本章小结教案2

合集下载

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

九年级数学下册第一章直角三角形的边角关系本章小结与复习教案(新版)北师大版

第一章直角三角形的边角关系一、本章知识要点:1、锐角三角函数的概念;2、解直角三角形。

二、本章教材分析:(一).使学生正确理解和掌握三角函数的定义,才能正确理解和掌握直角三角形中边与角的相互关系,进而才能利用直角三角形的边与角的相互关系去解直角三角形,因此三角形函数定义既是本章的重点又是理解本章知识的关键,而且也是本章知识的难点。

如何解决这一关键问题,教材采取了以下的教学步骤:1.从实际中提出问题,如修建扬水站的实例,这一实例可归结为已知RtΔ的一个锐角和斜边求已知角的对边的问题。

显然用勾股定理和直角三角形两个锐角互余中的边与边或角与角的关系无法解出了,因此需要进一步来研究直角三角形中边与角的相互关系。

2.教材又采取了从特殊到一般的研究方法利用学生的旧知识,以含30°、45°的直角三角形为例:揭示了直角三角形中一个锐角确定为30°时,那么这角的对边与斜边之比就确定比值为1:2,接着以等腰直角三角形为例,说明当一个锐角确定为45°时,其对边与斜边之比就确定为,同时也说明了锐角的度数变化了,由30°变为45°后,其对边与斜边的比值也随之变化了,由到。

这样就突出了直角三角形中边与角之间的相互关系。

3.从特殊角的例子得到的结论是否也适用于一般角度的情况呢?教材中应用了相似三角形的性质证明了:当直角三角形的一个锐角取任意一个固定值时,那么这个角的对边与斜边之比的值仍是一个固定的值,从而得出了正弦函数和余弦函数的定义,同理也可得出正切、余切函数的定义。

4.在最开始给出三角函数符号时,应该把正确的读法和写法加强练习,使学生熟练掌握。

同时要强调三角函数的实质是比值。

防止学生产生sinX=60°,sinX=等错误,要讲清sinA不是sin*A而是一个整体。

如果学生产生类似的错误,应引导学生重新复习三角函数定义。

5.在总结规律的基础上,要求学生对特殊角的函数值要记准、记牢,再通过有关的练习加以巩固。

第七章小结与思考(2)教学案

第七章小结与思考(2)教学案
例4、某块实验田里的农作物每天的需水量y(kg)与生长时间x(天)之间的关系如图所示,这些农作物在第10天和30天的需水量为2000kg和3000kg,在40天后,每天的需水量比前一天增加100kg。
(1)求y与x函数关系式;
(2)如果这批农作物每天的需水量大于或等于4000kg,需要人工灌溉,那么应从第几天开始进行人工灌溉?
八年级数学教学案
姓名学号班级教者
课题
第七章小结与思考(2)
课型
新授
时间
第七章第11课时
备课组成员
陈、周、章、朱、史
主备
吕坤林
审核
教学目标
1、能够根据实际问题中的数量关系列出一元一次不等式(组),解决简单的实际问题,进一步培养学生分析问题和解决问题的能力。
2、能结合实际问题理解一元一次不等式与一元一次方程、一次函数在解决问题中的作用与联系。
四、巩固练习
课本P31第16、17题
《同步导学》P32第9题
教学后记:
0.4kg
1kg
(1)设制作B型陶艺品x件,求x的取值范围;
(2)请你根据学校现有材料,分别写出八(1)班制作A型和B型陶艺品的件数。
例3、“中国荷藕之乡乡”扬州宝应有着丰富的荷藕资源,某荷藕加工企业收购荷藕60吨,根据市场信息,如果对荷藕进行粗加工,每天可以加工8吨,每吨可获利1000元,如果对荷藕进行精加工,每天可加工0.5吨,每吨可获利5000元,由于受条件的限制,两种加工方式不能同时进行,为了保鲜的需要,该企业必须在一个月(30天)内将这批荷藕全部加工完毕,精加工的吨数x在什么范围内时,该企业加工这批荷藕的获利不低于8000元?
(3)若用(2)中所求得的利润再去进货,请直接写出获得最大利润的进货方案。

第二章小结与思考教案

第二章小结与思考教案

华杰双语学校构建式生态课堂八年级数学教案比一比,看谁表现最好!拼一拼,力争人人过关!总编号:025 备课日期:2012-10-1 上课日期:2012-10-12 主备人:叶海涛审核人:王晓艳课题:第二章小结与思考一、教学目标(1min):1、回顾和整理本章所学的知识内容,使学生对本章内容有全面的了解。

2、感受数形结合的思想。

3、在学习生活中获得成功的体会,增加学生学习数学的兴趣。

二.预习课(时段:晚自习时间: 25 分钟)1. 勾股定理:直角三角形中等于2.直角三角形的识别方法(勾股定理的逆定理):如果一个三角形中等于那么这个三角形是3、平方根:一个数的等于a,这个数叫做,正数有个平方根,它们,负数平方根,零的平方根是。

平方根等于它本身的数是算术平方根:一个数的平方等于a,这个数叫做。

算术平方根等于它本身的数是4.立方根:一个数的等于a,这个数叫做立方根等于它本身的数是数有平方根,数有立方根5. 叫开平方,它与平方运算6.实数分为和,有理数可分为和7.无理数是小数,它分为三种8.表示一个近似数的精确程度可以通过两种方式,用科学记数法表示的数的数的有效数字只和a有关,而要看精确到哪一位要把他后面的数乘开再看。

定向导学(探究合作)(20分钟)自研自探环节内容·学法·时间导学:例题导析教师复备例1、把下列各数填入相应的集合内。

-3.14、6、2π、31、38-、4、-34、0.15、0、-︱-0.6︱无理数集合{…},正实数集合{…}例2. 求下列各式的值(1)81±;(2)16-;(3)259;(4)2)4(-.(5)44.1,(6)36-,(7)2)25(-例3、填空1、5.749保留两个有效数字的结果是();19.973保留三个有效数字的结果是()。

2、近似数5.3万精确到()位,有()个有效数字。

3、用科学计数法表示459600,保留两个有效数字的结果为()。

4、近似数2.67×10的四次方有()个有效数字,精确到()位。

第3章 代数式 小结与思考 教案(2)

第3章 代数式 小结与思考 教案(2)

班级: 姓名:【学习目标】:在上节课的基础上继续复习规律题,方案类应用题,绝对值的化简题;掌握找规律的基本 花纹,其中每个黑色六边形与6个白色六边形相邻.若链子上有35个黑色六边形,则此链子共有几个白色六边形 ( ) A 、140 B 、142 C 、210 D 、2124、四个电子宠物排座位,一开始,小鼠、小猴、小兔、小猫分别坐在1,2,3,4号座位上(如图所示),以后它们不停地变换位置,第一次上下两排交换,第二次是在第一次换位后,再左右两列交换位置,第三次再上下两排交换,第四次再左右两列交换…这样一直下去,则第2005次交换位置后,小兔所在的号位是( )A 、1B 、2C 、3D 、4 5、下图是某同学在的小房子:观察图形的变化规律,则第n 个小房子的块数为 个. 6、(1)当a>0时,|a|= ;当a<0时,|a|= 。

(2)当a>b 时,|a-b|= ;当a<b 时,|a-b|= 。

典型例题:例1、小时候我们就用手指练习过数数,一个小朋友按图中的规则练习数数,数到2009时应对应的指头是( )A 、大拇指B 、食指C 、中指D 、无名指例2、一质点P 从距原点1个单位的A 点处向原点方向跳动,第一次跳动到OA 的中点A 1处,第二次从A 1点跳动到O A 1的中点A 2处,第三次从A 2点跳动到OA 2的中点A 3处,如此不断跳动下去,则第n 次跳动后,该质点到原点O 的距离为 。

例3、在小方格纸上按下面的方式涂色。

……① ② ③ ④(1)填写下表(2)像这样,第n 个图形要涂色的小方格数是 ,第100个图形要涂色的小方格数是 。

例4、化简|b a +|—|a b -|+|b a --|。

教案本章小结怎么写

教案本章小结怎么写

教案本章小结怎么写目的:通处理一些未了的例题,加深学生对概念的理解过程:1.某产品的总成本 y万元与产量 x台之间的函数关系式是y?3000?20x?0.1xx?,若每台产品的售价为25万元,则生产者不亏本的最低产量为多少?00 解:25x?3000?20x?0.1x2即:x2?50x?300?∴x≥150即:最低产量为150台2.已知函数 f?ax2?a2x?2b?a31? 当x?时,其值为正;x??时,其值为负,求a, b 的值及f 的表达式2? 设F??负值 kf?4x?2,k为何值时,函数F 的值恒为f4a2a22ba30232a8a0 解:1? 由已知 ? 解得:23?f?36a?6a?2b?a?0∴a = ? 从而 b = ? ∴f??4x2?16x?48k? F4x?2?kx2?4x?k?0? 欲 F?0则 ? 得k 3.已知 a > 0,且a3x?a?3x?52,求 a x 的值。

解:设t?ax?a?x则a3x?a?3x??t?52∴t3?3t?52?0??0∵t2?4t?13?2?9?0∴t = 即ax?a?x?∴2?4ax?1?0 ∴ax?2?21n4.已知 a > 0,a ? 1,x?, 求 n的值。

1n1n1n2n2n解:?x?1??1?244112211111111?a??1n1?n??[?]??122??a2n5.已知n?N*,f?n?0.9n 比较 f 与 f 大小,并求f 的最大值。

解:f?f??0.9n?1?n?0.9n?0.9n?9?n?0.9n 10当1?n?9时,f?f∵0.9n?0∴当n?9时,f?f即f?f当n?9时,f?f综上:f f > f >……∴ 当 n = 或 n = 10时,f 最大,最大值为 f =×0.9 6.已知x?4y?1,求x?1?22y?1的最大值。

解:∵3x?1?22y?1?∴当3x?1x1115?32?22391即x = ? 1时,3x?1?22y?1有最大值117.画出函数 y?||x|?| 的图象,并利用图象回答:k为何值时,方程211||x|?|?k221解:当 k时,无解。

最新人教版八年级数学上册第十二章《全等三角形(小结复习课)》精品教案 (2)

最新人教版八年级数学上册第十二章《全等三角形(小结复习课)》精品教案 (2)

重点解析 4
如图,在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.
证明:过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.
∵AD是△ABC的角平分线,
∴DE=DF.
又∵S△ABD= 1 AB∙DE,S△ACD= 1 AC∙DF,
2
2
B
∴S△ABD:S△ACD=AB:AC.
本题源自《教材帮》
深化练习 3
如图,点C在线段AB上,AD//EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF和 DE的位置关系,并说明理由.
解:CF⊥DE,证明如下: ∵AD//EB, ∴∠A=∠B. 在△ACD和△BEC中, AD=BC, ∠A=∠B, AC=BE,
∴△ACD≌△BEC(SAS). ∴CD=EC.
E
本题源自《教材帮》
深化练习 1
(2)解:DM⊥AM,理由如下:
如图,过点M作ME⊥AD,垂足为E.
∵AB//CD, ∴∠CDA+∠BAD=180°.
又∵∠EDM=∠CDM= 1 ∠CDA,
∠EAM=∠BAM=
1
2 ∠BAD,
2 ∴∠MDA+∠MAD=
1(∠CDA+∠BAD)=90°.
2
∴∠DMA=90°.
常言道:人生就是一场修行,生活只是一个状态,学习也只是一个习惯,只 要你我保持积极向上、乐观好学、求实奋进的状态,相信不久的将来我们一定会 取得更大的进步。
最后祝:您生活愉快,事习 3
如图,点C在线段AB上,AD//EB,AC=BE,AD=BC,CF平分∠DCE.试探索CF和 DE的位置关系,并说明理由.
D
(1)证明两条线段的位置关系,一般是平行、垂 直,常用全等三角形的性质或者角的平分线的性质; (2)证明两条线段的大小关系,一般是相等,常 用全等三角形的性质或者等量代换.

一次函数本章小结 优质课教案

一次函数本章小结 优质课教案

一次函数本章小结【教学目标】1.通过复习进一步掌握一次函数概念、图象和基本性质,掌握求一次函数解析式的常用方法。

2.理解数形结合的数学思想,提高利用归纳进行复习的能力。

3.通过对零散知识点的系统整理,让学生认识到事物是有规律可循的,同时帮助他们提高复习的效果,增进数学学习的兴趣。

【教学重点】掌握一次函数概念、图象与基本性质及应用。

【教学难点】运用一次函数的图象和性质解决问题。

【教学过程】一、复习旧知。

一次函数的概念:函数y=kx+b(k、b为常数)叫做一次函数。

当b=0时,一次函数y=kx也叫正比例函数。

b叫做截距,是一次函数图象与y轴交点的纵坐标。

题型一、一次函数的概念。

1.下列函数中其中是一次函数的有___________。

2.思考:若函数是一次函数,则m=___。

为一次函数的条件是什么?(1)指数n=()(2)系数k=()二、知识回顾。

1.在平面直角坐标系中,将直线y=-2x的图象向_____平移_______个单位,得到的直线的解析式是y=-2x+2?练习:若直线y=-2x向下平移2个单位,得到的直线的解析式是___________?问:一次函数可以由正比例函数平移得到,请画出一次函数y=kx+b的大致图象。

题型二:一次函数的图象与性质。

1.有下列函数:①y=2x+1,②y=-3x+4,③y=0.5x,④y=x-6;函数y随x的增大而增大的是__________;函数y随x的增大而减小的是___________;图象在第一、二、三象限的是__________。

2.一次函数y=(m-2)x-1的图象经过第二、三、四象限,则m的取值范围是( ) A.m>0B.m<0C.m>2D.m<23.是一次函数图象上的两个点,且,则的大小关系是___________。

4.(1)m为何值时,y随x的增大而减小;(2)m,n分别为何值时,函数的图象与y轴的交点在x轴的下方?(3)当m=-1,n=-2时,设此一次函数与x轴交于A,与y轴交于B,试求AOB面积。

人教版2020高中数学 第2章 概率章末小结与测评教学案 苏教版选修2-3

人教版2020高中数学 第2章 概率章末小结与测评教学案 苏教版选修2-3

第2章 概率一、事件概率的求法 1.条件概率的求法(1)利用定义,分别求出P (B )和P (AB ),解得P (A |B )=P (AB )P (B ).(2)借助古典概型公式,先求事件B 包含的基本事件数n ,再在事件B 发生的条件下求事件A 包含的基本事件数m ,得P (A |B )=m n.2.相互独立事件的概率若事件A ,B 相互独立,则P (AB )=P (A )·P (B ). 3.n 次独立重复试验在n 次独立重复试验中,事件A 发生k 次的概率为P n (k )=C k n p k q n -k,k =0,1,2,…,n ,q =1-p .二、随机变量的概率分布1.求离散型随机变量的概率分布的步骤 (1)明确随机变量X 取哪些值;(2)计算随机变量X 取每一个值时的概率;(3)将结果用二维表格形式给出.计算概率时注意结合排列与组合知识. 2.两种常见的概率分布 (1)超几何分布若一个随机变量X 的分布列为P (X =r )=C r M C n -rN -MC n N,其中r =0,1,2,3,…,l ,l =min(n ,M ),则称X 服从超几何分布.(2)二项分布若随机变量X 的分布列为P (X =k )=C k n p k q n -k,其中0<p <1,p +q =1,k =0,1,2,…,n ,则称X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).三、离散型随机变量的均值与方差1.若离散型随机变量X Xx 1 x 2 … x n Pp 1 p 2 … p n则E (X )=x 1p 1+x 2p 2+…+n n ,V (X )=(x 1-μ)2p 1+(x 2-μ)2p 2+…+(x n -μ)2p n . 2.当X ~H (n ,M ,N )时,E (X )=nM N ,V (X )=nM (N -M )(N -n )N 2(N -1).3.当X ~B (n ,p )时,E (X )=np ,V (X )=np (1-p ).(考试时间:120分钟 试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分) 1.已知离散型随机变量X 的概率分布如下:X 1 2 3 Pk2k3k则E (X )=________.解析:∵k +2k +3k =1,∴k =16,∴E (X )=1×16+2×26+3×36=1+4+96=73.答案:732.已知P (B |A )=13,P (A )=35,则P (AB )=________.解析:P (AB )=P (B |A )·P (A )=13×35=15.答案:153.某同学通过计算机测试的概率为23,则他连续测试3次,其中恰有1次通过的概率为________.解析:连续测试3次,其中恰有1次通过的概率为P =C 13⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫1-232=3×23×19=29.94.已知随机变量X 分布列为P (X =k )=a ·⎝ ⎛⎭⎪⎫23k(k =1,2,3),则a =________. 解析:依题意得a ⎣⎢⎡⎦⎥⎤23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233=1,解得a =2738.答案:27385.已知甲投球命中的概率是12,乙投球命中的概率是35.假设他们投球命中与否相互之间没有影响.如果甲、乙各投球1次,则恰有1人投球命中的概率为________.解析:记“甲投球1次命中”为事件A ,“乙投球1次命中”为事件B .根据互斥事件的概率公式和相互独立事件的概率公式,所求的概率为P (AB )+P (AB )=P (A )P (B )+P (A )P (B )=12×⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-12×35=12.答案:126.在某项测量中,测量结果X 服从正态分布N (1,σ2),若X 在区间(0,1)内取值的概率为0.4,则X 在区间(0,2)内取值的概率是________.解析:∵X ~N (1,σ2),∴P (0<X <1)=P (1<X <2),∴P (0<X <2)=2P (0<X <1)=2×0.4=0.8.答案:0.87.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数都不相同},B ={出现一个3点},则P (B |A )=________.解析:若两个点都不相同,则有(1,2),(1,3),…,(1,6),(2,1),(2,3),…,(2,6),…,(6,1),…,(6,5).共计6×5=30种结果.“出现一个3点”含有10种.∴P (B |A )=1030=13. 答案:138.袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数X 的数学期望E (X )=________.解析:由题得X 所取得的值为0或2,其中X =0表示取得的球为两个黑球,X =2表示取得的球为一黑一红,所以P (X =0)=C 23C 24=12,P (X =2)=C 13C 24=12,故E (X )=0×12+2×12=1.答案:19.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p ,若此人未能通过的科目数X 的均值是2,则p =________.解析:因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知X ~B (6,1-p ),所以E (X )=6(1-p )=2.解得p =23.310.若X ~B (n ,p ),且E (X )=2.4,V (X )=1.44,则n =________,p =________. 解析:∵E (X )=2.4,V (X )=1.44, ∴⎩⎪⎨⎪⎧np =2.4,np (1-p )=1.44,∴⎩⎪⎨⎪⎧n =6,p =0.4.答案:6 0.411.甲、乙两人投篮,投中的概率各为0.6,0.7,两人各投2次,两人投中次数相等的概率为________.解析:所求概率为4×0.6×0.4×0.7×0.3+0.62×0.72+0.42×0.32=0.392 4. 答案:0.392 412.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是25,则甲回家途中遇红灯次数的均值为________.解析:设甲在回家途中遇红灯次数为X ,则X ~B ⎝ ⎛⎭⎪⎫3,25,所以E (X )=3×25=65. 答案:6513. 荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示,假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是________.解析:青蛙跳三次要回到A 只有两条途径:第一条:按A →B →C →A ,P 1=23×23×23=827;第二条,按A →C →B →A ,P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13.答案:1314.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在抛物线中,记随机变量X =“|a -b |的取值”,则X 的均值E (X )=________.解析:对称轴在y 轴左侧(ab >0)的抛物线有2C 13C 13C 17=126条,X 可能取值为0,1,2,P (X =0)=6×7126=13;P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=0×13+1×49+2×29=89. 答案:89二、解答题(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)P (A )=A 13A 14A 25=1220=35.(2)P (A ∩B )=A 23A 25=620=310.(3)P (B |A )=P (A ∩B )P (A )=31035=12.16.(本小题满分14分)袋中装有5个乒乓球,其中2个旧球,现在无放回地每次取一球检验.(1)若直到取到新球为止,求抽取次数X 的概率分布列及其均值;(2)若将题设中的“无放回”改为“有放回”,求检验5次取到新球个数X 的均值.解:(1)X 的可能取值为1,2,3,P (X =1)=35,P (X =2)=2×35×4=310,P (X =3)=2×1×35×4×3=110, 故抽取次数X 的概率分布为E (X )=1×35+2×310+3×110=32.(2)每次检验取到新球的概率均为35,故X ~B ⎝ ⎛⎭⎪⎫5,35,所以E (X )=5×35=3. 17.(本小题满分14分)甲、乙、丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意.最终,商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上则甲得一分,乙得零分,反面朝上则乙得一分甲得零分,先得4分者获胜,三人均执行胜者的提议.记所需抛币次数为X .(1)求X =6的概率;(2)求X 的概率分布和均值.解:(1)P (X =6)=2×C 35×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫122×12=516.(2)由题意知,X 可能取值为4,5,6,7,P (X =4)=2×C 44×⎝ ⎛⎭⎪⎫124=18,P (X =5)=2×C 34×⎝ ⎛⎭⎪⎫123×12×12=14,P (X =6)=516,P (X =7)=2×C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫123×12=516,故X 的概率分布为所以E (X )=4×18+5×14+6×516+7×516=9316.18.(本小题满分16分)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.求X 的概率分布、均值和方差.解:由题意,得X 的所有可能取值为0,1,2,3,4,所以P (X =0)=1020=12,P (X =1)=120,P (X =2)=220=110,P (X =3)=320,P (X =4)=420=15. 故X 的概率分布为:所以E (X )=0×12+1×120+2×110+3×320+4×15=1.5.V (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.19.(本小题满分16分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的概率分布和均值.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =r )=C r4·C 3-r6C 310(r =0,1,2,3). 所以,随机变量X随机变量X 的均值E (X )=0×16+1×12+2×310+3×130=65.20.(本小题满分16分)(北京高考)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数.比较E (X )与x 的大小.(只需写出结论)解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”, 事件B 为“在随机选择的一场客观比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25.P (C )=(AB )+P (AB )=35×35+25×25=1325.所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)E (X )=x .。

初中语文单元小结教案

初中语文单元小结教案

教案名称:七年级下册语文第四单元小结教案一、教学目标:1. 知识与技能:通过本单元的学习,使学生掌握每篇文章的基本内容、结构、写作特点和表达技巧。

2. 过程与方法:培养学生通过自主学习、合作学习、探究学习的方式,提高语文素养。

3. 情感态度与价值观:激发学生对文学作品的热爱,培养学生的审美情趣,提高学生的道德品质。

二、教学内容:1. 单元主题:本单元以散文为主,通过描绘自然景物、回忆童年生活、抒发作者情感等方式,展现了作者对生活的热爱和对美好事物的追求。

2. 单元文章:本单元共包含5篇文章,分别是《春》、《济南的冬天》、《夏感》、《秋天的怀念》、《散步》。

三、教学重点与难点:1. 教学重点:理解每篇文章的主题思想,分析文章的写作技巧,提高学生的阅读理解能力。

2. 教学难点:引导学生运用所学知识,联系实际生活,体会文章所表达的情感。

四、教学过程:1. 自主学习:让学生在课前预习单元文章,了解文章的基本内容、结构和写作特点。

2. 课堂讲解:针对每篇文章,进行详细讲解,分析文章的写作技巧、表达手法和主题思想。

3. 合作学习:组织学生进行小组讨论,分享学习心得,互相提问解答。

4. 探究学习:引导学生运用所学知识,联系实际生活,思考文章所表达的情感和价值。

5. 课堂练习:针对每篇文章,设计相应的练习题目,巩固所学知识。

6. 作文训练:以单元主题为题材,让学生进行写作练习,提高学生的写作能力。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习成绩:对学生的练习题目进行批改,分析学生的掌握程度。

3. 作文评价:对学生的作文进行评价,关注学生的写作思路、表达方式和语言运用。

六、教学策略:1. 情境教学:通过图片、音乐、视频等手段,为学生创造生动的学习情境。

2. 情感教学:以情感人,激发学生的学习兴趣,培养学生的审美情趣。

3. 启发式教学:引导学生主动思考,培养学生的创新意识。

初中数学章节小结教案

初中数学章节小结教案

初中数学章节小结教案教学目标:知识与技能目标:通过本节课的学习,学生能够掌握平面图形的性质和特点,包括线段、角、平行线等基本概念。

过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的空间观念,提高学生分析问题和解决问题的能力。

情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

教学重点与难点:重点:掌握平面图形的基本性质和特点。

难点:理解和应用平行线的性质和判定。

教学过程:一、回顾导入(5分钟)教师通过提问方式引导学生回顾上一节课的内容,复习线段、角、平行线等基本概念,为新课的学习做好铺垫。

二、自主学习(10分钟)学生自主阅读教材,理解平面图形的性质和特点,教师巡回指导,解答学生的疑问。

三、课堂讲解(15分钟)教师讲解平面图形的基本性质和特点,重点讲解平行线的性质和判定,通过示例和练习帮助学生理解和掌握。

四、互动交流(10分钟)学生分组讨论,交流各自的学习心得和疑问,教师组织小组展示,分享学习成果,解答学生的疑问。

五、巩固练习(10分钟)学生完成课后练习题,教师及时批改,给予评价和指导,帮助学生巩固所学知识。

六、总结与反思(5分钟)教师引导学生总结本节课的学习内容,强调平面图形的基本性质和特点,提醒学生注意在实际问题中的应用。

同时,鼓励学生反思自己的学习过程,找出不足之处,为下一节课的学习做好准备。

教学评价:本节课通过提问、课堂讲解、互动交流、巩固练习等多种方式,全面考察学生的知识掌握和能力培养。

教师应及时关注学生的学习情况,针对不同学生给予个性化的指导和帮助,提高学生的数学素养。

教学反思:教师应在课后反思自己的教学效果,看看是否达到了教学目标,学生是否掌握了平面图形的基本性质和特点。

同时,要关注学生的学习反馈,调整教学方法和策略,为下一节课的教学做好准备。

一元二次方程本章小结 优质课教案

一元二次方程本章小结 优质课教案

本章小结
【教学目标】
1.理解一元二次方程的概念;
2.能灵活选用不同方法解一元二次方程;
3.会求一元二次方程的根的判别式的值,知道判别式与方程实数根情况之间的关系,会利用判别式判断实数根的情况。

4.会利用一元二次方程的求根公式对二次三项式在实数范围内进行因式分解。

【教学重难点】
综合运用能力。

【教学过程】
一、一元二次方程的概念。

1.学生例举;
2.复习归纳一元二次方程的定义:一元、二次、整式方程;
例题1:在下列方程中,是一元二次方程的是__________.
3.问:关于x的方程是否是一元二次方程?
4.复习归纳一般式:
二、一元二次方程的解法。

=(复习开平方法,强调两个根)
例如:2x0
1.开平方法、学生例举;
2.因式分解法:2x x
=(失根),学生例举;
归纳:提公因式;运用公式法;十字相乘法;
问:?(强调乘积为0).
3.配方法:
系数为1、系数不为1;
与二次函数配方法求顶点的异同点。

4.公式法:求根公式(前提)。

练习:选用合适的方法解方程(口答方法即可)。

三、根的判别式。

1.不解方程,直接判断方程根的情况;
2.求字母的取值范围;
例题:若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是?
四、与其它知识的联系:
1.二次三项式的因式分解;
例题5:在实数范围内因式分解.
2.二次函数配方法求顶点式;
3.求二次函数与x轴的交点坐标。

4.画出二次函数的大致图像。

课后小结_教案

课后小结_教案

课后小结_教案教案是教师备课的重要工具,也是教学过程中的指导和依据。

而课后小结则是教师对课堂教学的反思和总结,是进一步提高教学质量的重要环节。

本文将对课后小结_教案进行探讨和总结。

首先,课后小结是教师对教学过程的回顾和总结。

在课堂结束后,教师应该及时对这节课的教学效果进行评估和反思。

通过回顾学生的学习情况、教学内容的呈现方式以及教师的教学方法等方面,可以发现教学中存在的问题和不足之处。

只有通过课后小结,教师才能深入了解学生的学习情况,发现自己的教学不足,从而为下一节课的教学做好准备。

其次,课后小结是教师对教学目标的评估和调整。

在课后小结中,教师可以对本节课的教学目标进行评估。

通过对学生学习情况的观察和分析,教师可以判断学生是否达到了预期的教学目标,是否需要进行进一步的巩固和提高。

如果学生的学习情况良好,教师可以适当提高教学目标的难度,进一步挑战学生;如果学生的学习情况不理想,教师可以对教学目标进行调整,采取更加适合学生的教学方法。

最后,课后小结是教师对教学方法的反思和改进。

在课堂教学中,教师的教学方法直接影响学生的学习效果。

通过课后小结,教师可以对自己在教学过程中使用的教学方法进行评估和反思。

教师可以思考自己的教学方法是否能够激发学生的学习兴趣,是否能够帮助学生理解和掌握所学知识,是否能够培养学生的综合能力等。

通过对教学方法的反思和改进,教师可以逐步提高自己的教学水平,为学生提供更好的教学服务。

综上所述,课后小结_教案是教师备课和教学过程中必不可少的环节。

通过课后小结,教师可以对教学过程进行反思和总结,发现问题和不足之处,并通过调整教学目标和改进教学方法,提高教学质量,促进学生的学习进步。

因此,教师应该重视课后小结_教案的编写和实施,积极提高自己的教学水平。

高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案

高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案

第2章圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax2+By2=1(A>0,B>0,A≠B);②双曲线方程为Ax2+By2=1(AB<0);③抛物线方程为x2=2py(p≠0)或y2=2px(p≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.曲线方程的求法[例1] 过原点作圆的弦OA,求OA中点B的轨迹方程.[解] 法一(直接法):设B点坐标为(x,y),由题意,得|OB|2+|BC|2=|OC|2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1, 即OA 中点B 的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为: y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝⎛⎭⎪⎫x -122+y 2=14,故⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程.解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0),由题意得AP ―→=2PB―→,即(x -4,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y 2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝⎛⎭⎪⎫x -432+y 2=169.圆锥曲线的定义及性质问题[例2] F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a>0,b >0).∵e =ca=2,∴c =2a .由双曲线的定义,得||PF1|-|PF2||=2a=c,在△PF1F2中,由余弦定理,得:|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°),即4c2=c2+|PF1||PF2|.①又S△PF1F2=123,∴12|PF1||PF2|sin 60°=123,即|PF1||PF2|=48.②由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,∴所求的双曲线方程为x24-y212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1解析:根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|.∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A直线与圆锥曲线的位置关系[例3] x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2,由②得k 2=2m -13>0,解得m >12,故所求m的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标.解:(1)设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即51-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39,∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).圆锥曲线中的定点、定值、最值问题[例4] (2017·全国卷Ⅲ)已知椭圆C :2a 2+2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B的坐标分别为⎝⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a 25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a 25=1.解得a =152.因为152>53,所以a 不存在.(2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0, ∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53.答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE―→=12(OF ―→+OP ―→),则双曲线的离心率为( ) A.102B.105C.10D.2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102.答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.17C.59117D.1113解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去)又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C 的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎪⎫62,2 B .(2,+∞)C.⎝ ⎛⎭⎪⎪⎫62,+∞ D.⎝⎛⎭⎪⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎪⎪⎫62,2∪(2,+∞).答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|+|PF 2|2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2, ∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1.由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1.∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点.又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6.故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝⎛⎭⎪⎫2t 2p,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由.解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0).由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ),O Q ―→·PF―→=3+3m -tn , OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .。

教案课后小结范文

教案课后小结范文

教案课后小结范文
本节课主要是教授学生如何撰写一篇小说,通过本节课的学习,学生们对小说的结构、情节、人物塑造等方面有了更深入的了解。

在教学过程中,我采用了多种教学方法,例如讲解、示范、分组讨
论等,使学生们在积极参与中学到了知识。

首先,我通过讲解的方式向学生介绍了小说的基本结构,包括
开头、发展、高潮、结局等部分。

我通过举例分析了一些经典小说
的结构,让学生们对小说的整体框架有了清晰的认识。

接着,我进
行了一些示范,向学生展示了如何构思一个小说的情节,如何塑造
人物形象。

我通过实际的写作过程,让学生们看到了一个小说是如
何一步步构建起来的。

在教学过程中,我还组织了学生进行分组讨论,让他们在小组
内相互交流,共同探讨如何撰写一篇优秀的小说。

通过小组讨论,
学生们不仅可以学到他人的经验,还可以培养团队合作意识,提高
他们的写作能力。

通过本节课的学习,学生们对小说写作有了更深入的了解,他
们知道了一个好的小说不仅需要精彩的情节,还需要细致的人物刻
画,以及合理的结构安排。

在未来的学习中,我将继续引导学生进行多样化的写作练习,帮助他们提高写作水平,培养文学素养。

总的来说,本节课的教学效果还是不错的。

学生们在课堂上表现积极,对小说写作产生了浓厚的兴趣。

我相信通过不断的学习和实践,他们一定能够成为出色的文学创作人才。

教案小结范文

教案小结范文

教案小结范文教案小结。

一、教学内容,《西游记》第一回。

二、教学目标:1. 知识目标,学生能够掌握《西游记》第一回的故事情节,了解主要人物形象和背景;2. 能力目标,培养学生的阅读能力和分析能力,提高学生的文字理解和表达能力;3. 情感目标,引导学生对中国古典文学的热爱,培养学生的文学情操和审美情感。

三、教学重难点:1. 故事情节的理解和把握;2. 对主要人物形象的分析和理解;3. 对古典文学的欣赏和理解。

四、教学过程:1. 导入,通过图片、视频等多媒体形式,引导学生了解《西游记》的背景和作者;2. 学习,带领学生一起阅读《西游记》第一回,重点讲解故事情节和人物形象;3. 操练,设计相关问题,让学生进行思考和讨论,加深对故事的理解;4. 总结,对本节课的学习内容进行总结,梳理故事情节和人物形象;5. 作业,布置相关作业,巩固学生对故事的理解和记忆。

五、教学手段:1. 多媒体教学,利用图片、视频等多媒体形式,生动形象地呈现《西游记》的故事情节和人物形象;2. 互动教学,设计问题,引导学生进行讨论和互动,激发学生的学习兴趣;3. 小组合作,组织学生进行小组活动,共同探讨故事情节和人物形象。

六、教学反思:1. 优点,通过多媒体教学和互动教学,激发了学生的学习兴趣,提高了学生的参与度;2. 不足,教学过程中,有些学生表现出对古典文学的抵触情绪,需要通过多种方式引导学生对古典文学进行欣赏和理解。

七、教学建议:1. 继续加强多媒体教学,生动形象地呈现古典文学的魅力;2. 加强对学生的引导和启发,培养学生的文学情操和审美情感。

八、教学反馈:学生对本节课的故事情节和人物形象有了更深入的理解,表现出了对古典文学的热爱和兴趣。

部分学生在小组讨论中表现出了对故事的深刻思考和独到见解,展现了良好的阅读能力和文学素养。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档