湖北省麻城市集美学校中考数学专题复习 二元一次方程组应用专练测试题

合集下载

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案

中考数学总复习《二元一次方程组》专项测试卷-附带有参考答案(测试时间60分钟 满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.已知 {x =2,y =3是关于 x ,y 的方程 4kx −3y =−1 的一个解,则 k 的值为 ( )A . 1B . −1C . 2D . −22.下列各组 x ,y 的值中,是方程 3x +y =5 的解的是 ( )A . {x =1,y =2B . {x =2,y =1C . {x =−2,y =1D . {x =0,y =−53.二元一次方程 2a +5b =−6,用含 a 的代数式表示 b ,下列各式正确的是 ( )A . a =5b−62B . a =5b+62C . b =2a−65D . b =−2a+654.某市在“污水共治”中新建成一个污水处理厂.已知该厂库池中存有待处理的污水 a 吨,另有从城区流入库池的待处理污水(新流入污水按每小时 b 吨的定流量增加).若污水处理厂同时开动 2 台机组,需 30 小时处理完污水;若同时开动 3 台机组,需 15 小时处理完污水.现要求用 5 个小时将污水处理完毕,则需同时开动的机组数为 ( )A . 4 台B . 5 台C . 6 台D . 7 台5.解方程组 {2x −3y =2, ⋯⋯①2x +y =10. ⋯⋯② 时,由 ②−① 得 ( )A . 2y =8B . 4y =8C . −2y =8D . −4y =86.方程 2x +y =8 的正整数解的个数是 ( )A . 4 个B . 3 个C . 2 个D . 1 个7.若 ∣a +2b −5∣+(2a +b −1)2=0,则 (a −b )2 的值等于 ( )A . ±1B . 1C . ±4D . 168.为了绿化校园,甲、乙两班共植树苗 30 棵.已知甲班植树数量是乙班的 1.5 倍,设甲班植树 x 棵,乙班植树 y 棵.根据题意,所列方程组正确的是 ( )A . {x +y =30,x =2.5yB . {x +y =30,x =1.5yC . {x =y +30,3y =2xD . {x =y +30,x =y +1.5二、填空题(共5题,共15分)9.轮船顺流航行时速度为 m km/h ,逆流航行时速度为 (m −8)km/h ,则水流速度是 .10.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做 3 个,甲做 30 个所用的时间与乙做 20 个所用的时间相等,那么甲每小时做 个零件.11.甲、乙两人在东西方向的公路上行走,甲在乙的西边 300 m ,若甲、乙两人同时向东走,那么 30 min 后,甲正好追上乙;若甲、乙两人同时相向而行,2 min 后相遇.问甲、乙两人的速度各是 .12.若关于 x ,y 的二元一次方程组 {3x −my =5,2x +ny =6的解是 {x =1,y =2, 则关于 a ,b 的二元一次方程组 {3(a +b )−m (a −b )=5,2(a +b )+n (a −b )=6的解是 .13.定义运算“∗”,规定 x ∗y =ax 2+by ,其中 a ,b 为常数,且 1∗2=5,2∗1=6则 2∗3= .三、解答题(共3题,共45分)14.体育器材室有 A ,B 两种型号的实心球,1 只 A 型球与 1 只 B 型球的质量共 7 千克,3 只 A 型球与 1 只 B 型球的质量共 13 千克.(1) 每只 A 型球、 B 型球的质量分别是多少千克?(2) 现有 A 型球、 B 型球的质量共 17 千克,则 A 型球、 B 型球各有多少只?15.现有 190 张铁皮做盒子,每张铁皮可做 8 个盒身或 22 个盒底,一个盒身与两个盒底配成一个完整的盒子.(一张铁皮只能生产一种产品)(1) 问用多少张铁皮做盒身,多少张铁皮做盒底,可以正好用完 190 张铁皮并制成一批完整的盒子?(2) 这一批盒子一共有多少个?16.甲、乙两人解关于 x ,y 的方程组 {4x −by =−1,ax +by =5,甲因看错了 a ,解得 {x =2,y =3, 乙将其中一个方程的 b 写成了它的相反数,解得 {x =−1,y =−1,求 a 2+b 3 的值.参考答案1. 【答案】A2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】B6. 【答案】B7. 【答案】D8. 【答案】B9. 【答案】 4 km/h10. 【答案】911. 【答案】 80 m/min ,70 m/min12. 【答案】 {a =32,b =−1213. 【答案】 1014. 【答案】(1) 设每只 A 型球、 B 型球的质量分别是 x 千克、 y 千克,根据题意可得:{x +y =7,3x +y =13.解得:{x =3,y =4.答:每只 A 型球的质量是 3 千克、 B 型球的质量是 4 千克.(2) ∵ 现有 A 型球、 B 型球的质量共 17 千克∴ 设 A 型球 1 个,设 B 型球 a 个,则 3+4a =17解得:a =72(不合题意舍去)设 A 型球 2 个,设 B 型球 b 个,则 6+4b =17解得:b =114(不合题意舍去)设 A 型球 3 个,设 B 型球 c 个,则 9+4c =17解得:c =2设 A 型球 4 个,设 B 型球 d 个,则 12+4d =17解得:d =54(不合题意舍去)设 A 型球 5 个,设 B 型球 e 个,则 15+4e =17解得:e =12(不合题意舍去) 综上所述:A 型球、 B 型球各有 3 只、 2 只.15. 【答案】(1) 设用 x 张铁皮做盒身,用 y 张铁皮做盒底根据题意,得:{2×8x =22y,y +x =190.解得:{x =110,y =80.答:用 110 张铁皮做盒身,80 张铁皮做盒底,可以正好用完 190 张铁皮并制成一批完整的盒子.(2) 880 个.16. 【答案】31.。

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)

中考数学总复习《二元一次方程组》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________知识点复习一、二元一次方程组定义1:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程,它的一般形式是()00,0ax by c a b ++=≠≠。

定义2:把两个方程合在一起,就组成了方程组。

定义3:方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,这样的方程组叫做二元一次方程组。

定义4:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

定义5:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

二、解二元一次方程组的方法(1)代入消元法:把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这种方法叫做代入消元法,简称代入法。

(2)加减消元法:当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。

这种方法叫做加减消元法,简称加减法。

三、方程(组)与实际问题解有关方程(组)的实际问题的一般步骤:第1步:审题。

认真读题,分析题中各个量之间的关系。

第2步:设未知数。

根据题意及各个量的关系设未知数。

第3步:列方程(组)。

根据题中各个量的关系列出方程(组)。

第4步:解方程(组)。

根据方程(组)的类型采用相应的解法。

第5步:答。

专题练习一、单选题1.已知关于x ,y 的二元一次方程组3221ax y x y +=⎧⎨-=⎩无解,则a 的值是( ) A .2 B .6 C .2- D .6-2.已知23a b -=,1a b +=则36a b -的值为( )A .6B .4C .3D .23.某班有x 人,分y 组活动,若每组7人,则余下3人;每组8人,则有一组差5人,根据题意下列方程组正确的是( )A .7385y x y x =+⎧⎨=+⎩B .7385y x x y =+⎧⎨=-⎩C .7385y x y x =-⎧⎨=+⎩D .7385x y x y =-⎧⎨=+⎩ 4.文峰超市以同样的价格卖出同样的牙刷和牙膏,以下是4天的记录:第1天,卖出13支牙刷和7盒牙膏,收入144元;第2天,卖出18支牙刷和11盒牙膏,收入219元;第3天,卖出23支牙刷和20盒牙膏,收入368元;第4天,卖出17支牙刷和11盒牙膏,收入216元.已知第1天和第2天的记录无误,第3天和第4天有一天的记录有误,则记录有误的一天收入( )A .多记1元B .多记2元C .少记1元D .少记2元5.两位同学在解方程组273ax by cx y +=⎧⎨+=⎩时,甲同学正确地解出11x y =-⎧⎨=-⎩,乙同学因把c 抄错了解得32x y =-⎧⎨=-⎩,则a 、b 、c 正确的值应为( )A .315a b c =-=-=-,,B .115a b c ==-=-,,C .2410a b c ==-=-,,D .315a b c ===-,,6.小华准备购买单价分别为4元和5元的两种瓶装饮料,且每种瓶装饮料的购买数量不为0.若小华将50元恰好用完,则购买方案共有( )A .2种B .3种C .4种D .5种7.在一个停车场,停了小轿车和摩托车一共32辆,这些车一共有108个轮子,则该停车场小轿车和摩托车的辆数分别为( )A .21,11B .22,10C .23,9D .24,8 8.已知关于x ,y 的方程2|18|(26)(2)0n m m x n y +--++=是二元一次方程,则m n +的值(若29m =,则3m =±)是( )A .5-B .3-C .1D .3二、填空题9.当方程组2520x ay x y +=⎧⎨-=⎩解是正整数时,整数a 值为 . 10.如果35x y =⎧⎨=-⎩是方程22mx y +=-的一组解,那么m 的值为 . 11.若关于x y ,的方程组1235x y c x y c +=⎧⎨+=⎩的解为56x y =⎧⎨=⎩,则方程组()()()()12113151x y c x y c ⎧-++=⎪⎨-++=⎪⎩的解为 .12.A,B两地相距80千米,一船从A出发顺水行驶4小时到达B,而从B出发逆水行驶5小时才能到达A,则船在静水中的航行速度是千米/时.13.若关于x的不等式组20,21xx m-<⎧⎨-≥-⎩恰有三个整数解,关于x的方程组26,3x yx y m+=⎧⎨-=⎩的解是正数,则m的取值范围是.三、解答题14.解方程组:(1)25 328 y xx y=-⎧⎨-=⎩(2)434 2312x yx y⎧+=⎪⎨⎪-=⎩15.已知方程组45321x yx y+=⎧⎨-=⎩和31ax byax by+=⎧⎨-=⎩有相同的解,求222a ab b-+的值.16.用加减法解方程组344328x y x y -=⎧⎨-=⎩①②其解题过程如下: 第一步:-①②,得4248y y --=-,解得23y =. 第二步:把23y =,代入①,得8343x -=,解得209x =. 第三步:所以这个方程组的解为20923x y ⎧=⎪⎪⎨⎪=⎪⎩上述解题过程是否正确?若不正确,则从第几步开始出现错误?请写出正确的解题过程.17.印江河是印江的母亲河,为了确保河道畅通,现需要对一段长为180米的河道进行清淤处理,清淤任务由A 、B 两个工程队先后接力完成,A 工程队每天完成12米,B 工程队每天完成8米,共用时20天. 根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:128x y x y ⎧+=⎪⎨+=⎪⎩ 乙:128x y x y ⎧+=⎪⎨+=⎪⎩(1)根据甲同学所列的方程组,请你指出未知数x 、y 表示的意义.x 表示______,y 表示______;请你补全乙同学所列的方程组______(2)求A 、B 两工程队分别完成河道清淤多少米?(写出完整的解答过程)18.“一盔一带”安全守护行动在我县开展以来,市场上头盔出现了热销,某商场购进了一批头盔.已知购进6个A型头盔和4个B型头盔需要440元,购进4个A型头盔和6个B型头盔需要510元.(1)购进1个A型头盔和1个B型头盔分别需要多少元?(2)若该商场准备购进200个这两种型号的头盔,总费用不超过10200元,那么最多可购买B型头盔多少个?(3)在(2)的条件下,若该商场分别以售价为58元/个、98元/个的售价销售完A、B两类型号的头盔共200个,能否实现利润不少于6190元的目标?若能,直接写出相应的采购方案;若不能,请说明理由.参考答案:1.D2.A3.C4.C5.C6.A7.B8.B9.1或3-10.83/22311.65 xy⎧=⎨=⎩12.1813.21m-<≤-14.(1)21 xy=⎧⎨=-⎩(2)1083 xy=⎧⎪⎨=⎪⎩15.116.不正确,从第一步开始出现错误;正确的解题过程见解析,原方程组的解为:42 xy=⎧⎨=⎩17.(1)x表示A工程队工作的天数,y表示B工程队工作的天数,18020 128x yx y+=⎧⎪⎨+=⎪⎩(2)A工程队完成河道清淤60米,B工程队完成河道清淤120米18.(1)购进1个A型头盔30元,1个B型头盔65元;(2)最多可购买B型头盔120个;(3)三种购买方案。

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)

中考数学总复习《二元一次方程组》专项测试卷(附答案)一、单选题(共12题;共24分)1.方程组 {y =2x 3x +y =15,的解是( ) A .{x =3y =6,B .{x =4y =3, C .{x =4y =8,D .{x =2y =3,2.以下是方程3x +2y =12的一个解的是( )A .{x =−1y =2B .{x =2y =−1C .{x =2y =3D .{x =3y =23.如图,在某张桌子上放相同的木块, R =32 , S =96 ,则桌子的高度是( )A .63B .58C .60D .644.已知{x =1,y =−2是关于x ,y 的二元一次方程ax +y =1的一个解,那么a 的值为( ) A .3B .1C .-1D .-35.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5 ,满足 x ≥12y ,则下列结论:①a ≥−2 ;②a =−53时, x =y ;③当 a =−1 时,关于x 、y 的方程组{x +y =1−ax −y =3a +5 的解也是方程 x +y =2 的解;④若 y ≤1 ,则 a ≤−1 ,其中正确的有( ) A .1个B .2个C .3个D .4个6.一个长方形的长减少3cm ,宽增加2cm ,就成为一个正方形,并且长方形的面积与正方形的面积相等.如果设这个长方形的长为xcm ,宽为ycm ,那么所列方程组正确的是( )A .{x +3=y −2(x +3)(y −2)=xyB .{x −3=y +2(x −3)(y +2)=xyC .{3−x =y +2(3−x)(y +2)=xyD .{x −2=y +3(x −2)(y +3)=xy7.若 |b +2|+(a −3)2=0 ,则 b a 的值为( )A .﹣bB .−18C .﹣8D .88.已知关于 x,y 的二元一次方程组 {3x +y =−4m +2x −y =6 的解满足 x +y <3 ,则m 的取值范围是( ) A .m >−52B .m <−52C .m >52D .m <529.已知关于x ,y 的二元一次方程ax +b =y ,当x 取不同值时,对应y 的值分别如下表所示:x … -1 0 1 2 3 … y…321-1…A .x <0B .x >0C .x <2D .x >210.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2(见下页).图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{3x +2y =19x +4y =23,类似地,图2所示的算筹图我们可以表述为A .{2x +y =114x +3y =27B .{2x =y =114x +3y =22C .{3x +2y =19x +4y =23D .{2x +y =64x +3y =2711.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为( ) A .54B .45C .27D .7212.用代入消元法解方程组 {3x −y =2,①y =1−2x ,② 时,把②代入①,得( )A .3x-1-2x= 2B .3x-(1-2x )= 2C .3x+(1-2x )=2D .3(1-2x )-y=2二、填空题(共6题;共6分)13.若 (a −1)2+|b −2|=5 ,则以a 、b 为边长的等腰三角形的周长为 14.如图,将长方形ABCD 分割成1个灰色长方形与148个面积相等的小正方形.若灰色长方形的长与宽之比为5:3,则AD :AB=15.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品(必须保证买两种),共花35元.毽子单价3元,跳绳单价5元,关于购买毽子和跳绳两种体育用品的数量购买的方案共有种.16.如果√x−2+(2y+1)2=0,那么xy=17.方程x2-y2=31的正整数解为。

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)

中考数学总复习二元一次方程组专题复习(含答案)一、选择题。

(在每小题给出的四个选项中,只有一个选项是符合题目要求的。

)1、下列各式中是二元一次方程的是()。

A、6x+2y=zB、+2=3yC、x-5=y2D、2x+5y=132、二元一次方程组的解是()。

3、若方程4x-3ky=12有一组解是,则k的值等于()。

A、-4B、4C、5D、-54、当方程kx+4y=9x-8是二元一次方程时,k的取值为()。

A、k≠0B、k≠-9C、k≠9D、k≠45、如果是二元一次方程组的解,那么m+n=()。

A、-1B、1C、-5D、56、可以使得方程x+5y=8和3x+y=-4同时成立的x、y的值分别为()。

A、x=2且y=2B、x=-2且y=2C、x=2且y=-2D、x=-2且y=27、方程5x-y=8的非负整数解有()。

A、2组B、3组C、4组D、无数组8、已知新星学校和山泉中学相距4千米,苏兰和肖英两人分别从新星学校和山泉中学同时出发,若同向而行,苏兰2小时可追上肖英;若两人相向而行,1小时相遇。

求苏兰、肖英两人的速度各是多少?如果设苏兰的速度为x千米/时,肖英的速度为y千米/时,则可以得一个二元一次方程组为()。

9、有一个两位数,它的十位数字与个位数字之和为8,则符合条件的两位数有()。

A、6个B、7个C、8个D、9个10、已知是二元一次方程组的解,则(3m+n)3的值为()。

A、1B、-1C、2D、-2二、填空题。

(将正确的答案填在括号里。

)1、若是二元一次方程,则m=(),n=()。

2、若是二元一次方程2x-ky=11的一个解,则k=()。

3、如果关于x、y的二元一次方程组的解满足2(x+y)-16≤0,则t的取值范围为()。

4、若(4x+y-13)2+│3x+2y-1│=0 则x-4y=()。

5、育龙中学组织一场知识竞赛。

规定知识竞赛的记分为:答对一题得3分,答错一题扣1分。

已知九(1)班答了12道题,共得24分,那么九(1)班答对了()道题。

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列各式是二元一次方程的是( )A .x 2+y =0B .x =2y +1C .2x 3−2y =0D .y +12x 2. 解方程组{2x +y =3①,2x −3y =4②时,若将①-②可得( ) A .4y=1 B .4y=-1 C .-2y=-1 D .-2y=1 3.{x =5y =3是下面哪个二元一次方程的解( ) A .2x −y =7 B .y =−x +2 C .x =−y −2 D .2x −3y =−14.若{x =3,y =4是方程kx +y =−5的一个解,则k 的值是( ) A .−13 B .−3 C .3 D .13 5.亮亮求得方程组{x +y =●3x −y =6的解为{x =2y =●,由于不小心滴上了两滴墨水,刚好遮住了两个数●和☆,请你帮他找回这两个数,“●”“☆”表示的数分别为( )A .●=2,●=0B .●=2,●=3C .●=0,●=2D .●=26.七(3)班为奖励在校运会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,若设购买甲种奖品x 件,乙种奖品y 件,则所列方程组正确的是( )A .{x +y =306x +8y =200B .{x +y =308x +6y =200C .{6x +8y =30x +y =200D .{8x +6y =30x +y =200 7.两位同学在解关于x 、y 的方程组{ax +3y =9①3x −by =2②时甲看错①中的a ,解得x =2,y =1,乙看错②中的b ,解得x =3,y =−1,那么a 和b 的正确值应是( )A .a =1.5,b =−7B .a =4,b =2C .a =4,b =4D .a =−7,b =1.58.周末,小明的妈妈让他到药店购买口罩和酒精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有( )A .3种B .4种C .5种D .6种二、填空题9.若关于x ,y 的方程4x m−n −5y m+n =6是二元一次方程,则mn = .10.若方程组 {x +y =73x −5y =−3,则 3(x +y)−(3x −5y) 的值是 . 11.小亮解方程组:{2x +y =•2x −y =12的解为{x =5y =●,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回★这个数,★= .12.若方程组{a 1x +b 1y =c 1a 2x +b 2y =c 2的解是{x =3y =4,则方程组{12a 1x +13b 1y =c 112a 2x +13b 2y =c 2的解是 . 13.塑料凳子轻便实用,在生活中随处可见.如图,若4个塑料凳子叠放在一起的高度为60cm ,6个塑料凳子叠放在一起的高度为70cm .当有11个塑料凳子整齐的叠放在一起时,其高度是 cm .三、解答题14.解下列方程组:(1){x +3y =9x =2y +1(2){3x +2y =43x 2−y+13=1 15.已知{x =3y =2是方程组{ax +by =13(a +b)x −ay =9的解,那么(a −b)2030的值为多少? 16.某小学在6月1日组织师生共110人到趵突泉公园游览,趵突泉公园规定:成人票价每位40元,学生票价每位20元.该学校购票共花费2400元,在这次游览活动中,教师和学生各有多少人?17.已知关于x ,y 的二元一次方程组{x +2y =3m ,x −y =9m.(1)求方程组的解(用含m 的式子表示)。

中考数学考点《二元一次方程组》专项练习题-附答案

中考数学考点《二元一次方程组》专项练习题-附答案

中考数学考点《二元一次方程组》专项练习题-附答案学校: 班级: 姓名: 考号:一、单选题1.下列方程组中,是二元一次方程组的是( ) A .{x =2y +1y =3−zB .{xy =12x +y =7C .{x =3y =4D .{1x+1y =23x −2y =42.二元一次方程组 {x +2y =6x +y =3 的解是( )A .{x =3y =0B .{x =4y =1C .{x =2y =1D .{x =0y =33.若三元一次方程组{x +y =5x +z =−1y +z =3的解使ax+2y+z=0,则a 的值为( )A .1B .0C .-2D .44.已知方程 3x −2y =5 ,把它变形为用含x 的代数式表示y ,正确的是( ) A .y =3x−52B .y =3x+52C .y =−3x+52D .y =−3x−525.若方程组{5x −3y =77x −5y =3的解为{x =6.5y =8.5,则方程组{5(x −13)−3(y +1)=77(x −13)−5(y +1)=3的解为( )A .{x =19.5y =9.5B .{x =19.5y =7.5C .{x =−6.5y =9.5D .{x =−6.5y =7.56.解二元一次方程组 {4x +7y =−194x −5y =17, 用代入消元法整体消去 4x , 得到的方程是( ) A .2y =−2B .2y =−36C .12y =−2D .12y =−367.我校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人,设运动员人数为x 人,组数为y 组,则列方程组为( ) A .{7y =x −38y +5=xB .{7y =x +38y +5=xC .{7y =x −38y =x +5D .{7y =x +38y =x +58.小明带了10元钱到文具店购买签字笔和练习本两种文具,已知签字笔2元支,练习本3元/本,如果10元恰好用完,那么小明共有( )种购买方案. A .0 B .1C .2D .3二、填空题9.二元一次方程2x+3y=20的非负整数解有 个.10.若 {x =1y =2 是方程ax+2y =5的一个解,则a 的值为 .11.若m ,n 满足方程组{3m +2n =82m +3n =12,则m −n 的值为 .12.已知关于x ,y 的二元一次方程3x-2y+9+m (2x+y-1)=0,不论m 取何值,方程总有一个固定不变的解,这个解是 . 13.若关于x,y 的二元一次方程组 {x −y =4①kx +y =2②k的解也是二元一次方程x-3y=6的解,则k 等于三、解答题 14.解方程组. (1){x =y +13x −2y =2(2){4x −2y =23x +2y =515.某公司要把240吨矿石运往 A 、 B 两地,现用大、小两种货车共20辆,恰好能一次性装完这批矿石.已知这两种货车的载重量分别为15吨/辆和10吨/辆,求这两种货车各用多少辆?16.小红和小风两人在解关于x ,y 的方程组{ax +3y =5bx +2y =8时,小红只因看错了系数a ,得到方程组的解为{x =−1y =2,小风只因看错了系数b ,得到方程组的解为{x =1y =4,求a ,b 的值和原方程组的解. 17.声音在空气中传播的速度随温度的变化而变化,科学家已测得一定温度下声音传播的速度如下表.如果用v 表示声音在空气中的传播速度,t 表示温度,则v ,t 满足公式:v =at +b (a ,b 为已知数).温度(℃)−20 −10 0 10 20 声音传播速度(米/秒) 324330336342348(1)求a ,b 的值.(2)若温度是80℃时,求声音在空气中的传播速度.18.去年年底,重庆疫情形势严峻,除了医务人员和志愿者们主动请缨走向抗疫前线,众多企业也纷纷伸出援助之手.某公司租用A 、B 两种货车向重庆运送抗疫物资,已知用2辆A 型车和3辆B 型车载满货物一次可运物资21吨;用1辆A 型车和4辆B 型车载满货物一次可运物资23吨. (1)求1辆A 型车和1辆B 型车都装满货物一次可分别运送多少吨物资?(2)现有60吨抗疫物资需要运往重庆,该公司计划同时租用A 型车和B 型车(两种型号车均要租用),一次运完,且恰好每辆车都装满货物.若A 型车每辆需租金1000元/次,B 型车每辆需租金1500元/次.问:该公司有哪几种租车方案,哪种方案租车费用最少?答案1.C 2.D 3.B 4.A 5.B 6.D 7.C 8.C 9.4 10.1 11.-4 12.{x =−1y =313.114.(1)解: {x =y +1①3x −2y =2②将①代入②得: 3(y +1)−2y =2 解得: y =−1 ,代入①中 解得: x =0∴方程组的解为: {x =0y =−1 ;(2)解: {4x −2y =2①3x +2y =5②①+②得: 7x =7 解得: x =1 ,代入①中 解得: y =1∴方程组的解为: {x =1y =1.15.解:设大货车用x 辆,小货车用y 辆 根据题意得: {x +y =2015x +10y =240 解得: {x =8y =12答:大货车用8辆,小货车用12辆.16.解:根据题意,{x =−1y =2不满足方程ax+3y=5,但应满足方程bx+2y=8代入此方程,得﹣b+4=8,解得b=﹣4. 同理,将{x =1y =4代入方程ax+3y=5,得a+12=5解得a=﹣7.所以原方程组应为{−7x +3y =5−4x +2y =8 解得{x =7y =18.17.(1)解:将(0,336),(20,348)代入v =at +b ,得{b =33620a +b =342∴{a =35b =336(2)解:由(1)知:v =35x +336将t =80代入得v =384 ∴气温为80℃时,声音在空气中的传播速度为384米/秒.18.(1)解:设1辆A 型车装满货物一次可运送x 吨物资,1辆B 型车装满货物一次可运送y 吨物资根据题意,可得:{2x +3y =21x +4y =23解得:{x =3y =5答:1辆A 型车装满货物一次可运送3吨物资,1辆B 型车装满货物一次可运送5吨物资. (2)解:设租a 辆A 型车,b 辆B 型车根据题意,可得:3a +5b =60 ∵a 、b 均为正整数∴{a =5b =9或{a =10b =6或{a =15b =3∴该公司有三种租车方案: 方案一:租5辆A 型车,9辆B 型车 方案二:租10辆A 型车,6辆B 型车 方案三:租15辆A 型车,3辆B 型车∴方案一所需费用为5×1000+9×1500=18500(元) 方案二所需费用为10×1000+6×1500=19000(元) 方案三所需费用为15×1000+3×1500=19500(元) ∵19500>19000>18500 ∴方案一租车费用最少.。

中考数学总复习《二元一次方程组》专项测试题-带参考答案

中考数学总复习《二元一次方程组》专项测试题-带参考答案

中考数学总复习《二元一次方程组》专项测试题-带参考答案(考试时间:60分钟 总分:100分)一、选择题(共8题,共40分)1.如果 ∣x +y −1∣ 和 2(2x +y −3)2 互为相反数,那么 x ,y 的值为 ( )A . {x =1,y =2B . {x =−1,y =−2C . {x =2,y =−1D . {x =−2,y =−12.如图,宽为 50 cm 的长方形图案由 10 个全等的小长方形拼成,其中一个小长方形的面积为 ( )A .400 cm 2B .500 cm 2C .600 cm 2D .300 cm 23.若关于 x ,y 的方程组 {2x −y =m,x +my =n 的解是 {x =2,y =1,则 ∣m −n ∣ 为 ( )A . 1B . 3C . 5D . 24.已知关于 x ,y 的二元一次方程组 {2x −y =k,x −2y =−1的解满足 x =y ,则 k 等于( )A . −1B . 0C . 1D . 25.由方程组 {x +m =4,y −3=m可得出 x 与 y 的关系是 ( )A . x +y =1B . x +y =−1C . x +y =7D . x +y =−76.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余 4.5 尺;将绳子对折再量木头,则木头还剩余 1 尺,问木头长多少尺?可设木头长为 x 尺,绳子长为 y 尺,则所列方程组正确的是 ( )A . {y =x +4.5,0.5y =x −1B . {y =x +4.5,y =2x −1C . {y =x −4.5,0.5y =x +1D . {y =x −4.5,y =2x −17.在三元一次方程组 {mx −ny −z =7,2nx −3y −2mz =5中,x +y +z =k.x =2,y =−1,z =−3,则那么代数式m 2−7n +3k 等于 ( )A . 125B . 119C . 113D . 718.把一根长 7 m 的绳子剪成 2 m 长和 1 m 长的绳子共 5 小段,并且不造成浪费,其中 2 m 长的绳子可以剪去 ( ) 段.A . 1B . 2C . 3D . 4二、填空题(共5题,共15分) 9.三个同学对问题“若方程组的 {a 1x +b 1y =c 1a 2x +b 2y =c 2解是 {x =2y =3 ,求方程组 {4a 1x +3b 1y =5c 13a 2x +4b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好象条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替换的方法来解决”.参考他们的讨论,你认为这个题目的解应该是 .10.请写出方程4x +y =11的所有正整数解: .11.对于实数 a , b 定义一种运算“*”规定: a ∗b ={ab −b 2(a ≥b)a 2−ab(a <b),例如:4*2,∵4>2 ∴4∗2=4×2−22=4 ,若 x , y 是方程 {x +2y =−52x −3y =−3的解,则 x ∗y .12.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒,从图中信息可知,礼盒的单价是 元.13.若一个正数的两个不同平方根分别是a +5和2a −17,则这个数是 .三、解答题(共3题,共45分)14.甲、乙两名同学在解方程组:{mx +y =5,2x −ny =13 时,甲解题时看错了 m ,解得 {x =72,y =−2,乙解题时看错了 n ,解得 {x =3,y =−7,请你以上两种结果,求出原方程组的正确解.15.已知 {x =2,y =1是二元一次方程 ax +2by =8 的解. (1) 求 a +b 的值.(2) 解是 {x =2,y =1的二元一次方程唯一吗?如果唯一,请直接回答,如果不唯一,请再写出另一个二元一次方程.(3) 你在(2)中写的二元一次方程只有 {x =2,y =1这一个解吗?如果是,直接回答:如果不是,请再写出它的另一个解.16.某兴趣小组进行活动,每个男生都头戴蓝色帽子,每个女生都头戴红色帽子.帽子戴好后,每个男生都看见戴红色帽子的人数比戴蓝色帽子的人数的 2 倍少 1.而每个女生都看见戴蓝色帽子的人数是戴红色帽子的人数的 35.问该兴趣小组男生、女生各有多少人?参考答案1. 【答案】C2. 【答案】A3. 【答案】D4. 【答案】C5. 【答案】C6. 【答案】A7. 【答案】C8. 【答案】B9.【答案】10.【答案】{x =1y =711.【答案】612.【答案】513.【答案】8114. 【答案】由题意可知 {x =72,y =−2是方程 2x −ny =13 的解 ∴2×72−(−2)n =13,解得 n =3;{x =3,y =−7是方程 mx +y =5 的解 ∴3m −7=5,解得 m =4;∴ 原方程组为:{4x +y =5,2x −3y =13,解此方程组得 {x =2,y =−3.∴ 原方程组的解为:{x =2,y =−3.15. 【答案】(1) ∵{x =2,y =1是二元一次方程 ax +2by =8 的解 ∴2a +2b =8∴a +b =4.(2) 解是 {x =2,y =1的二元一次方程不唯一 解是 {x =2,y =1的二元一次方程可以是 x +y =3.(答案不唯一) (3) 二元一次方程 x +y =3 不止 {x =2,y =1这一个解 它的另外的解有 {x =3,y =0, {x =0,y =3等.16. 【答案】设该兴趣小组男生有 x 人,女生有 y 人依题意得:{y =2(x −1)−1,x =35(y −1).解得:{x =12,y =21.答:该兴趣小组男生有 12 人,女生有 21 人.。

中考数学复习专题练2-3 二元一次方程组1

中考数学复习专题练2-3 二元一次方程组1

§2.3 二元一次方程组一、选择题1.(改编题)若⎩⎨⎧x =1,y =2是关于x ,y 的二元一次方程ax -3y =1的解,则a 的值为( ) A .-5 B .-1 C .2 D .7解析 将⎩⎨⎧x =1,y =2代入方程ax -3y =1,得a -6=1,解得a =7,故选D. 答案 D2.(原创题)已知⎩⎨⎧x =2,y =1是二元一次方程组⎩⎨⎧mx +ny =8,nx -my =1的解,则m +3n 的平方根为( )A .±9B .±3C .3D .-3 解析 把⎩⎨⎧x =2,y =1代入方程组⎩⎨⎧mx +ny =8,nx -my =1得⎩⎨⎧2m +n =8,①2n -m =1,②①+②,得m +3n =9,∴m +3n 的平方根是±3.故选B.答案 B3.(原创题)以方程2x -y =3和3x +4y =10的公共解为横纵坐标的点所在的象限为( ) A .第一象限 B .第二象限C .第三象限D .第四象限 解析 方程2x -y =3和3x +4y =10的公共解就是方程组⎩⎨⎧2x -y =3,3x +4y =10的解,解得⎩⎨⎧x =2,y =1.以⎩⎨⎧x =2,y =1为横、纵坐标的点为(2,1),在第一象限,故选A. 答案 A4.(原创题)解方程组⎩⎨⎧ax +by =2,cx -7y =8时,小虎把c 看错而得到⎩⎨⎧x =-2,y =2,而正确的解是⎩⎨⎧x =3,y =-2.那么a ,b ,c 的值应是 ( ) A .a =4,b =5,c =-2B .a =4,b =7,c =2C .a ,b 不能确定,c =-2D .不能确定解析 把c 看错而得到⎩⎨⎧x =-2,y =2,则⎩⎨⎧x =-2,y =2是ax +by =2的解;正确的解是⎩⎨⎧x =3,y =-2,则⎩⎨⎧x =3,y =-2既是ax +by =2的解也是cx -7y =8的解.∴把⎩⎨⎧x =3,y =-2代入cx -7y =8,得3c +14=8,解得c =-2;把⎩⎨⎧x =-2,y =2和⎩⎨⎧x =3,y =-2分别代入ax +by =2,得⎩⎨⎧-2a +2b =2,3a -2b =2,解得⎩⎨⎧a =4,b =5.故选A. 答案 A5.(原创题)已知|2x -y -1|+x +y -2=0,则(x -2y )2 015等于( )A .2 015B .-2 015C .1D .-1 解析 根据题意,得⎩⎨⎧2x -y -1=0,①x +y -2=0,②①-②,得x -2y =-1.∴(x -2y )2 015=(-1)2 015=-1,故选D.答案 D二、填空题6.(原创题)形如⎪⎪⎪⎪⎪⎪a c b d 的式子,定义它的运算规则为⎪⎪⎪⎪⎪⎪a c b d =ad -bc ;则方程⎪⎪⎪⎪⎪⎪2 y 4 x =0与⎪⎪⎪⎪⎪⎪ 3 y -5 x =11的公共解是________.解析 根据题意,得⎩⎨⎧2x -4y =0,3x +5y =11,解得⎩⎨⎧x =2,y =1.答案 ⎩⎨⎧x =2y =17.(原创题)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密).安全员是数学爱好者,制定加密规则为:明文x ,y ,z 对应密文x +y +z ,x -y +z ,x -y -z .例如:明文1,2,3对应密文6,2,-4.当接收方收到密文12,4,-6时,则解密得到的明文为________.解析 根据题意,得⎩⎨⎧x +y +z =12,x -y +z =4,x -y -z =-6,解得⎩⎨⎧x =3,y =4,z =5.∴解密得到的明文为3,4,5.答案 3,4,5三、解答题8.(原创题)小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤. 妈妈:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”; 爸爸:“报纸上说了萝卜的单价上涨了50%,排骨的单价上涨了20%”;小明:“爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?” 请你通过列方程(组)求解这天萝卜、排骨的单价(单位:元/斤).解 设上月萝卜的单价是x 元/斤,排骨的单价是y 元/斤,根据题意,得⎩⎨⎧3x +2y =36,3(1+50%)x +2(1+20%)y =45,解得⎩⎨⎧x =2,y =15.∴这天萝卜的单价是(1+50%)x =(1+50%)×2=3,这天排骨的单价是(1+20%)y =(1+20%)×15=18.答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.9.(改编题)某学校组织学生乘汽车去自然保护区野营,先以60 km/h 的速度走平路,后又以30 km/h 的速度爬坡,共用了6.5 h ;原路返回时,汽车以40 km/h 的速度下坡,又以50 km/h 的速度走平路,共用了6 h .问平路和坡路各有多远?解 设平路x km ,坡路y km ,根据题意,得⎩⎪⎨⎪⎧x 60+y 30=6.5,x 50+y 40=6,即⎩⎨⎧4x +8y =1 560,4x +5y =1 200,解得⎩⎨⎧x =150,y =120. 答:平路150 km ,坡路120 km.。

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案

中考数学复习《二元一次方程组》专项练习题及答案学校:___________班级:___________姓名:___________考号:___________温故而知新:二元一次方程组 1、二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是( 2、二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

3、二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组。

4二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解。

5、二元一次方正组的解法 (1)代入法(2)加减法 6、三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程。

7、三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组。

练习题一、选择题:(本题共8小题,每小题5分,共40分.) 1.方程组02x y x y -=⎧⎨+=⎩的解为( )A .11x y =⎧⎨=-⎩B .11x y =-⎧⎨=⎩C .20x y =⎧⎨=⎩D .11x y =⎧⎨=⎩2.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人,已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需3480元,设购买1架航拍无人机需x 元,购买1个编程机器人需y 元,则可列方程组为( )A .23473480x y x y =⎧⎨+=⎩B .3=24+7=3480x yx y ⎧⎨⎩C .2=37+4=3480x yx y ⎧⎨⎩D .3=27+4=3480x yx y ⎧⎨⎩3.小丽在用“加减消元法”解二元一次方程组524239x y x y -=⎧⎨+=⎩①②时,利用a b ⨯+⨯①②消去x ,则a 、b 的值可能是( ) A .2a =和5b = B .3a =和2b =C .3a =-和2b =D .2a =和=5b -4.有3堆硬币,每枚硬币的面值相同.小李从第1堆取出和第2堆一样多的硬币放入第2堆;又从第2堆中取出和第3堆一样多的硬币放人第3堆;最后从第3堆中取出和现存的第1堆一样多的硬币放人第1堆,这样每堆有16枚硬币,则原来第1堆有硬币多少枚( ) A .22 B .16 C .14 D .12 5.已知 12x y =-⎧⎨=⎩是关于 x y 、 的二元一次方程 3mx y -= 的一个解,则 m 的值是( ) A .-1B .1C .-5D .56.若方程组31331x y ax y a +=+⎧⎨+=-⎩的解满足x +y =0,则a 的值为( )A .-1B .1C .0D .无法确定7.已知关于x ,y 的方程组 111222a x b y c a x b y c +=⎧⎨+=⎩ 的解为 24x y =⎧⎨=⎩,则关于方程组()()()()11122212131213a x b y c a x b y c ++-=⎧⎪⎨++-=⎪⎩ 的解为( ) A .57x y =⎧⎨=⎩B .513x y =⎧⎨=⎩C .13x y =⎧⎨=⎩D .17x y =⎧⎨=⎩8.已知关于x ,y 的二元一次方程组2332x y a x y a +=-⎧⎨-=⎩,有下列说法:①当a =2时,方程的两根互为相反数;②不存在自然数a ,使得x ,y 均为正整数;③x ,y 满足关系式x -5y =6;④当且仅当a =-5时,解得x 为y 的2倍.其中正确的是( ) A .①②③④ B .①③④ C .②③ D .①②④ 二、填空题:(本题共5小题,每小题3分,共15分.)9.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,根据题意可列方程组为 . 10.小明带7元钱去买中性笔和橡皮(两种文具都买),中性笔每支2元,橡皮每块1元,那么中性笔能买 支.11.以方程组 12y x y x =+⎧⎨=-+⎩的解为坐标的点(x,y)在第 象限.12.已知 21x y =⎧⎨=⎩ 是二元一次方程组 71ax by ax by +=⎧⎨-=⎩ 的解,则 a b - = 。

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)

中考数学专项复习《二元一次方程组》练习题(附答案)一、单选题1.某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得 1分.七年级一班在16场比赛中得26分.设该班胜x 场,负y 场,则根据题意,下列方程组中正确的是( ) A .{y =−x +2y =x −1B .{y =−x +2y =x −1C .{x +y =16x +2y =26D .{x +y =162x +y =262.有甲乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问甲乙债券各有多少?( ) A .150,350 B .250,200 C .350,150 D .150,2503.如图小亮拿了一个天平,测量饼干和糖果的质量(每块饼干质量相同,每颗糖果质量相同),第一次,左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10g 砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次,左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再次平衡( )A .在糖果的秤盘上加2g 砝码B .在饼干的秤盘上加2g 砝码C .在糖果的秤盘上加5g 砝码D .在饼干的秤盘上加5g 砝码4.小明在解关于x 、y 的二元一次方程组{x +y =△2x −3y =5时解得{x =4y =⊗,则△和△代表的数分别是( ) A .△=1,△=5 B .△=5,△=1 C .△=﹣1,△=3D .△=3,△=﹣15.已知 △ABC 三边为 abc ,满足 (a −17)2+√b −15+c 2−16c +64=0 ,则△ABC 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形以C .以c 为斜边的直角三角形D .不是直角三角形6.已知关于x ,y 的二元一次方程组{ax −by =−2cx +dy =4的解为{x =3y =2,则方程组{ax −by +2a +b =−2cx +dy −d =4−2c的解为( )A .{x =1y =2B .{x =1y =3C .{x =2y =2D .{x =2y =37.方程组 {3x +y =3,−4x −y =3 的解是( )A .{x =0,y =3B .{x =0,y =−3 C .{x =6,y =−15D .{x =−6,y =218.已知关于x ,y 的方程组{x +2y =5−2ax −y =4a −1给出下列结论:①当a =1时方程组的解也是x +y =2a +1的解; ②无论a 取何值x ,y 的值不可能是互为相反数; ③x ,y 都为自然数的解有4对; ④若2x +y =8,则a =2. 正确的有几个( ) A .1B .2C .3D .49.对于实数,规定新运算:x△y=ax+by ﹣xy ,其中a 、b 是常数,等式右边是通常的加减乘除运算.已知: √2 △1=﹣ √2 ,(﹣3)△ √2 =8 √2 ,则a△b 的值为( ) A .6﹣2 √2B .6+2 √2C .4+ √2D .4﹣3√210.△ABC 中|sinA −√32|+(cosB −12)2=0,则△ABC 是( )A .等腰但不等边三角形B .等边三角形C .直角三角形D .等腰直角三角形11.已知方程组 {ax −by =4ax +by =2 的解为 {x =2y =1 则 2a −5b 的立方根是( )A .-2B .2C .√53D .−√2312.若满足方程组 {3x +y =m +32x −y =2m −1 的x 与y 互为相反数,则m 的值为( )A .1B .-1C .11D .-11二、填空题13.已知方程组{ax +by =4bx +ay =5的解是{x =2y =1,则a −b 的值为 .14.若|2x-3y-7|+ √x −2y −3 =0,则x-y=15.若3x 2m ﹣3﹣y 2n ﹣1=5是二元一次方程,则m= ,n= . 16.已如等腰 ΔABC 的两边长 a , b 满足 |a −4|+√b −2=0 ,则第三边长 c的值为17.若实数m 、n 满足 (m −3)2+√n +2=0 ,则m n = .18.关于x ,y 的二元一次方程组 {x +y =1−mx −3y =5+3m 中 m 与 方程组的解中的或相等,则m 的值为 .三、综合题19.一批机器零件共558个,甲先做3天后,乙再加入,两人共同再做6天刚好完成.设甲每天做x 个,乙每天做y 个. (1)列出关于x ,y 的二元一次方程.(2)用含x 的代数式表示y ,并求当x =32时y 的值是多少? (3)若乙每天做48个,则甲每天做多少个?20.已知关于x 、y 的方程组 {2x +y =m +12x −y =3m −9 的解都不小于1(1)求m 的取值范围; (2)化简|2m ﹣6|﹣|m ﹣4|.21.解下列方程组:(1){2x +3y =7x =−2y +3 (2){2s +3t =−14s −9t =822.如图,在数轴上点A 表示的数是a ,点C 表示的数是c ,且 |a +10|+(c −20)2=0 .(点A 与点C 之间的距离记作AC )(1)求a 和c 的值(2)若数轴上有一点D ,满足CD =2AD ,则点D 表示的数是 ; (3)动点B 从数1对应的点以每秒1个单位长度的速度开始向右匀速运动,同时点A ,C 分别以每秒2个单位长度、每秒3个单位长度的速度在数轴上匀速运动.设运动时间为t 秒.若点A 向右运动,点C 向左运动,当AB =BC 时求t 的值;23.在平面直角坐标系中已知点A(0,m),点B(n ,0),且m ,n 满足(m −n)2+√n −4=0.(1)求点A ,B 的坐标;(2)若点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB ,求点E 的坐标;(3)把线段AB 向左平移a(a >0)个单位长度得到线段A 1B 1. ①直接写出点B 1的坐标: ▲ (用含a 的式子表示) ②若S 四边形ABB 1A 1=3S 三角形AOB ,求a 的值.24.已知代数式 A =x 2−xy B =2x 2+3xy +2y −1 .(1)(x +1)2+|y −2|=0 求 2A −B 的值. (2)若 2A −B 的值与 y 的取值无关,求 x 的值.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】D 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】C 13.【答案】-1 14.【答案】4 15.【答案】2;1 16.【答案】4 17.【答案】1918.【答案】2或 −1219.【答案】(1)解:由题意可得(3+6)x +6y =558(2)解:由(1)可得y =−32x +93,当x =32时y =−32×32+93=45.(3)解:当y =48时(3+6)x +6×48=558,x =30.答:若乙每天做48个,则甲每天做30个.20.【答案】(1)解:解:(1)解原方程组可得: {x =m −2y =−m +5 因为方程组的解为一对正数所以有 {m −2≥1−m +5≥1 解得:3≤m≤4即a 的取值范围为:3≤m≤4;(2)解:由(1)可知:2m ﹣6>0,m ﹣4<0 所以|2m ﹣6|﹣|m ﹣4|. =(2m ﹣6)﹣(m ﹣4) =m ﹣2.21.【答案】(1){2x +3y =7(1)x =−2y +3(2)将(2)代入(1)中得2(-2y+3)+3y=7,去括号得-4y+6+3y=7,解得y=-1,将y=-1代入(2)得x=-2×(-1)+3=5 则方程组的解为{x =5y =−1. (2){2s +3t =−1(1)4s −9t =8(2)由3×(1)+(2)得6s+4s=-3+8,解得s=12将s=12,代入(1)中得1+3t=-1,解得y=-23则方程组的解为{s =12t =−23. 22.【答案】(1)解:由非负性得出a+10=0;c-20=0∴a=-10;c=20; (2)-40或0(3)解:当时间为t 时 点A 表示的数为-10+2t 点B 表示的数为1+t 点C 表示的数为20-3tAB= |1+t −(−10+2t)| = |11−t| BC= |1+t −(20−3t)| = |4t −19| ∴|11−t| = |4t −19| 解得:t= 83或t=6.23.【答案】(1)解:∵(m −n)2+√n −4=0∴{m −n =0n −4=0 解得{m =4n =4∴A(0,4),B(4,0);(2)解:∵点E(x ,4)为第二象限内一点,且满足S 三角形AOE =13S 三角形AOB∴12OE ×OA =13×12OB ×OA 12|x|×4=13×12×4×4 ∵点E(x ,4)为第二象限内 ∴x<0∴x=−43∴E(−43,4)(3)①(4−a ,0);②∵S 四边形ABB 1A 1=3S 三角形AOB∴BB 1×OA =3×12×OA ×OB4a =3×12×4×4 解得a=624.【答案】(1)∵A =x 2−xy , B =2x 2+3xy +2y −1∴2A −B=2(x 2−xy)−(2x 2+3xy +2y −1) =2x 2−2xy −2x 2−3xy −2y +1=−5xy −2y +1∵(x +1)2+|y −2|=0 ∴x +1=0 ∴x =−1∴原式 =−5×(−1)×2−2×2+1=10−4+1=7(2)若 2A −B 的值与 y 的取值无关 即 −5xy −2y +1 的值与 y 的取值无关 ∴−5xy −2y =(−5x −2)y =0 ∴−5x −2=0∴x =−25。

中考数学总复习《二元一次方程组》专项测试卷(含答案)

中考数学总复习《二元一次方程组》专项测试卷(含答案)

中考数学总复习《二元一次方程组》专项测试卷(含答案)一、单选题(共12题;共24分)1.若方程组{3x +2y =m +14x +3y =m −1的解满足x >y ,则m 的取值范围是( ) A .m>-6 B .m<6 C .m<-6 D .m>62.已知m 为正整数,且关于x ,y 的二元一次方程组 {mx +2y =103x −2y =0有整数解,则m 2的值为( )A .4B .1,4C .1,4,49D .无法确定3.方程3x+y=7的正整数解的个数是( )A .1个B .2个C .3个D .4个4.一个两位数,若交换其个位数与十位数的位置,则所得新两位数比原两位数大45,这样的两位数共有( )A .2个B .3个C .4个D .5个5.若{x =1y =2是关于x 、y 的二元一次方程ax-3y=1的解,则a 的值为( ) A .-5 B .-1 C .2 D .76.小亮求得方程组 {2x +y =●2x −y =12的解为 {x =5y =● ,由于不小心,滴上了两滴墨水,刚好遮住了两个数●和★,请你帮他找回这两个数,“●”“★”表示的数分别为( )A .5,2B .8,﹣2C .8,2D .5,47.已知x 、y 满足方程组{x +2y =2m −12x +y =5,且x 与y 互为相反数,则m 的值为( ) A .m =−2 B .m =2 C .m =−3 D .m =38.已知非零实数a 、b 、c 满足ab = 13 (a +b) ,bc = 14 (b +c) ,ca = 15 (c +a) ,则 b a−c=( ) A .1 B .3 C .4 D .69.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分,不答记0分,已知李刚不答的题比答错的题多2题,他的总分为74分,则他答对了( )A .19题B .18题C .20题D .21题10.已知|a +b −1|+√2a +b −2=0,则(a −b)2022的值为( )A .1B .-1C .2022D .-202211.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm,下面所列方程正确的是()A.x(x-20)=300B.x(x+20)=300C.60(x+20)=300D.60(x-20)=30012.已知(x-1)2+√y+2=0,则(x+y)2的算术平方根是()A.±1B.1C.-1D.0二、填空题(共6题;共6分)13.《孙子算经》是中国古代重要的数学著作,《孙子算经》中的数学问题大多浅显易懂,其中一些趣味问题在后世广为流传.其中有这样一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.14.已知{x=5y=7是方程kx﹣2y﹣1=0的解,则k=.15.若(a+2)2+|b−1|=0,则(a+b)2016=。

数学中考专题复习卷:二元一次方程组(含解析)

数学中考专题复习卷:二元一次方程组(含解析)

二元一次方程组一、选择题1.下列各式中是二元一次方程的是()A. x+y=3zB. ﹣3y=2 C. 5x﹣2y=﹣1 D. xy=32.下列方程组中,是二元一次方程组的是()A. B.C.D.3.已知关于x,y的方程组,当x+y=3时,求a的值()A. -4B. 4C. 2D.4.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车辆,37座客车辆,根据题意可列出方程组()A. B. C.D.5.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,则道路的宽为()A. 5米B. 3米 C. 2米 D. 2米或5米6.若|a﹣4|+(b+1)2=0,那么a+b=()A. 5 B. 3 C.﹣3 D. -57.若∠A的两边与∠B的两边分别平行,且∠A的度数比∠B的度数的3倍少40°,则∠B的度数为( )A. 20°B. 55°C. 20°或55° D. 75°8.已知且-1<x-y<0,则k的取值范围是( )A.-1<k<-B.0<k<C.0<k<1D.<k<19.七年级学生在会议室开会,每排座位坐12人,则有11人没有座位;每排座位坐14人,则余1人独坐一排,则这间会议室的座位排数是()A. 14B.13 C.12 D. 1510.若a,b为实数,且|a+1|+ =0,则(ab)2 017的值是()A. 0 B. 1 C.-1 D.±111.在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A. 6种B. 7种 C. 8种 D. 9种12.《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,以下列出的方程组正确的是( )A. B.C. D.二、填空题13.方程组的解为________.14.如果方程组的解与方程组的解相同,则a+b=________.15.某铁路桥长y米,一列x米长的火车,从上桥到过桥共用30秒,整列火车在桥上的时间为20秒,若火车的速度为20米∕秒,则桥长是________米.16.设实数x、y满足方程组,则x+y=________.17.已知:关于x,y的方程组的解为负数,则m的取值范围________.18.若关于x,y的二元一次方程3x﹣ay=1有一个解是,则a=________.19.已知,则=________ .20.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶________ km.三、解答题21.解方程(组)(1)(2)22.已知,xyz ≠0,求的值.23.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.24.先化简再求值:,其中x,y的值是方程组的解.25.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨。

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)

中考数学总复习《二元一次方程组》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列各组数中,不是二元一次方程310x y +=的解的是( )A .216x y =-⎧⎨=⎩B .43x y =⎧⎨=-⎩C .24x y =⎧⎨=⎩D .113x y =-⎧⎨=⎩ 2.已知2215a b -=,3a b -=则a 、b 的值分别为( )A .4、1B .4、-1C .-4、1D .-4、-13.经历了三年疫情,2023年12月3日,终于迎来了全新的深圳市马拉松比赛,总参赛规模为20000人,共来自37个国家和地区.某国家一共有50名男运动员来深圳参加比赛,住在福田区某酒店,租住了该酒店若干间房,且刚好住满,该酒店有三人间和两人间两种客房,三人间每天450元,两人间每天360元,一天共需要住宿费7920元,两种客房各租住了几间?设租住了x 间三人间,y 间两人间,下列方程组正确的是( ) A .23504503607920x y x y +=⎧⎨+=⎩B .32504503607920x y x y +=⎧⎨+=⎩C .32503604507920x y x y +=⎧⎨+=⎩D .23503604507920x y x y +=⎧⎨+=⎩4.若关于x ,y 的方程组32mx y n x ny m -=⎧⎨+=⎩的解为11x y =⎧⎨=⎩则2()m n -等于( ) A .1 B .4 C .9 D .255.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?译成白话文,其意思是:有100个和尚分100只馒头.正好分完.如果大和尚一人分3只,小和尚3人分一只,试问大小和尚各有几人?那么大和尚比小和尚少多少人?( )A .25B .35C .50D .756.在解关于x 、y 的方程组8734ax y x by +=⎧⎨-=⎩①②时甲看错①中的a ,解得4x =,2y =乙看错①中的b ,解得3x =-,1y =-则a 和b 的正确值应是( )A . 4.25a =- 3b =B .4a = 13b =C .4a = 4b =D .5a =- 4b =7.某农场去年计划生产玉米和小麦共200吨,采用新技术后,实际产量为225吨,其中玉米超产5%,小麦超产15%,设该农场去年实际生产玉米x 吨、小麦y 吨,则所列方程组正确的是( )8.如图是由同一种长方形的墙砖粘贴的部分墙面,其中3块横放的墙砖比1块竖放的墙砖高10cm ,2块横放的墙砖比2块竖放的墙砖矮40cm ,则每块墙砖的面积是( )2cm.A .425B .525C .600D .800二、填空题三、解答题14.解方程组:(1)25 324y xx y=-⎧⎨+=⎩;(2)564 231x yx y-=⎧⎨-=-⎩.15.甲和乙两人同解方程组512x aybx y+=⎧⎨+=⎩①②,甲因抄错了a,解得52xy=⎧⎨=⎩,乙因抄错了b,解得32xy=⎧⎨=⎩,求52a b-的值.16.为绿化祖国的大好河山,每年的3月15日是全国的植树节活动,某学校组织一批树苗给学生栽种,绿化一片荒地,初一年级的同学接受这个光荣的任务,一班的同学若每人种6棵,则剩下20棵树苗无人栽种,若每人种7棵,还能帮其他班级栽种20棵,一班有多少个同学,领到有多少棵树苗?17.阅读以下内容:已知x ,y 满足25x y +=,且3753238x y m x y +=-⎧⎨+=⎩,求m 的值. 三位同学分别提出了自己的解题思路:甲同学:先解关于x ,y 的方程组3753238x y m x y +=-⎧⎨+=⎩,再求m 的值; 乙同学:先将方程组中的两个方程相加,再求m 的值;丙同学:先解方程组25238x y x y +=⎧⎨+=⎩,再求m 的值. (1)你最欣赏______(填写“甲”或“乙”或“丙”)的思路;(2)根据你所选的思路解答此题.18.为丰富同学们的课余活动,学校成立了篮球课外小组,计划到某体育用品专卖店购买一批篮球.已知购买3个A 型篮球和2个B 型篮球共需340元,购买2个A 型篮球和1个B 型篮球共需要210元.(1)求购买一个A型篮球、一个B型篮球各需多少元?(2)学校在该专卖店购买A、B两种型号篮球共300个,经协商,专卖店给出如下优惠:A种篮球每个降价8元,B种篮球打9折,计算下来,学校共付费16740元,学校购买A、B两种篮球各多少个?参考答案:1.B2.A3.B4.B5.C6.D7.D8.B9.1510.202611.1712.4a≥13.214.(1)21 xy=⎧⎨=-⎩(2)6133 xy=⎧⎪⎨=⎪⎩15.116.一班有40个同学,领到有260棵树苗;17.(1)乙(任选一种皆可)(2)4m=18.(1)一个A型篮球为80元,一个B型篮球为50元(2)A型篮球120个,则B型篮球为180个。

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案

中考数学总复习《二元一次方程组》专项测试题-附参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.下列各对数值,是方程2x﹣3y=6的解是()A.{x=0y=4B.{x=1y=−2C.{x=2y=−1D.{x=3y=0 2.在等式y=kx+b中,当x=1时y=2,当x=−1时y=4,则b的值是()A.1B.-1C.3D.-3 3.已知2x+3y=6,用x的代数式表示y得( )A.y=2- 23x B.y=2-2xC.x=3-3y D.x=3- 3 2y4.解三元一次方程组{a+b−c=1①a+2b−c=3②2a−3b+2c=5③具体过程如下:(1 )②-①,得b=2;(2)①×2+③,得4a-2b=7;(3)所以{b=24a−2b=7;(4)把b=2代入4a-2b=7,得4a-2×2=7(以下求解过程略)其中开始出现错误的一步是()A.(1)B.(2)C.(3)D.(4)5.解方程组{2x−3y=2, ⋯⋯①2x+y=10. ⋯⋯②时,由②−①得( )A.2y=8B.4y=8C.−2y=8D.−4y=86.方程2x+y=8的正整数解的个数是( )A.4个B.3个C.2个D.1个7.若∣a+2b−5∣+(2a+b−1)2=0,则(a−b)2等于( )A.±1B.1C.±4D.168.为了绿化校园,甲、乙两班共植树苗 30 棵.已知甲班植树数量是乙班的 1.5 倍,设甲班植树 x 棵,乙班植树 y 棵.根据题意,所列方程组正确的是 ( ) A . {x +y =30,x =2.5yB . {x +y =30,x =1.5yC . {x =y +30,3y =2xD . {x =y +30,x =y +1.5二、填空题(共5题,共15分)9.若 −2x m−n y 2 与 3x 4y 2m+n 是同类项,则 m −3n 的立方根是 .10.已知 m 为整数且方程组 {mx +2y =2m +10,3x −2y =0 有正整数解,则 m = .11.二元一次方程 2x +y =7 的正整数解有 个.12.以方程组 {y =x +2,y =−x +1 的解为坐标的点 (x,y ) 在第 象限.13.某学校要购买电脑,A 型电脑每台 5000 元,B 型电脑每台 3000 元.购买 10 台这两种型号的电脑共花费 34000 元.设购买A 型电脑 x 台,购买B 型电脑 y 台.则根据题意可列方程组为 .三、解答题(共3题,共45分)14.平面直角坐标系中A (a,0),B (0,b ),a ,b 满足 (2a +b +5)2+√a +2b −2=0,将线段 AB 平移得到 CD ,A ,B 的对应点分别为 C ,D ,其中点 C 在 y 轴负半轴上.(1) 求 A ,B 两点的坐标;(2) 如图 1,连 AD 交 BC 于点 E ,若点 E 在 y 轴正半轴上,求BE−OE OC的值;(3) 如图 2,点 F ,G 分别在 CD ,BD 的延长线上,连接 FG ,∠BAC 的角平分线与 ∠DFG 的角平分线交于点 H ,求 ∠G 与 ∠H 之间的数量关系.15.已知方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解,求 m ,n 的值.16.一艘轮船在相距 90 千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用 6 小时,逆流航行比顺流航行多用 4 小时. (1) 求该轮船在静水中的速度和水流速度;(2) 若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?参考答案1.【答案】D 2.【答案】C 3.【答案】A 4.【答案】B 5. 【答案】B 6. 【答案】B 7. 【答案】D 8. 【答案】B 9. 【答案】 210. 【答案】 −2 或 −1 11. 【答案】 1 12. 【答案】二 13. 【答案】 0 14. 【答案】(1) ∵(2a +b +5)2≥0 √a +2b −2≥0 且 (2a +b +5)2+√a +2b −2=0 ∴{2a +b +5=0a +2b −2=0解得:{a =−4b =3∴A (−4,0) B (0,3). (2) 设 C (0,c ) E (0,y )∵ 将线段 AB 平移得到 CD ,A (−4,0),B (0,3) ∴ 由平移的性质得 D (4,3+c ) 过 D 作 DP ⊥x 轴于 P∴AO =4=OP ,DP =3+c ,OE =y ,OC =−c ∴S △ADP =S △AOE +S 梯形OEDP ∴AP×DP 2=OA×OE 2+(OE+DP )×OP2∴8×(3+c )2=4y 2+(y+3+c )×42解得 y =3+c 2.∴BE −OE =(BO −OE )−OE =BO −2OE =3−2×3+c 2=−c =OC∴BE−OE OC=1.(3) ∠G 与 ∠H 之间的数量关系为:∠G =2∠H −180∘.如图,设 AH 与 CD 交于点 Q ,过 H ,G 分别作 DF 的平行线 MN ,KJ ∵HD 平分 ∠BAC ,HF 平分 ∠DFG∴ 设 ∠BAH =∠CAH =α,∠DFH =∠GFH =β ∵AB 平移得到 CD ∴AB ∥CD ,BD ∥AC∴∠BAH =∠AQC =∠FQH =α,∠BAC +∠ACD =180∘=∠BDC +∠ACD ∴∠BAC =∠BDC =∠FDG =2α ∵MN ∥FQ∴∠MHQ =∠FQH =α,∠NHF =∠DFH =β ∴∠QHF =180∘−∠MHQ −∠NHF =180∘−(α+β) ∵KJ ∥DF∴∠DGK =∠FDG =2α,∠DFG =∠FGJ =2β ∴∠DGF =180∘−∠DGK −∠FGJ =180∘−2(α+β) ∴∠DGF =2∠QHF −180∘.15. 【答案】 ∵ 方程组 {3x −2y =4,mx +ny =7 与 {2mx −3ny =19,5y −x =3 有相同的解∴{3x −2y =4,5y −x =3 与原两方程组同解.由 5y −x =3 可得:x =5y −3将 x =5y −3 代入 3x −2y =4,则 y =1. 再将 y =1 代入 x =5y −3,则 x =2. 将 {x =2,y =1 代入 {mx +ny =7,2mx −3ny =19 得:{2m +n =7, ⋯⋯①4m −3n =19. ⋯⋯② 将 ①×2−② 得:n =−1 将 n =−1 代入①得:m =4.16. 【答案】(1) 设该轮船在静水中的速度是 x 千米/小时,水流速度是 y 千米/小时依题意,得:{6(x +y )=90,(6+4)(x −y )=90,解得:{x =12,y =3.答:该轮船在静水中的速度是 12 千米/小时,水流速度是 3 千米/小时.(2) 设甲、丙两地相距 a 千米,则乙、丙两地相距 (90−a ) 千米 依题意,得:a 12+3=90−a 12−3,解得:a =2254.答:甲、丙两地相距2254千米.。

中考数学《二元一次方程组》专项复习综合练习题-附带答案

中考数学《二元一次方程组》专项复习综合练习题-附带答案

中考数学《二元一次方程组》专项复习综合练习题-附带答案一、单选题1.下列每对数值中是方程x-3y=1的解的是( ) A .{x =−2y =−1B .{x =1y =−1C .{x =1y =1D .{x =0y =12.已知方程组 {2x +y =5x +2y =5 ,则 x −y 的值为( )A .-1B .0C .2D .1033.如果{x =1y =2是二元一次方程组{ax +by =1bx +ay =2的解 那么a ,b 的值是( )A .{a =−1b =0B .{a =1b =0C .{a =0b =1D .{a =0b =−14.为了奖励疫情期间线上学习表现优异的同学 ,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在两种球类都购买且资金恰好用尽的情况下,购买方案有( ) A .2种B .3种C .4种D .5种5.某出租车起步价所包含的路程为0~2km ,超过2km 的部分按每千米另收费。

津津乘坐这种出租车走了7km , 付了16元;盼盼乘坐这种出租车走了13km 付了28元。

设这种出租车的起步价为x 元,超过2km 后每千米收费y 元,则所列方程组正确的是( ) A .{x +7y =16x +13y =28B .{x +(7−2)y =16x +13y =28C .{x +7y =16x +(13−2)y =28D .{x +(7−2)y =16x +(13−2)y =286.关于x ,y 的方程组 {x +py =0x +y =3,的解是 {x =1y =Δ,,其中y 的值被盖住了 ,不过仍能求出p ,则p 的值是( ) A .﹣ 12B .12C .﹣ 14D .147.我国古代数学名著《孙子算经》中记载了一道题 大意是:有100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦 ,3匹小马能拉1片瓦 问有多少匹大马、多少匹小马?若设大马有 x 匹,小马有 y 匹,那么可列方程组为( )A .{x +y =1003x +3y =100B .{x +y =100x +3y =100C .{x +y =1003x +13y =100D .{x +y =1003x +y =1008.已知关于x 、y 的方程组 {x +y =1−ax −y =3a +5给出下列说法:①当a =1时 方程组的解也是方程x+y=2的一个解;②当x-2y >8时 a >15;③不论a 取什么实数 2x+y 的值始终不变;④若 y =x 2+5 ,则 a =−4 。

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案

中考数学专题复习《二元一次方程组》测试卷-附带参考答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.下列方程是二元一次方程的是( )A .2x y +=B .2x y +C .10y x +=D .221x y += 2.《九章算术》中记载:“今有共买羊 人出五 不足四十五 人出七 不足三 问人数 羊价各几何?”其大意是:今有人合伙买羊 若每人出5钱 还差45钱 若每人出7钱 还差3钱 问合伙人数 羊价各是多少?设合伙人数为x 人 羊价为y 钱 根据题意 可列方程组为( )A .54573y x y x =+⎧⎨=+⎩B .54573y x y x =-⎧⎨=+⎩C .54573y x y x =+⎧⎨=-⎩D .54573y x y x =-⎧⎨=-⎩ 3.已知关于x y 的二元一次方程7ax y -= 下表中给出的几组x 的值都是此方程的解 则a 的值为( ) x … 1- 0 1 2 …y … 10- 7- 4- 1- …A .2-B .1C .2D .34.已知x y 满足方程组43x m y m +=⎧⎨+=⎩则无论m 取何值 x y 恒有的关系式是( ) A .1x y += B .1x y -= C .7x y += D .7x y -=- 5.某货运公司有大 小两种货车 已知9辆小货车一次运货的质量比7辆大货车少6吨 11辆小货车一次运货的质量比7辆大货车一次运货的质量多2吨 则1辆小货车一次可以运货的质量为( )A .6吨B .5吨C .4吨D .3吨6.方程2516x y +=与某方程构成的方程组的解为32x y =⎧⎨=⎩ 则该方程可以是( ) A .310x y -= B .2210x y += C .23x y -=- D .39x y +=7.李老师准备用40元钱全部购买A B 两种型号的签字笔(两种型号的签字笔都买) A 型签字笔每支5元 B 型签字笔每支2元 则李老师的购买方案有( )A .4种B .3种C .2种D .1种8.若关于x y ,的二元一次方程20ax by +-=的两个解分别是53x y =⎧⎨=⎩或13x y =-⎧⎨=-⎩ 则a b ,的值是( )A . 1,0a b ==B .11a b ==-,C .11a b =-=,D .12a b ==,二 填空题9.由方程组213x m y m +=⎧⎨=+⎩可用含x 的代数式来表示y 为 . 10.方程组45x ay x y +=⎧⎨-=-⎩的解满足235x y += 则a 的值是 . 11.已知31x y =⎧⎨=⎩是关于x y 的二元一次方程组21310x my x ny -=⎧⎨+=⎩的解 则关于x y 的二元一次方程组2()()13()()10x y m x y x y n x y ++-=⎧⎨+--=⎩的解是 . 12.在长方形ABCD 中 放入六个形状 大小相同的小长方形 所标尺寸如图所示 则每个小长方形的面积为 2cm .13.科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物 具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克 两片银杏树叶与三片国槐树叶一年的平均滞尘总量为146毫克.设一片银杏树叶一年的平均滞尘量为x 毫克 一片国槐树叶一年的平均滞尘量为y 毫克.依据题意 可列方程组为 .三 解答题14.解方程组:(1)427y x x y =-⎧⎨+=⎩(2)431123a b a b -=⎧⎨+=⎩. 15.已知关于x y 的二元一次方程组343223x y x y m +=⎧⎨+=-⎩的解满足231x y += 求m 的值. 16.河南之于中国 正如中国之于世界 了解老家河南可以帮助我们更好地了解我们伟大的祖国.为了更好地了解河南文化特色 某学校八年级举办了传统文化知识大讲堂活动 并在活动后对表现优异的100位同学准备了甲乙两种共计100件纪念品 活动效果优秀 同学也对纪念品赞不绝口.学校采购甲种纪念品4元/件 乙种纪念品6元/件.(1)如果购买这两种纪念品共用520元 那么甲 乙两种纪念品各购买多少件?(2)该校准备对七年级同学也举办同样的活动 并再次购买这两种纪念品 使乙种纪念品数量是甲种数量的2倍少4件 且总需费用不多于600元 求甲种纪念品最多能再购买多少件?17.我们规定:对于数对(),a b 如果满足a b ab += 那么就称数对(),a b 是“和积等数对”:如果满足a b ab -= 那么就称数对(),a b 是“差积等数对” 例如333322+=⨯ 222233-=⨯.所以数对3,32⎛⎫ ⎪⎝⎭为“和积等数对” 数对22,3⎛⎫ ⎪⎝⎭为“差积等数对”. (1)下列数对中 “和积等数对”的是 “差积等数对”的是 . ①2,23⎛⎫-- ⎪⎝⎭①2,23⎛⎫- ⎪⎝⎭ ①2,23⎛⎫- ⎪⎝⎭. (2)若数对()()21,3x +-是“差积等数对” 求x 的值.(3)是否存在非零有理数m n 使数对()3,2m 是“和积等数对” 同时数对()2,n m 也是“差积等数对” 若存在 求出m n 的值 若不存在 说明理由.18.为倡导读书风尚 打造书香校园.某校计划购买一批图书 若同时购进A 种图书20本和B 种图书50本.则共需1700元.且购进A 种图书16本和购进B 种图书28本的价格相同.(1)求A B 两种图书的单价各是多少元.(2)若学校计划购买这两种图书共60本 要求每种都要购买.且A 种图书的数量多于B 种图书的数量 根据学校预算 购买总金额不能超过1690元.请问学校共有哪几种购买方案?参考答案:1.A2.A3.D4.A5.C6.B7.B8.B9.24y x =-+10.211.12x y =⎧⎨=⎩ 12.1613.2423146x y x y =-⎧⎨+=⎩14.(1)51x y =⎧⎨=⎩(2)21 ab=⎧⎨=-⎩.15.1m=16.(1)购买甲种纪念品40件乙种纪念品100件(2)甲种纪念品最多能再购买39件17.(1)① ①(2)118 x=-(3)存在非零有理数23m=1n=使数对()3,2m是“和积等数对” 同时数对()2,n m也是“差积等数对”18.(1)A种图书的单价为35元B种图书的单价为20元(2)共有两种购买方案。

中考数学第八章 二元一次方程组测试试题及答案

中考数学第八章 二元一次方程组测试试题及答案

中考数学第八章二元一次方程组测试试题及答案一、选择题1.已知|x+y-1|+(x-y+3)2=0,则(x+y)2019的值是()A.22019B.-1 C.1 D.-220192.若方程6kx﹣2y=8有一组解32xy=-⎧⎨=⎩,则k的值等于(()A.23-B.23C.16-D.163.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.4种B.5种C.6种D.7种4.下列方程组是三元一次方程组的是()A.123x yy zz x+=⎧⎪+=⎨⎪-=⎩B.2310x y zx yzy z++=⎧⎪-=⎨⎪-=⎩C.22154x yy zx z⎧+=⎪+=⎨⎪-=⎩D.563x yw zz x+=⎧⎪+=⎨⎪+=⎩5.为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A.180250x yy x+=⎧⎪⎨-=⎪⎩B.180250x yx y+=⎧⎪⎨-=⎪⎩C.180250x yx y+=⎧⎪⎨=⋅⎪⎩D.180250x yy x+=⎧⎪⎨=⋅⎪⎩6.如果2x3n y m+4与-3x9y2n是同类项,那么m、n的值分别为()A.m=-2,n=3 B.m=2,n=3 C.m=-3,n=2 D.m=3,n=2 7.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩8.若二元一次方程3x﹣y=﹣7,x+3y=1,y=kx+9有公共解,则k的取值为()A.3 B.﹣3 C.﹣4 D.49.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩10.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.1 3D.﹣13二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有种.12.方程组31810x y zx yx y z=+⎧⎪+=⎨⎪++=⎩的解是________.13.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.14.如图,长方形ABCD被分成若干个正方形,已知32cmAB=,则长方形的另一边AD=_________cm.15.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.16.已知三个方程构成的方程组230xy y x--=,350yz z y--=,520xz x z--=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________. 17.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.18.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________.19.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.对于数轴上的点A ,给出如下定义:点A 在数轴上移动,沿负方向移动a 个单位长度(a 是正数)后所在位置点表示的数是x ,沿正方向移动2a 个单位长度(a 是正数)后所在位置点表示的数是y ,x 与y 这两个数叫做“点A 的a 关联数”,记作G (A ,a )={x ,y},其中x <y .例如:原点O 表示0,原点O 的1关联数是G (0,1)={-1,+2} (1)若点A 表示-3,a =3,直接写出点A 的3关联数. (2)①若点A 表示-1,G (A ,a )={-5,y},求y 的值. ②若G (A ,a )={-2,7},求a 的值和点A 表示的数.(3)已知G (A ,3)={x ,y},G (B ,2)={m ,n},若点A 、点B 从原点同时同向出发,且点A 的速度是点B 速度的3倍.当|y -m|=6时,直接写出点A 表示的数. 22.新定义,若关于x ,y 的二元一次方程组①111222a x b y c a x b y c +=⎧⎨+=⎩的解是00x x y y =⎧⎨=⎩,关于x ,y 的二元一次方程组②111222e x f y d e x f y d +=⎧⎨+=⎩的解是11x x y y =⎧⎨=⎩,且满足100.1x x x -≤,1000.1y y y -≤,则称方程组②的解是方程组①的模糊解.关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,则m 的取值范围是________. 23.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?24.规定:二元一次方程ax by c +=有无数组解,每组解记为(),P x y ,称(),P x y 为亮点,将这些亮点连接得到一条直线,称这条直线是亮点的隐线,答下列问题: (1) 已知()()()1,2,4,3,3,1A B C ---,则是隐线326x y +=的亮点的是 ; (2) 设()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭是隐线26t x hy +=的两个亮点,求方程()22144265t x t h y ⎛⎫+-++= ⎪⎝⎭中,x y 的最小的正整数解;(3)已知,m n 是实数, 27n =,若)P n 是隐线23x y s -=的一个亮点,求隐线s 中的最大值和最小值的和.25.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?26.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元. (1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C由绝对值和平方的非负性可得1030x yx y+-=⎧⎨-+=⎩,再解方程组代入原式进行计算即可.【详解】解:根据题意可得10?30?x yx y+-=⎧⎨-+=⎩①②,用①加上②可得,2x+2=0,解得x=-1,则y=2,故原式=(2-1)2019=1.故选择C.【点睛】本题结合非负性考查了列和解二元一次方程组.2.A解析:A【分析】根据方程的解满足方程,课的关于k的方程,根据解方程,可得答案.【详解】解:由题意,得6×(-3)k-2×2=8,解得k=-2 3 ,故选A.【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k方程是解题关键.3.C解析:C【分析】设兑换成10元x张,20元的零钱y元,根据题意可得等量关系:10x张+20y张=100元,根据等量关系列出方程求整数解即可.【详解】解:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:方程的整数解为:246810x0,,,,,,432105 x x x x xy y y y y y======⎧⎧⎧⎧⎧⎧⎨⎨⎨⎨⎨⎨======⎩⎩⎩⎩⎩⎩因此兑换方案有6种,故选C.【点睛】此题主要考查了二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列4.A解析:A【分析】根据三元一次方程组的定义来求解,对A、B、C、D四个选项进行一一验证.【详解】A、满足三元一次方程组的定义,故A选项正确;B、含未知数项的次数为2次,∴不是三元一次方程,故B选项错误;C、未知数的次数为2次,∴不是三元一次方程,故C选项错误;D、含有四个未知数,不满足三元一次方程组的定义,故D选项错误;故选:A.【点睛】本题主要考查了三元一次方程组的定义,清楚三元一次方程组必须满足“三元”和“一次”两个要素是关键.5.C解析:C【解析】设耕地面积x平方千米,林地面积为y平方千米,根据题意列方程组18025% x yx y+=⎧⎨=⨯⎩.故选C6.B解析:B【分析】根据同类项的定义可得关于m、n的方程组,解方程组即可求出答案.【详解】解:由题意得:3942nm n=⎧⎨+=⎩,解得:23mn=⎧⎨=⎩.故选:B.【点睛】本题考查了同类项的定义和二元一次方程组的解法,属于基本题型,熟练掌握基本知识是解题的关键.7.D解析:D【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.8.D解析:D 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】 解:解方程组3731x y x y -=-⎧⎨+=⎩得:21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =. 故选:D . 【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.9.D解析:D 【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组. 【详解】解:设有x 人,买鸡的钱数为y ,根据题意,得:8374x yx y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.10.D解析:D 【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求. 【详解】解:根据题中的新定义得:22018 42019x yy x-=⎧⎨+=-⎩①②,①+②得:3x+3y=﹣1,则x+y=﹣13.故选:D.【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题11.6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】 解:①+③解得:2x=10,即x=5; 将x=5代入②得y=3; 将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5; 将x=5代入②得y=3; 将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.13.777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值. 【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元, 设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a 故答案为:777. 【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.14.【解析】 【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm ,可得到两个关于x 、y 的方程,求方程组即可得解,然后求长方形另一边AD 的长即可. 【详解】解析:76843【解析】 【分析】可以设最小的正方形的边长为x ,第二小的正方形的边长为y ,根据已知AB=CD=32cm ,可得到两个关于x 、y 的方程,求方程组即可得解,然后求长方形另一边AD 的长即可. 【详解】设最小的正方形的边长为x ,第二小的正方形的边长为y ,将各个正方形的边长都用x 和y 表示出来(如图),根据AB=CD=32cm ,可得:643322532y x y x x y -+-⎧⎨+⎩==解得:x=12843cm ,y=22443cm . 长方形的另一边AD=3y-x+y=4y-x=76843cm .故答案为:768 43【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.15.48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可. 【详解】设选信息技术的有x人,选解析:48【分析】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意列出方程组,结合实际情况讨论求解即可.【详解】设选信息技术的有x人,选演讲与口才有y人,则手工制作的有(x+8)人,选趣味数学的有a(x+8)人,根据题意得:()()()()()1858824a x x ya x y x x⎧++=+⎪⎨++--+=⎪⎩①②,②可变形为:(a-1)(x+8)=24+x-y③,①+③,得2a(x+8)=24+6x+4y,即a=12328x yx+++;①-③,得x+3y=20.∵x、y都是正整数,∴171xy=⎧⎨=⎩或142xy=⎧⎨=⎩或113xy=⎧⎨=⎩或84xy=⎧⎨=⎩或55xy=⎧⎨=⎩或26xy=⎧⎨=⎩当171xy=⎧⎨=⎩、142xy=⎧⎨=⎩、113xy=⎧⎨=⎩、84xy=⎧⎨=⎩、55xy=⎧⎨=⎩,a=12328x yx+++都不是整数,不合题意.当26xy=⎧⎨=⎩时,a=12328x yx+++=3.∴选信息技术的有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的有30人,由于每名学生都填了调査表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人).故答案为48【点睛】本题考查了二元一次方程的正整数解、二元一次方程组等知识点,题目难度较大,根据方程组得到二元一次方程,是解决本题的关键.16.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.17.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 18.11【解析】分析:1※2=5,2※1=3的含义是当x =1,y =2时,ax +by2=5,当x =2,y =1时,ax +by2=3,由此列二元一次方程组求a ,b 的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x =1,y =2时,ax +by 2=5,当x =2,y =1时,ax +by 2=3,由此列二元一次方程组求a ,b 的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.19.520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a个,1有b个,2有c个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.20.【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x个苹果,乙堆原来有y个苹果,丙堆原来有z个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题21.(1){-6,+3};(2)①y=7,②a=3,点A 表示的数1;(3)-3或-21【分析】(1)直接根据关联数的定义解题即可;(2)①首先根据关联数的定义求出a 的值,然后即可求解;②通过关联数的定义建立方程组求解即可;(3)通过关联数的定义建立关于A ,B 的方程组,然后通过A ,B 的速度的关系找到A ,B 之间的关系,最后通过解方程即可得出答案.【详解】(1)∵点A 表示-3,a =3,336,3233x y ∴=--=-=-+⨯=+,∴点A 的3关联数G (-3,3)={-6,+3};(2)①点A 表示-1,G (A ,a )={-5,y},51a ∴-=--解得4a =,1247y ∴=-+⨯=;②∵G (A ,a )={-2,7},272A a A a -=-⎧∴⎨=+⎩解得13A a =⎧⎨=⎩; (3)∵G (A ,3)={x ,y},G (B ,2)={m ,n},323x A y A =-⎧∴⎨=+⨯⎩,222m B n B =-⎧⎨=+⨯⎩.∵点A 的速度是点B 速度的3倍,3A B ∴=,13B A ∴=. 6y m -=,()626A B ∴+--=,即16263A A ⎛⎫+--= ⎪⎝⎭, 解得3A =-或21A =-.【点睛】 本题主要考查定义新运算,掌握关联数的定义是解题的关键.22.952m ≤≤ 【分析】根据已知条件,先求出两个方程组的解,再根据“模糊解”的定义列出不等式组,解得m 的取值范围便可.【详解】解:解方程组222104x y m x y m +=+⎧⎨-=+⎩得 :422x m y m +⎧⎨-⎩==, 解方程组10310x y x y +=⎧⎨+=-⎩得 :2010x y ⎧⎨-⎩==, ∵关于x ,y 的二元一次方程组222104x y m x y m +=+⎧⎨-=+⎩的解是方程组10310x y x y +=⎧⎨+=-⎩的模糊解,因此有:42200.120m +-≤且2100.110m -+≤, 化简得:821091122m m ≤≤⎧⎪⎨≤≤⎪⎩,即4591122m m ≤≤⎧⎪⎨≤≤⎪⎩ 解得:952m ≤≤, 故答案为952m ≤≤. 【点睛】 本题主要考查了新定义,二元一次方程组的解,解绝对值不等式,考查了学生的阅读理解能力、知识的迁移能力以及计算能力,难度适中.正确理解“模糊解”的定义是解题的关键.23.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.24.(1)B ;(2),x y 的最小整数解为104x y =⎧⎨=⎩;(3)隐线中s 的最大值和最小值的和为72【分析】(1)将A,B,C 三点坐标代入方程,方程成立的点即为所求,(2)将P,Q 代入方程,组成方程组求解即可,(3)将P 代入隐线方程,27n +=组成方程组,求解方程组的解,再由()2723147s n n n =--=-即可求解.【详解】解:(1)将A,B,C 三点坐标代入方程,只有B 点符合,∴隐线326x y +=的亮点的是B.(2)将()10,2,1,3P Q ⎛⎫-- ⎪⎝⎭代入隐线方程得:226163h t h -=⎧⎪⎨-=⎪⎩解得253t h ⎧=⎨=-⎩ 代入方程得:5626x y -=,x y ∴的最小整数解为104x y =⎧⎨=⎩(3)由题意可得273n n s==⎪⎩72n =-n ∴= ()2723147s n n n ∴=--=-212s ∴=- s ∴的最大值为14,最小值为212- 隐线中s 的最大值和最小值的和为2171422-= 【点睛】 本题考查了二元一次方程的新定义,二元一次方程与直线的关系,运用了数形结合的思想,理解题意是解题关键.25.应购买小笔记本50本,大笔记本8本,钢笔4支【解析】【分析】根据题意结合奖品的价格得出5x+7y+10z=346,y=2z ,再利用共花费346元,分别得出x ,y ,z 的取值范围,进而得出z 的取值范围,分别分析得出所有的可能.【详解】解:设购买小笔记本x 本,大笔记本y 本,钢笔z 支,则有5x+7y+10z=346,y=2z .易知0<x ≤69,0<y ≤49,0<z ≤34, ∴5x+14z+10z=346,5x+24z=346,即346245z x -=. ∵x ,y ,z 均为正整数,346-24z ≥0,即0<z ≤14∴z 只能取14,9和4.①当z 为14时,346242,228.445z x y z x y z -====++= 。

湖北省麻城市集美学校七年级数学上册《二元一次方程》练习(无答案) 版

湖北省麻城市集美学校七年级数学上册《二元一次方程》练习(无答案) 版

湖北省麻城市集美学校七年级数学上册《二元一次方程》练习 新人教版一、你能填得又快又准吗?(每空3分,共21分)1、当x=3时,对于二元一次方程3x+2y=8,y= 。

2、已知是方程x-ay=1的一个解,则a= 。

3、已知方程84=+y x ,用含x 的代数式表示y 为:y = 。

4、方程组⎩⎨⎧=-=+38y x y x 的解为 。

5、乙组人数是甲组人数的一半,且甲组人数比乙组多15人。

设甲组原有x 人,乙组原有y 人,则可得方程组为 。

6、写出一个以0,7x y =⎧⎨=⎩为解的二元一次方程组 .7、若0)2(|6|2=-+-y x x ,则x+y= 。

二、你一定能选对!(每小题3分,共15分)8、下列属于二元一次方程的是( ) A 、z y x =-23 B 、xy x =-2 C 、315=+yx D 、526=-y x 9、下列方程组中,是二元一次方程组的为( )A 、B 、C 、D 、 10、方程组⎩⎨⎧=+=-10431y x y x 的解为( )A 、⎩⎨⎧-==11y x B 、⎩⎨⎧==12y x C 、⎩⎨⎧==54y x D 、⎩⎨⎧=-=42y x11、若方程组⎩⎨⎧=+=+10by x y ax 的解是⎩⎨⎧-==11y x ,那么a 、b 的值是( )A 、0,1==b a B 、21,1==b a C 、0,1=-=b a D 、0,0==b a 12、某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如表:表格中捐款2元和3元的人数不小心被墨水污染已看不清楚,若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组( )A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩三、你来算一算,解下列方程组,千万别出错哟!!(每小题3分,共9分)13、 14、⎪⎩⎪⎨⎧=+--=--2322)1(3)1(4y x y y x 15、 11233210x y x y +⎧-=⎪⎨⎪+=⎩x=2y=111=-y xy=3xx 2-x=2 y=1+x 3x-y=1 y=x+3 x=y+2 xy=1 y=x-2 2x+y=7四、(75分)用心想一想,你一定是生活中的智者!16、(7分)若关于x 、y 的方程组⎩⎨⎧=-=-7222y x c by ax 与⎩⎨⎧-=+-=-113953y x c by ax 的解相同,且abc ≠0.求a:b:c 的值.17、(7分)小娜和小洋同时解一个关于x 、y 的二元一次方程组⎩⎨⎧++bx by ax 小娜把方程①抄错了,求得的解为⎩⎨⎧=-=31y x 小洋把方程②抄错了,求得的解为⎩⎨⎧==23y x 求原方程的解.18、(7分)已知x 、y 的值满足等式54321y x y x +=+=+,求式子32123++++y x y x 的值.19、(7分)某人用140元到商场买了15件商品,其中水桶每个6元,立顿奶茶每盒16元,问这个人买了几个水桶,几盒奶茶?若用会员卡,那么奶茶8折,水桶9折,则需付多少钱?20、(7分)初三(2)班的一个综合实践活动小组去A ,B 两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景.根据他们的对话,请你分别求出A 、B 两个超市今年“五一节”期间的销售额.21、(8分)甲,乙两人分别从甲,乙两地同时相向出发,在甲超过中点50米处甲,乙两人第一次相遇,甲,乙到达乙,甲两地后立即返身往回走,结果甲,乙两人在距甲地100米处第二次相遇,求甲,乙两地的路程。

湖北省麻城市集美学校中考数学专题复习 分式测试题1(无答案)

湖北省麻城市集美学校中考数学专题复习 分式测试题1(无答案)

1、2、 化简=+---23322a a a a a 如果2:1:=ca bc 则ca bbc a :等于 3、 若1<-<b a 则化简=++÷++-++11b ba b b a a b b a4、 把分式))((11)(3b a b a b a -+-约分得)(113b a +时,a 、b 应满足的条件是5、 如果分式33--x x 的值为1则x 的值为 222a aba b +-=_________.6、 将分式y x xy-中的x ,y 都扩大2倍,分式的值 7、 使分式33+-x x 的值为零时,x 应该是8、 使分式x413--的值为正数的条件是 9、 分式22b a b a ++,x y 153,22y x y x -+,112++x x 中最简分式有10、不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数 11、化简(1)22222222zx xz y x xy z y ++--++- (2)21222--++x x x x12、若21=+x x 求:(1)221x x + (2)441xx +的值13约分:(1)22699x x x ++-; (2)2232m m m m -+- (3)432304ab b a , (4)22112m m m -+- , (5)42)()(a b b a --.14、通分:(1)26x ab ,29y a bc ; (2)2121a a a -++,261a -. (3)y x y x xy 32391,21,31, (4)2223,2,)(1ba b a b a -+-+ (5)2261,32aba - , (6)22)2(1,4+--x x x x . (7)9452,232,3212-+-+x x x x , (8)221,,b a b a b b a ---.15、已知a 2-4a+9b 2+6b+5=0,求1a -1b的值.16、已知x 2+3x+1=0,求x 2+21x的值17、已知x+1x=3,求2421x x x ++的值.18、若)0(54≠=y y x ,则222yy x -的值等于________.19、将分式的分子与分母中各项系数化为整数,则b a ba 213231++=__________. 20、已知511=-y x ,求分式yxy x y xy x 272-+++-的值.21、已知432zy x ==,求222z y x zx yz xy ++++的值.22、121,11,121222++-+-a a a a a 的最简公分母是 23、分式2241b a 与c ab x36的最简公分母是__________. 24、 将ba 1,1,31通分后,它们分别是_________, _________,________.25、当x_______时,分式2212x x x -+-的值为零.26、当x______时,分式435x x +-的值为1;当x_______时,分式435x x +-的值为-1. 27、分式24xx -,当x_______时,分式有意义;当x_______时,分式的值为零 28、下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +- (3) 2221x x +29、已知y=123x x--,x 取哪些值时: (1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.30、若2a b M aa ab-=-,则M = (条件是 ) 31、2( )x y y x y --=-,( )x y y x x y ---=+,3( )y x y y x-=-- 32、下列各式从左到右变形正确的是( )A 13(1)223y x x y ++=++ B0.20.03230.40.0545a b a b a b a b --=++Ca b b a b c c b --=-- D 22a b a b c d c d--=++33、下列各式从左到右变形不正确的是( )A 22222x y x y x y x xy y +-=--+ B 5(43)57(34)7x y y x -=-- C()()()1()()()()b a c b d c a b b c c d d a a d ---=----- D 3()35()5a b c a b c +=+++34、等式23333x x x x=--成立的条件是( ) A x >0 B x <0 C x ≠3 D x ≠035、将分式253x yy x -+的分子与分母的各项系数都化为整数,结果是( )A235x y x y -+ B 151535x y x y -+ C 1530610x y x y -+ D 253x yx y-+36、不改变分式的值,使分式的分子与分母不含负号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组应用专练测试题
1、有两种药水,一种浓度为60%,另一种浓度为90%,现要配制浓度为70%的药水300克,问各种各需多少克?
2、甲乙两盒中各有一些小球,如果从甲盒中拿出10个放入乙盒,则乙盒球就是甲盒球数的6倍,若从乙盒中拿出10个放入甲盒,乙盒球数就是甲盒球数的3倍多10个,求甲乙两盒原来的球数各是多少?
3、一个两位数字,个位数字比十位数字大5,如果把这两数字的位置对换,那么所得的新数与原数的和是143,求这个两位数.
4、甲、乙两人在东西方向的公路上行走,甲在乙的西边300米,若甲、乙两人同时向东走30分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2分钟后相遇,问甲、乙两人的速度是多少?
5、甲乙两人以不变的速度在环形路上跑步,相向而行每隔两分钟相遇一次;同向而行,每隔6分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈?
6、某铁桥长1 000米,一列火车从桥上通过,从车头到桥到车尾离桥共用一分钟时间,整列火车完全在桥上的时间为40秒钟,求火车车身的总长和速度.
7、一列快车长168米,一列慢车长184米,如果两车相同而行,从相遇到离开需4秒;如果同向而行,从快车追及慢车到离开需16秒,求两车的速度。

8、二果问价:九百九十九文钱,甜果苦果买一千。

甜果九个十一文,苦果七个四文钱。


试问甜苦果几个,又问各该几个钱。

(注:文钱,也称文,古代的一种货币单位)
9、我区某学校原计划向内蒙察右旗地区的学生捐赠3 500册图书,实际共捐赠了4 125册,其中初中学生捐赠了原计划的120%,高中学生捐赠了原计划的115%,问初中学生和高中学生各比原计划多捐赠了图书多少册?
10、某学校现有校舍面积20 000m2,计划拆除部分旧校舍,改建新教学楼,使校舍面积增加30%,若建造新教学楼的面积为拆除的旧校舍面积的4倍,那么应该拆除多少旧校舍,新教学楼面积是多少?(单位为m2)
11、某船的载重为260吨,容积为1000 m3.现有甲、乙两种货物要运,其中甲种货物每吨体积为8m3,乙种货
物每吨体积为2m3,若要充分利用这艘船的载重与容积,甲、乙两种货物应各装多少吨?(设装运货物时无任何空隙)
12、某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒广告每播1次收费0.6万元,30秒广告每播1次收费1万元.若要求每种广告播放不少于2次.问:⑴两种广告的播放次数有几种安排方式?
⑵电视台选择哪种方式播放收益较大?
13、某农场有300名职工,耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植各作物每公顷所需劳动力人数及投入的资金如下表:已知该农场计划投入资金67万元,应该怎样安排
这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?


14、某牛奶加工厂现有100吨鲜牛奶准备加工后上市销售,该工厂的加工能力是,如果制成奶片每天可加工
鲜奶10吨,如果制成酸奶每天可加工鲜奶30吨,受人员限制,两种加工方式不可同时进行,受气温条件限制,这批牛奶必须在4天内全部加工完毕.该厂应安排几天制奶片,几天制酸奶,才能使任务在4天内正好完成?如果制成奶片销售每吨奶可获利2 000元,制成酸奶销售每吨奶可获利1 200元,那么该厂出售这些加工后的鲜牛奶共可获利多少元?
15 为吸引游客,实行团体入住五折..
优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间?
17、某市为更有效地利用水资源,制定了用水标准:如果一户三口之家每月用水量不超过Mm 3,按每m 3水1.30
元计算;如果超过Mm 3,超过部分按每m 3水2.90元收费,其余仍按每m 3水1.30元计算.小红一家三人,1月
份共用水12m 3,支付水费22元.问该市制定的用水标准M 为多少?小红一家超标使用了多少m 3的水?
18、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?

60cm

4。

相关文档
最新文档