第15章细胞信号转导
2020年智慧树知道网课《分子生物学(山东联盟-济宁医学院版)》课后章节测试满分答案

第一章测试1【多选题】(15分)分子生物学的研究任务包括:A.生物大分子在遗传信息和细胞信息传递中的作用B.大分子结构与功能的关系C.生物大分子在食品中的作用D.生物大分子的结构2【多选题】(15分)1865年孟德尔在他的划时代的论文《植物杂交试验》中得出了两条规律:A.统一律B.连锁遗传规律C.分离规律D.基因学说3【多选题】(15分)在非转录区段对基因的表达起调控作用的是:A.抑癌基因B.原癌基因C.增强子D.启动子4【多选题】(15分)证明DNA是遗传物质的两个有名的实验为:A.T4噬菌体感染细菌实验B.肺炎双球菌转化实验C.豌豆杂交实验D.果蝇杂交实验5【多选题】(15分)目前分子生物学研究的前沿包括:A.细胞信号转导研究B.基因表达的调控研究C.基因组研究D.结构分子生物学研究6【多选题】(15分)DNA重组技术的应用包括:A.可被用于大量生产某些在正常细胞代谢中产量很低的多肽B.可用于定向改造某些生物的基因组结构C.可被用来进行基础研究D.可用于企业减少生产成本7【多选题】(10分)分子生物学技术包括:A.基因工程B.链反应技术C.分子杂交技术D.蛋白质工程第二章测试1【单选题】(15分)原核生物基因是:A.不连续的B.断裂的C.连续的D.跳跃的2【单选题】(15分)操纵子的结构基因区的功能是A.结合阻遏蛋白B.结合核糖体C.表达功能蛋白D.结合RNA聚合酶3【单选题】(15分)在断裂基因及其初级转录产物上出现,并表达为成熟RNA的核酸序列的是:A.终止子B.内含子。
简述细胞信号转导的过程

简述细胞信号转导的过程细胞信号转导是细胞内外信息传递的过程,通过这个过程,细胞可以感知和响应外界刺激,并调控细胞内的生物活动。
细胞信号转导过程复杂而精确,涉及多种分子信号、信号传递通路和调控机制。
本文将以简洁明了的语言,从信号的产生、传递和响应三个方面,详细介绍细胞信号转导的过程。
一、信号的产生细胞信号可以来自于细胞外部环境,如激素、神经递质、细胞外基质等,也可以来自于细胞内部,如细胞器的功能变化、代谢产物的积累等。
这些信号分为内源性信号和外源性信号。
内源性信号是由细胞内部的变化所产生的,如细胞内的离子浓度变化、代谢产物积累等。
外源性信号则是由细胞外部的刺激所引起的,如激素的结合、神经递质的释放等。
二、信号的传递细胞信号的传递主要通过信号分子在细胞内外之间的传递来实现。
细胞膜是信号传递的重要场所,其表面覆盖着许多受体分子,当外界信号分子与受体结合时,受体会发生构象变化,并激活下游的信号传递通路。
这些通路包括细胞内信号传导分子的激活、蛋白质的磷酸化和解磷酸化等一系列反应。
这些反应可以通过细胞内的信号传导通路来调控,形成一个复杂的信号网络。
三、信号的响应细胞信号的响应是指细胞对信号的感知和相应行为。
细胞可以通过调节基因表达、蛋白质合成、细胞骨架重组等方式,来实现对信号的响应。
基因表达调控是一种常见的信号响应方式,细胞可以通过转录因子的激活或抑制来改变基因的表达水平。
蛋白质合成则是通过信号传导通路内的蛋白质磷酸化或解磷酸化等酶促反应来实现。
细胞骨架重组是通过改变细胞内骨架蛋白的结构和功能,来调节细胞形态和运动。
细胞信号转导的过程是一个动态平衡的过程,信号的产生、传递和响应是相互关联的。
细胞通过调节信号分子、信号传导通路和调控机制的活性,来实现对外界刺激的感知和响应。
这个过程在细胞生理、发育和疾病中起着重要的作用。
例如,细胞信号转导的异常会导致癌症、心血管疾病等多种疾病的发生和发展。
总结起来,细胞信号转导是细胞内外信息传递的过程,包括信号的产生、传递和响应三个方面。
细胞生物学-翟中和-第三版-第十五章

半桥粒处的α6β4整合素
细胞外基质指细胞质膜外表面覆盖的一层粘多糖 物质,实际指细胞表面与质膜中的蛋白或脂类 分子共价结合的寡糖链。
不仅对膜蛋白起保护作用,而且在细胞识别中 起重要作用。
第三节 细胞外基质 结构:
指分布于细胞外空间, 由细胞分泌的蛋白和 多糖所构成的网络结构。
主要功能: 构成支持细胞的框架,负责组织的构建; 胞外基质三维结构及成份的变化,改变细 胞微环境从而对细胞形态、生长、分裂、 分化和凋亡起重要的调控作用。 胞外基质的信号功能
三、通讯连接 间隙连接:分布广泛,几乎所有的动物 组织中都 存在间隙连接。 化学突触:存在于可兴奋细胞之间的细胞连接方式, 它通过释放神经递质来传导神经冲动。 胞间连丝:高等植物细胞之间通过胞间连丝相互连 接,完成细胞间的通讯联络。
(一)间隙连接 1、结构与成分
间隙连接处相邻细胞质膜间的间隙为2~3nm 。 连接子(connexon) 是间隙连接的基本单位。
四、整联蛋白(integrin):
大多为亲异性细胞粘附分子,其作用依赖于Ca2+。 介导细胞与细胞间的相互作用及细胞与细胞外基质 间的相互作用。
由α (120~185kD)和β(90~110kD)两个亚单 位形成的异二聚体。迄今已发现16种α亚单位和9种 β亚单位。它们按不同的组合构成20余种整合素。
(二)胞间连丝
高等植物细胞之间通过胞间连丝相互连接,完成细胞 间的通讯联络。
胞间连丝结构相邻细胞质膜共同构成的直径2040nm的管状结构
胞间连丝的功能 实现细胞间由信号介导的物质有择性的转运; 实现细胞间的电传导; 在发育过程中,胞间连丝结构的改变可以调节 植物细胞间的物质运输。
胞间连丝结构 模型
(三)化学突触是存在 于可兴奋细胞间的一种 连接方式,其作用是通 过释放神经递质来传导 兴奋。由突触前膜、突 触后膜、 和突触间隙三 部分组成。
第15章细胞信号转导

Thr
Ser -O-PO32-
Ser -OH
Tyr 酶蛋白 Pi 磷蛋白磷酸酶 H2O
Tyr 磷酸化的 酶蛋白
2. 蛋白丝氨酸/苏氨酸激酶和蛋白酪氨酸激酶 ①蛋白丝氨酸/苏氨酸激酶: 包括PKA、PKG、PKC、PKA、 Ca 2+/CaM-依赖性激酶、MAPK ②蛋白酪氨酸激酶: 包括受体型PTK和非受体型PTK
二是转换配体信号,使之成为细胞内分子可识别的信号, 并传递至其他分子引起细胞应答。
受体与信号分子结合的特性:
高度的专一性、高度的亲和力、可饱和性、特定的作用模式
目录
受体位置:
细胞表面受体
接收的是不能进入细胞的水溶性化学信号分子和其它细 胞表面的信号分子,如生长因子、细胞因子、水溶性激素分 子、粘附分子等。
式;当结合GDP时为非活化状态,使信
号途径关闭。
GTP酶的活性:G蛋白的活化形式有GTP酶的
活性(霍乱毒素可使G蛋白失去GTP酶的活性)。
目录
G蛋白主要有两大类: • 异源三聚体G蛋白:与7次跨膜受体结合,以α、 β、γ亚基三聚体的形式存在于 细胞质膜内侧,简称G蛋白。 • 低分子量G蛋白:Ras蛋白,又叫小G蛋白,也称 P21蛋白。
目录
2、白细胞介素受体通过JAK-STAT途径转导信号(记住名字即可)
目录
细胞信息转导(纲要)
一、细胞信号转导概述 第二信使的概念及种类 二、细胞内信号转导分子 1、cAMP生成及降解所需要的酶及其作用。 2、G蛋白:鸟苷酸(GTP或GDP)结合蛋白,α、β、γ三亚基组成,可与 AC等酶偶联,霍乱弧菌使其持续活化。 三、各种受体介导的细胞内基本信号转导通路 1、通过胞内受体发挥作用的激素有哪些? 2、G蛋白偶联受体信号的主要途径是哪些?(cAMP-PKA信号途径等) 3、Grb2通过募集SOS(一种鸟苷酸交换因子)激活Ras,Ras结合GTP时有 活性,它还有GTP酶的活性。 4、酶偶联受体途径(Ras-MAPK途径及JAK-STAT途径)与细胞的生长、 增殖有关。
第十五章信号转导2010ppt课件

第一节 信 息 物 质
Section 1 Signal Molecules
一、细胞间信息物质
凡是由细胞分泌的、能够调节特定靶细胞生理 活动的化学物质都称为细胞间信息物质 (extracellular signal molecules),或第一信 使。
1.神经递质:
由神经元突触前膜释放的信息物质,可作用于 突触后膜上的受体,传递神经冲动信号。如乙 酰胆碱、去甲肾上腺素等等。
Section 2 Receptors
受体(receptor)是指存在于靶细胞膜上或细胞内 能特异识别与结合生物活性分子(配体),进 而引起靶细胞生物学效应的分子。 绝大部分受体为蛋白质,少数为糖脂。 能与受体呈特异性结合的生物活性分子则称配 体(ligand)。
受体的功能有三个方面: 识别与结合; 信号转导; 产生相应的生物学效应。
2.内分泌激素:
激素(hormone)是由特殊分化细胞合成并分泌 的一类生理活性物质,这些物质通过体液进行 转运,作用于特定的靶细胞,调节细胞的物质 代谢或生理活动。 在体内,有些能够分泌激素的特殊分化细胞集 中在一起构成内分泌腺;有些细胞则分散存在; 有些细胞兼具其他功能。
激素的作用方式:
激素被分泌后,可以三种不同的方式作用于靶 细胞: ① 内 分 泌 (endocrine) : 激 素 分 泌 后 作 用 较 远 的靶细胞,其传递介质为血液。 ②旁分泌(paracrine):激素分泌释放后作用于 邻近的靶细胞,其传递介质为细胞间液。 ③自分泌(autocrine):激素分泌释放后仍作 用于自身细胞,其传递介质为胞液。
第十五章 细胞信息转导
Chapter 15 Cellular Signal Transduction
对于多细胞生物来说,为了协调和配合各组织 细胞之间得功能活动,需要对各组织细胞的物 质代谢或生理活动进行调节。此外当外界环境 变化时也需通过细胞间复杂的信号传递系统来 传递信息,从而调控机体活动。 细胞信息的传递是由许多不同的信息物质所组 成的信息传递链来完成的。
第15章 细胞信号转导习题

第15章细胞信号转导习题第15章细胞信号转导习题第十五章细胞信号转导备考测试(一)名词解释1.受体2.激素3.信号分子4.g蛋白5.细胞因子6.自分泌信号传递(二)选择题a型题:1.关于激素描述错误的是:a.由内分泌腺/细胞制备并排泄b.经血液循环中转c.与适当的受体共价融合d.促进作用的高低与其浓度有关e.可以在靶细胞膜表面或细胞内发挥作用2.下列哪种激素属于多肽及蛋白质类:a.糖皮质激素b.胰岛素c.肾上腺素d.前列腺素e.甲状腺激素3.生长因子的特点不包括:a.就是一类信号分子b.由特定分化的内分泌腺所排泄c.促进作用于特定的靶细胞d.主要以旁排泄和自排泄方式发挥作用e.其化学本质为蛋白质或多肽4.根据经典的定义,细胞因子与激素的主要区别是:a.就是一类信号分子b.促进作用于特定的靶细胞c.由普通细胞制备并排泄d.可以调节靶细胞的生长、分化e.以内分泌、旁排泄和自排泄方式发挥作用5.神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:17.蛋白激酶8.钙调蛋白9.g蛋白偶联型受体10.向上调节11.细胞信号转导途径12.第二信使a.构成动作电位b.并使离子通道对外开放c.与受体融合d.通过胞饮步入细胞e.民主自由出入细胞6.受体的化学本质是:a.多糖b.长链不饱和脂肪酸c.生物碱d.蛋白质e.类固醇7.受体的特异性取决于:a.活性中心的构象b.配体融合域的构象c.细胞膜的流动性d.信号转导功能域的构象e.g蛋白的构象8.关于受体的作用特点,下列哪项是错误的:a.特异性较低b.就是对称的c.其离解常数越大,产生的生物效应越大d.就是可饱和的e.融合后受体可以出现变构9.下列哪项与受体的性质不符:a.各类激素存有其特异性的受体b.各类生长因子存有其特异性的受体c.神经递质存有其特异性的受体d.受体的本质就是蛋白质e.受体只存有于细胞膜上10.下列哪种受体是催化型受体:a.胰岛素受体b.甲状腺激素受体c.糖皮质激素受体d.肾上腺素能够受体e.活性维生素d3受体11.酪氨酸蛋白激酶的作用是:a.并使蛋白质融合上酪氨酸b.并使所含酪氨酸的蛋白质转化成c.并使蛋白质中的酪氨酸转化成d.并使效应蛋白中的酪氨酸残基磷酸化e.并使蛋白质中的酪氨酸水解12.下列哪种激素的受体属于胞内转录因子型:a.肾上腺素b.甲状腺激素c.胰岛素d.促发展甲状腺素e.胰高血糖素213.下列哪种物质不属于第一信使:a.1,25-(oh)2d3b.肾上腺素c.dagd.糖皮质激素e.生长激素14.下列哪种物质不属于第二信使:a.campb.ca2+c.cgmpd.ip3e.胰岛素15.经camp信号转导途径传递信号的激素受体:a.受体本身具备催化剂camp分解成的功能b.与激素融合后,放出催化亚基c.与催化剂camp分解成的酶就是各自单一制的d.特异性不低,可以融合多种激素e.受体与激素融合后,camp分解成一定减少16.g蛋白的α亚基与gtp结合后,一般不会发生:a.可以调节离子通道b.与βγ亚基离解c.可以转化成腺苷酸环化酶d.可抑制磷脂酶ce.可以调节受体与配体的亲和力17.关于g蛋白的叙述下列哪项是错误的:a.就是一类存有于细胞膜受体与效应蛋白之间的信号转导蛋白b.由α、β、γ三种亚基构成的异三聚体c.α亚基具有gtpase活性d.βγ亚基结合紧密e.α亚基-gdp对效应蛋白有调节作用18.小分子g蛋白就是指:a.g蛋白的α亚基b.crebc.蛋白激酶gd.rase.raf激酶19.腺苷酸环化酶主要存有于靶细胞的:a.细胞核b.细胞膜c.胞液d.线粒体基质e.微粒体20.camp发挥作用须要通过:a.葡萄糖激酶b.脂酸硫激酶c.蛋白激酶d.磷酸化酶e.氧化磷酸化321.camp对蛋白激酶a的作用方式是:a.与酶的活性中心融合b.与酶的催化亚基融合而进一步增强其活性c.并使pka磷酸化而转化成d.并使pka退磷酸化而转化成e.与酶的调节亚基融合后,催化亚基离解而转化成22.多肽激素诱导camp生成的过程是:a.直接激活腺苷酸环化酶b.直接抑制磷酸二酯酶c.激素-受体复合体活化腺苷酸环化酶d.激素-受体复合体使g蛋白结合gtp而活化,后者再激活ace.激素激活受体,受体再激活腺苷酸环化酶23.心房肽的第二信使就是:a.campb.cgmpc.ip2+3d.cae.dag24.no通过哪条信号转导途径发挥作用:a.camp信号转导途径b.cgmp信号转导途径c.dagmip3信号转导途径d.pi3k信号转导途径e.tpk信号转导途径25.催化剂pip2水解分解成ip3的酶就是:a.磷脂酶a1b.磷脂酶cc.蛋白激酶ad.蛋白激酶ce.26.ip3的轻易促进作用就是:a.促进内质网中ca2+的释放b.激活pkcc.推动ca2+与钙调蛋白融合d.并使细胞膜ca2+地下通道对外开放e.推动甘油二酯分解成27.ip3的生理功能是:a.就是细胞内储能物质b.就是肌醇的活化形式磷脂酶a24c.是激素作用于膜受体后的第二信使d.能直接激活pkae.是细胞膜的结构成分28.ip3受体坐落于:a.质膜b.细胞核膜c.内质网膜d.溶酶体膜e.核糖体29.关于第二信使dag的描述恰当的就是:a.由甘油三酯水解时生成b.由于分子小,可进入胞液c.只能由pip2+2水解而分解成d.可以提升pkc对ca的敏感性e.只与细胞早期反应的信号转导过程有关30.关于pkc的叙述下列哪项是错误的:a.可以催化剂效应蛋白的酪氨酸残基磷酸化b.与肿瘤发生密切相关c.就是一种ca2+/磷脂依赖型蛋白激酶d.dag可以调节其活性e.可以催化剂多种效应蛋白磷酸化31.下列物质中能直接参与激活pkc的是:a.campb.cgmpc.ca2+d.磷脂酰胆碱e.磷脂酰肌醇32.下列物质中与pkc激活无直接关系的是:a.dagb.campc.磷脂酰丝氨酸d.ca2+e.ip333.pka与pkc的共同之处是:a.均由4个亚基组成b.调节亚基富含半胱氨酸c.调节亚基有camp的结合位点d.均能够催化剂效应蛋白的丝氨酸或苏氨酸残基磷酸化e.均存有10多种同工酶34.pi3k的底物和产物不包括:5。
细胞的信号转导

4. 自分泌信号:与上述三类不同的是,信号发放细胞和靶
细胞为同类或同一细胞,常见于癌变细胞。
从溶解性来看又可分为脂溶性和水溶性两类:
脂溶性信号分子:如甾类激素和甲状腺素,可直接穿膜进入靶细胞 ,与胞内受体结合形成激素-受体复合物,调节基因表达。
其共同特点是: ①特异性 ②复杂性 ③时间效应
按产生和作用方式分:
1. 激素 :内分泌信号,经血液或淋巴循环转运,作用距离
远、范围大、持续时间长。如:胰岛素、甲状腺素、肾 上腺素等
2. 神经递质:突触分泌信号,作用时间、距离短,如: 乙
酰胆碱、去甲肾上腺素等
3. 局部化学介质 :旁分泌信号,通过细胞外液介导,作用
参与G蛋白偶联受体进行信号转导的第二信使有cAMP 、cGMP、三磷酸肌醇(IP3)和二酰基甘油(DAG )、Ca2+等。第二信使的作用是对胞外信号起转换和 放大的作用。
(一)cAMP信号途径
1、刺激性/抑制性激素和相应受体
Gs/ Gi
腺苷酸环化酶(AC):跨膜12次,在G蛋白激 活下,催化ATP生成cAMP。
Adenylate cyclase
2、依赖cAMP的蛋白激酶A(Protein Kinase A, PKA):由两个催化亚基和两个调节亚基组成。
•cAMP与调节亚基结合,使调节亚基和催化亚基解离, 释放出催化亚基,激活蛋白激酶A的活性。
3、环核苷酸磷酸二酯酶(PDE):降解cAMP生成5’-AMP ,终止其信号功能。
量氯离子和水分子持续转运入肠腔 ,引起严重
腹泻和脱水。
四、蛋白激酶功能异常
肿瘤促进剂佛波酯与DAG结构类似,取代其与 PKC结合而活化PKC,但不被降解,从而使PKC 不可逆活化,细胞不可控的生长、增殖。
生物化学第十五章 细胞信息传递

激素
(三)局部化学介质
又称旁分泌信号
特点 由体内某些普通细胞分泌; 不进入血循环,通过扩散作用到达 附近的靶细胞; 一般作用时间较短。
例如 生长因子、前列腺素等。
(四)气体号
例如 * NO合酶(NOS)通过氧化L-精氨酸 的胍基而产生NO *血红素单加氧酶氧化血红素产生的CO
激素结合区 铰链区
位于C端,结合激素、热休 克蛋白,使受体二聚化,激 活转录
核受体结构示意图
⑵ 相关配体 类固醇激素、甲状腺素和维甲酸等
⑶ 功能 多为反式作用因子,当与相应配
体结合后,能与DNA的顺式作用元件 结合,调节基因转录。
二、受体作用的特点
•高度专一性:受体选择性地与特定配体 结合。
•高亲和力:亲和常数Ka=[LR]/[L][R], Ka一般在108~1010L/mol
肾上腺素等) • 类固醇激素(如糖皮质激素、性激素等) • 脂酸衍生物(如前列腺素) • 气体(如一氧化氮、一氧化碳)等
分 类(根据细胞的分泌方式)
(一)神经递质 又称突触分泌信号
特点 由神经元细胞分泌;(神经元突触前膜释放) 通过突触间隙到达下一个神经细胞; 作用时间较短。
例如: 乙酰胆碱、去甲肾上腺素等
可与cAMP应答元件结合蛋白 (CREB)相 互作用而调节此基因的转录。
Gs
AC
ATP cAMP
CR CR
细胞膜
蛋白磷酸化
C
R 2cAMP
C
R 2cAMP
Pi Pi Pi
N
转录活化域
CREB
DNA结合域
细胞信号转导

特点:①特异性;②高效性;③被灭活性。
2 受体(receptor)
概念:受体是一种能够识别和选择性结合某种配体(信
号分子)的大分子物质,多为糖蛋白,一般至少 包括两个功能区域,与配体结合的区域和产生效 应的区域 。
类型:细胞内受体:识别和结合小的脂溶性信号分子
细胞表面受体:识别和结合亲水性的信号分子
细 胞
第 信九 号
章 转 导
第一节 细胞信号转导概述
一、细胞通讯与细胞识别
●细胞通讯(cell communication) ●细胞识别(cell recognition)
细胞通讯:一个细胞发出的信息通过介质 传递到另一个细胞产生相应反应的过程。
细胞通讯的三种方式及其反应
1、信号 分子;2、 细胞表面 分子粘着 或连接; 3、细胞 外基质
cAMP
cAMP作用的靶分子
cAMP激活蛋白激酶A
G蛋白偶联受体介导的产生cAMP的
信号转导系统
腺
信 号 分 子
受 体
苷 G蛋白 酸
环 化
酶
Pro
A
生
激
理
酶
Pro-p 功 能
调
节
Pro Pro-p
调节蛋白的磷酸化 ➢ e.g 糖原磷酸化激酶、糖原磷酸化酶
转录因子磷酸化 ➢ e.g CREB(CRE结合蛋白)磷酸化
Ras途径 1. 具有SH结构域的蛋白质 A. SH: SRC homology
癌基因 Src 中发现的一段序列
B. 二种结构域
SH2--- 识别磷酸化的Tyr残基 e.g. GAP
(和激活受体结合)
GRB2
SH3---- 与其它蛋白质结合
南开大学细胞生物学课件15第15章 细胞连接 6-22 puyue

选择素的三个结构域,通过凝集素结构 强地结合在一起,并从
域而识别细胞外表的糖蛋白及糖脂分子 相邻的内皮细胞进入组
上的糖配体。
织。
(三)免疫球蛋白超家族
某些成员属于CAM。作用不依赖Ca2+ 。 有的介导同亲性粘合,如各种神经粘附分子; 有的介导异亲性粘合,如细胞间粘附分子及 脉管细胞黏附分子,它们的配体分子为整合 素。
‘’
皮肤、肌肉、结缔组织,
常与I型胶原共分布
Ⅳ [a1(IV)]2[a2(IV)] 390nm 网状 C端球型 不形成纤维束 基膜
V [a1(V)]2[a2(V)] 390nm 细纤维 N端球状 大多间隙组织与I型胶原
[a3(V)]3
共分布
VI [a1(VI)][a2(VI)][a3(VI)]150nm 微纤维 N,C端球状, 大多间隙组织与I型
胶原的组装
细胞内发生的事件
通过分子内 交联
分泌到细胞外发生的事件 分子间交联
三链 装配
前胶原 肽酶
装配
装配
前体肽链 三股螺旋前胶原 胶原
胶原原纤维
胶原纤维
分子内交联
分子间交联
由前体肽转配成前胶原时,是通过分子内的交联完成的。而由 胶原装配成胶原原纤维那么是通过分子间交联。分子内交联是 指前胶原的三条链之间的赖氨酸残基的交联,分子间的交联是 指不同前胶原间的赖氨酸交联。分子间的交联使得在胶原的尾 部有一个小的间隙别离。平行排列的分子通过前胶原分子N端 与相邻原胶原分子C端的赖氨酸或羟赖氨酸间形成共价键加以 稳定。
M-钙粘素 R-粘素 Ksp-钙粘素 OB-钙粘素 VB-钙粘素 桥粒芯蛋白 桥粒芯胶黏蛋 白
哺乳动物细胞外表的主要钙粘素分子
主要分布组织 着床前的胚胎、上皮细胞(在带状粘合处特别集中) 胎盘滋养层细胞、心、肺、小肠 胚胎中胚层、神经外胚层、神经系统(脑、神经节)、 心、肺 成肌细胞、骨骼肌细胞 视网膜神经细胞、神经胶质细胞 肾 成骨细胞 脉管内皮细胞 桥粒 桥粒
生物化学 第15章细胞信号转导

目录
※ G蛋白(guanylate binding protein) 是一类和GTP或GDP相结合、位于细胞膜 胞浆面的蛋白质,由、、 三个亚基组成。 有两种构象:非活化型;活化型 On—off malecular switch
目录
两种G蛋白的活性型和非活性型的互变
前列腺素,腺甘为抑制性
目录
1971 年
激素作用的第二信使机制
1982 前列腺素及相关的生物活
诺贝尔奖获得者 Frederick Grant Banting John James Richard Macleod Henry Hallett Dale Otto Loewi Edward Calvin Kendall Philip Showalter Hench Tadeus Reichstein Sir Bernard Katz Ulf von Euler Julius Axelrod
Earl Wilber Sutherland
Sune K. Bergström 目 录
年 度 1992 年 1994 年
1998 年
2000 年
2001 年
重要发现
诺贝尔奖获得者
蛋白质可逆磷酸化调节机制
Edmond H. Fischer Edwin G. Krebs
G蛋白及其在信号转导中的 Alfred Gilman,Martin
2、 内分泌激素
又称内分泌信号(endocrine signal)
特点 由特殊分化的内分泌细胞分泌 ; 通过血液循环到达靶细胞 ; 大多数作用距离较长。
例如 胰岛素、甲状腺素、肾上腺素等
目录
3、局部化学介质 (生长因子、细胞因子)
又称旁分泌或自分泌信号(paracrine signal,autocrine signal 特点
细胞生物学_15程序性细胞死亡与细胞衰老

增大、染色深、核内有包含物 凝聚、固缩、碎裂、溶解 粘度增加、流动性降低 色素积聚、空泡形成 数目减少、体积增大 碎裂 消失 糖原减少、脂肪积聚 内陷
衰老细胞与“青年期”细胞的比 较
生长旺盛细胞富有 微绒毛
衰老细胞缺乏微绒毛, 体积缩小,呈园球形。
㈡分子水平的变化
⒈DNA:复制与转录受到抑制,但也有个别基因会异常 激活,端粒DNA丢失,线粒体DNA特异性缺失,DNA氧化、 断裂、缺失和交联,甲基化程度降低。 ⒉RNA:mRNA和tRNA含量降低。 ⒊蛋白质:含成下降,细胞内蛋白质发生糖基化、氨甲 酰化、脱氨基等修饰反应,导致蛋白质稳定性、抗原性, 可消化性下降,自由基使蛋白质肽断裂,交联而变性。氨 基酸由左旋变为右旋。 ⒋酶分子:活性中心被氧化,金属离子Ca2+、Zn2+、Mg2+、 Fe2+等丢失,酶分子的二级结构,溶解度,等电点发生改 变,总的效应是酶失活。 ⒌脂类:不饱和脂肪酸被氧化,引起膜脂之间或与脂蛋 白之间交联,膜的流动性降低。
肝细胞等寿命长于30天,为短于机体寿命的细胞。
皮肤表皮细胞、角膜上皮细胞、血细胞等为快速更 新的细胞,寿命短于30天。
二、体外培养细胞的衰老与Hayflick界限
Hayflick等人的研究证实:关于细胞增殖能力和寿 命是有限的观点。细胞,至少是培养的细胞,不是不死的, 而是有一定的寿命;细胞的增殖能力不是无限的,而是有 一定的界限,这就是著名的Hayflick界限。 他们的工作是对细胞“不死性”学说的彻底否定。研 究发现,物种寿命与培养细胞之间存在着正相关的关系, 即寿命愈长,其培养细胞的传代次数愈多。反之,其培养 细胞的传代次数愈少。
第二节
细胞衰老
一、细胞衰老的概念及特征
第15章--细胞信号转导习题

第十五章细胞信号转导复习测试(一)名词解释1. 受体2. 激素3. 信号分子4. G蛋白5. 细胞因子6. 自分泌信号传递7. 蛋白激酶8. 钙调蛋白9. G蛋白偶联型受体10. 向上调节11. 细胞信号转导途径12. 第二信使(二)选择题A型题:1. 关于激素描述错误的是:A. 由内分泌腺/细胞合成并分泌B. 经血液循环转运C. 与相应的受体共价结合D. 作用的强弱与其浓度相关E. 可在靶细胞膜表面或细胞内发挥作用2. 下列哪种激素属于多肽及蛋白质类:A. 糖皮质激素B. 胰岛素C. 肾上腺素D. 前列腺素E. 甲状腺激素3. 生长因子的特点不包括:A. 是一类信号分子B. 由特殊分化的内分泌腺所分泌C. 作用于特定的靶细胞D. 主要以旁分泌和自分泌方式发挥作用E. 其化学本质为蛋白质或多肽4. 根据经典的定义,细胞因子与激素的主要区别是:A. 是一类信号分子B. 作用于特定的靶细胞C. 由普通细胞合成并分泌D. 可调节靶细胞的生长、分化E. 以内分泌、旁分泌和自分泌方式发挥作用5. 神经递质、激素、生长因子和细胞因子可通过下列哪一条共同途径传递信号:A. 形成动作电位B. 使离子通道开放C. 与受体结合D. 通过胞饮进入细胞E. 自由进出细胞6. 受体的化学本质是:A. 多糖B. 长链不饱和脂肪酸C. 生物碱D. 蛋白质E. 类固醇7. 受体的特异性取决于:A. 活性中心的构象B. 配体结合域的构象C. 细胞膜的流动性D. 信号转导功能域的构象E. G蛋白的构象8. 关于受体的作用特点,下列哪项是错误的:A. 特异性较高B. 是可逆的C. 其解离常数越大,产生的生物效应越大D. 是可饱和的E. 结合后受体可发生变构9. 下列哪项与受体的性质不符:A. 各类激素有其特异性的受体B. 各类生长因子有其特异性的受体C. 神经递质有其特异性的受体D. 受体的本质是蛋白质E. 受体只存在于细胞膜上10. 下列哪种受体是催化型受体:A. 胰岛素受体B. 甲状腺激素受体C. 糖皮质激素受体受体D. 肾上腺素能受体E. 活性维生素D311. 酪氨酸蛋白激酶的作用是:A. 使蛋白质结合上酪氨酸B. 使含有酪氨酸的蛋白质激活C. 使蛋白质中的酪氨酸激活D. 使效应蛋白中的酪氨酸残基磷酸化E. 使蛋白质中的酪氨酸分解12. 下列哪种激素的受体属于胞内转录因子型:A. 肾上腺素B. 甲状腺激素C. 胰岛素D. 促甲状腺素E. 胰高血糖素13. 下列哪种物质不属于第一信使:A. 1,25-(OH)2 D3B. 肾上腺素C. DAGD. 糖皮质激素E. 生长激素14. 下列哪种物质不属于第二信使:A. cAMPB. Ca2+C. cGMPD. IP3E. 胰岛素15. 经cAMP信号转导途径传递信号的激素受体:A. 受体本身具有催化cAMP生成的功能B. 与激素结合后,释出催化亚基C. 与催化cAMP生成的酶是各自独立的D. 特异性不高,可结合多种激素E. 受体与激素结合后,cAMP生成一定增加16. G蛋白的α亚基与GTP结合后,一般不会发生:A. 可调节离子通道B. 与βγ亚基解离C. 可激活腺苷酸环化酶D. 可抑制磷脂酶CE. 可调节受体与配体的亲和力17. 关于G蛋白的叙述下列哪项是错误的:A. 是一类存在于细胞膜受体与效应蛋白之间的信号转导蛋白B. 由α、β、γ三种亚基构成的异三聚体C. α亚基具有GTPase活性D. βγ亚基结合紧密E. α亚基-GDP对效应蛋白有调节作用18. 小分子G蛋白是指:A. G蛋白的α亚基B. CREBC. 蛋白激酶GD. RasE. Raf激酶19. 腺苷酸环化酶主要存在于靶细胞的:A. 细胞核B. 细胞膜C. 胞液D. 线粒体基质E. 微粒体20. cAMP发挥作用需要通过:A. 葡萄糖激酶B. 脂酸硫激酶C. 蛋白激酶D. 磷酸化酶E. 氧化磷酸化21. cAMP对蛋白激酶A的作用方式是:A. 与酶的活性中心结合B. 与酶的催化亚基结合而增强其活性C. 使PKA磷酸化而激活D. 使PKA脱磷酸化而激活E. 与酶的调节亚基结合后,催化亚基解离而激活22. 多肽激素诱导cAMP生成的过程是:A. 直接激活腺苷酸环化酶B. 直接抑制磷酸二酯酶C. 激素-受体复合体活化腺苷酸环化酶D. 激素-受体复合体使G蛋白结合GTP而活化,后者再激活ACE. 激素激活受体,受体再激活腺苷酸环化酶23. 心房肽的第二信使是:A. cAMPB. cGMPC. IP3D. Ca2+E. DAG24. NO通过哪条信号转导途径发挥作用:A. cAMP信号转导途径B. cGMP信号转导途径C. DAG∕IP3信号转导途径 D. PI3K信号转导途径E. TPK信号转导途径25. 催化PIP2水解生成IP3的酶是:A. 磷脂酶A1 B. 磷脂酶C C. 蛋白激酶A D. 蛋白激酶C E. 磷脂酶A226. IP3的直接作用是:A. 促进内质网中Ca2+的释放B. 激活PKCC. 促进Ca2+与钙调蛋白结合D. 使细胞膜Ca2+通道开放E. 促进甘油二酯生成27. IP3的生理功能是:A. 是细胞内供能物质B. 是肌醇的活化形式C. 是激素作用于膜受体后的第二信使D. 能直接激活PKAE. 是细胞膜的结构成分受体位于:28. IP3A. 质膜B. 细胞核膜C. 内质网膜D. 溶酶体膜E. 核糖体29. 关于第二信使DAG的叙述正确的是:A. 由甘油三酯水解时生成B. 由于分子小,可进入胞液C. 只能由PIP水解而生成 D. 可提高PKC对Ca2+的敏感性2E. 只与细胞早期反应的信号转导过程有关30. 关于PKC的叙述下列哪项是错误的:A. 可催化效应蛋白的酪氨酸残基磷酸化B. 与肿瘤发生密切相关C. 是一种Ca2+/磷脂依赖型蛋白激酶D. DAG可调节其活性E. 可催化多种效应蛋白磷酸化31. 下列物质中能直接参与激活PKC的是:A. cAMPB. cGMPC. Ca2+D. 磷脂酰胆碱E. 磷脂酰肌醇32. 下列物质中与PKC激活无直接关系的是:A. DAGB. cAMPC. 磷脂酰丝氨酸D. Ca2+E. IP333. PKA与PKC的共同之处是:A. 均由4个亚基组成B. 调节亚基富含半胱氨酸C. 调节亚基有cAMP的结合位点D. 均能催化效应蛋白的丝氨酸或苏氨酸残基磷酸化E. 均有10多种同工酶34. PI3K的底物和产物不包括:A. IP3 B. PI-4-P C. PI-3,4-P2D. PI-4,5-P2E. PI-3,4,5-P335. 激活PDK的第二信使是:A. IP3 B. DAG C. Ca2+ D. NO E. PI-3,4,5-P336. 能催化PKB磷酸化修饰的激酶是:A. PKAB. PKCC. RafD. PDKE. PI3K37. 胞浆[Ca2+]升高的机制不包括:A. 电压门控钙通道开放B. 离子通道型受体开放C. 内质网膜上的IP3R开放 D. 内质网膜或肌浆网膜上的RyR开放E. Ca2+与CaM迅速解离38. 关于CaM的叙述错误的是:A. 广泛分布于真核细胞中B. 分子中有4个Ca2+的结合位点C. 与Ca2+结合后被激活D. 具有蛋白激酶活性E. 可激活CaM-PK39. 胰岛素受体β亚基具有下列蛋白激酶活性:A. PKAB. PKGC. PKCD. TPKE. CaMPK40. 与ERK信号转导途径无关的是:A. ShcB. SOSC. MEKD. STATE. Raf41. 类固醇激素和甲状腺激素能自由出入细胞而参与信号转导的主要原因是:A. 细胞膜上有其载体蛋白B. 不溶于水C. 在非极性溶剂中不溶解D. 有特殊的立体结构E. 所列都不对42. 不通过细胞膜受体发挥作用的是:A. 胰岛素B. 肾上腺素C. 1,25-(OH)2 D3D. 胰高血糖素E. 表皮生长因子43. 关于类固醇激素的作用方式的叙述正确的是:A. 活化受体进入核内需动力蛋白协助B. 受体与激素结合后可激活G蛋白C. 活化受体具有TPK活性D. 分子大,不能通过细胞膜E. 激素可进入核内,直接促进DNA转录44. 在激素通过胞内受体调节代谢的过程中相当于第二信使的是:A. 亲免素B. 受体-伴侣蛋白复合物C. 活化激素-受体复合物D. 动力蛋白E. 转录复合物45. 胞内受体介导的信号转导途径,其调节细胞代谢的方式主要是:A. 变构调节B. 特异基因的表达调节C. 蛋白质降解的调节D. 共价修饰调节E. 核糖体翻译速度的调节B型题:A. 与相应配体结合后,可通过Gs转导信号B. 与相应配体结合后,其细胞内区的TPK活性被激活C. 可感受电场的变化而控制通道的开关D. 经相应化学信号激活可开放离子通道E. 与相应配体结合后,可发挥转录因子的作用1. EGF受体:2. 配体门控离子通道:3. 糖皮质激素受体:E. GSHA. cAMPB. cGMPC. Ca2+D. PIP24. 激活PKA需:5. 激活PKC需:6. 激活PKG需:A. 使α亚基与效应蛋白解离B. 具有PKA活性C. 具有PKC活性D. 具有TPK活性E. 可激活腺苷酸环化酶7. G蛋白游离的α亚基-GTP:8. G蛋白结合GDP后:A. cAMPB. 胰岛素受体C. 肾上腺素D. IP3E. cGMP9. 具有TPK活性的是:10. 属于第一信使的是:A. 表皮生长因子B. cGMPC. IP3D. NOE. DAG11. 激活Ca2+信号转导途径的是:12. 激活ERK信号转导途径的是:A. IP3 B. Ca2+ C. DAG D. PI-3,4-P2E. cAMP13. 使内质网释放Ca2+的是:14. 激活CaM的是:15. PI3K的作用产物是:A. IRSB. MEKC. PKAD. Ras-GTPE. PDK16. 直接激活Raf的是:17. 直接激活PKB的是:A. 1,25-(OH)2 D3受体 B. 糖皮质激素受体 C. 胰岛素受体D. 雌激素受体E. 肾上腺素能受体18. 主要存在于胞浆中:19. 主要存在于胞核中:20. 在胞浆和胞核中均有分布:(三)问答题1. 试从细胞信号转导的角度阐述霍乱的发病机制。
生物化学试题及答案(15)---副本讲解

生物化学试题及答案(15)---副本生物化学试题及答案(15)第十五章细胞信息传递【测试题】一、名词解释1.细胞间信息物质2.细胞内信息物质3.第二信使4.receptor5.G protein 6.CaM 7.SH2 domain 8.TPK 9.PK 10.HRE二、填空11.G蛋白是十分重要的信号传导蛋白,由____种亚基组成,其____亚基能够与____或____结合,并具有____酶的作用。
12.与细胞中cAMP含量有关的酶是____和____。
13.PKA的激活剂是____,该蛋白质由____个亚基构成。
当1分子PKA结合____分子激活剂时,PKA被活化,然后使效应蛋白质的____氨基酸残基或____氨基酸残基磷酸化,从而调节物质代谢和基因表达。
14.PKC由____条多肽链组成,含____个催化结构域和____个调节结构域。
一旦PKC的调节结构域与____、____、和____结合,PKC即发生构象改变而暴露出活性中心。
15.心钠素与靶细胞膜上的受体结合后,能激活____酶,后者再催化____转变成____,然后再激活____,而使效应蛋白质磷酸化,产生生物学效应。
16.能使蛋白质分子中酪氨酸残基磷酸化的蛋白激酶是____,后者分两类,第一类位于细胞的____,称____,第二类位于细胞的____,称____。
17.NF-κB途径主要涉及____、____、____以及____的信息传递。
18.当肿瘤坏死因子等作用于相应受体后,可通过第二信使____等激活NF-κB途径。
其活化过程是通过____使其构象发生改变而从NF-κB脱落,NF-κB得以活化。
活化的NF-κB进入____,形成环状结构与____接触,并启动或抑制有关基因的转录。
19.目前已知通过细胞内受体调节的激素有____、____、____、____、____、____和____等。
胞内受体分两类,它们是____和____。
生物化学第十五章

4.铰链区
位于 DNA 结合区和激素结合区之间的短序列,可能有与转录因子相互作用和触 发受体向核内移动的功能。
二、受体与配体结合的特点
1.高度专一性 即受体对配体有严格的选择。受体选择性地与特定配体结合,一种信号分 子到达细胞时,只作用于与之相应的受体,如果细胞没有相应受体,就不会对其发生反应。 这种特异性的识别和结合保证了调控精确性。这种选择性是由分子的空间构象所决定的, 两者在构象上有一定的互补性,互补程度越大,两者越易发生特异结合。但特异性并非完 全绝对的,在某种情况下同一受体可结合配体类似物,如糖皮质激素受体主要与糖皮质激 素结合,但也可以与盐皮质激素结合;同一配体也可能有两种受体,如乙酰胆碱有 M 型 和 N 型两种受体。 2.高度亲和力 无论是膜受体还是胞内受体,它们与配体间的亲和力都很强。体内信息分 子的浓度非常低,通过与配体的高亲和力结合及随后的级联瀑布反应产生显著的生物学效 应,保证了很低浓度的信号分子也可充分起到调控作用。亲和力大小通常以解离常数 (dissociation constant,Kd)表示,Kd 越小亲和力越大,通常 Kd 在 10-11~10-9mol/L 之间。
2.DNA结合区
靠近肽链中部,由 66-68 个氨基酸残DNA 的大沟内。各种受体中此功能区同源达 40%~94%。
3. 转录激活区
位于 N 末端。含 25-603 个氨基酸残基,氨基酸排列顺序不规则,高度可变区。 这一区域具有转录激活作用。多数受体的这一区域还是抗体结合部位。
3.单跨膜受体
一类是具有酶活性的受体,即受体型酪氨酸蛋白激酶(receptor tyrosine protein kinase, RTPKs), RTKs 是最大的一类酶联受体, 它既是受体,又是酶,所以又称受体酶或催化 性受体。所有的 RTPKs 都是由三个部分组成,即含有配体结合位点的细胞外结构域、单 次跨膜的疏水α-螺旋区、含有酪氨酸蛋白激酶活性的细胞内结构域(图 15-4)。这类受体 包括胰岛素受体和表皮生长因子受体等。受体与相应配体结合后,受体二聚化或多聚化, 表现酪氨酸蛋白激酶激活,催化受体自身和底物蛋白的特定酪氨酸残基磷酸化,因此,受 体型酪氨酸蛋白激酶具有催化型受体之称。 另一类称为非受体型酪氨酸蛋白激酶,其中受体没有催化活性,但受体的膜内侧偶联一个 酶分子,所以又称为受体-偶联酶。这类受体包括生长激素受体、干扰素受体等,与配体 结合后,可与酪氨酸蛋白激酶偶联而表现出酶活性。 单跨膜受体与细胞的增殖、分化、分裂及癌变有关。能与这类受体结合的配体主要有白细 胞介素等细胞因子、生长因子和胰岛素等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
转录因子CREB
转录调控
蛋白激酶G是cGMP的靶分子
cGMP作用于cGMP依赖性蛋白激酶(cGMP-
dependent protein kinase,cGPK),即蛋白激
酶G(protein kinase G,PKG)。
目录
cGMP激活PKG示意图
4.蛋白激酶不是cAMP和cGMP的唯一靶分子 一些离子通道也可以直接受cAMP或cGMP的 别构调节。 •视杆细胞膜上富含cGMP-门控阳离子通道 •嗅觉细胞核苷酸-门控钙通道
1986年
生长因子
年度
1992年
重要发现
蛋白质可逆磷酸化调节机制
诺贝尔奖获得者
Edmond H. Fischer Edwin G. Krebs Alfred Gilman,Martin Rodbell Robert F. Furchgott,Louis J. Ignarro,Ferid Murad
膜受体介导的信号向细胞内,尤其是细胞核的 转导过程需要多种分子参与,形成复杂的信号 转导网络系统。 构成这一网络系统的是一些蛋白质分子(信号 转导分子,signal transducer)和小分子活性 物质(第二信使,second messenger)。
目录
在细胞中,各种信号转导分子相互识别、相 互作用将信号进行转换和传递,构成信号转 导通路(signal transduction pathway)。 不同的信号转导通路之间发生交叉调控 ( crosstalking ),形成复杂的信号转导网络 (signal transduction network)系统 。
目录
3.环核苷酸在细胞内调节蛋白激酶活性
环核苷酸作为第二信使的作用机制:cAMP和
cGMP在细胞可以作用于蛋白质分子,使后者
发生构象变化,从而改变活性。
蛋白激酶是一类重要的信号转导分子,也是许
多小分子第二信使直接作用的靶分子。
目录
蛋白激酶A是cAMP的靶分子
cAMP作用于cAMP依赖性蛋白激酶(cAMPdependent protein kinase,cAPK),即蛋白激 酶A(protein kinase A,PKA)。 PKA活化后,可使多种蛋白质底物的丝氨酸或 苏氨酸残基发生磷酸化,改变其活性状态,底 物分子包括一些糖、脂代谢相关的酶类、离子 通道和某些转录因子 。
目录
1.核苷酸环化酶催化cAMP和cGMP生成
(adenylate cyclase,AC) (guanylate cyclase,GC)
目录
2.细胞中存在多种催化环核苷酸水解的磷酸二酯酶 细胞内有水解cAMP和cGMP的磷酸二酯酶 (phosphodiesterase,PDE); PDE对cAMP和cGMP的水解具有相对特异性; 如,PDE2可水解cGMP和cAMP, cAMP特异性PDE有PDE3和PDE4。
第15章
细胞信息转导
Cellular Signal Transduction
目录
细胞通讯(cell communication)是体内一部
分细胞发出信号,另一部分细胞(target cell)
接收信号并将其转变为细胞功能变化的过程。 细胞针对外源信息所发生的细胞内生物化学 变化及效应的全过程称为信号转导( signal transduction)。
目录
年度
1923年 1936年 1950年
重要发现
胰岛素 神经冲动的化学传递 肾上腺皮质激素 神经末梢的神经递质的合成、释 放及灭活 激素作用的第二信使机制 前列腺素及相关的生物活性物质
诺贝尔奖获得者
Frederick Grant Banting John James Richard Macleod Henry Hallett Dale Otto Loewi Edward Calvin Kendall Philip Showalter Hench Tadeus Reichstein
• 4-磷酸磷脂酰肌醇(PI-4-phosphate,PIP) • 磷脂酰肌醇-4,5-二磷酸(phosphatidylinositol -4,5-
diphosphate,PIP2)
• 肌醇-1,4,5-三磷酸(Inositol-1,4,5-triphosphate,IP3)
这些脂类衍生物都是由体内磷脂代谢产生的。
二是转换配体信号,使之成为细胞内分子可识 别的信号,并传递至其他分子引起细胞应答。
目录
受体与信号分子结合的特性:
•高度专一性 • 高度亲和力
• 可饱和性
• 可逆性 • 特定的作用模式
配体-受体结合曲线
目录
(二)受体既可以位于细胞膜也可以位于细胞内
受体按照其在细胞内的位臵分为:
细胞表面受体
种细胞通讯方式称为膜表面分子接触通讯,
也是一种细胞间直接通讯。
目录
T淋巴细胞
• 属于这一类通讯的有:
靶细胞
相邻细胞间粘附因子
的相互作用、T淋巴细
胞与B淋巴细胞表面分
子的相互作用等。
目录
二、细胞经由特异性受体接收细胞外信号
(一)化学信号通过受体在细胞内转换和传递
受体( receptor )是细胞膜上或细胞内能识别 外源化学信号并与之结合的成分,其化学本质 是蛋白质,个别糖脂 。 受体的作用: 一是识别外源信号分子,即配体(ligand);
1994年
1998年
G蛋白及其在信号转导中的作用
一氧化氮是心血管系统的信号分 子
2000年
2001年 2003 2004
神经系统有关信号转导
细胞周期的关键调节分子 细胞膜离子通道作用机制 嗅受体及其作用机制
Arvid Carlsson,Paul Greengard,Eric R. Kandel
Leland H. Hartwell R. Timothy Hunt Paul M. Nurse Peter Agre Roderick MacKinnon Richard Axel,Linda B. Buck
化学信号通讯是生物适应环境不断变异、进化 的结果。
•单细胞生物与外环境直接交换信息。
•多细胞生物中的单个细胞不仅需要适应环
境变化,而且还需要细胞与细胞之间在功 能上的协调统一。
目录
多细胞生物细胞间的联系
细胞与细胞的直接联系:物质直接交换,或者 是通过细胞表面分子相互作用实现信息交流。 激素调节:适应远距离细胞之间的功能协调的 信号系统。
1970年 1971年 1982年
Sir Bernard Katz Ulf von Euler Julius Axelrod
Earl Wilber Sutherland
Sune K. Bergströ m Bengt I. Samuelsson John R. Vane
Stanley Cohen Rita Levi-Montalcini
接收的是不能进入细胞的水溶性化学信号分子和其它细 胞表面的信号分子,如生长因子、细胞因子、水溶性激素分 子、粘附分子等。 受体在膜表面的分布可以是区域性的,也可以是散在的。
细胞内受体
接收的信号是可以直接通过脂双层胞膜进入细胞的脂 溶性化学信号分子,如类固醇激素、甲状腺素、维甲酸等。
目录
三、信号分子结构、含量和分布变化是 信号转导网络工作的基础
作用距离 受体位臵 举例
nm m 膜受体 膜或胞内受体 乙酰胆碱 胰岛素 谷氨酸 生长激素
m 膜受体 表皮生长因子 神经生长因子
目录
无论是激素还是细胞因子,在高等动物体内的 作用方式都具有网络调节特点。 •一种细胞因子或激素的作用始终会受到其他 细胞因子或激素的影响,或抑制,或促进。
•发出信号的细胞随时又受到其他细胞信号的
目录
细胞信号转导的基本方式示意图
信号转导网络
信号接收
信号转导
NH2 m7G AAAAA
细胞骨架
转录因子 染色质相关蛋白 RNA加工蛋白 RNA转运蛋白 细胞周期蛋白
Translation
应答反应
细胞在转导信号过程中所采用的基本方式包括:
①改变细胞内各种信号转导分子的构象 ②改变信号转导分子的细胞内定位 ③促进各种信号转导分子复合物的形成或解聚 ④改变小分子信使的细胞内浓度或分布
目录
cAMP激活 PKA影响糖代谢示意图
PKA底物举例
底物(酶或蛋白质)名称 糖原合酶 磷酸化酶 b 激酶 受调节的通路 糖原合成 糖原分解
丙酮酸脱氢酶
激素敏感脂酶 酪氨酸羟化酶 组蛋白H1 、组蛋白 H2B 蛋白磷酸酶1抑制因子1
丙酮酸→乙酰辅酶A
甘油三脂分解和脂肪酸氧化 多巴胺、肾上腺素和去甲肾上 腺素合成 DNA聚集 蛋白去磷酸化
调节。
目录
网络调节使得机体内的细胞因子或激素的作用
都具有一定程度的冗余和代偿性,单一缺陷不 会导致对机体的严重损害。
目录
(三)细胞表面分子也是重要的细胞外信号
细胞与细胞直接相互作用也属于细胞外信号。 •细胞通过细胞膜表面的蛋白质、糖蛋白、蛋 白聚糖与相邻细胞的膜表面分子特异性地识 别和相互作用,达到功能上的相互协调。这
2004
泛素介导的蛋白质降解
Aaron Ciechanover,Avram Hershko,Irwin Rose
第一节
细胞信号转导概述
The General Information of Signal Transduction
目录
细胞信号转导的基本路线 细胞外信号
受体 细胞内多种分子的浓度、活 性、位臵变化 细胞应答反应
目录
第二节
细胞内信号转导相关分子
Intracellular Signal Molecules