中国科技大学课件系列《生物信息学》共66页文档

合集下载

生物信息学概述(共59张PPT)精选全文完整版

生物信息学概述(共59张PPT)精选全文完整版

蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划

《生物信息学概论A》课件

《生物信息学概论A》课件

PART 06
生物信息学的未来发展与 挑战
新兴技术与应用领域
人工智能与机器学习
在生物信息学中应用人工智能和机器学习技术,实现对基因组、 蛋白质组等复杂数据的自动化分析和解读。
纳米技术与合成生物学
结合纳米技术,实现更精准的基因编辑、药物输送和疾病诊断。
临床信息学
利用生物信息学技术,实现精准医疗和个性化治疗,提高疾病诊断 和治疗的效果。
包括电泳、色谱等分离技术,可以将复杂的蛋白质混合物分离成单一组分。
蛋白质鉴定技术
主要依赖于质谱技术,通过将蛋白质消化成肽段,然后对这些肽段进行质谱分析,从而确定蛋白质的序列。
蛋白质组学在药物研发中的应用
疾病标记物寻找
通过比较正常和疾病状态下的蛋白质表达谱,可以发现与疾病相关 的标记物,用于疾病的早期诊断和治疗监测。
药物靶点发现
通过对蛋白质相互作用的研究,可以发现新的药物靶点,为新药研 发提供新的思路和方向。
药物作用机制研究
通过研究药物对蛋白质表达和功能的影响,可以深入了解药物的作用 机制,为药物优化提供依据。
PART 04
生物信息学数据库
数据库的种类与用途
基因组数据库
存储基因组序列数据,用于基因识别、基因定位和基因功能研究。
它涉及到多个领域,如分子生物学、 遗传学、系统生物学、进化生物学等 ,旨在揭示生物现象背后的数据规律 和机制。
生物信息学的发展历程
20世纪70年代
随着人类基因组计划的启动,生物信息学开始萌芽。
20世纪90年代
随着计算机技术和互联网的发展,生物信息学迅速发 展壮大。
21世纪初
随着大数据和人工智能技术的兴起,生物信息学进入 了一个新的发展阶段。

中国科技大学系列:《生物信息学》ppt课件

中国科技大学系列:《生物信息学》ppt课件
9
Step1:多重比对 位置对齐,多重比对(不考虑空位):
家族一
家族二
FK I LK
I I FFF
统计每种氨基F酸K出现I 的K 频K率; I I F I F
fi
=
氨基酸i的数目/总氨基酸数目
FF I LL
I
K
F
F
L
fL = 12/60 = 0.2
..
FF I KL
I KF I L
家族三 K I FKK K I FLK KLFKL KLFLL
搜索有限空间,类似于BLAST算法
32
动态规划算法:Hyperlattice
33
注意 最优的多序列比对,其两两序列之间的比对不一定最优。
最优的多序列比对
非最优的双序列比对
34
MSA程序 MSA - Multiple Sequence Alignment David Lipman等,1989年初始开发; 应用多维动态规划算法,得到最优的全局比对。 工具资源:
39
ClustalW/X:计算过程 1. 将所有序列两两比对,计算距离矩阵; 2. 构建邻接进化树(neighbor-joining tree)/指导树(guide tree); 3. 将距离最近的两条序列用动态规划的算法进行比对; 4. “渐进”的加上其他的序列。
40
两两比对,构建距离矩 阵 指导树的构建
K
F
I
L
K
1
1
6
➢ e.g. N(LFK)= 3 + 0 +13 = 6
2
1
I
1
2
1
L
6
1
1
12
Step4:计算各氨基酸相对突变率 每种氨基酸相对突变率mi

生物信息学课件

生物信息学课件

基因组组装与注释
基因组组装
01
基因组组装是将测序得到的碎片组装成一个完整的基因组序列

基因组注释
02
基因组注释是对基因组序列进行分析,识别出基因和其他功能
元件。
基因组组装与注释的重要性
03
基因组组装与注释是理解基因组结构和功能的基础,对于研究
生物进化、疾病发生和治疗具有重要意义。
03
生物信息学应用
• 详细描述:单基因遗传病通常是由单个基因的突变引起的,这些突变可能是显性或隐性。在研究中,生物信息 学家可以通过对患者的基因组进行测序和分析,识别与疾病相关的基因变异。他们还可以通过比较健康个体的 基因组与患病个体的基因组,发现差异并确定导致疾病的特定突变。此外,生物信息学家还可以使用计算机模 型和算法来模拟基因组变异的影响,并预测其对蛋白质功能和细胞过程的影响。这些信息有助于医生和研究人 员更好地理解疾病的病因、病理生理机制以及潜在的治疗方法。
THANK YOU
数据库建设
研究如何建立和维护生物信息学数据库, 包括数据库设计、数据存储和管理、数据 查询和可视化等技术。
02
生物信息学基础
遗传密码子
遗传密码子的定义
遗传密码子是DNA和RNA中携带遗传信息的序列 。
遗传密码子的特点
遗传密码子具有方向性、连续性、通用性和简并 性。
遗传密码子的破译
科学家们通过研究基因组序列,逐渐破译了遗传 密码子的秘密。
以单分子DNA测序为主要技术,具有读取长度长、准确率高、速度快等优点,但设备昂贵且维护成本 高。
生物信息学数据库
1 2 3
NCBI
美国国立生物技术信息中心,提供生物医学相关 信息和数据,包括基因组测序数据、基因表达谱 数据等。

第1讲 生物信息学绪论PPT幻灯片

第1讲 生物信息学绪论PPT幻灯片
Sanger测序法 双脱氧链终止法
Sanger测序法
新的测序技术 –焦磷酸测序法(454,Solexa, Solid), 单分子测序 –新的整合技术
1995 第一个自由生物体流感嗜血菌(H. inf)的全基因组测序完成
1996 完成人类基因组计划的遗传作图 启动模式生物基因组计划
H.inf全基因组
大肠杆菌及其全基因组
水稻基因组计划
1999.7 2000
第5届国际公共领域人类基因组测序会议,加快测序速度 Celera公司宣布完成果蝇基因组测序 国际公共领域宣布完成第一个植物基因组——拟南芥全基 因组的测序工作
Drosophila melanogaster 果蝇
Arabidopsis thaliana 拟南芥
51335613554632416254244212326366645622466146342646 11111111111111111111111111112222222222222222222222
隐状态:那个骰子
基因的鉴定
跟线虫的基因数差不多 暗示着。。。。。。
人类基因组序列的显示
Visualization什 Nhomakorabea是生物信息学? 1
一、生物信息学定义
2
生物信息学(Bioinformatics)名词的由来
八十年代末期,林华安博士认识到将计算机科学与生物学 结合起来的重要意义,开始留意要为这一领域构思一个合适的 名称。起初,考虑到与将要支持他主办一系列生物信息学会议 的佛罗里达州立大学超型计算机计算研究所的关系,他使用的 是“CompBio”;之后,又将其更改为兼具法国风情的 “bioinformatique”,看起来似乎有些古怪。因此不久,他便 进一步把它更改为“bio-informatics(bio/informatics)”。 但由于当时的电子邮件系统与今日不同,该名称中的-或/符号 经常会引起许多系统问题,于是林博士将其去除,今天我们所 看到的“bioinformatics”就正式诞生了,林博士也因此赢得了 “生物信息学之父”的美誉。

中国科技大学课件系列:《生物信息学》01

中国科技大学课件系列:《生物信息学》01
33
科研机构及网络资源中心
Bioinformatics Links Directory: 各种数据库等
如 PDB (Protein Data Bank) UniProt 数据库 软件资源:
34
国内生物信息中心举例
CBIPKU:北京大学生物信息中心 BioSino:中国生物信息
中国科学院上海生命科学院生物信息中心 上海生物信息技术研究中心
1. 1970年,Gibbs AJ 和 McIntyre GA,点阵法进行氨 基酸和核酸的序列比较:当相同的字母在两条序列中 同时出现时,在交叉处置点。
2. 1970年,Needleman-Wunsch,全局优化的序列比 对算法:允许匹配、错配和缺失。动态规划的算法: 任务可分割,分成更小的子问题进行解决。
生物信息学 (Bioinformatics)
1
背景
人类基因组计划(Human Genome Project, HGP):1990年正式启动,旨在完成人类基 因组约30亿个碱基的全序列测定。
海量生物数据的迅速膨胀:DNA、RNA和 蛋白质序列,蛋白质二级结构和三维结构数 据,蛋白质相互作用数据等。
2.数学知识:概率论与统计学等 3.算法及编程能力:JAVA, Perl/Python,
PHP+MySQL, …
31
生物信息学的常用算法与方法
动态规划算法(Dynamic programming); 贝叶斯统计(bayesian statistic); 人工神经网络(ANNs); 马尔可夫模型和隐马尔科夫模型(HMM); 遗传算法(Genetic Algorithm); 蒙特卡洛方法(Monte Carlo); 模拟退火算法(Simulated Annealing); 支持向量机(SVM); …

《生物信息学概述》课件

《生物信息学概述》课件

04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究

生物信息学课件

生物信息学课件
http://www.uni-giessen.de/~gx1052/ECDC/ecdc.htm 酵母菌Yeast ——CYGD数据库 http://mips.gsf.de/genre/proj/yeast/index.jsp
线虫 Caenorhabditis elegans ——AceDB数据库
/genome.shtml
2019/12/12
GenBank:由美国国家生物技术信息中心(National Center for Biotechnology Information, NCBI)建立。该 中心隶属于美国国家医学图书馆,位于美国国家卫生 研究院(NIH)内。
EMBL:欧洲分子生物学实验室(European Molecular Biology Laboratory, 其下有European Bioinformatics Centre),主要位于英国剑桥Cambridge和德国汉堡 Hamburg。
AUTHORS Battelle,B.-A., Andrews,A.W., Calman,B.G., Sellers,J.R.,
Greenberg,R.M. and Smith,W.C.
TITLE
Direct Submission
JOURNAL Submitted (02-MAR-2000) Whitney Laboratory, University of Florida,
• 总之,信息源的特点是:
– 自治的 (autonomous)
数据集成
– 分布式的 (distributed) – 异构的 (heterogeneous)
Data Integration
2019/12/12
一、 生物信息学数据库
生物信息学数据库的种类 分子生物信息数据库种类繁多。归纳起来,大体

生物信息学课件(中国科学院)_1

生物信息学课件(中国科学院)_1

Statistical inference
• Statistical inference is the process of making conclusions using data that is subject to random variation, for example, observational errors or sampling variation.
技术专长:分子生物学、干细胞、生物信息学

课程描述
课程编号:511012Y 课程属性:学科基础课 学时/学分:40/2 预修课程:分子生物学、遗传学、统计学、C语言 教学目的和要求: 生物信息学是利用数学模型和计算机程序对生物学研究中产生的数据进行分 析计算并得出结论和产生新的科学假说的一种科研手段。通过本课程的教授, 使得学生能够: • 懂得生物学中有哪些数学问题,数学模型和数学手段; • 利用数据库技术、计算机编程和网页工具来进行基本的生物信息学分析; • 掌握核酸和蛋白质序列分析的基本技能; • 懂得如何从芯片和其他高通量技术产生的数据来构建基因调控网络; • 本课程的开设要求学生有分子生物学、遗传学、统计学及C语言的基础知识 和技能,更重要的是要求学生要努力培养自己利用数学模型和逻辑思维来思 考和解决生物学问题。本课程为生物学各专业博士、硕士研究生的学科基础 课,同时也可作为数理、计算机等相关学科研究生的选修课。本课程的考核 方式为大作业和期末考试,比例为50%:50%。
参考书
教材: 本课程以科研文献阅读为主,没有特定教材。 主要参考书: 1. 简明生物信息学 钟扬, 张亮,赵琼主编 高等教育出版社 2001 2. 常用生物数据分析软件 王俊,丛丽娟,郑洪坤著 科学出版社 2008 3. Bioinformatics: sequence and genome analysis David W. Mount New York : Cold Spring Harbor Laboratory, 2004

(完整)第八章-生物信息学技术ppt

(完整)第八章-生物信息学技术ppt
体表达状况;
在一定程度上二级结构的预测可以归结为模式识别问题
10-30%的空间结构预测工作 包含描述蛋白质域的家族、超家族、折叠、等级等信息。
《Nucleic Acids Research》杂志每年的第一期中详细介绍最新版本的各种数据库。 3、 基因组序列分析 国际核酸序列委员会协作组:
第三节 生物信息学当前的主要任务
生物信息学的发展历史
生物科学和 技术的 发展
人类基因组 计划的 推动
生物信息学 基本思想的产生
二十世纪 50年代
生物信息学 的迅速发展
二十世纪 80-90年代
二、生物信息学的概念
HGP 生物数据的激增 (每15个月翻一番)
生物学家
数学家
计算机 科学家
生物信息学 (bioinfomatics)
的诞生
通过比较相似的蛋白质序列,如肌红 蛋白和血红蛋白,可以发现由于基因复 制而产生的分子进化证据。
通过比较来自于不同种属的同源蛋白质, 即直系同源蛋白质,可以分析蛋白质甚 至种属之间的系统发生关系,推测它们 共同的祖先蛋白质。
生物分子数据类型
DNA序列数据
最基本

蛋白质序列数据



生物分子结构数据
1.2 非蛋白编码区生物学意义的分析
非蛋白编码区约占人类基因组的95%,其生物 学意义目前尚不是很清楚,但从演化观点来看, 其中必然蕴含着重要的生物学功能,由于它们并 不编码蛋白,一般认为,它们的生物学功能可能 体现在对基因表达的时空调控上。
对非蛋白编码区进行生物学意义分析的策略有
两种,一种是基于已有的已经为实验证实的所有 功能已知的DNA元件的序列特征,预测非蛋白编 码区中可能含有的功能已知的DNA元件,从而预 测其可能的生物学功能,并通过实验进行验证; 另一种则是通过数理理论直接探索非蛋白编码区 的新的未知的序列特征,并从理论上预测其可能 的信息含义,最后同样通过实验验证。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档