、韩国、俄罗斯、德国等国研究超级 电容器起步较早,技术相对比较成熟。

超级电容器简介课件

超级电容器简介课件
拓展在风能、太阳能等可再生能 源以及工业自动化领域的市场应
用。
政策支持与产业发展建议
政策引导与资金支持 建立产业联盟 加强国际合作与交流
超级电容器与其他储能技术 的比较
与电池的比较
充放电速度

循环寿命
能量密度 成本
与超级电感的比较
储能原理
超级电容器通过双电层储能, 而超级电感通过磁场储能。
响应速度
超级电容器简介课件
目录
• 超级电容器的性能特点 • 超级电容器的制造工艺与材料 • 超级电容器市场现状与趋势 • 超级电容器的发展前景与挑战 • 超级电容器与其他储能技术的比较
超级电容器概述
定义与工作原理
定义 工作原理
超级电容器的主要类型
根据电解质类型
根据储能原理
可分为水系超级电容器和有机系超级 电容器。
超级电容器的发展前景与挑 战
技术创新与突破方向
材料创新
结构设计 集成化技术
市场拓展与合作机会
电动汽车领域
与电动汽车制造商合作,开发高 性能的超级电容器,提升电动汽
车的续航里程和加速性能。
智能电网领域
与电网公司合作,研发用于智能 电网的储能超级电容器,提高电 网的稳定性和可再生能源的接入
能力。
工业应用领域
主要应用领域市场现状与趋势
总结词
详细描述
市场竞争格局与挑战
总结词
超级电容器市场竞争激烈,企业需要不 断创新以保持竞争优势。
VS
详细描述
目前,全球超级电容器市场已经形成了较 为稳定的竞争格局,但随着新技术的不断 涌现和市场的不断扩大,竞争也日趋激烈。 企业需要不断加大研发投入,提高产品性 能和降低成本,以应对市场竞争的挑战。 同时,企业还需要加强与上下游企业的合 作,共同推动超级电容器市场的快速发展。

《超级电容器》课件

《超级电容器》课件

发展历程和前景
1
1 990年
2
实现了高性能的电化学电容器,并开
始在特定领域得到应用。
3
1 978年
超级电容器首次被发现,但技术限制 和高成本限制了商业应用。
2 000年
随着技术进步和成本下降,超级电容 器在多个领域得到广泛应用。
主要厂商
1 Maxwell Technologies
全球领先的超级电容器制造商,提供各种容量和尺寸的产品。
总结和展望
超级电容器是一种具有巨大潜力的电能存储技术,虽然还存在一些挑战和限制,但随着技术的不断进步 和应用需求的增长,它将继续发展并在更多领域得到应用。
超级电容器
超级电容器是一种高容量和高功率的电能存储设备,具有快速充放电速度和 长寿命的特点。
定义和原理
超级电容器是一种能够存储和释放巨大电荷量的装置,通过电荷在电容器的 正负极板之间的吸附和脱附实现能量的存储和释放。 超级电容器的工作原理基于电双层电容和电化学电容两种机制。
应用领域
可再生能源
超级电容器可以存储和释放电能,用于平衡可再生能源的波动性,提高能源利用效率。
2 Nesscap Energy
韩国超级电容器制造商,专注于高功率和高温应用领域。
3 Skeleton Technologies
欧洲超级电容器制造商,开发具有高能量和高功率密度的创新产品。
未来研究方向
超级电容器的研究正在关注提高能量密度、降低成本、延长寿命和提高温度 稳定性等方面的技术改进。
新材料和新结构的研发有望推动超级电容器的性能提升,进一步拓展其应用 领域。
交通运输
超级电容器可以作为电动汽车和混合动力车辆的辅助能源储存装置,提供高功率的提供短时电源支持,防止电子设备数据丢失。

超级电容器综述

超级电容器综述

超级电容器综述超级电容器(supercapacitor,ultracapacitor),又叫双电层电容器(Electrical Double-Layer Capacitor)、电化学电容器(Electrochemcial Capacitor, EC), 黄金电容、法拉电容,通过极化电解质来储能。

它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。

超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。

超级电容器是建立在德国物理学家亥姆霍兹提出的界面双电层理论基础上的一种全新的电容器。

众所周知,插入电解质溶液中的金属电极表面与液面两侧会出现符号相反的过剩电荷,从而使相间产生电位差。

那么,如果在电解液中同时插入两个电极,并在其间施加一个小于电解质溶液分解电压的电压,这时电解液中的正、负离子在电场的作用下会迅速向两极运动,并分别在两上电极的表面形成紧密的电荷层,即双电层,它所形成的双电层和传统电容器中的电介质在电场作用下产生的极化电荷相似,从而产生电容效应,紧密的双电层近似于平板电容器,但是,由于紧密的电荷层间距比普通电容器电荷层间的距离更小得多,因而具有比普通电容器更大的容量。

双电层电容器与铝电解电容器相比内阻较大,因此,可在无负载电阻情况下直接充电,如果出现过电压充电的情况,双电层电容器将会开路而不致损坏器件,这一特点与铝电解电容器的过电压击穿不同。

同时,双电层电容器与可充电电池相比,可进行不限流充电,且充电次数可达10^6次以上,因此双电层电容不但具有电容的特性,同时也具有电池特性,是一种介于电池和电容之间的新型特殊元器件。

由于石油资源日趋短缺,并且燃烧石油的内燃机尾气排放对环境的污染越来越严重(尤其是在大、中城市),人们都在研究替代内燃机的新型能源装置。

超级电容器简介

超级电容器简介
2. 极长的充放电循环寿命,其循环寿命可达万次以上。
3.非常短的充电时间,在0.1-30s即可完成。
4.解决了贮能设备高比功率和高比能量输出之间的矛盾, 将它与蓄电池组合起来,就会成为一个兼有高比功率输出的贮 能系统。
5.贮能寿命极长,其贮存寿命几乎可以是无限的。
6.高可靠性。
四、超级电容器技术及电极材料的进展
电压、能量密度高
按照电解液分,分为水溶液电解液超级电容器和有机电解液超级电容器。
根据结构分为对称型电容器(SymmetricCapacitor)和混合型超级电容器(Hybrid Capacitor)。
三、超级电容器的性能特点——介于电池与物理电容器
之间
优点
1. 高功率密度,输出功率密度高达数KW/kg,一般蓄电池的 数十倍。
氧化还原赝电容即法拉第赝电容是指活性电极材料发生氧化还原反应表现出 来的电容特性,主要包括过渡金属氧化物和导电聚合物。
双电层电容器存储的电荷与它的电容和电压相关 Q=CV,电容和电压是独 立的,但取决于电极的表面积,双电层的厚度和电解液的介质常数。根据 双电层电容器所需设备的性能或是使用的电解液选择电极材料。活性炭是 双电层电容器传统的电极材料
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线
Profile of the potential across electrochemical double layer capacitor in the charged condition
双电层电容器的储能机理本质上与静电容器一致,其依靠材料表面电子和溶液中等量 离子在电极材料/电解液界面的分离储存电量。通常电极材料采用高比表面积炭材料, 具有较高的比表面积(高达2000 m2 /g),远大于电解电容器电极的比表面积,

超级电容器原理及电特性

超级电容器原理及电特性

超级电容器原理及电特性超级电容器(Supercapacitor)是一种高能量密度和高功率密度的电子储存设备,也被称为超级电容器或电化学电容器。

它是一种介于传统电容器和化学电池之间的电子器件,具有高容量和高电流输出的特性,在能量存储和释放方面相比传统的电池具有很大的优势。

超级电容器的原理是基于电荷在电解质中的吸附原理,它由两个带有相互交替排列的互连电极和电解质组成。

电极通常由活性材料制成,如活性炭、过渡金属氧化物、活性金属等。

电容器的两个电极中,一个电极带正电,一个带负电,当电解质通过电极时,正极会吸引负电荷,而负极则会吸引正电荷,从而形成了一个电荷分离的状态,储存着电能。

超级电容器与传统电容器的最大区别在于其电解质的性质。

超级电容器使用的电解质是有机盐溶液或聚合物溶液,相比之下,传统电容器使用的是固体或液体介质。

由于电解质的存在,超级电容器具有较高的离子导电性,使其能够在短时间内获得较大的充电和放电电流,从而实现高功率输出。

超级电容器的电特性主要包括容量、电压和内电阻。

容量是用来衡量超级电容器储存电能的大小,单位通常是法拉(F)。

对比传统电容器,超级电容器的容量通常要大得多,可以达到几千法拉甚至更高。

电压是电容器的工作电压范围,超级电容器的电压一般在1.2-2.7伏之间。

内电阻是超级电容器放电时的阻抗,也称为超级电容器的等效串联电阻。

内电阻较低则能够提供更大的电流输出。

超级电容器具有很多优点。

首先,它具有很高的循环寿命和快速充放电特性。

传统电池在充放电过程中会有能量损失,导致其循环寿命较短,而超级电容器可以进行数万次的充放电循环而不损失能量。

其次,超级电容器具有很高的功率密度,能够在短时间内释放出大量电能,因此在需要高功率输出的场合具有很大的优势。

此外,超级电容器具有良好的可靠性和环保性,不含重金属等有害物质,对环境友好。

然而,超级电容器的能量密度还不如传统电池高。

虽然超级电容器的容量较大,但其能量存储量仍然不及化学电池,这限制了其在一些应用中的使用。

超级电容器基础知识

超级电容器基础知识
正负极材料不同, 或储能原理不同
超级电容器分类(结构)
平板型
在扣式体系中多采用平板状和圆片状的电极, 另外也有另外也有Econd公司产品为典型代 表的多层叠片串联组合而成的高压超级电容 器,可以达到300V以上的工作电压。
卷绕型
采用电极材料涂覆在集流体上,经过绕制 得到,这类电容器通常具有更大的电容量 和更高的功率密度。
流为100A,200F以下的为3A)和规定的频率(DC和大容量的100Hz或小容量 的KHz)下的等效串联电阻。通常交流ESR比直流ESR小,随温度上升而减小。
DC-ESR 在实际情况中,由于电容器存在一定的内阻,充放电转换的瞬间会有一个 电位的突变我们可以利用这一突变计算电极或者电容器的等效串联电阻。
锂离子超级电容器
Li4Ti5O12/AC 不对称电容器体系的概念首度由美国的 Telcordia公司提出。这一混合体系采用以活负极,电解液为商用的锂离子二 次电池电解液(锂盐),能量密度可达每公斤数十瓦(接近铅 酸蓄电池的能量密度水平)。其工作原理如图所示,充电过程 中,正极吸附电解液阴离子,负极则发生锂离子材料的嵌入反 应,放电时则相反。
t
U U0e RC
超级电容器的性能参数—漏电流
图中,EPR为等效并联电阻,代表超 级电容器的漏电流,影响长期储能性 能,EPR通常很大,可以达到几十kΩ, 所以漏电流很小。 2~4μA/F
漏电流和自放电在本质上无差别,机理也基本相同。究其根本在于电 极、电解液或其他与电芯有关的构成部分含有的微量杂质(未除干净的 H2O、气体,材料的纯度等)。
由于超级电容漏电流比较小,所以只要在充电时恒压保持足够长的 时间,那么能量就能储存很长时间,这一点是很有意义的。
当温度升高时,离子的热振动加强,漏电流也会加剧。

超级电容器的原理与应用

超级电容器的原理与应用

超级电容器的原理与应用超级电容器,又称为超级电容、超级电容放电器,是一种新型电化学器件,它具有比传统电容器更高的电容量和能量密度,以及更高的功率密度。

这种电化学器件在现代电子设备、交通工具、能源储存系统等领域有着重要的应用。

本文将从超级电容器的原理、结构、特点以及应用领域等方面进行介绍。

一、超级电容器的原理超级电容器的工作原理基于电荷的吸附和离子在电解质中的迁移。

其正极和负极均采用多孔的活性碳材料,两者之间的电解质是导电液体。

当加上电压时,正负极之间形成两层电荷分布,即电荷层,进而形成电场。

电荷的吸附和电子的迁移使得电容器储存电能。

二、超级电容器的结构超级电容器的主要结构包括两块活性碳电极、电解质和两块集流体。

活性碳电极是超级电容器的核心部件,通过高度多孔的结构使得电极表面积大大增加,从而增加电容器的电容量。

电解质则起着导电和电荷传递的作用,而集流体则是用于导电的金属片或碳素片。

三、超级电容器的特点1.高功率密度:超级电容器具有较高的功率密度,能够在短时间内释放大量电能。

2.长循环寿命:相比于锂离子电池等储能装置,超级电容器具有更长的循环寿命。

3.快速充放电:超级电容器具有快速的充放电速度,适用于需要频繁充放电的场景。

4.环保节能:超级电容器不含有有害物质,具有较高的能源利用效率。

四、超级电容器的应用1.汽车启动系统:超级电容器作为汽车启动系统的辅助储能装置,能够有效提高发动机启动速度,降低能源消耗。

2.再生制动系统:超级电容器在电动汽车的再生制动系统中起到储能和释放能量的作用,提高能源回收效率。

3.电网能量储存:超级电容器可用作电网能量的储存装置,用于平衡电力需求与供给之间的波动。

4.工业自动化设备:超级电容器在工业自动化领域中广泛应用,用于缓冲电源波动和提供紧急供电。

5.医疗设备:超级电容器可用于医疗设备的储能,确保设备持续稳定运行。

结语超级电容器以其高功率密度、长循环寿命、快速充放电等特点在各个领域发挥着重要作用,为现代社会的能源存储和利用提供了新的技术解决方案。

什么是超级电容超级电容器(supercapacitor),又叫双电层电容器

什么是超级电容超级电容器(supercapacitor),又叫双电层电容器

什么是超级电容超级电容器(supercapacitor),又叫双电层电容器(Electrical Doule-Layer Capacitor)、黄金电容、法拉电容,通过极化电解质来储能。

它是一种电化学元件,但在其储能的过程并不发生化学反应,这种储能过程是可逆的,也正因为此超级电容器可以反复充放电数十万次。

超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近。

超级电容器向快速充电与大功率发展充电1分钟即可驱动小型笔记本电脑运行近1个半小时--在2004年10月于幕张MESSE举行的IT博览会“CEATEC JAPAN”上,这种快速充电的演示成了人们关心的话题。

一般笔记本电脑的充电电池要充满电至少需要1个小时。

但“双电层电容器”却大幅缩短了这一时间。

超级电容器是介于电容器和电池之间的储能器件,它既具有电容器可以快速充放电的特点,又具有电化学电池的储能机理。

超级电容器也可以分为两类:(1)以活性炭材料为电极,以电极双电层电容的机制储存电荷,通常被称作双电层电容器(DLC);(2)以二氧化钌或者导体聚合物等材料为阳极,以氧化还原反应的机制存储电荷,通常被称作电化学电容器。

作为一种新型储能元件,电化学电容器的电容量可高达法拉级甚至上万法拉,能够实现快速充放电和大电流发电,并比蓄电池具有更高的功率密度(可达1,000W/kg数量级)、和更长的循环使用寿命(充放电次数可达10万次),同时可在极低温等极端恶劣的环境中使用,并且无环境污染。

这些特点使得电化学电容器在电动汽车、通讯、消费和娱乐电子、信号监控等领域的电源应用方面具有广阔的市场前景。

有业内专家预测,仅就中国市场而言,目前的年需求量可达2,150万只,而整个亚太地区的总需求量则超过9,000万只。

美国市场研究公司Frost & Sullivan不久前发布的一份报告也预计,2002年到2009年之间,全球超级电容器产业的产量和销售收入这两项数据将分别以157%和49%的年复合增长率保持高速增长。

超级电容器介绍

超级电容器介绍

超级电容器介绍第一篇:超级电容器介绍超级电容器/法拉电容介绍五超级电容器类型简介超级电容器的类型比较多,按不同方式可以分为多种产品,以下作简单介绍。

按原理分为双电层型超级电容器和赝电容型超级电容器:双电层型超级电容器,包括1.活性碳电极材料,采用了高比表面积的活性炭材料经过成型制备电极。

2.碳纤维电极材料,采用活性炭纤维成形材料,如布、毡等经过增强,喷涂或熔融金属增强其导电性制备电极。

3.碳气凝胶电极材料,采用前驱材料制备凝胶,经过炭化活化得到电极材料。

4.碳纳米管电极材料,碳纳米管具有极好的中孔性能和导电性,采用高比表面积的碳纳米管材料,可以制得非常优良的超级电容器电极。

以上电极材料可以制成:1.平板型超级电容器,在扣式体系中多采用平板状和圆片状的电极,另外也有Econd公司产品为典型代表的多层叠片串联组合而成的高压超级电容器,可以达到300V以上的工作电压。

2.绕卷型溶剂电容器,采用电极材料涂覆在集流体上,经过绕制得到,这类电容器通常具有更大的电容量和更高的功率密度。

赝电容型超级电容器:包括金属氧化物电极材料与聚合物电极材料,金属氧化物包括NiOx、MnO2、V2O5等作为正极材料,活性炭作为负极材料制备的超级电容器,导电聚合物材料包括PPY、PTH、PAni、PAS、PFPT等经P型或N型或P/N型掺杂制取电极,以此制备超级电容器。

这一类型超级电容器具有非常高的能量密度,目前除NiOx型外,其它类型多处于研究阶段,还没有实现产业化生产。

按电解质类型可以分为水性电解质和有机电解质类型:水性电解质,包括以下几类1.酸性电解质,多采用36%的H2SO4水溶液作为电解质。

2.碱性电解质,通常采用KOH、NaOH等强碱作为电解质,水作为溶剂。

3.中性电解质,通常采用KCl、NaCl等盐作为电解质,水作为溶剂,多用于氧化锰电极材料的电解液。

有机电解质通常采用LiClO4为典型代表的锂盐、TEABF4作为典型代表的季胺盐等作为电解质,有机溶剂如PC、ACN、GBL、THL等有机溶剂作为溶剂,电解质在溶剂中接近饱和溶解度。

超级电容器简介

超级电容器简介

超级电容器不含有有毒物质,对环境友好 ,且在使用寿命结束后可回收再利用。
02
超级电容器的应用领域
汽车工业
01
02
03
混合动力汽车
超级电容器可以提供瞬时 大电流,辅助发动机启动 和加速,提高燃油效率。
电动汽车
超级电容器可以快速储存 和释放能量,用于启动、 加速和制动回收,提高车 辆性能。
汽车零部件
产业链整合
通过整合上下游产业链,提高生产效率和降低 成本,企业将获得更多竞争优势。
跨界合作
与其他产业领域进行跨界合作,拓展超级电容器的应用领域和商业模式。
THANKS
谢谢您的观看
特点与优势
高功率密度
长寿命
超级电容器具有极高的功率密度,能够在 短时间内提供大量电能,适合用于需要瞬 时大电流的场合。
由于超级电容器的充放电过程中发生的电 化学反应较为温和,因此其寿命较长,可 达到数万次甚至数十万次充放电循环。
快速充放电
环境友好
超级电容器可以在短时间内完成充电,放 电速度也较快,提高了使用效率。
寿命与稳定性
薄膜电容器的寿命和稳定性较好,而 超级电容器的寿命和稳定性相对较差 。
Байду номын сангаас
05
超级电容器的市场前景与趋势
市场现状
市场规模
全球超级电容器市场规模持续增长,应用领域不断扩 大。
竞争格局
市场竞争激烈,主要集中在技术领先和品牌优势的企 业。
区域分布
全球超级电容器市场主要集中在中国、欧洲和北美等 地区。
超级电容器可用于汽车零 部件的能量回收和节能控 制,如座椅、车门等。
能源存储
可再生能源
超级电容器可以用于储存太阳能 、风能等可再生能源产生的电能 ,提高能源利用效率。

什么是超级电容!

什么是超级电容!

超级电容(SuperceII)是一种新型储能装置,是以石墨烯等复合材料为正极材料•、在活性炭材料中包裹碳纳米管或石果烯等导电高分子材料,利用充放电过程中的电荷迁移来储存电能,同时又能像普通电容器一样进行能量存储和充放电。

超级电容可分为电化学超级电容、物理超级电容器。

电化学超级电容器(e1ectriccata1yticpump)是指在充放电过程中的电子与离子的交换与扩散作用下,通过电解质中离子扩散的速度来储存能量(或功率)的装置,其本质是利用了氧化链作为储能材料。

物理超级电容(e1ectriccata1yticpump)是指在充电过程中,活性炭内部的微孔中存储了大量电荷;在放电过程中,活性炭表面形成的电介质极易受到环境影响而发生体积变化,同时会使电容降低。

物理超级电容器一般用于航天、国防军工、车辆、大型港口设备、配电网等各种应用领域。

物理超级电容和电化学超级电容在能量存储方式上都可以采用库伦效率低、能量密度低、循环寿命短、不可逆性等问题。

今天小编给大家讲解下超级电容应用领域和优势:一、应用领域1 .新能源汽车:电动汽车、混合动力汽车等;2 .储能电站,3 大型港口设备;4 .医疗卫生行业:mri等高精密医疗器械;5 .航天卫星:星箭分离电源系统;6 .工业电子:应急照明、电梯、电动叉车等;7 .表计:水、燃气表智能表计等:8 .国防军工:坦克、电磁炮、激光武器等大功率能量脉冲武器:9 .风力发电:风力变桨系统太阳能光伏发电;10 .智能电网等:二、特点和优势(1)高功率密度:输出功率密度高达IOKW∕kg,是任何•种化学电源所无法比拟的,是•般蓄电池的数十倍;(2)妥善解决了贮存设备高比能量输出之间的矛盾。

超级电容器可以提佛那个高比功率的同时,其比能量可以达到5-10Wh/kg:(3)充放电循环寿命长,达到IOO次量级;(4)工作温度范围宽∙40°C~+70°C:(5)充电时间短。

超级电容器简介

超级电容器简介

超级电容器简介超级电容器简介超级电容器事业部 20111213Lishen Battery Joint-Stock Co., Ltd. Proprietary Confidential目录:第一章:电容器第二章:超级电容器2.1 超级电容器定义 2.2 超级电容器储能原理 2.3 超级电容器特性2.4 公司现有产品图 2.5 超级电容器应用第三章:总结Lishen Battery Joint-Stock Co., Ltd. Proprietary Confidential第一章:电容器基本知识1.1 电容器定义:电容器是由两片接近并相互绝缘的导体制成的电极组成的储存电荷和电能的器件,英文名称:capacitor。

电容定义:电容是表征电容器容纳电荷本领的物理量。

电容器的电容量可用每伏特储存的电荷量表示,用字母C表示,单位是法拉(F)。

备注:电池容量表示的是法拉第电荷储存的多少,单位是库伦(A.S)或 mAh。

Lishen Battery Joint-Stock Co., Ltd. Proprietary Confidential1.2 电容计算公式:电容器容量计算公式:C=Q/U, C单位法拉(F),Q是库伦(A.S),U单位是伏特(V). 电容所储存的电能: E=(UC/3600)Ah =(CU2/2/3600)wh 电容的基本单位是法拉(F),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。

单位换算关系:1F=1000mF 1μF=1000nF1mF=1000μF 1nF=1000pFLishen Battery Joint-Stock Co., Ltd. Proprietary Confidential1.3电容器分类电解电容器陶瓷电容器普通电容器薄膜电容器云母电容器微调电容器碳碳双电层电容器电容器超级电容器氧化物/碳混合电容器赝电容器(法拉第准电容器)Lishen Battery Joint-Stock Co., Ltd. Proprietary Confidential第二章:超级电容器介绍2.1 超级电容器定义:超级电容器,英文Ultracapacitor 或supercapacitor,就是超大容量的电容器,其容量都是法拉级,一般情况下容量范围可达1F-5000F,有的甚至上万及法拉,而普通电容器都是PF或μF级。

超级电容器的原理及应用

超级电容器的原理及应用

超级电容器的原理及应用
超级电容器是一种新型的电子元器件,它具有高能量密度、高功率密度、长循环寿命和快速充放电等特点,被广泛应用于电力系统、汽车、电子设备和航天航空领域。

超级电容器的原理是利用电荷在电容器两极板之间的存储和释放来实现能量的存储和释放。

它与普通电容器的最大区别是超级电容器采用了双层电容技术和伪电容技术,使得电荷能够以更高的密度存储在电容器中。

双层电容技术利用了高表面积的活性炭或碳纳米管等材料,使得电荷能够以吸附和脱附的方式存储在电容器中,从而实现高能量密度的存储。

伪电容技术则利用了高比表面积的电极材料和离子导电体,使得电荷能够以电容和伪电容的方式存储在电容器中,从而实现高功率密度的放电。

超级电容器的应用非常广泛。

在电力系统领域,超级电容器可以用于平滑和调节电网的电压和频率,提高电网的稳定性和可靠性。

在汽车领域,超级电容器可以用于启动和辅助动力系统,提高汽车的燃油经济性和驾驶性能。

在电子设备领域,超级电容器可以用于应急电源和蓄电池的辅助能源,提高电子设备的使用寿命和可靠性。

在航天航空领域,超级电容器可以用于供电系统和动力系统,提高航天器和飞机的性能和安全性。

超级电容器也存在一些挑战和限制。

超级电容器的能量密度和功率密度还不如锂离子电池和燃料电池,这限制了其在某些应用中的推广和应用。

超级电容器的成本和制造工艺也比较复杂,这使得其在一些大规模应用中的竞争力不足。

超级电容器的循环寿命和温度特性也需要进一步改进和优化,以满足不同领域的需求和要求。

超级电容器简介_图文

超级电容器简介_图文

双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线 Profile of the potential across electrochemical double
1、多孔电容炭材料
性能要求
1、高比表面 > 1000m2/g
理论比电容 > 250 F/g
ห้องสมุดไป่ตู้
各指
2、高中孔孔容 12~40Å 400l/g,
标间
大于40Å的孔容 50l/g,
相互
3、高电导率
矛盾
4、高的堆积比重
5、高纯度 灰份 < 0.1%
6、高性价比
7、良好的电解液浸润性
已研制的电容炭材料
碳气凝胶——电子导电性好
电容器产品性能:功率 4000 W/kg,能量 1 Wh/kg 优点:中孔发达、电导率高 不足:比表面积低、制备工序复杂 发展趋向:非超临界干燥、活化提高比电容
玻态炭 电导率高,机械性能好; 结构致密,慢升温制作难,价贵。
玻态炭
只能表层活化
活性玻态炭
纳米孔玻态炭
多孔碳层 厚15~20 um 多孔碳层的电导率高, 多孔碳层比功率18kW/L
230
170
制备条件
常规方法、简单方便 超临界干燥周 期长、费用高
碳纳米管
特点 1、导电性好,比功率高 2、比表面小,比容量低 3、成本高
作为添加剂使用
2、准电容储能材料
对金属化合物的性能要求:
1、高比表面 ——多孔,高比能量 2、低电阻率 ——高比功率 3、化学稳定性—— 长寿命 4、高纯度—— 减少自放电 5、价格低—— 便于推广应用

超级电容器

超级电容器

超级电容器超级电容器(Supercapacitor,Ultracapacitor)又名化学电容器(Electrochemical Capacitor)是一种电荷的储存器,当电源的电压连接在电容器的两端时,电源的电荷就储存在电容器中。

超级电容器比能量高,功率释放能力强,清洁无污染,寿命长达百万次。

利用电容器能够储存大量电荷,快速、大电流冲放电的特性,可以为电动车辆的起动提供强大的电流,能够高效率的储存电动车辆制动反馈的电能,弥补了动力蓄电池的不足,延长蓄电池的寿命。

超级电容器是电动车辆上重要的储能装置,其与蓄电池的主要性能比较见下表。

超级电容器与蓄电池主要性能比较1、电容器工作原理电容器是由两个彼此绝缘的平板形金属电容板组成,在两块电容板之间用绝缘材料隔开。

电容器极板上所储集的电量q与电压成正比。

电容器的计量单位为“法拉”(F)。

当电容充上1V的电压,如果极板上储存1F的电荷量,则该电容器的电容量就是1F。

电容器的电容量:C=εA/d F式中:ε——电介质的介电常数,F/m;A——电极表面积,m2;d——电容器间隙的距离,m。

电容器的容量只取决于电容板的面积,与面积的大小成正比,而与电容板的厚度无关。

另外,电容器的电容量还与电容板之间的间隙大小成反比。

当电容元件进行充电,电容元件上的电压增高,电场能量增大,电容器从电源上获得电能,电容器中储存的电量E为:E=CU2/2式中:U——外加电压,V。

当电容元件进行放电,电容元件上的电压降低,电场能量减小,电容器从电源上释放能量,释放的最大电量为E。

2、超级电容器的特性超级电容器可以大电流放电,可以补充主电源(蓄电池或燃料电池)在电动车辆起动时所需要的峰值电流,减小主电源的负荷。

上海“奥威”科技开发公司UCT-80000F超级电容器在不同放电电流时的放电曲线见图1,在不同温度时的放电曲线见图2。

电动车辆上所采用的超级电容器的单位容量要求在1500F以上,因此要将单体电容器进行串联组合。

超级电容器

超级电容器

活性炭 碳气凝胶 碳纳米管 石墨烯
金属氧化物
混合型超级电容器
静电和电化学作用共同储能
导电聚合物
对称型电极
非对称型电极
可充电电池型
复合电极材料 赝电容+双电层电极
8
3
3-1 双电层电容器
双电层电容原理
其储能过程是物理过程,没有化学反应且 过程完全可逆,这与蓄电池电化学储能不同
由于正负离子在固体电极和电解液之间的表面上分别吸附, 造成两固体电极之间的电势差,从而实现能量的存储。
材料
Cellulose 纤维素
5
制作
工艺
5
超级电容器的制作工艺
磨料
行星球磨机
压制电芯
热平压机
软包超级电容器制作工艺流程图
14
3
3-3 混合型超级电容器
锂离子电容器
结 构 图
15
3
3-3 混合型超级电容器
充电
电解液 中的Li+嵌入 到石墨层间 形成嵌锂石 墨,同时, 电解液中的 阴离子则吸 附在活性炭 正极表面形 成双电层。
锂离子电容器机理
放电
Li+从负极 材料中脱出回到 电解液中,正极 活性炭与电解液 界面间产生的双 电层解离,阴离 子从正极表面释 放,同时电子从 负极通过外电路 到达正极。
4
4-2 超级电容器的电解液
电 解 液
性能要求
4
4-2 超级电容器的电解液
按照电解液的类型可以分为水系电解液和有机系电解液
水系电解液
中性电解液(NaSO4等) 酸性电解液(H2SO4等)
碱性电解液(KOH等)。
有机/离子电解液 四氟硼酸四乙基铵(Et4NBF4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


已研制的电容炭材料 活性炭(粉、纤维、布) ——应用最多的电极材料
纳米碳管
碳气凝胶 活化玻态炭
纳米孔玻态炭
活性炭
优势: (1)成本较低; (2)比表面积高;
(3)实用性强; (4)生产制备工艺成熟; (5)高比容量,最高达到500F/g,一般200F/g。 性能影响因素: (1)炭化、活化条件,高温处理; (2)孔分布情况; (3)表面官能团 (4)杂质。 研究趋势: 材料复合、降低成本
二、超级电容器的基本分类
超级电容储能机制可分为:

双电层电容--电极表面与电解液间双电层储能。

准电容--电极表面快速的氧化-还原反应储能。
相应的两类电极根据电极材料—-—组成三种电容器 双电层电容器 (碳材料超级电容器)正、负极——多孔炭 准电容器 混合材料电容器 正、负极——金属化合物、石墨、 导电聚合物。 电压、能量密度高
4.
以减轻重量为中心的结构设计
活性玻态炭
纳米孔玻态炭
多孔碳层 厚15~20 um 整体多孔,比能量提高 多孔碳层的电导率高, 快速升温炭化,成本大降 多孔碳层比功率18kW/L 但电容器的比能量很低(0.07Wh/L)
纳米孔玻态炭与碳气凝胶性能比较
项目
比表面积m2/g 电导率S/cm 电极密度g/cm3 最佳比容量F/g 制备条件
双电层电容器的储能机理本质上与静电容器一致,其依靠材料表面电子和溶液中等量 离子在电极材料/电解液界面的分离储存电量。通常电极材料采用高比表面积炭材料, 具有较高的比表面积(高达2000 m2 /g),远大于电解电容器电极的比表面积,
双电层电极、溶液界面结构示意图
Struture diagram of the interface between electrode and electrolyte
a 贵金属
贵金属RuO2电容性能研究


使用硫酸电解液;容量高,功率大,成本高。
热分解氧化法380F/g

溶胶-凝胶法 768F/g 添加W、Cr、Mo、V、Ti等的氧化物 降低成本 复合后性能高: WO3/RuO2比容量高达560F/g Ru1-yCryO2xH2O比容量高达840F/g 活性炭上沉积0.4mm无定形钌膜达到900F/g
2 5
Co2O3干凝胶比容量291F/g(KOH溶液中)。 -Mo2N比容量203F/g。
金属氧化物研究重点 :
––提高容量利用率
方法 :
––将材料纳米化,纳米尺寸,纳米孔结构 ––与高电导率、高比表面积的各种多孔炭材料复合
c、导电聚合物
研究情况:
聚苯胺、聚对苯、聚并苯、聚吡咯、聚噻吩、 聚乙 炔、聚亚胺酯 性能特点: 可快速充放电、温度范围宽、不污染环境 ; 稳定性、循环性问题。
双电层原理示意图
充电时,外电源使电容器正负极分别带正电和负电,而电解液中的正负离子分别移动到电 极表面附近,形成双电层,整个双电层电容器实际上是两个单双电层电容器的串联装置。
双电层电容器充电状态电位分布曲线
Profile of the potential across electrochemical double
•此时系统的充放电过程是动力学高度可逆的 ,与原电池及蓄电池不同 ,但与静 电电容类似。为与双电层电容及电极与电解液界面形成的真正的静电电容相 区别,称这样得到的电容为法拉第准(赝)电容。 •法拉第准(赝)电容不仅只在电极表面,而且可在整个电极内部产生,因而可获得 比双电层电容更高的电容量和能量密度。在相同电极面积的情况下,法拉第准 (赝)电容可以是双电层电容量的10~100倍。
Hale Waihona Puke 1、多孔电容炭材料 性能要求 1、高比表面 > 1000m2/g
理论比电容 > 250 F/g
2、高中孔孔容 12~40Å 400l/g,
大于40Å的孔容 50l/g,
各指 标间 相互 矛盾
3、高电导率 4、高的堆积比重 5、高纯度 灰份 < 0.1% 6、高性价比 7、良好的电解液浸润性
赝电容根据电极反应的不同,分为吸附电容和氧化还原赝电容 吸附赝电容是指电化学活性物质在基底电极上发生二维/准二维的电化学吸 脱附,表现出电容性质。如H+在Pt电极表面的吸脱附反应 氧化还原赝电容即法拉第赝电容是指活性电极材料发生氧化还原反应表现出 来的电容特性,主要包括过渡金属氧化物和导电聚合物。 双电层电容器存储的电荷与它的电容和电压相关 Q=CV,电容和电压是独 立的,但取决于电极的表面积,双电层的厚度和电解液的介质常数。根据 双电层电容器所需设备的性能或是使用的电解液选择电极材料。活性炭是 双电层电容器传统的电极材料 法拉第赝电容来源于电极-电解液界面快速可逆的氧化还原反应一方面要 求法拉第反应有足够的活性位点;另一方面要求有足够多的电解质离子和 电子参与法拉第反应。对于第一方面的要求,具有高比表面积的赝电容电 极材料通过尺寸纳米化或表面造孔将满足要求;对于后者,通过制备更多 层次具有良好电导率以及孔隙率的电极材料从而使电解质离子能够扩散和 接触更多的电化学位点。法拉第赝电容电极材料主要包括过渡金属氧化物 和导电聚合物
3.非常短的充电时间,在0.1-30s即可完成。 4.解决了贮能设备高比功率和高比能量输出之间的矛盾, 将它与蓄电池组合起来,就会成为一个兼有高比功率输出的贮 能系统。 5.贮能寿命极长,其贮存寿命几乎可以是无限的。 6.高可靠性。
四、超级电容器技术及电极材料的进展
1、多孔电容炭材料——超级电容器的核心
高等物理化学电子课件
超级电容器简介
兰州理工大学石油化工学院
一、超级电容器的基本原理
超级电容器 Supercapacitor
是介于电容器和电池之间的储能器件,它既具有电容器可以快速 充放电的特点,又具有电池的储能特性。
超级电容(supercapacitor),又叫双电层电容(Electrical Doule-Layer )、即通
导电聚合物研究重点 : ––提高容量利用率 ––改善循环性能
方法 :
––将材料纳米化,纳米尺寸,纳米孔结构 ––与高电导率、高比表面积的各种多孔炭材料复合
3、高性能电解质溶液

性能要求:
分解电压要高; 电导率要高; 电解液的浓度大; 电解液的浸润性好; 电解液纯度高; 不与电极反应; 使用温度范围要宽。
碳是双电层电容器理想的电极材料,在水溶液和非水溶液理想极化的条件下电压分别为 1 V 和 3.5 V
电容器电解质:
水溶液:酸性体系——硫酸 碱性体系——氢氧化钾 有机电解液:Et4NBF4/PC(小型电容器,高温性能好) Et4NBF4/AN(大型,大功率、低温) LiAlCl4/SOCl2 季磷盐( R4P+)电导率高、电化学稳定性好,可以提高电容 器的分解电压 (达5.4~5.5 V)。 。 固体电解质: LiCF3SO2 2N/PEO 、RbAg4I5
离子从聚合物骨架中转移到电解液中,导电聚合物的氧化还原反应在聚合物
的整体中进行,不仅局限于表面。然而,导电聚合物存在循环稳定性差的问 题,在长时间的循环测试中导电聚合物会发生收缩和溶胀,影响其循环寿命。
研究人员通过复合的方式在具有高比表面积和良好导电性以及多孔的碳材料
表面负载过渡金属氧化物,制备了具有多层次结构的碳基复合材料。通过这 种方式提高了赝电容电极材料的利用率,改善了复合材料的性能。
双电层电容器放电状态电位分布曲线
Prifile of the potential across an electrochemical double-layer capacitor in the discharged condition


法拉第准(赝)电容原理则是利用在电极表面及其附近发生在一定电位范围 内发生高度可逆的化学吸附/脱附或氧化/还原反应来实现能量存储。这种 法拉第反应与二次电池的氧化还原反应不同。 此时的放电和再充电行为更接近于电容器而不是原电池,如: (1)电压与电极上施加或释放的电荷几乎成线性关系; (2)设该系统电压随时间呈线性变化dV/dt=K,则产生的电流为恒定或几 乎恒定的容性充电电流I=CdV/dt=CK。
2、准电容储能材料
b、廉价金属取代贵金属
MnO2材料
溶胶-凝胶法制得MnO2水合物在KOH溶液中比容量 为689F/g。
NiO材料
溶胶-凝胶法制得多孔NiO比容量265F/g。
北航做纳米Ni(OH)2容量500F/g以上。 Ni(OH)2干凝胶容量900F/g。
多孔V O 水合物比容量350 F/g(在KCl溶液)。
进行二次活化可提高比表面--重量比容量。
碳气凝胶——电子导电性好
电容器产品性能:功率 4000 W/kg,能量 1 Wh/kg
优点:中孔发达、电导率高
不足:比表面积低、制备工序复杂
发展趋向:非超临界干燥、活化提高比电容
玻态炭 电导率高,机械性能好; 结构致密,慢升温制作难,价贵。
玻态炭
只能表层活化
按照电解液分,分为水溶液电解液超级电容器和有机电解液超级电容器。 根据结构分为对称型电容器(SymmetricCapacitor)和混合型超级电容器(Hybrid Capacitor)。
三、超级电容器的性能特点——介于电池与物理电容器
之间
优点
1. 高功率密度,输出功率密度高达数KW/kg,一般蓄电池的 数十倍。 2. 极长的充放电循环寿命,其循环寿命可达万次以上。
2、准电容储能材料 3、高性能电解质溶液
4、以减轻重量为中心的结构设计
活性炭是双电层电容器传统的电极材料,石墨结构的导电炭、碳化物的衍 生碳、碳纳米管、炭黑和石墨烯等各种各样不同结构的碳在双电层电容器 中的应用也越来越广泛。 法拉第赝电容的电极材料主要包括过渡金属氧化物材料和导电聚合物材料, 过渡金属氧化物电极的电容来源于氧化还原反应,比电容远高于双电层的比 电容,过渡金属氧化物电极材料的导电性差,在过渡金属氧化物中例如 MnO2和 NiO 等它们差的导电性阻碍了它们作为超级电容器电极材料的应用。 导电聚合物当氧化反应发生时,离子转移到聚合物骨架;当还原反应发生时,
相关文档
最新文档