灰度图像二值化算法研究
灰度图像二值化算法研究
灰度值作 为最佳阈值。但当图像有噪声或光照不均匀时 ,图像 的灰 同的系数,从而得到 比较理想的效果。
度直方图往往没有明显的双 峰或有多个峰 ,此时该 方法受到极大 的 2.3与 Otsu类似的算法
限制 ,可采用局部 阈值算法。局部 阈值算法是将 图像划分 为若干子 图像 ,结合 当前考察 的像素点和其邻域像 素点 的灰度值 ,确 定考察
关 键词 :二 值化 ;Otsu算 法;Bersen算法
Key words:binarization;Otsu algorithm ;Bersen a lgorithm
中图分类号 :TP391.41
文献标识码 :A
文章 编号 :1006—431 1(2010)05—0142—02
1 基本 理 论
概率600=∑P。,to ∑P。=1
i=0
l=t+1
t
M 一1
均值Ixo=∑ip =∑ip
类 间 方 差 (t)‘=tO0t o1( 一 1)
(2) (3) (4)
值 化的基 本过程 如下 :①对 原始图像作中低通滤波 ,进行 图像 的预 最佳阈值 T就是使类问方差最大的 t的取值 ,即 T=arg maxo"(t)
G。和 G 类出现 的概率及均值 为
1.1阈值 及 二值 化 图像二值化是 图像处理 的基本技 术,而选取合适的分割阈值 可 以说是图像 二值化 的重要步骤。对于灰度 图像 ,选择合适的一个或 几个灰度值 t(0≤t≤255),将 目标和 背景 分开 ,这个灰度值 t称 为阈 值。如果只选择一个 阈值 ,就称 为图像的二值化 。二值化又称为灰度 分 划 ,凡是 需 要做 文 字识 别 或 条 纹 辨认 的 图像 ,皆可 利 用 此 方 式。二
二值化处理的原理及其应用
二值化处理的原理及其应用一、什么是二值化处理二值化处理,也称为二值图像处理,指的是将一副灰度图像转化为只包含两种颜色的图像。
通常情况下,这两种颜色是黑色和白色,也可以是其他两种自定义颜色。
二、二值化处理的原理二值化处理的原理基于图像的灰度分布。
在灰度图像中,每个像素点的灰度值都是介于0(黑色)和255(白色)之间的一个数值。
二值化处理通过设定一个阈值将灰度图像的像素点分为两个类别:低于阈值的像素点被设置为0(黑色),高于阈值的像素点被设置为255(白色)。
常用的二值化处理算法有全局阈值算法、局部阈值算法和自适应阈值算法。
1. 全局阈值算法全局阈值算法是最简单的二值化算法之一。
它假设整个图像的前景和背景的灰度值之间存在一个明显的分界点,通过选取合适的阈值将图像二值化。
常见的全局阈值算法有基于固定阈值的大津算法、基于最大熵的最大类间方差法等。
这些算法通过计算像素灰度值的全局分布,选择一个合适的阈值,以实现二值化处理。
2. 局部阈值算法局部阈值算法考虑到图像不同区域的灰度分布不一致性,采用不同的阈值对图像进行分割。
常用的局部阈值算法有均值阈值法、中值阈值法等。
这些算法通过计算像素周围邻域的平均灰度值或中值,以确定每个像素的二值化阈值。
这样可以更好地适应图像中不同区域的灰度特征,提高二值化效果。
3. 自适应阈值算法自适应阈值算法是对全局阈值算法和局部阈值算法的一种改进。
它根据每个像素的局部特征,自适应地选择阈值。
常见的自适应阈值算法有基于局部均值的局部二值化算法、基于局部方差的局部二值化算法等。
这些算法通过考虑像素周围邻域的灰度统计特征,提高了对不同区域的灰度分布的适应能力。
三、二值化处理的应用二值化处理在图像处理和计算机视觉领域被广泛应用。
以下是几个常见的应用场景:1.文字识别:二值化处理可以将图像中的文字区域与背景区域分开,使得文字更容易提取和识别。
2.边缘检测:二值化处理可以将图像中的边缘区域提取出来,用于图像的边缘检测和轮廓分析。
数字图像处理中的二值化技术研究
数字图像处理中的二值化技术研究数字图像处理是指对数字化的图像进行各种算法处理,以改善图像质量、实现目标应用和进行图像分析等。
其中,二值化技术是数字图像处理中应用最为广泛的技术之一。
本文将从二值化的基本原理、常见算法、优化技术以及应用等方面进行综述。
一、二值化的基本原理二值化是将一幅灰度图像转换成只有两种颜色的图像,常见的是黑白二值图像。
它的目的是将灰度范围较大的图像转换为仅包含两种灰度值的图像,以便进行图像分析和处理。
二值化的基本原理就是根据一定的阈值将像素点的灰度值分为两类,一类是大于等于阈值的像素点,另一类是小于阈值的像素点。
然后将这两类像素点分别用黑色和白色进行表示,从而得到一幅二值图像。
二、常见的二值化算法1.全局阈值法全局阈值法也称为固定阈值法,是最简单、最基本的二值化算法之一。
它的原理是将整幅图像的灰度直方图进行分析,将图像中所有像素的灰度值设置为一个固定的阈值,一般取灰度直方图的平均值或中值。
然后对于灰度值大于等于该值的像素点置为白色,灰度值小于该值的像素点置为黑色。
但这种算法容易受到光照不均匀、噪声较多等因素的影响,产生误判。
2.手动阈值法手动阈值法是根据观察或经验设置阈值,也称为交互式的阈值法。
它适用于像素灰度值分布不均匀,且图像背景和目标差异大的情况。
3.自适应阈值法自适应阈值法是根据图像在局部区域内的灰度值特征进行划分,常见的有局部均值法和Otsu法。
局部均值法是将像素点周围一定大小的区域内的灰度值作为阈值,并将该像素点二值化。
这种算法可以对灰度分布不均匀、光照不均匀等情况适用。
Otsu法是利用图像中目标与背景之间灰度值分布的偏差,自适应地确定一个能够最大程度区分两个类别的阈值。
4.基于形态学的阈值法形态学阈值法基于二值图像形态学操作的方法,能够有效去除噪声和骨骼化等图像处理,并能够保留目标的边界。
它的核心思想是基于图像特征对阈值进行判断,通常是先对图像进行形态学膨胀操作,然后求出局部的最大值,作为阈值进行二值化操作。
sauvola方法
sauvola方法Sauvola方法是一种常用的图像二值化算法,主要用于将灰度图像转化为二值图像。
该方法基于局部自适应阈值的概念,通过对图像局部区域进行像素阈值计算,从而实现二值化处理。
Sauvola方法最早由J. Sauvola等人于2000年提出,它的主要思想是根据局部区域的像素灰度值分布情况来确定每个像素的阈值。
与传统的全局阈值方法相比,Sauvola方法能够更好地处理光照不均匀的图像。
Sauvola方法的核心是计算局部区域的像素阈值。
对于图像中的每个像素,Sauvola方法首先选择一个固定大小的窗口,然后计算窗口内像素的平均灰度值和标准差。
根据这些统计数据,可以使用以下公式来计算每个像素的阈值:T(x, y) = mean(x, y) * (1 + k * ((stddev(x, y) / R) - 1))其中,T(x, y)表示像素(x, y)的阈值,mean(x, y)表示窗口内像素的平均灰度值,stddev(x, y)表示窗口内像素的标准差,k是一个用户定义的参数,用于控制阈值的敏感度,R是一个用户定义的参数,用于调整阈值的范围。
在计算完所有像素的阈值之后,可以将每个像素的灰度值与对应的阈值进行比较,将大于阈值的像素设为白色,将小于等于阈值的像素设为黑色,从而得到二值图像。
Sauvola方法在图像二值化中具有较好的效果,尤其适用于处理光照不均匀的图像。
通过局部自适应阈值的计算,Sauvola方法能够更好地保留图像的细节信息,同时有效地抑制噪声的干扰。
除了Sauvola方法,还有许多其他的图像二值化算法,如Otsu方法、Niblack方法等。
每种方法都有其独特的优势和适用场景,选择合适的算法取决于具体的应用需求和图像特点。
Sauvola方法是一种常用的图像二值化算法,通过局部自适应阈值的计算实现对灰度图像的二值化处理。
它能够更好地处理光照不均匀的图像,保留图像的细节信息,抑制噪声的干扰。
matlab灰度处理二值化处理
Matlab在图像处理领域有着广泛的应用,其中灰度处理和二值化处理是常见的图像处理方法之一。
本文将详细介绍Matlab中的灰度处理和二值化处理的原理和实现方法。
一、灰度处理1. 灰度图像的概念灰度图像是指图像中每个像素的灰度值介于0-255之间的图像。
在灰度图像中,0代表黑色,255代表白色,中间的灰度值代表了不同程度的灰色。
2. 灰度处理的原理灰度处理是将彩色图像转换为灰度图像的过程。
在Matlab中,可以通过以下公式实现灰度处理:灰度值 = 0.299 * R + 0.587 * G + 0.114 * B其中,R、G、B分别代表彩色图像中的红色、绿色和蓝色分量。
通过对每个像素的RGB分量进行加权求和,可以得到对应的灰度值。
3. 灰度处理的实现在Matlab中,可以使用`rgb2gray`函数实现灰度处理。
具体的代码如下:```matlab读取彩色图像rgbImage = imread('example.jpg');灰度处理grayImage = rgb2gray(rgbImage);显示灰度图像imshow(grayImage);```二、二值化处理1. 二值化图像的概念二值化图像是指将灰度图像中的像素值转换为0或255的图像。
在二值化图像中,像素值为0代表黑色,像素值为255代表白色。
2. 二值化处理的原理二值化处理的目的是将灰度图像中的灰度值转换为0或255。
一般可以通过设置一个阈值,将低于阈值的像素值设为0,将高于阈值的像素值设为255。
3. 二值化处理的实现在Matlab中,可以使用`im2bw`函数实现二值化处理。
具体的代码如下:```matlab读取灰度图像grayImage = imread('example_gray.jpg');设置阈值threshold = 128;二值化处理binaryImage = im2bw(grayImage, threshold/255);显示二值化图像imshow(binaryImage);```三、总结本文详细介绍了Matlab中灰度处理和二值化处理的原理和实现方法。
数字图像处理中的二值化算法研究
数字图像处理中的二值化算法研究数字图像处理是一种将数字信号进行转换和处理的技术,其中二值化算法是数字图像处理中最基本的算法之一。
在数字图像处理中,二值化是将一张彩色或灰度图像转换成只包含黑白两种颜色的图像。
这篇文章将讨论数字图像处理中的二值化算法研究,重点探讨二值化算法的基本原理、常见的二值化算法以及它们的优缺点。
一、二值化算法的基本原理二值化算法是将一张彩色或灰度图像转换为只包含黑色和白色的图像。
这仅仅是将像素值分为两类,其中一个像素集合表示白色,另一个表示黑色。
二值化的原理是将灰度图像中亮度值相近的像素映射为同一种颜色,以达到压缩图像数据并提高图像处理速度的目的。
二、常见的二值化算法1、全局阈值法全局阈值法是通过计算整个图像的灰度平均值来确定二值化的阈值。
该算法简单易用,但它假定图像的背景和目标的亮度值之间存在一个确定的边界,这在实际应用中并不总是正确的。
2、自适应阈值法自适应阈值法是针对全局阈值法的不足,通过对每个像素周围的像素值的统计分布进行分析,自适应地确定像素的阈值。
该算法对于图像的光照变化和背景模糊有很好的鲁棒性。
3、Otsu算法Otsu算法是一种自适应的阈值算法,通过最小化类内方差和类间方差的和来确定阈值。
这个算法假设图像存在不同的颜色区域,旨在找到阈值,以最大化识别两个区域的差异。
三、二值化算法的优缺点1、全局阈值法的优点是简单易用,运算速度快,因此非常适合处理简单的图像。
但是,它不能很好地处理灰度变化较大的图像和背景复杂的图像。
2、自适应阈值法比全局阈值法更适用于处理复杂的图像,由于每个像素的阈值是基于周围像素的,具有更好的图像复杂性,然而,该算法对于图像的光照变化较大的情况也有一定的局限。
3、Otsu算法能够通过最小化类内方差和类间方差的和来确定阈值。
该算法对于事先未知的图像类型以及图像颜色区域的不均衡分布具有适应性和鲁棒性,是一种广泛应用于图像二值化中的方法。
四、二值化算法的应用二值化算法在字符识别、边缘检测等领域中有着广泛的应用。
niblack二值化分割算法详解
niblack二值化分割算法详解Niblack二值化分割算法是一种常用的图像处理算法,用于将灰度图像转化为二值图像。
该算法基于局部阈值的概念,通过计算每个像素点周围区域的灰度均值和标准差,来确定该像素点的阈值,从而实现图像的分割。
Niblack算法的核心思想是将图像分为多个小的局部区域,然后计算每个区域的灰度均值和标准差。
根据这些统计值,可以得到每个像素点的阈值。
具体的计算公式如下:T(x, y) = μ(x, y) + k * σ(x, y)其中,T(x, y)表示像素点(x, y)的阈值,μ(x, y)表示像素点(x, y)周围区域的灰度均值,σ(x, y)表示像素点(x, y)周围区域的灰度标准差,k是一个可调节的参数,用于控制阈值的灵敏度。
在实际应用中,通常将图像分为多个大小相等的小区域,然后计算每个区域的灰度均值和标准差。
根据计算得到的阈值,将图像中的像素点进行二值化处理,即将灰度值大于阈值的像素点设为白色,灰度值小于等于阈值的像素点设为黑色。
Niblack算法的优点是简单易懂,计算速度快,适用于各种类型的图像。
然而,由于该算法是基于局部阈值的计算,对于光照不均匀或者噪声较多的图像,可能会产生较大的误差。
因此,在实际应用中,可以根据具体情况选择合适的参数值,或者结合其他图像处理算法进行优化。
除了Niblack算法,还有一些其他常用的二值化分割算法,如Sauvola算法、Otsu算法等。
这些算法在具体实现上有所不同,但基本思想都是通过计算像素点周围区域的统计值来确定阈值,从而实现图像的分割。
总之,Niblack二值化分割算法是一种简单有效的图像处理算法,可以将灰度图像转化为二值图像。
通过计算每个像素点周围区域的灰度均值和标准差,来确定该像素点的阈值,从而实现图像的分割。
在实际应用中,可以根据具体情况选择合适的参数值,或者结合其他图像处理算法进行优化,以达到更好的分割效果。
灰度图像二值化处理
内蒙古科技大学本科毕业论文二〇一二年四月摘要本文介绍了图像及数字图像处理技术的一些概念和相关知识;还介绍了灰度图像和图像二值化的概念及其表示形式;对图像灰度化和图像二值化的优缺点作了简单的的介绍;重点介绍了灰度图像的二值化方法研究,其包括的内容有二值化研究动态和研究方法;对全局阈值法;局部阈值法这两种方法进行了研究讨论。
关键字:图像处理、二值化、图像、阈值AbstractThis paper introduces the image and digital image processing technology of some concepts and related knowledge; also introduced the gray-scale image and the images of the two values of the concept and its representation; grayscale images and images of the two values of the advantages and disadvantages to make simple introduction; mainly introduces two gray image binarization method, its includes the contents of two values of research and research methods; the global threshold method; local threshold method, the two methods are discussed. Keywords:image processing, image, threshold value of two,目录引言 (5)1.灰度图像与二值图像 (6)1.1图像 (6)1.2数字图像 (6)1.2.1彩色图像 (6)1.2.2灰度图像 (7)1.2.3二值图像 (7)2.灰度图像二值化方法研究 (8)2.1全局阈值法 (8)2.1.1全局阈值法的概念 (8)2.1.2全局阈值法的方法 (9)2.1.3全局阈值法的优缺点介绍及阈值选取 (11)2.2局部阈值法 (11)2.2.1局部阈值法的概念 (11)2.2.2局部阈值法的方法 (12)2.2.3局部阈值法的优缺点介绍 (12)3.灰度图像二值化的应用 (12)结束语 (14)参考文献 (15)致谢 (16)引言图像二值化是图像处理中的一项基本技术,也是很多图像处理技术的预处理过程。
图像处理中的图像二值化算法
图像处理中的图像二值化算法随着科技的发展,图像处理技术应用越来越广泛。
作为一项基础技术,图像二值化算法在图像处理中扮演着非常关键的角色,它可以将图像分割成黑白两种颜色,也就是将图像中的灰度值转化为0和1,简化了后续的处理流程。
本文将介绍图像二值化算法的基本原理和应用情况。
一、二值化算法的基本原理在图像中,每个像素都有一定的灰度值,在8位灰度图像中,灰度值的范围在0-255之间,其中0是代表黑色,255代表白色。
当我们需要处理一张图片时,如果直接对每一个灰度值进行处理,那么处理的过程就会非常繁琐,因此,我们需要将图像灰度值转化为0和1两种数字进行处理。
常见的二值化算法有全局阈值算法、局部阈值算法、自适应阈值算法、基于梯度算法等。
其中,全局阈值算法是最基本、最简单的一种算法。
它将整张图像分成黑白两个部分,通过将整个图像的像素点的灰度值与一个固定的阈值进行比较,如果像素点的灰度值大于阈值,就将该像素点的灰度值置为1,否则置为0。
使用全局二值化算法的步骤如下:1.将图像读入到内存中;2.将图像转化为灰度图像;3.计算整个图像的平均灰度值,该平均灰度值作为全局阈值;4.将图像中每个像素点的灰度值与该全局阈值进行比较,灰度值大于等于该全局阈值的像素点赋值为255(代表白色),小于该阈值的像素点赋值为0(代表黑色);5.输出处理后的图像。
当然,这种方法的缺点也非常明显,那就是无法适应不同场合下的图像处理需求,处理效果难以保证。
因此,我们需要更为灵活的算法和方法来进行二值化处理。
二、不同类型的二值化算法1.基于直方图的全局阈值法二值化算法中的全局阈值算法通常是将整个图像分成两类像素:一类像素比较暗,另一类像素比较亮。
在直方图中,该分割就是直方图上的两个峰。
我们可以通过直方图分析来确定这个阈值,并将灰度值低于阈值的像素变为黑色,将灰度值高于阈值的像素变为白色。
对于图像I(x,y),它的灰度直方图h(i)可以表示为:h(i) = N(i) / MN (i=0,1,…,L-1)其中N(i)是图像中所有像素灰度值为i的像素数量,MN是总的像素数量,L是灰度级别数量(在8位图像中,L等于256)然后我们需要确定一个阈值T,所有像素点的灰度值小于T的变为黑色,大于等于T的变为白色。
灰度图像二值化方法
1. 双峰法
在一些简单的图像中,物体的灰度分布比较有规律,背景 与各个目标在图像的直方图各自形成一个波峰,即区域与 波峰一一对应,每两个波峰之间形成一个波谷。那么,选 择双峰之间的波谷所代表的灰度值T作为阈值,即可实现 两个区域的分割。如图1所示。
255 (白) f(x,y) ≧T g(x,y)= 0 (黑) f(x,y) <T
M1
H pi lnpi i0
则目标O和背景B的熵函数分别为:
HOt i t0P pti lnP pti ln P t H P tt
H B t i L t 1 1 1 p iP tln 1 p iP t ln 1 P t H 1 P H tt
二值化的基本过程如下:
• 对原始图像作中低通滤波,进行图像的预处理,降低或去除噪声; • 用算法确定最佳阈值T; • 凡是像素的灰度值大于这个阈值的设成255,小于这个阈值的设成0。
这样处理后的图像就只有黑白两色,从而将灰度范围划分成目标和 背景两类,实现了图像的二值化。
255 (白) f(x,y) ≧T g(x,y)= 0 (黑) f(x,y) <T
概率: 平均灰度值:
t
0 pi i0
t
u0 ipi i0
M1
1 pi 10 it1
M 1
u1 ipi it 1
3. 最大类间方差法(大津法或Otsu法)
图像的总平均灰度为:
u0u01u1
间类方差为:
g ( t ) 0 u 0 u 2 1 u 1 u 2 0 1 u 0 u 1 2
需要预先知道目标区域的P值,因此成为P参数法。
3.大津法(Otsu法或最大类间方差法)
【数字图像处理】灰度图像二值化
【数字图像处理】灰度图像⼆值化灰度图像每副图像的每个像素对应⼆维空间中⼀个特定的位置,并且有⼀个或者多个与那个点相关的采样值组成数值。
灰度图像,也称为灰阶图像,图像中每个像素可以由0(⿊)到255(⽩)的亮度值(Intensity)表⽰。
0-255之间表⽰不同的灰度级。
灰度图像⼆值化⼆值化:以⼀个值(阈值)为基准,⼤于(等于)这个值的数全部变为是1(或者0),⼩于等于这个数的就全部将他们变为0(或1)。
⼆值化算法处理飞思卡尔赛道思路:设定⼀个阈值valve,对于图像矩阵中的每⼀⾏,从左⾄右⽐较各像素值和阈值的⼤⼩,若像素值⼤于或等于阈值,则判定该像素对应的是⽩⾊赛道;反之,则判定对应的是⿊⾊的⽬标引导线。
记下第⼀次和最后⼀次出现像素值⼩于阈值时的像素点的列号,算出两者的平均值,以此作为该⾏上⽬标引导线的位置。
摄像头的⼆值化的代码:Void image_binaryzation(){for(int i=0;i{for(int j=0;j{if(Image[i][j] >= Threshold)Image_new[i][j]=1;elseImage_new[i][j]=0;}}}Row是对应采集到的⾏数,Col是列数,Image[i][j]是摄像头采集未⼆值化的数据存放的数组,Img[i][j]是新建的存放⼆值化后的数组。
合适的阈值在阈值⼆值化中,最主要的是选取合适的阈值,这也是⼆值化的难点所在。
常⽤的⼆值化阈值选取⽅法有双峰法、p参数法、⼤律法(Otsu法)、最⼤熵阈值法、迭代法等。
⼤律法(Otsu法)Otsu⽅法⼜名最⼤类间差⽅法,通过统计整个图像的直⽅图特性来实现全局阈值T的⾃动选取,其算法步骤为:1) 先计算图像的直⽅图,即将图像所有的像素点按照0~255共256个bin,统计落在每个bin的像素点数量2) 归⼀化直⽅图,也即将每个bin中像素点数量除以总的像素点3) i表⽰分类的阈值,也即⼀个灰度级,从0开始迭代4) 通过归⼀化的直⽅图,统计0~i 灰度级的像素(假设像素值在此范围的像素叫做前景像素) 所占整幅图像的⽐例w0,并统计前景像素的平均灰度u0;统计i~255灰度级的像素(假设像素值在此范围的像素叫做背景像素) 所占整幅图像的⽐例w1,并统计背5) 计算前景像素和背景像素的⽅差 g = w0*w1*(u0-u1) (u0-u1)6) i++;转到4),直到i为256时结束迭代7)将最⼤g相应的i值作为图像的全局阈值缺陷:OSTU算法在处理光照不均匀的图像的时候,效果会明显不好,因为利⽤的是全局像素信息。
图像预处理(二值化)
图像预处理(⼆值化)图像预处理(⼆值化)本⽂的实验室主要通过opencv与python3实现,相关的代码可以在GitHub中找到。
1. 图像获取与灰度化通过摄像头获取到的图像为彩⾊的图像。
彩⾊图像主要分为两种类型,RGB及CMYK。
其中RGB的彩⾊图像是由三种不同颜⾊成分组合⽽成,⼀个为红⾊,⼀个为绿⾊,另⼀个为蓝⾊。
⽽CMYK类型的图像则由四个颜⾊成分组成:青C、品M、黄Y、⿊CMYK类型的图像主要⽤于印刷⾏业。
每个图像的像素通常对应于⼆维空间中⼀个特定的位置,并且有⼀个或者多个与那个点相关的采样值组成数值。
灰度图像,也称为灰阶图像,图像中每个像素可以由0(⿊)到255(⽩)的亮度值(Intensity)表⽰。
0-255之间表⽰不同的灰度级。
将彩⾊图像转化成为灰度图像的过程称为图像的灰度化处理。
灰度化,在RGB模型中,如果R=G=B时,则彩⾊表⽰⼀种灰度颜⾊,其中R=G=B的值叫灰度值,因此,灰度图像每个像素只需⼀个字节存放灰度值(⼜称强度值、亮度值),灰度范围为0-255。
彩⾊图像中的每个像素的颜⾊有R、G、B三个分量决定,⽽每个分量有255个值可取,这样⼀个像素点可以有1600多万(255255255)的颜⾊的变化范围。
⽽灰度图像⼀个像素点的变化范围为255种,所以在数字图像处理种⼀般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少⼀些。
灰度图像的描述与彩⾊图像⼀样仍然反映了整幅图像的整体和局部的⾊度和亮度等级的分布和特征。
对于灰度化的⽅式有分量法、最⼤值法、平均值法,加权平均法等。
本⽂使⽤平均值法对图像进⾏灰度化。
对于平均值法,将彩⾊图像中的R、G、B三个分量的亮度求简单的平均值,将得到的值作为灰度值输出⽽得到灰度图。
其实现的表达式如下:通过实验得到得到如下图所⽰,灰度化前后:2.⼆值化通过以上对彩⾊图⽚进⾏灰度化以后,把获取到的灰度图像进⾏⼆值化处理。
对于⼆值化,其⽬的是将⽬标⽤户背景分类,为后续车道的识别做准备。
图像处理——灰度化、二值化、膨胀算法、腐蚀算法以及开运算和闭运算
图像处理——灰度化、⼆值化、膨胀算法、腐蚀算法以及开运算和闭运算⼀、RGBRGB模式使⽤为图像中每个的RGB分量分配⼀个0~255范围内的强度值。
RGB仅仅使⽤三种颜⾊,R(red)、G(green)、B(blue),就能够使它们依照不同的⽐例混合,在上呈现16777216(256 * 256 * 256)种颜⾊。
在电脑中,RGB的所谓“多少”就是指亮度,并使⽤整数来表⽰。
通常情况下,RGB各有256级亮度,⽤数字表⽰为从0、1、2...直到255。
⼆、ARGB⼀种,也就是⾊彩模式附加上Alpha()通道,常见于32位的。
ARGB---Alpha,Red,Green,Blue.三、灰度化在RGB模型中,假设R=G=B时,则彩⾊表⽰⼀种灰度颜⾊,当中R=G=B的值叫灰度值,因此,灰度图像每⼀个像素仅仅需⼀个字节存放灰度值(⼜称强度值、亮度值),灰度范围为0-255。
⼀般有下⾯四种⽅法对彩⾊图像进⾏灰度化,详细⽅法參考: 四、⼆值化⼀幅图像包含⽬标物体、背景还有噪声,要想从多值的数字图像中直接提取出⽬标物体,最经常使⽤的⽅法就是设定⼀个全局的阈值T,⽤T 将图像的数据分成两部分:⼤于T的像素群和⼩于T的像素群。
将⼤于T的像素群的像素值设定为⽩⾊(或者⿊⾊),⼩于T的像素群的像素值设定为⿊⾊(或者⽩⾊)。
⽐⽅:计算每个像素的(R+G+B)/3,假设>127,则设置该像素为⽩⾊,即R=G=B=255;否则设置为⿊⾊,即R=G=B=0。
C#实现代码例如以下:public Bitmap binarization(){Bitmap bitImage = new Bitmap(pictureBox1.Image);//⼆值化pictureBox1中的图⽚Color c;int height = pictureBox1.Image.Height;int width = pictureBox1.Image.Width;for (int i = 0; i < height; i++){for (int j = 0; j < width; j++){c = bitImage.GetPixel(j,i);int r = c.R;int g = c.G;int b = c.B;if ((r + g + b) / 3 >= 127){bitImage.SetPixel(j, i, Color.FromArgb(255, 255, 255));}else{bitImage.SetPixel(j, i, Color.FromArgb(0,0,0));}}}return bitImage;}执⾏结果如图:左边为处理前,右边为⼆值化后效果。
图像的二值化,灰度化,滤波,反色的基本原理
第一种方法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。
第二种方法是根据YUV的颜色空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜色空间的变化关系可建立亮度Y与R、G、B三个颜色分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。
二 图像的二值化的基本原理
图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。如果某特定物体在内部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阀值法就可以得到比较的分割效果。如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阀值选取技术来分割该图像。动态调节阀值实现图像的二值化可动态观察其分割图像的具体结果。
一组数X1、X2、X3…Xn 假如其排序如下:
X i 1≤X i 2≤X i 3≤…≤X i n
图片的黑白处理(二值化)
图片的黑白处理(二值化)原始圖片黑白處理后圖片原始圖片:黑白處理后圖片:部分处理代码: code……Dim ts2 As IThresholder = New GlobalMeanThreshold(inbmp)Dim tsBMP As New Bitmap(PictureBox1.Width, PictureBox1.Height) ts2.RenderToBitmap(tsBMP)PictureBox6.Image = tsBMPPictureBox6.Height = PictureBox1.HeightPictureBox6.Width = PictureBox1.WidthPictureBox6.Left = 0PictureBox6.Top = 0……理论知识:灰度图像的二值化处理就是讲图像上的点的灰度置为0或255,也就是讲整个图像呈现出明显的黑白效果。
即将256个亮度等级的灰度图像通过适当的阀值选取而获得仍然可以反映图像整体和局部特征的二值化图像。
在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于再对图像做进一步处理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。
为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。
所有灰度大于或等于阀值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。
如果某特定物体在内部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阀值法就可以得到比较的分割效果。
如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阀值选取技术来分割该图像。
基于c#图像灰度化、灰度反转、二值化的实现方法详解
基于c#图像灰度化、灰度反转、⼆值化的实现⽅法详解本篇⽂章是对c#图像灰度化、灰度反转、⼆值化的实现⽅法进⾏了详细的分析介绍,需要的朋友参考下图像灰度化:将彩⾊图像转化成为灰度图像的过程成为图像的灰度化处理。
彩⾊图像中的每个像素的颜⾊有R、G、B三个分量决定,⽽每个分量有255中值可取,这样⼀个像素点可以有1600 多万(255*255*255)的颜⾊的变化范围。
⽽灰度图像是R、G、B三个分量相同的⼀种特殊的彩⾊图像,其⼀个像素点的变化范围为255种,所以在数字图像处理种⼀般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少⼀些。
灰度图像的描述与彩⾊图像⼀样仍然反映了整幅图像的整体和局部的⾊度和亮度等级的分布和特征。
图像的灰度化处理可⽤两种⽅法来实现。
第⼀种⽅法使求出每个像素点的R、G、B三个分量的平均值,然后将这个平均值赋予给这个像素的三个分量。
第⼆种⽅法是根据YUV的颜⾊空间中,Y的分量的物理意义是点的亮度,由该值反映亮度等级,根据RGB和YUV颜⾊空间的变化关系可建⽴亮度Y与R、G、B三个颜⾊分量的对应:Y=0.3R+0.59G+0.11B,以这个亮度值表达图像的灰度值。
///<summary>///图像灰度化///</summary>///<param name="bmp"></param>///<returns></returns>public static Bitmap ToGray(Bitmap bmp){for (int i = 0; i < bmp.Width; i++){for (int j = 0; j < bmp.Height; j++){//获取该点的像素的RGB的颜⾊Color color = bmp.GetPixel(i, j);//利⽤公式计算灰度值int gray = (int)(color.R * 0.3 + color.G * 0.59 + color.B * 0.11);Color newColor = Color.FromArgb(gray, gray, gray);bmp.SetPixel(i, j, newColor);}}return bmp;}灰度反转:把每个像素点的R、G、B三个分量的值0的设为255,255的设为0。
otsu's二值化算法
otsu's二值化算法Otsu's 二值化算法二值化是在图像处理中常用的一种技术,它可以将一幅灰度图像转化成只有两个颜色的图像,通常是黑白图像。
在很多应用中,一个图像可能包含了丰富的信息,而我们只对其中的某些特定信息感兴趣。
通过将图像二值化,我们可以将不相关的信息去除,从而更加准确地提取出我们所需的信息。
Otsu's 二值化算法是用于自动寻找最优阈值的一种二值化方法。
它是由日本学者大津展之在1979年提出的,至今仍然被广泛应用于图像处理领域。
Otsu's 二值化算法基于灰度直方图的分布特性,通过最大化类间方差来找到最佳阈值。
下面,我们将一步一步地回答有关Otsu's 二值化算法的问题,以帮助您更好地理解这个算法的原理和应用。
1. 什么是Otsu's 二值化算法?Otsu's 二值化算法是一种自动寻找最优阈值的二值化方法。
它通过最大化图像的类间方差来选择最佳阈值,从而能够更好地将图像分割成背景和前景两部分。
2. Otsu's 二值化算法的原理是什么?Otsu's 二值化算法的核心原理是基于类间方差最大化的思想。
在图像二值化的过程中,我们需要选择一个合适的阈值来将像素分为背景和前景两部分。
而Otsu's 二值化算法通过迭代计算灰度级的类间方差,找到一个阈值,使得类间方差最大化。
当类间方差最大化时,背景和前景之间的差异最明显,二值化效果最好。
3. Otsu's 二值化算法的具体步骤是什么?(1)计算图像的灰度直方图:统计图像中每个灰度级别的像素个数。
(2)对每个灰度级别进行归一化:将每个灰度级别的像素个数除以总像素数,得到各个灰度级别的像素占比。
(3)计算每个灰度级别的累积概率:对每个灰度级别的像素占比进行累积求和,得到累积概率。
(4)计算全局平均灰度值:通过累积概率来计算全局平均灰度值。
(5)计算类内方差:根据全局平均灰度值,计算每个灰度级别的类内方差。
灰度图像二值化阈值选取常用方法课件
根据图像的局部特征自适应地确定阈值,能够更好地适应局 部变化。
在模式识别中的应用
特征提取
阈值选取可以用于提取图像的局部特征,如边缘、角点等,为后续的模式识别 提供特征向量。
分类器设计
阈值选取可以用于设计分类器,如阈值分类器、支持向量机等,对图像进行分 类和识别。
05
实验部分
实验一
全局阈值、自适应阈值
实验二
步骤
1. 定义窗口大小和步长,一般采用3x3或5x5的正 方形窗口。
2. 对于每个像素,以该像素为中心,计算窗口内 所有像素的灰度平均值。
实验二
01
3. 选择与平均灰度值最接近的像 素点作为阈值。
02
4. 将图像中的像素点进行二值化 处理,根据选择的阈值将像素点 分为背景或前景。
实验三
局部阈值、自适应阈值、抗噪声
自适应阈值选取法
根据局部图像信息动态计 算阈值,能够更好地适应 图像的局部变化。
自适应阈值选取法
• 定义:自适应阈值选取法是一种基于局部图像信息的阈值选取方法,它根据每 个像素点周围的局部区域的灰度分布信息来动态计算阈值。
• 方法流程:自适应阈值选取法通常采用滑动窗口法或区域生长法来实现。滑动 窗口法是通过在图像上滑动一个小窗口,计算窗口内像素点的灰度平均值或中 位数作为该窗口中心的阈值;区域生长法则是通过将像素点分为种子点和相邻 点,根据种子点的灰度值和相邻点的灰度分布信息来计算阈值。
• 优点:自适应阈值选取法能够更好地适应图像的局部变化,对于复杂背景和噪 声较多的图像具有较好的处理效果。同时,它能够减少人工干预,实现自动化 处理。
• 应用场景:自适应阈值选取法在图像处理、计算机视觉、模式识别等领域都有 广泛的应用,特别是在实时视觉检测、智能交通、医学图像处理等方面具有重 要作用。
灰度图像二值化阈值选取常用方法课件
02
CATALOGUE
阈值选取方法
直方图法
总结词:简单直观
详细描述:直方图法是一种基于图像灰度直方图的阈值选取方法。通过观察直方 图的分布,选择一个合适的阈值将图像分为前景和背景两部分。这种方法简单直 观,适用于背景和前景对比度较大的图像。
Otsu法
总结词
自动确定阈值
详细描述
Otsu法是一种基于灰度直方图和类间方差最大化的阈值选取方法。它通过迭代计算不同阈值下的类间方差,自动 确定一个最优的阈值,将图像分为前景和背景两部分。Otsu法能够自适应地处理不同对比度和亮度的图像。
02
跨领域应用研究
将阈值选取方法应用于其他领域,如医学影像分析、遥感图像处理等,
拓展阈值选取方法的应用范围。
03
实时性和性能优化
针对实时性要求较高的应用场景,如何优化阈值选取算法的性能和计算
效率,也是一个值得研究的方向。
THANKS
感谢观看
使用Python进行阈值选取的示例代码
from matplotlib import pyplot as plt img = color.rgb2gray(data.astronaut())
thresh = exposure.threshold_otsu(img)
使用Python进行阈值选取的示例代码
利用图像的局部特性,采用自适 应阈值选取方法,能够更好地处
理局部光照变化和噪声干扰。
机器学习方法
利用机器学习算法对大量训练数 据进行学习,自动确定最优阈值 ,可以提高阈值选取的效率和准
确性。
未来研究方向
01
深度学习在阈值选取中的应用
随着深度学习技术的发展,如何将深度学习技术应用于阈值选取中,提
tesseract 灰度处理 二值化处理
Tesseract 是一种光学字符识别引擎,能够将图像中的文字转换成可编辑的文本。
在使用 Tesseract 进行文字识别时,灰度处理和二值化处理是非常重要的步骤,能够有效提高识别准确率和效率。
一、灰度处理灰度处理是将彩色图像转换成灰度图像的过程。
在灰度图像中,每个像素点只有一个灰度值,表示其亮度。
对于彩色图像,每个像素点通常由红、绿、蓝三个颜色通道组成,而在灰度图像中,这三个通道的颜色信息被合并成一个灰度值。
1.1 灰度处理的作用灰度处理能够简化图像的信息,去除彩色信息,使得图像变得更加简洁明了。
这对于后续的文字识别非常有利,因为文字的识别与颜色无关,只与像素的亮度有关。
灰度处理还能够减小图像的体积,加快图像处理的速度。
1.2 灰度处理的方法灰度处理的方法有很多种,常见的有:1.2.1 加权平均法加权平均法是最常见的灰度处理方法之一。
通过对原彩色图像的每个像素点的RGB 值进行加权平均,计算得到相应的灰度值。
一般来说,使用以下公式进行计算:灰度值 = 0.299 * R + 0.587 * G + 0.114 * B其中 R、G、B 分别表示红、绿、蓝三个颜色通道的值。
1.2.2 最大值法和最小值法最大值法和最小值法分别是将原彩色图像的每个像素点的 RGB 值中的最大值或者最小值作为其灰度值。
这种方法简单快速,但会丢失一部分信息。
1.2.3 平均值法平均值法是将原彩色图像的每个像素点的 RGB 值的平均值作为其灰度值。
这种方法适用于大部分图像,能够有效保留图像的信息。
1.3 灰度处理的实现灰度处理的实现通常采用编程语言提供的图像处理库,如 OpenCV、PIL 等。
通过调用相关的函数,可以很方便地将彩色图像转换成灰度图像。
二、二值化处理二值化处理是将灰度图像转换成黑白图像的过程。
在二值化图像中,每个像素点只有两个取值,分别表示黑和白。
2.1 二值化处理的作用二值化处理能够进一步简化图像的信息,使得图像中的文字更加清晰醒目。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
灰度图像二值化算法研究
作者:孙少林马志强汤伟
来源:《价值工程》2010年第05期
摘要: 在很多图像处理的过程中,经常需要对灰度图像进行二值化。
本文对几种常用的图像二值化算法进行了阐述,并通过仿真,进行比较研究。
根据实验结果,阐明了各种算法的优缺点。
Abstract: The binarization of gray-level image is usually used in the process of image dealing. This paper explains several common image binarization algorithms, such as Otsu method, Bersen method etc. Then comparisons among these algorithms are done through experimental simulations. According to the experimental results , the paper demonstrates the advantages and the limitations of each algorithm.
关键词: 二值化;Otsu算法;Bersen算法
Key words: binarization;Otsu algorithm;Bersen algorithm
中图分类号:TP391.41 文献标识码:A文章编号:1006-4311(2010)05-0142-02
1基本理论
1.1 阈值及二值化
图像二值化是图像处理的基本技术,而选取合适的分割阈值可以说是图像二值化的重要步骤。
对于灰度图像,选择合适的一个或几个灰度值t(0≤t≤255),将目标和背景分开,这个灰度值t称为阈值。
如果只选择一个阈值,就称为图像的二值化。
二值化又称为灰度分划,凡是需要做文字识别或条纹辨认的图像,皆可利用此方式。
二值化的基本过程如下:①对原始图像作中低通滤波,进行图像的预处理,降低或去除噪声;②用算法确定最佳阈值;③凡是像素的灰度值大于这个阈值的设成255,小于这个阈值的设成0。
这样处理后的图像就只有黑白两色,从而将灰度范围划分成目标和背景两类,实现了图像的二值化。
1.2 阈值选取算法的分类
一般地,针对图像像素的阈值选取方法可分为全局阈值算法和局部阈值算法两类。
全局阈值算法是根据整幅图像选取一个固定的阈值将图像二值化。
常用的全局阈值算法有大律法(最大类间方差法或Otsu法)等。
全局阈值算法比较简单,实现比较容易,适用于图像的灰度直方图有明显的双峰,此时可选灰度直方图的谷底对应的灰度值作为最佳阈值。
但当图像有噪声或光照不均匀时,图像的灰度直方图往往没有明显的双峰或有多个峰,此时该方法受到极大的限制,可采用局部阈值算法。
局部阈值算法是将图像划分为若干子图像,结合当前考察的像素点和其邻
域像素点的灰度值,确定考察点的阈值。
常用的局部阈值法有Bernsen算法等。
使用局部算法可以图像的二值化效果更好,抗噪声能力更强。
2常用的二值化算法
2.1 Otsu算法(最大类间方差法)
最大类间方差法是由Otsu于1979年提出的,是基于整幅图像的统计特性,实现阈值的自动选取的,是全局二值化最杰出的代表。
Otsu算法的基本思想是用某一假定的灰度值将图像的灰度分成两组(或者叫两类),当两组的类间方差最大时,此灰度值就是图像二值化的最佳阈值。
设图像有M个灰度值,取值范围在0~M-1,在此范围内选取灰度值t,将图像分成两组G■和G■,G■包含的像素的灰度值在0~t,G■的灰度值在t+1~M-1,用N表示图像像素总数,n■表示灰度值为i的像素的个数,则:
每一个灰度值i出现的概率为:
p■=n■/N;(1)
G■和G■类出现的概率及均值为:
概率ω■=■p■,ω■■p■=1-ω■(2)
均值μ■=■ip■,μ■=■ip■(3)
类间方差σ(t)■=ω■ω■(μ■-μ■)■(4)
最佳阈值T就是使类间方差最大的t的取值,即T=arg maxσ(t)■,t∈[0,M-1]
Otsu算法可这样理解:阈值T将整幅图像分成前景和背景两部分,当两类的类间方差最大时,此时前景和背景的差别最大,二值化效果最好。
2.2 灰度拉伸法
当目标和背景对比不明显即灰度相差不大或图像有噪声时, Otsu算法的效果都不十分理想。
为此,有人提出了灰度拉伸的增强的Otsu算法。
灰度拉伸即用图像的原有灰度乘以一个大于1的系数,增加像素间灰度的差别,当系数为1时,即为Otsu算法。
可以说Otsu算法是特殊的灰度拉伸法。
实际使用时不同的图像可以乘以不同的系数,从而得到比较理想的效果。
2.3 与Otsu类似的算法
在Otsu的算法基础上,引入类内方差σ■■(t)=ω■μ■■ω■μ■■,求类间方差和类内方差的比值s(t)=σ■■(t)/σ■■(t),当s(t)最大时所得到的t就是最佳阈值。
2.4 Bernsen 算法
Bernsen 算法是一种典型的局部二值化算法,是一种动态选择阈值的自适应方法。
设图像在像素点(x,y)处的灰度值为f(x,y),考虑以像素点(x,y)为中心的(2w+1)×(2w+1)窗口(2w+1是窗口的宽度),则Bersen算法可以描述如下:
(1)计算图像中各点(x,y)的阈值w(x,y)
w(x,y)=0.5×(maxf(x+m,y+n)+minf(x+m,y+n));(5)
-w?燮m?燮w-w?燮m?燮w
-w?燮n?燮w -w?燮n?燮w
(2)对图像中各像素点(x,y)用w(x,y)值逐点进行二值化
本文仿真时取w=1,即利用当前像素点周围八点邻域来计算当前像素点的Bersen阈值。
2.5 直方图方法
根据图像的直方图统计,找出双峰间的谷值,即最佳阈值。
3仿真实验及结果
本文分别对上述各种算法进行了仿真实验,得到Lena图像的二值化图像结果如图1~图6。
从仿真结果可以看出,图2用Otsu算法二值化后的人物比较清晰,前景和背景分割比较明显,图3的算法是将原图像的灰度进行拉伸,即将原有灰度乘以一个大于1的系数,本实验乘的系数是1.2,从而使像素间差别增大,利于分类,从实验的结果可以看出人物的鼻子和嘴巴较图2呈现了一定的轮廓。
图4则是在灰度拉伸的基础上,求得使类间最大且类内方差最小的阈值,从而比图3的效果更好,人物的鼻子和嘴巴的轮廓更为清晰。
图5 Bersen算法同样可以人物和背景比较好地分开来。
图6是根据原图直方图的峰谷特性取谷值为阈值,分割效果比较理想,方法也非常简单。
4结论
Otsu算法可以得到比较理想的分割效果,分割效率也比较高,此法选出来的阈值比较稳定,分割质量有一定的保证,因而得到广泛的应用,是较为实用的全局二值化算法。
但当背景本身的灰度反差极大时,例如由于光照引起的背景具有明显亮点的情况,Otsu算法容易把背景本身当作两类来处理,此时用这种算法不能正确地分出前景和背景。
Bersen算法是典型的局部二值化算法,分割效果比较清晰,可以把图像正确地二值化。
参考文献:
[1]Rafael C.Gonzalez.数字图像处理[M].北京:电子工业出版社,2005.
[2]Otsu N. A Threshold Selection Method From Gray-level Histograms[J].IEEE Trans Systems,Man and Cybernetics.1979 9(1):62-66.
[3]吕俊哲.图像二值化算法研究及其实现[J].科技情报开发与经济,2004,(12).
[4]黄春艳等.基于熵的图像二值化方法比较研究[J].河南大学学报(自然科学版),2005年6月,第35卷第2期.
[5]杨枝灵,王开.Visual C++数字图像获取、处理及实践应用[M]. 北京:人民邮电出版
社,2003:535-546.
[6]李了了等.基于大律法的图像分块二值化算法[J].微计算机信息(管控一体化),2005,(21),第8-3期.。