上海交大生化课件

合集下载

上海交通大学生物化学课件糖代谢糖原

上海交通大学生物化学课件糖代谢糖原

第七章糖代谢—糖原的分解与合成代谢王灿华Tel: 34204892生物楼4号楼314室wangcanhua@Sept, 2015糖原的分解与合成代谢◆概论◆糖原的分解代谢◆糖原的合成代谢◆糖原的合成与分解代谢的调控肾上腺素糖原信号级联放大导致糖原代谢产生葡萄糖定义及类型一、概论1. 糖原(glycogen):人和动物体内存储糖(多糖)的形式之一。

是机体能迅速动用的能量储备。

2. 糖原存储的器官和意义肌肉:肌糖原供肌肉收缩所需肝脏:肝糖原维持血糖平衡糖原结构2.糖原的结构特点类似于淀粉,葡萄糖单元以α-1,4-糖苷键形成长连。

分支程度比淀粉更高,大约每10个α-1,4-糖苷键就有一个α-1,6-糖苷键。

溶解度增加。

每条链都终止于一个非还原端,非还原端增多,有利于被酶分解。

二、糖原的分解代谢1. 定义:由糖原分解为葡萄糖的过程。

2. 部位:胞质3. 肝糖原的分解分解糖原磷酸化酶(糖原)n + Pi (糖原)n-1 + Glc-1P磷酸化酶转移酶脱枝酶●磷酸解:1,4-糖苷键 产物: Glc-1P可异构为Glc-6P ,进入 EMP ,节省能量。

●水解: 1,6-糖苷键 产物:GlcGlc-1PGlc糖原脱枝酶双功能酶双功能酶(bifunctional enzyme):糖原脱枝酶的肽链上有两个起不同作用的活性部位:①转移葡萄糖残基的作用,也叫糖基转移酶(glycosyl transferase)②分解葡萄糖α(1→6)糖苷键的作用,即为糖原脱枝酶。

No ATP糖原磷酸化酶consumed!PLP磷酸吡哆醛)AMP(别构激活剂)四聚体的糖原磷酸化酶Glc-1P 转变为Glc-6PGlc-1P Glc-6P 磷酸葡萄糖变位酶Glc-6P 再水解为Glc ,进入血液,提供血糖。

Glc-6P Glc 葡萄糖-6磷酸酶(肝、肾) 进入糖酵解调节血糖肝糖原分解葡萄糖-6磷酸酶结合在光面内质网(ER)上,并有Ca 2+的协同作用。

上海交大生化第2章生化(刘建华)

上海交大生化第2章生化(刘建华)
Berg • Tymoczko • Stryer
Biochemistry
Sixth Edition
Chapter 2 Protein Composition and Structure
2020/11/17
Copyright © 2007 by W. H. Freeman and Company
2020/11/17
人胰岛素晶体。胰岛素是蛋白质激素 ,是人体维持适当血糖浓度的关键。 多肽链的氨基酸序列(一级结构)决 定了蛋白质的性质。胰岛素两条多肽 链折叠形成单一胰岛素分子的三级结 构。六个胰岛素分子之间相互作用形 成复合物。这种复合物结构,即胰岛 素分子之间的相互作用叫蛋白质四级 结构。在适当条件诱导下,胰岛素复 合物能形成晶体。蛋白质晶体可以用 来进行蛋白质结构测定。
蛋白质的几个关键性质:
(1)蛋白质是肽键连接氨基酸的线性聚合物 。蛋白质能自动折叠成三维结构,而且蛋白 质的三维结构取决于蛋白质的氨基酸序列。 蛋白质的功能直接依赖于蛋白质的三维结构 。因此,蛋白质是一维的分子序列向三维的 分子功能转化的具体体现。
2020/11/17
(2)蛋白质有很多功能基团。这些功能基团包 括醇羟基、巯基、巯醚基、羧酸基、酰胺基、 和碱性基团。大多数基团有化学反应性。不同 的氨基酸序列其功能基团的组合也不同,这解 释了不同蛋白质执行不同功能的原因。功能基 团的化学反应性是酶催化活性必需的。
(4)有些蛋白质很坚硬,但有些蛋白 质很柔软。坚硬的蛋白质可以作为细胞 骨架或粘联组织的结构元件。而有一定 柔软度的蛋白质可以充当绞合部( hinges),弹簧(springs),或杠杆( levers)。这些绞合部(hinges)、弹簧( springs)、或杠杆(levers)对有些蛋白质 的功能、蛋白质之间的相互作用或蛋白 质与其它成分相互作用形成复合物、或 在细胞内或细胞间传递信息是必需的。

上海交大第3章生化(刘建华)

上海交大第3章生化(刘建华)
其沉降速度快。 4. 沉降速度也依赖于溶液密度(r)。溶液r 大, 颗粒沉降慢。。实际上,nr > 1颗粒上浮;当nr = 1颗粒不移动; nr < 1颗粒上浮。
图3.14 细胞组分的密度和沉降系数。
制备密度梯度 介质用于密度 梯度离心。
上样
水平降平衡技术能直接用来测定蛋 白质的分子量。此时离心速度较慢使蛋白 质沉降和蛋白质扩散达到平衡。用离心沉 降平衡技术测定的蛋白质质量非常准确, 条件温和、保留多亚基蛋白质天然的四级 结构。而SDS-PAGE只能提供解离多肽链 的质量。注意,如果我们既知道一个多聚 体蛋白质在变性条件下各个多肽的估算值 ,也知道沉降平衡离心的完整多亚基蛋白 的质量,我们就能够确定该多亚基蛋白各 个多肽链的拷贝数。
Berg • Tymoczko • Stryer
Biochemistry
Sixth Edition
Chapter 3: Exploring Proteins and Proteomes
Copyright © 2007 by W. H. Freeman and Company
奶汁是所有哺乳动物的营养源。奶汁含有不同蛋白质。用 MALDI-TOF质谱技术研究奶汁的蛋白质组成,依靠蛋白分子质 量/电荷比将奶汁蛋白质各组分分开。
依据蛋白质的净 电荷差异
离子交换层析的介质
阳离子交换
阴离子交换
亲和层析:依靠配基与蛋白质之间特异的亲和性。
HPLC (凝胶过滤柱) 支持物颗粒细, 分离效果好,但需要 施加高压才有合理的 流速。
SDS-聚丙烯酰胺凝胶电泳
电泳速度 球状分子
u = Ez/f f=6phr
(1) (2)
+ β-mercaptoethanol

上海交大第10章生化 (刘建华)

上海交大第10章生化 (刘建华)

大鼠发育过程中,心脏LDH表达谱的变化情况。H亚基用方块表示 ,M亚基用圆圈表示。负数表示出生前的天数,正数表示出生后的 天数。
成年大鼠不同组织的LDH同功酶
有些同功酶在血液中出现表示相应组织出 现损伤,可以用作临床诊断指标。
血清中H4(相对于H3M)水平增加表 示心肌破裂(Myocardial infraction)或心脏 病,损伤心肌细胞导致胞内组分释放。
1. 磷酸基团修饰蛋白质,使蛋白质增加两个负电荷。破 坏没有修饰蛋白质间的静电相互作用,建立新的静电 作用。显著改变酶蛋白的底物结合性和催化活性。 2. 磷酸基团能形成三个或更多的氢键。磷原子四面体几 何形状使之具有很高的方向性,能够与氢键供体形成 特异的相互作用。 3. 磷酸化的自由能很大。ATP提供了-50kJ mol-1,大约一 半的能量用于驱动蛋白质磷酸化反应。另一半能量储 存在磷酸化蛋白中。蛋白磷酸化反应不可逆。自由能 变化5.69 kJ mol-1能够使反应平衡增加10倍,因此消耗 ATP的磷酸化反应能够使反应平衡增加104倍。
有些情况下共价修饰不可逆。在信号传导过 程中蛋白质不可逆地与脂质分子共价连接, 变成面向细胞浆的固定于细胞质膜的蛋白质 ,如Ras(一种GTPase)和Src(一种蛋白酪氨 酸激酶)。固定在这种地方,蛋白质更能够接 受沿信号途径传递的信号,并将信号向下游 传递(第14章)。有些癌症,其Ras和Src有 变异。与小蛋白ubiquitin连接,是销毁该蛋白 的信号,也是一种调节方式(第23章)。当 细胞经过细胞周期进入细胞分裂后期 (anaphase)之前,就得使蛋白质cyclin与 ubiquitin连接并销毁之。
ATCase的S型曲线可以看作是两种米氏酶 (一种是T态酶,另一种是R态酶)酶促反应的 叠加。底物浓度的增加有助于酶促反应从T 态曲线转化成R态曲线(图10.10)。注意这 种S型动力学曲线有另一个结果,当底物浓 度达到T向R转化时,增加底物浓度使酶促 反应速度急剧上升。酶分子从活性低转变成 活性高的底物浓度区间很窄。如果细微的浓 度变化就需要应答的话,这种酶促行为就非 常有用。底物对变构酶的这种效应叫同质效 应(homotropic effects)。

上海交通大学 上海交大 生物化学 课件 chapter 24fatty

上海交通大学 上海交大 生物化学 课件 chapter 24fatty

TAGs are hydrolized by cAMP-regulated lipases脂酶
initial step in the utilization of fat as energy source: TAG+ 3H2O→glycerol+ 3 FAs +3H+ Hormones, such as epinephrine, norepinephrine (去甲肾上腺素 去甲肾上腺素), 去甲肾上腺素 glucagon and adrenocorticotropic hormone (促肾上腺皮质 促肾上腺皮质) 促肾上腺皮质 induce lipolysis: : hormones→adenylate cyclase腺苷酸环化酶 腺苷酸环化酶→cAMP→protein 腺苷酸环化酶 kinase A →lipase cAMP is a second messenger in activation of lipolysis in fat cells, as it is in activation of glycogen breakdown
为脂肪酸和甘油,从脂肪组织释放并运送到需能组织。 2. 脂肪酸被激活运送进入上述 为脂肪酸和甘油,从脂肪组织释放并运送到需能组织。 氧化) 脂肪酸逐步降解为乙酰CoA,然后进入柠 组织细胞的线粒体中进行降解 (β氧化 。 3. 脂肪酸逐步降解为乙酰 氧化 , 檬酸循环。 檬酸循环。
FAs are degraded by the sequential removal of two-carbon units
TAG are highly concentrated energy stores
TAGs are reduced and anhydrous (无水的 无水的) 无水的 The yield from the complete oxidation of FA is about 9 kcal/g, in contrast with about 4 kcal/g for carbohydrates and protein ( x 2)

上海交通大学生物化学C类课件氨基酸代谢

上海交通大学生物化学C类课件氨基酸代谢

第十一章蛋白质降解和氨基酸代谢王灿华Tel: 34204892生物楼4号楼314室Email: wangcanhua@Sept, 2015第一节蛋白质降解和氨基酸的分解代谢一、蛋白质的降解二、氨基酸的分解代谢三、尿素的形成四、氨基酸碳骨架的氧化途径1. 产物进入TCA2. 产物为生糖氨基酸和生酮氨基酸3. 产物作为一碳单位来源氮的获取和氨基酸代谢 在代谢中的位置蛋白质降解和氨基酸代谢的总括氨甲酰磷酸α-酮酸Asp-精氨琥珀酸支路OAA尿素(N的排泄物)一、蛋白质的降解----优胜劣汰(有两种死法)人和动物不断地从食物中摄取蛋白质,在消化道中经水解反应降解成氨基酸才能被组织利用。

种子萌发时,蛋白质发生降解作用,产生的氨基酸被重新利用形成幼苗中的蛋白质。

根据蛋白酶水解多肽的部位可分为蛋白酶(proteinase)和肽酶(peptidase)两个亚类。

1.细胞外的途径-----只需要酶,不需要ATP蛋白酶又称肽链内切酶:作用于肽链内部的肽键,生成较短的肽链。

该酶对不同氨基酸所形成的肽键有专一性。

肽酶又称肽链端裂解酶,从多肽链末端逐一水解成氨基酸。

作用于氨基端的称氨肽酶,作用于羧基端的称羧肽酶,作用于二肽的称二肽酶。

蛋白质细胞外降解蛋白质水解为氨基酸需要蛋白酶和肽酶的共同作用。

胃:胃蛋白酶将蛋白质分解为较小的肽小肠:胰蛋白酶和胰凝乳蛋白酶将其分解为更小的肽小肠粘膜:二肽酶、氨肽酶及羧肽酶将小肽再分解为氨基酸。

氨基酸可以被直接吸收利用;也可进一步氧化供能。

蛋白质游离氨基酸寡肽游离氨基酸三或二肽肽酶蛋白水解酶氨肽酶血液小肠细胞肠腔蛋白质的消化与吸收蛋白质细胞内降解2. 细胞内的途径溶酶体的蛋白质降解途径----不需要ATP半寿期长的蛋白质可经此途径。

溶酶体是由膜包被的一种亚细胞结构,含多种酸性蛋白水解酶类。

pH偏酸,保护细胞。

蛋白酶体的降解途径----需要能量ATP泛素介导的蛋白质降解途径----“死神之吻‛的秘密细胞内降解是由泛素介导的,是一种高效率、指向性很强的降解过程。

上海交通大学生命科学导论课件1

上海交通大学生命科学导论课件1
生命科学导论
上海交通大学生命科学与技术学院 College of Life Science and Biotechnology Shanghai Jiao Tong University
人之初:被精子包围的卵子
16个星期之后, 受精卵发育成初具雏形的胎儿
1980s以来,世界著名大学如MIT等,纷纷 把生物类课程列为全校必修课。 1995年以后,国内重点大学陆续把生物类 课程列为全校非生物类专业大学生的限选或必 修课程。
二 21世纪将是生命科学的世纪
1.带头学科
近300年来(17-20世纪):物理学一直作为带头学科 17世纪中叶 牛顿经典力学 18世纪中叶 (蒸汽机)工业革命 19世纪中后 电气革命 20世纪初 量子论、相对论和核物理标志物理学革命性 飞跃。 20世纪上叶被称为 “现代物理学黄金半世纪” 物理学主导着工业革命 带领着天文、地质、气象、化学等学科发展
早期的光学显微镜
NEXT
Байду номын сангаас
电子显微镜
NEXT
电子显微镜
NEXT
透射电子显微镜下正在分裂的大肠杆菌
NEXT
扫描电子显微镜下的杆菌
NEXT
微分干涉相显微镜下的细菌
NEXT
原子力显微镜下的细菌
NEXT
激光共聚焦扫描显微镜下的藻类
返回
普林斯顿大学
以发育生物学家谢利•蒂夫曼
为首,集中12名资深教授 (生物学、物理学、 化学、数学、工程)成立崭新的研究中心
FLASH
第一例基因工程实验
3、生命科学如何发挥它的重要作用?
从我国科学发展规划看生命科学的重要性
生命科学必须和物理科学、工程科学等其他学
科相结合

代谢15章上海交大生化课件

代谢15章上海交大生化课件

代谢
一系列相互关联的化学反应
起始分子 中间代谢物
产生其他分子
代谢物
Figure 15.1 Glucose metabolism.葡萄糖代谢 Glucose is metabolized to pyruvate in 10 linked reactions. Under anaerobic conditions, pyruvate is metabolized to lactate and, under aerobic conditions, to acetyl CoA.
林双君 教授
Part III SYNTHESIZING THE MOLECULES OF LIFE
24 The Biosynthesis of Amino Acids
25 Nucleotide Biosynthesis
26 The Biosynthesis of Membrane Lipids and Steroids
因为蜂鸟有能力将燃料转换成细胞能量货币 - ATP
Questions
1.How does a cell extract energy and reducing power from its environment?细胞如何从环境中获取能量?
2. How does a cell synthesize the building blocks of its macromolecules and then the macromolecules themselves? 细胞是如何合成它的大分子所需模块,以及大分子本身?
Part II TRANSDUCING AND STORING ENERGY
15 Metabolism: Basic Concepts and Design

上海交通大学第6章生化 (刘建华)

上海交通大学第6章生化  (刘建华)

考察有进化关系的蛋白质分子中已经 存在的氨基酸替代,基于序列适当比对的数据 ,人们提出了替代矩阵。 1. 发生频率高的替代,得分高;发生频率非 常少的替代,失分就多 2. 一个氨基酸残基缺口扣12分,在此基础上 缺口每增加一个残基加扣2分。 采用这种打分方式,图6.6比对获得115 分。大多数替代是保守替代(得分是正值),极 少数替代是稀有替代(得分是负值)(图6.10 )。
图6.14 三维结构保守性。人血红蛋白a-链,肌红蛋白,和豆 血红蛋白三维结构保守。每个血红素辅基有一个铁原子。氧 分子就是结合于该铁原子上
蛋白质三维结构更保守。
当你知道血红蛋白、肌红蛋白和豆血红蛋 白的功能相似,你就会预测它们有相似的结构 。但是有些已经鉴定的功能并不相关的蛋白质 却有明显类似的三维结构。例如,肌动蛋白是 细胞骨架的一个主要组分,热休克蛋白70( Hsp-70)协助胞内蛋白折叠。这两种蛋白质序 列一致性只有15.6%(图6.15)。但是三维结构 比对显示它们是侧向同源物。尽管它们在体内 功能不同,但结构类似显示它们来自同一祖先 。随着空间结构明了的蛋白越来越多,发现这 种意料之外的亲缘关系的概率越来越大。确定 蛋白三维结构后,计算机搜寻三维结构类似蛋 白有助于鉴定这种亲缘关系。
Berg • Tymoczko • Stryer
Biochemistry
Sixth Edition
Chapter 6: Exploring Evolution and Bioinformatics
Copyright © 2007 by W. H. Freeman and Company
蛋白质序列清楚地反映出生物的进化关系。Jane Goodall和一只 黑猩猩互动提示人类与黑猩猩亲缘关系近。血红蛋白的氨基酸 序列也证明人类与黑猩猩的亲缘关系。在血红蛋白153个氨基酸 残基中,人血红蛋白(红色)与黑猩猩血红蛋白(蓝色)只有 一个氨基酸的最 有力工具之一。最新鉴定的新序列与数据库比 较,确定与该序列相关的分子。利用这些信息 ,能够研究具有这种新近测序分子功能和机制 。如果三维结构也清楚,我们能比较三维结构 、证实序列比较的结论,还能揭示那些序列比 较没有发现的成员。

上海交大第7章生化 (刘建华)

上海交大第7章生化  (刘建华)

图7.12 T到R的转化。血红蛋白的氧结合曲线可以视为所有蛋白 质都是T型的结合曲线和所有蛋白质都是R型的结合曲线的综合 。由于氧分子的结合导致T型向R型转化,氧结合曲线变成S形。
在协同模型中,每个四聚体只能选取全是R型或全是T型之一。 还有一种模式,即序变模型,配体与一个位点结合只增加相邻 位点的结合亲和性,不会导致蛋白质一次性地将T型转变成R型 (图7.13)。没有一种模式能彻底解释血红蛋白的氧结合行为 。实际上,需要将两种模式综合才能解释。血红蛋白三个位点 都结合氧分子时,表现为协同模型(此时四聚体结构呈全R态 ),剩下的结合位点与氧气的亲和力比全T模型的氧亲和性高 20倍。但是,血红蛋白氧结合行为又不全是协同模式。如果四 聚体只有一个位点结合氧,四聚体主要是T态,但此时的血红 蛋白结合氧的亲和性相当于全是T态的脱氧血红蛋白的3倍。从 这个角度看,其行为呈序变模式。这些结果表明协同模型和序 变模型是理想情况。
图7.8 协同性促进血红蛋白的运氧能力。
休息状态肌肉的氧浓度是40 torr,血红蛋白能释放21%结合位点的氧 (虽然氧分压降低了60 torr)。运动状态肌肉的氧浓度只有20 torr, 血红蛋白能释放66%结合位点的氧。从40 torr的氧分压至20 torr氧结 合曲线最陡峭,因此在组织最需要的时候能有效地供应氧。
图7.5 脱氧血红蛋白的四级结构。血红蛋白有两个a-链和两个b链,成ab-二聚体发挥作用。(A)绸缎示意图。(B)空间填充 模型。血红蛋白四聚体也叫血红蛋白A(HbA)。这种四聚体更 恰当地描述成一对ab-二聚体结合构成的四聚体。在脱氧状态, 这些ab二聚体界面间相互结合广泛,包括C-端的相互结合。四聚 体中血红素是相互分开的,铁原子之间的距离达24 ~ 40 A。
红细胞的2,3-二磷酸甘油酸是影响血红蛋白氧 亲和性的关键

上海交通大学生物化学D类课件磷酸戊糖循环

上海交通大学生物化学D类课件磷酸戊糖循环

3. PEP+ADP
丙酮酸激酶
丙酮酸+ATP+CO2+H2O
丙酮酸羧化酶
OAA+ADP+Pi+2H+ PEP+CO2+GDP
丙酮酸+ATP
第七章 糖代谢--磷酸戊糖途径 和其它糖代谢途径
王灿华 Tel: 34204892 生物楼4号楼314室 Email: wangcanhua@
Sept, 2015
总纲
磷酸戊糖途径和其它糖代谢途径
磷酸戊糖途径的过程 磷酸戊糖途径的化学计量 磷酸戊糖途径的生物学意义 磷酸戊糖途径的调控 葡萄糖的异生途径 乳酸循环
总纲
糖 异 生磷 途酸 径戊 和糖 糖途 原径 代 谢
PPP概述
一、磷酸戊糖途径的过程 (Pentose Phosphate Pathway, PPP) 场所:细胞质 氧化阶段: 从6-磷酸葡萄糖氧化开始,直接氧化 脱氢脱羧形成5-磷酸核糖。
非氧化阶段:磷酸戊糖分子在转酮酶和转醛酶的 催化下互变异构及重排,产生6-磷酸 果糖和3-磷酸甘油醛。 中间产物:C3、C4、C5、C6和C7糖。
PPP的速率主要受生物合成时对NADPH的需要 所调节。 氧化脱羧阶段: 限速酶:6-磷酸葡萄糖脱氢酶 反馈抑制:NADPH+H+ 非氧化阶段: 底物浓度:5-磷酸核糖 过多时,可转化成6P-F 和3P-甘油醛进行糖酵解。
PPP-调控
糖酵解 (EMP)
PPP
NADPH调控6-磷酸 葡萄糖是进入糖酵 解途径还是进入磷 酸戊糖途径? NADPH浓度高时, 抑制PPP。 受到能荷的调节 能荷低, 进EMP 能荷高, 进PPP
非氧化阶段

上海交通大学生物化学课件脂代谢脂肪分解汇编

上海交通大学生物化学课件脂代谢脂肪分解汇编

第十章脂代谢--脂的合成代谢王灿华Tel: 34204892生物楼4号楼314室Email: wangcanhua@Sept, 2015脂类生物合成在代谢中的位置脂的合成代谢一、脂的生物合成二、胆固醇的代谢三、胆汁酸的合成一、脂的生物合成脂肪的生物合成分三个阶段:1.合成脂肪酸,并转变成脂酰-CoA2.3-磷酸甘油的生成3.上述二者产物缩合成甘油三酯脂肪酸合成1. 脂肪酸的合成脂肪酸合成过程与氧化降解不同。

❑定位:胞质:饱和脂肪酸(软脂酸)的从头合成线粒体或内质网:更长的碳链由脂肪酸碳链的延长 内质网:不饱和脂肪酸的合成❑原料:碳源: 乙酰-CoA还原力:NADPH脂合成的定位丙二酰基 乙酰基1.缩合 4.再还原2.还原3.脱水 脂肪酸合酶一个代谢模块 TCA 脂肪酸分解与合成 一些氨基酸的降解脂肪酸合成概括脂肪酸合酶(脊椎动物)——多功能酶从乙酰-CoA 和丙二酰-CoA 开始的脂肪酸合成反应由脂 肪酸合酶催化。

至少包括6种酶和1个无酶活性的酰基载体蛋白(ACP)。

中间产物与该复合体中的两个巯基中的一个相连(红色)。

乙酰-CoA-ACP 转乙酰基酶(AT )丙二酰-CoA-ACP 转移酶(MT )β-酮脂酰-ACP 合酶(KS,有-SH )β-酮脂酰-ACP 还原酶(KR ) β-羟脂酰-ACP 脱水酶(HD )烯脂酰-ACP 还原酶(ER )酰基载体蛋白(ACP,有-SH )脂肪酸合酶 脂肪酸合酶多酶体系(复合体)与多功能酶多酶体系:指由几种不同功能的酶彼此聚合形成的多酶复合物如:丙酮酸脱氢酶系α-酮戊二酸脱氢酶系多功能酶:指一些多酶体系在进化过程中由于基因的融合,多种不同催化功能的酶存在于一条多肽链中,这类酶称为多功能酶。

如:脂肪酸合酶(脊椎动物)脂肪酸合酶细菌、植物(多酶复合体)酵母脊椎动物(多功能酶)ACP(酰基载体蛋白):ACP:脂酰基供体,有磷酸泛酰巯基乙胺长臂,脂肪酸合成。

CoA-SH:脂酰基受体,有磷酸泛酰巯基乙胺长臂,脂肪酸分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 17Metabolism:Basic Concepts and DesignDefinitionthe classic definition: The totality of the chemical reactions and physical changes that occur in livingorganisms, comprising anabolism合成代谢and catabolism分解代谢the modern one: (From the view of the basic strategy要略or three key elements要素of metabolism:energy, reducing power还原力and building block构建元件):⏹Metabolism is a general term of a highly integrated network of chemical reactions高度整合(协调,统一)的化学反应网络by which living cells extract energy and reducing power from theirenvironment and synthesize the building blocks of their macromolecules. 1.从环境汲取能量和还原力 2.合成生物大分子的构建元件Pathways 代谢途经(由首尾相接的化学反应组成) Many of these reactions are organized intopathways. Each biochemical pathway consists of several reactions that occur sequentially; that is, the product of one reaction is the substrate for the one that follows.化学反应—(代谢途经)—网络(―点‖, ―线‖,―面‖关系)Two major types of the pathways:(1) Anabolic合成or biosynthetic ones:⏹Large complex molecules are synthesized from smaller precursors从较小的前体合成复杂的大分子Building block molecules (e.g., amino acids, sugars, and fatty acids) produced or acquired from the diet (i.e. ‗environment‘) are incorporated into larger, more complex molecules (i.e. ‗macromolecules‘) 即从―构建元件‖合成―大分子‖⏹Because biosynthesis increases order有序度and complexity复杂性(macromolecules are moreorderly and more reductive还原), anabolic pathways require free energy 消耗自由能⏹Examples: synthesis of polysaccharides多糖and proteins from sugars and amino acids,respectively⏹(2) Catabolic分解ones:⏹Large complex molecules are degraded into smaller, simpler products. Some of them release freeenergy. 释放自由能⏹Examples: β-oxidation (fatty acids are degraded into acetyl-CoA乙酰辅酶A).⏹The primary functions of metabolism are⏹acquisition and utilization of energy⏹synthesis of macromolecules for cell structure and functioning (i.e., proteins, nucleic acids, lipids,and carbohydrates)⏹removal of waste products.⏹Metabolism has a coherent design containing many common motifs代谢包含许多共同的模式(框架):⏹The number of reaction in metabolism is large but the number of kinds of reactions is relativelysmall. 反应类型都少⏹The mechanisms机制of these reactions are usually quite simple. (e.g., a double bond is oftenformed by dehydration of an alcohol双键由醇脱水形成) 反应机制都简单⏹ A group of about 100 molecules(―central molecules‖) plays a central role in all forms of life.(e.g., acetyl CoA, G-6-P葡萄糖-6-磷酸, pyruvate丙酮酸, NADH烟酰胺腺嘌呤二核苷酸) 相同的中心分子⏹Metabolic pathways are regulated in common ways. (e.g., allosteric interaction变构作用of PFK磷酸果糖激酶; covalent modification共价修饰of glycogen phosphorylase糖原磷酸化酶) 共同的调控模式A thermodynamically unfavorable reaction can be driven by a favorable oneThe criterion of judgment whether a reaction can occur spontaneosly: only if △G (the change in freeenergy) is negative.反应是否能自发进行的判据是△G△G= △G0 + RTln [C][D]/[A][B] Thus, the △G of a reaction depends on: 1.the nature of thereactants (i.e. △G0, the standard free-energy change) 2. their concentrationsThe standard free-energy change at pH7 is denoted by △G0‘.An important thermodynamic fact is that overall free-energy change for a chemically coupled series ofreactions is equal to the sum of the free-energy changes of the individual steps 偶联的化学反应序列总的自由能改变等于各单步反应自由能改变之和.⏹Here the uphill and the downhill reactions are coupled by the shared chemical intermediate B 共同中间化合物B.A ≒B +C B ≒D / A ≒C + DThe other two principal ways of the coupling are⏹activated protein conformation构象. Here proteins serve as energy conversion devices.Molecular motors convert the phosphoryl potential磷酸基团转移势能of ATP into mechanicalenergy(e.g. myosin肌动蛋白). The active transport of Na+ and K+ across membranes is drivenby the phosphorylation of the sodium-potassium pump钠钾泵by ATP and its subsequentdephosphorylation去磷酸化⏹Ionic gradient离子梯度across membranes: proton质子gradient produced by the oxidation offuel molecules or by photosynthesis ultimately powers the synthesis of most of ATP in cells.―偶联‖的概念被极度放大Conclusion: Tight coupling is a general characteristic of biological assemblies复合体(e.g., theabove-mentioned Na+- K+ pump and the electron transport chain电子传递链) that mediate energy conversion.ATP is the universal currency通用货币of free energy in biological systemsNonbiologic system may utilize heat energy to perform work, but biologic system is essentiallyisothermic等温的and use chemical energy (especially ATP) to power living processes.The use of free energy: motion运动, active transport主动转运, biosynthesis生物合成, signalamplification信号放大The source of free energy: oxidation of foodstuffs (animals), light energy (plants).Part of the absorbed free energy is transformed into a highly accessible可用的form—ATP (adenosinetriphosphate腺苷三磷酸) containing⏹adenine腺嘌呤⏹ribose核糖⏹and three phosphate groups (designated by adenosine-P~P~P)⏹Its active form is usually a complex of ATP with Mg2+ or Mn2+.ATP is an energy-rich molecule because its triphosphate unit contains two phosphoanhydride bonds磷酸酸酐键⏹Since large amount of free energy is liberated when ATP is hydrolyzed to (ADP + Pi) or to (AMP+ PPi) (pyrophosphate焦磷酸) A—P~P~P→A—P~P + Pi (or A—P + PPi)⏹ATP allows the coupling of thermodynamically unfavorable reactions热力学上不可行的反应to favorable ones⏹△G0‘ for both of the above-mentioned hydrolyses水解作用is-7.3 kcal/mol⏹Under typical cellular conditions, the actual △G for these hydrolyses is about -12 kcal/mol(浓度因素)⏹In turn, ATP is formed from ADP and Pi in oxidative phosphorylation氧化磷酸化This ATP-ADP cycle is the fundamental mode of energy exchange in biological system.ATP is continuously formed and consumedATP is the principal immediate donor即刻供体of free energy in biological systems⏹100-meter sprint短跑is a good example to illustrate the concept ‗immediate‘⏹The runner is powered by ATP during the first second and by creatine phosphate磷酸肌酸during the first four seconds⏹and hereafter by anaerobic glycolysis厌氧酵解of muscle glycogen肌糖原⏹which means that the storage of ATP in human bodies is quite limited (enough to keep strenuousexertion only for one second)⏹The long-term storage of free energy is fat in adipose tissue脂肪组织ATP→磷酸肌酸→肌糖原厌氧酵解→脂肪分解In a typical cell, the ATP molecule is consumed within a minute following its formation. The turnover转换of ATP is very high, i.e., ATP is continuously (or ceaselessly) formed and consumed⏹When organism is in the state of strenuous exertion, the extant现存的A TP is consumed up atonce and it begins to use the ATP converted from (in the order of) creatine phosphate, glycogen,and fat (mainly triglyceride甘油三酯)⏹ A resting human consumes about 40 kg of ATP in 24h. During strenuous exertion, the rate ofutilization of ATP may be as high as 0.5 kg/min⏹All activities of living organisms need continuous supply of ATP⏹The energy from light or oxidation of fuel molecules first pumps protons across a membrane(typically the inner membrane of mitochondrion线粒体内膜) to generate a proton-motive forceand the proton gradient质子梯度then powers the synthesis of ATP.Structural basis of the high phosphoryl transfer potential磷酰基转移潜势of ATPThe hydrolysis of ATP can produce a rather high standard free energy (△G0‘= -7.3 kcal/mol), i.e., ATPhas a stronger tendency to transfer its terminal phosphoryl group to waterIn other words, ATP has a higher phosphoryl potential (phosphoryl group-transfer potential)⏹than (e.g.) glyceral 3-phosphate 3-磷酸甘油, G-6-P, etc.The structural basis of the high phosphoryl potential of ATP is its structural speciality. Two factors areimportant:⏹electrostatic repulsion静电斥力(比较ATP和ADP)⏹resonance stabilization共振稳定作用(酸酐键的共振稳定性小于磷酯键) (比较高能键侧的磷酸和正磷酸Besides ATP there are various other compounds in biological systems which have a high phosphorylpotential. Among them the followings have a higher phosphoryl transfer potential than does A TP:⏹PEP烯醇丙酮酸磷酸⏹carbamoyl phosphate 氨甲酰磷酸⏹acetyl phosphate乙酰磷酸⏹creatine phosphate⏹So PEP can transfer its phosphoryl group to ADP to produce ATP.PEP + ADP + H+ →pyruvate + ATP. In fact, this is the final step of glycolysis.It is significant that ATP is in the middle among the biologically important phosphorylated moleculesThis intermediate position (i.e. ‗fall short of the best but be rather than the worst‘比上不足比下有余)enables ATP to be an extremely important carrier of phosphoryl group⏹ATP can transfer it to the other phosphate compounds which have a lower phosphoryl grouptransfer potential⏹and in turn ADP can receive the group from the high energy phosphate compounds with a higherpotential than ATP.Creatine phosphate is a reservoir of ~P in muscleThe amount of ATP in muscle is rather limited and is only enough to maintain contractile activity forabout 1 second⏹Vertebrate脊椎动物muscle contains a reservoir of high-potential phosphoryl groups in the formof creatine phosphate⏹for invertebrates, the corresponding one is phosphoarginine磷酸精氨酸⏹which can readily transfer its phosphoryl group to produce ATP⏹At pH7, △G0‘ of hydroly sis of creatine phosphate is-10.3 kcal/mol, so forcreatine phosphate + ADP + H+≒A TP + creatine; the total reaction △G0‘ = -10.3-(-7.3)=-3 kcal/mol⏹The abundance of creatine phosphate and its high phosphoryl transfer potential relative to that ofATP make it a highly effective ~P(high-energy phosphate bond) buffer⏹It maintains a high concentration of ATP during periods of muscular exertion⏹Indeed, it is the major source of ~P for a runner during the first four seconds of a 100-metersprint.ATP hydrolysis shifts the equilibria of coupled reactions by a factor 108To enhance an understanding of the role of ATP in energy coupling we‘ll illustrate it with a chemicalreaction that is thermodynamically unfavorable without an input of free energy⏹Suppose: A≒B △G0‘ = 4 kcal/mol. It means that this reaction can not occur spontaneouslytoward B (under standard conditions) without an input of free energy⏹The equilibrium constant K‘eq of this reaction at 250 C is related to △G0‘ by K‘eq =[B] eq /[A]eq =10-△G0‘/1.36 = 10-4/1.36 =1.15 x10-3 (平衡时, △G0‘ = -1.36 lg K‘eq )⏹[B] is about 900 times lower than [A]. Only if [B]/[A] >1.15x10-3, A can not be converted into B⏹We say, this reaction is ‗unfavorable‘⏹However, the coupling of the hydrolysis of ATP with the above-mentioned reaction can convert this‗impossible‘ one into ‗possible‘⏹The total △G0‘ =-7.3+4=-3.3 kcal/mol.⏹K‘ eq =[B] eq /[A] eq x [ADP] eq [Pi] eq /[A TP] eq =103.3/1.36 =2.67 x 102⏹At equilibrium, the ratio of [B]/[A] is K‘ eq x [A TP] eq /[ADP] eq [Pi] eq.⏹The ATP-generating system of cells keeps the [ATP] eq /[ADP] eq [Pi] eq ratio at a high level,typically of the order of 500⏹So [B] eq /[A] eq =2.67x102x 500=1.34 x 105, which means that the hydrolysis of ATP enablesA to be converted intoB until [B]/[A] ratio reaches a value of 1.34 x 105⏹This ratio is about 108 times higher than that of 1.15x10-3for the uncoupled reaction 1.15x10-3 → 1.34 x 105 In other words, the coupled hydrolysis of ATP has changed the equilibriumratio of B to A by a factor of about 108⏹We see here the thermodynamic essence of ATP’s action as a energy-coupling agent.⏹Cells maintain a high level of ATP by using oxidizable substrates (i.e., ‗fuel molecules‘) or light assources of free energy (through oxidative phosphorylation)⏹The existence of high-level ATP tends to couple the hydrolysis of ATP with other chemical energy-neededreactions (i.e.‗unfavorable reaction‘) necessary for living organisms能源→足量的ATP产生→偶联需能反应⏹The hydrolysis of 1 ATP molecule in a coupled reaction changes the equilibrium ratio of products toreactants by a very large factor, of the order of 108⏹More generally, the hydrolysis of n A TP molecules changes the equilibrium ratio of a coupled reaction (orsequence of reactions, i.e. a series of reactions) by a factor of 108n⏹Thus an almost ‗impossible‘ reaction can occur only if coupled with the hydrolysis of a sufficient numberof ATP molecules⏹Here, the meaning of A and B is not confines限于to different compounds (different chemical species)⏹ A and B may represent different conformations 构象of a molecule⏹or the different concentrations of an ion or molecule on the outside and inside of a cell⏹the former as in muscle contraction, the latter as in the active transport of a nutrient.NADH and FADH2 are the major electron carrier in the oxidation of fuel moleculesThe free energy for chemotrophs化养生物is mainly from the oxidation of fuel molecules (e.g., Glc andFA)⏹In aerobic需氧organisms, the ultimate electron acceptor is O2 (more reduced fuel moleculesalways liberate electrons)⏹However, the transfer of the electrons from fuel molecules and their break-down products to O2is not direct, it is indirect⏹i.e. the transfer of electrons requires various carriers.⏹Pyridine nucleotides吡啶核苷酸including NAD+ or NADH; NADP+ or NADPH (nicotinamideadenine dinucleotide烟酰胺腺嘌呤二核苷酸)⏹and flavin黄素nucleotides including FMN or FMNH2; FAD or FADH2 are among thesespecial carriersThe reduced forms of these carriers (NADH, FADH2) transfer their high-potential electrons to O2 bymeans of an electron transport chain located in the inner membrane of mitochondria线粒体内膜⏹During the process of flowing of electrons along the electron transport chain the proton gradientis formed which then drives the synthesis of ATP from ADP and Pi⏹This process, i.e. oxidative phosphorylation is the major source of A TP in aerobic organisms需氧生物ATP的主要源泉.⏹Besides, the high-potential electrons derived from the oxidation of fuel molecules can be used inbiosynthesis (in the form of NADPH) that requires reducing power in addition to ATP (e.g., thesynthesis of fatty acids)NAD+ is a major electron acceptor in the oxidation of fuel molecules⏹Its reactive part is nicotinamide ring,烟酰胺(尼克酰胺)环a pyridine derivative嘧啶衍生物. Inthe oxidation of a substrate, this ring accepts a hydrogen ion and two electrons, i.e. a hydride ion氢阴离子[NAD+ + H++2e(or H-)→NADH]⏹NAD+ serves as an electron acceptor in many reactions of the different types, e.g. NAD++alcohol≒NADH+ aldehyde醛(or ketone酮)+H+⏹Here, a hydride ion is directly transferred to NAD+, whereas a proton appears in the solvent⏹The substrate loses two hydrogen atoms (2H→H-+H+)⏹The another major electron carrier is F AD⏹It is the electron receptor in reactions of the following type: FAD+ R-CH2-CH2-R‘ ≒R-CH =CH-R‘+ FADH2, e.g., in β-oxidation of fatty acid.⏹The reactive part of FAD is its isoalloxazine ring异咯嗪环(corresponding to nicotinamide ringof NAD+)⏹Both FAD and NAD+ can accept two electrons, but FAD takes up a proton as well as a hydride ionNADPH is the major electron donor in reductive biosynthesisIn most biosyntheses the precursors are more oxidized than the products⏹(e.g.) in the synthesis of fatty acids the more oxidized form of carbon atom (ketone group酮基-C=O) is reduced to its more reduced form (methylene group亚甲基: -CH2-)⏹In other words, the macromolecule is more reduced than its breakdown products⏹So, in biosynthesis, reducing power is needed in addition to ATP⏹In the biosynthesis of fatty acid, the ketone group of an added C2 unit is reduced to a methylenegroup in several steps, this sequence of reactions requires an input of 4 electrons NADPH is the major electron donor in most reductive biosynthesis⏹which differs from NADH in that the 2‘-hydroxyl group of its adenosine moiety腺苷isesterified酯化with phosphate⏹They carry electrons in the same way (the reactive part of both is their nicotinamide ring)⏹However, NADPH is used almost exclusively for reductive biosynthesis, whereas NAD+ is usedprimarily for the generation of ATPNADPH独特地用于还原性生物合成,而NAD+则主要用于ATP的产生⏹The extra phosphate group on NADPH is a tag标签that directs this reducing agent torecognizing biosynthetic enzymes⏹In the absence of catalysts, NADH, NADPH and FADH2 react slowly with O2, A TP is slowly hydrolyzed⏹They are kinetically quite stable in the face of a large thermodynamic driving force for reactionwith O2 or H2O⏹The stability of these molecules in the absence of specific catalysts is essential for theirbiological function because it enables enzymes to control the flow of free energy and reducingpower.⏹CoA is another central molecule in metabolism⏹It is a heat-stable cofactor required in many enzyme-catalyzed acetylations乙酰化⏹The terminal sulfhydryl group巯基in CoA is the reactive site⏹nicotinamide ring尼克酰胺(烟酰胺)环for NAD(P)+, isoalloxazine ring异咯嗪环for FAD Activated carriers exemplify the modular design and economy of metabolism代谢的模式化设计和经济化原则CoA carries different-size activated acyl groups (C2~C24 or even longer) for degradation and energygeneration or for biosynthetic purposes⏹Likewise, pyridine nucleotides mediate many electron transfers⏹S-adenosylmethionine S-腺苷甲硫氨酸participates in methylations甲基化in bacterialchemotaxis趋化性⏹Acyl groups are linked to CoA by a thioester bond硫酯键⏹Among the acyl CoA the most often seen is acetyl CoA⏹Acetyl CoA has a high acetyl group-transfer potential⏹Acetyl CoA carries an activated acetyl group just as ATP carries an activated phosphoryl groupand NAD(P)H carries electrons.⏹Indeed, most interchanges of activated groups in metabolism are accomplished by a rather small set ofcarriers⏹The existence of a recurring set of activated carriers in all organisms is one of the unifying motifs ofbiochemistry.Most water-soluble vitamins are components of coenzymeVitamins are organic molecules that are needed in small amounts in the diet of some higher animals微量存在于食物中、为高等生物营养所必须的有机物质⏹They serve nearly the same role in all forms of life⏹but higher animals have lost the capacity to synthesize them⏹Many enzymes require cofactors for activity. Such cofactors can be metal ions or small,vitamin-derived organic molecules called coenzymes.According to the solubility in water or in nonpolar solvents they are groupedThe water-soluble vitamins are ascorbic acid (VC,抗坏血酸) and a series known as the vitamin Bcomplex⏹Ascorbate serves as a reducing agent (an antioxidant)⏹The VB series are components of coenzymes, e.g., riboflavin核黄素(VB2) is a precursor of FAD,and pantothenate泛酸(VB5) is a component of CoA. Niacin(VB3) for NAD+.Fat-soluble vitamins participate in diverse processes such as blood clotting and visionVK, necessary for normal blood clotting (K: koagulation), participates in the carboxylation羧化of Gluresidues to γ-carboxyglutamateγ-羧基谷氨酸, which makes it a much stronger chelator螯合剂of Ca2+剂VK→使(构成凝血因子的)谷氨酸羧化→Ca2+螯合能力增强→凝血V A is the precursor of retinal视黄醛, the light-sensitive group in rhodopsin视紫红质and other visualpigments视觉色素⏹Retinoic acid视黄酸, which contains a terminal carboxylate羧基in place of the alcoholterminus of retinol视黄醇, activates the transcription of specific genes that mediate growth anddevelopmenthormone derived from VD regulates the metabolism of Ca and P, whose deficiency impairs boneformation in growing animalsVE (i.e. α-tocopherol生育酚) deficiency leads to infertility in rats and protects unsaturated membranelipids不饱和膜脂from oxidation.VC is required for the hydroxylation of Pro residues in collagenCollagen胶原with the triple-helical structure, the major protein of connective tissue, is noted forcontaining 4-hydroxyproline羟脯氨酸, an amino acid rarely found elsewherethe Pro on the amino side of Gly residues in nascent collagen chains becomes hydroxylated羟基化⏹Hydroxylation of a Pro residue at C-4 is by the action of prolyl hydroxylase脯氨酸羟化酶⏹Here. VC serves as a specific antioxidant to regenerate the enzymeVC(作为抗氧化剂)→使脯氨酸羟化酶(在被氧化后)复原→初生胶原链中Gly氨基侧的Pro得以羟基化→使胶原具有正常功能(抗坏血病)Collagen synthesized in vitro in the absence of VC has a lower melting temperature than does the normalprotein⏹The Tm of the poly(Pro-Pro-Gly) triple helix is 240C, compared with 580C for thepoly(Pro-Hyp-Gly) triple helix (Hyp: hydroxyproline)⏹Hyp stabilizes the collagen triple helix by forming interstrand hydrogen bonds⏹The abnormal fibers formed by insufficiently hydroxylated collagen contribute to the skin lesionsand blood vessel fragility脆弱seen in scurvy坏血病.Stages in the extraction of energy from foodstuffsThere are 3 stages in the generation of energy from the oxidation of foodstuffsStage I: large molecules in food are broken down into smaller units.⏹Protein→20 kinds of constituent amino acids⏹polysaccharides→simple sugar such as Glc⏹fats→glycerol and fatty acids. No useful energy is generatedStage II: these numerous small molecules are degraded to a few simple units that play a central role inmetabolism⏹Most of these small molecules—sugars, fatty acids, glycerol and amino acids — are convertedinto the acetyl unit of acetyl CoA⏹The amount of A TP generated in this stage is smallerStage III: It consists of the citric acid cycle and oxidative phosphorylation⏹which are the final common pathways in the oxidation of fuel molecules⏹Acetyl units brought into this cycle (or called ‗tricarboxylic acid cycle‘) by acetyl CoA arecompletely oxidized to CO2⏹The oxidation of each acetyl group in the cycle produces 4 pairs of electrons which aretransferred to NAD+ (3 pairs) and FAD (1 pair)⏹Then ATP is generated as electrons flow from their reduced form (NADH and FADH2) to O2 ina process called oxidative phosphorylation⏹More than 90% of the ATP generated by the degradation of foodstuffs is formed in this stage. Metabolic processes are regulated in 3 principal waysA great amount of interdependent reactions are taking place in living cells whose external environment isnot constantMetabolism must be regulated effectively and flexibly. There are 3 principal ways to control:(1) the amount of enzymesthat is adjusted by changing the rate of transcription of gene encoding theme.g., lactose乳糖(substrate of the enzyme) induces a more than 50-fold increases in the rate ofsynthesis of β-galactosidase β-半乳糖苷酶, an enzyme required for the breakdown of thisdisaccharide(2) their catalytic activitiesA. Reversible allosteric control可逆别构调节, e.g. the first reaction in many biosyntheticpathways is allosterically inhibited by the ultimate product of the pathway (i.e. feedbackinhibition反馈抑制)B. Reversible covalent modification可逆共价修饰, e.g. glycogen phosphory-lase糖原磷酸化酶,the enzyme catalyzing the breakdown of glycogen (a storage form of sugar), is activated byphosphorylation of a particular Ser residue when Glc is scarceHormones e.g. epinephrine肾上腺素trigger signal transduction cascades信号传导级联系统that lead to highly amplified changes in metabolic patternscAMP and Ca2+ serve as intracellular messengers胞内信使that coordinate the activities ofmany target proteins靶蛋白cAMP→促活PKA(蛋白激酶A; 使其调控部位与催化部位分离)→使靶蛋白的Ser或Thr残基磷酸化→从而调节其活性(3) the accessibility 可及性of substrates.⏹ A. Flux of substrates 底物流向e.g., insulin胰岛素promotes the entry of Glc into many kindsof cells⏹ B. compartmentation 区域化segregates opposed reactions, e.g. FA oxidation occurs in themitochondria, whereas FA synthesis occurs in the cytosolAn important general principal of metabolism is that biosynthetic and degradative pathways are almostalways distinct几乎总是分离的Besides, the energy status of the cell also control many reactions in metabolism⏹One index of the energy status is the energy charge 能荷= [ATP]+ 0.5[ADP]/[ATP]+[ADP]+[AMP]⏹The value of energy charge ranges from 0 (all AMP) to 1 (all ATP)⏹ATP-generating (catabolic) pathways are inhibited by a high energy charge, whereasATP-utilizing (anabolic) pathways are stimulated by a high energy charge⏹In plots of the reaction rates of such pathways versus the energy charge the curves usuallyintersect near an energy charge of 0.9, i.e. where the curves drop or go up rapidly⏹The energy charge is controlled within rather narrow limits, i.e. the energy charge, like the pH ofa cell is buffered. The energy charge of most cells is in the range of 0.8~0.95.The central role of ribonucleotides in metabolism reflects their ancient originsWhich came first in evolution: protein, DNA, or RNA? A likely explanation is: RNA⏹for many of the central molecules of metabolism in all forms of life are ribonucleotides核糖核苷酸⏹important activated carriers such as A TP, NADH, FADH2, and CoA contain adenosine腺苷phosphate unitsThe earliest catalysts most probably were RNA molecules, termed ribozymes核酶⏹Non-RNA units such as isoalloxazine ring (in FAD), nicotinamide ring (in NAD+),mercaptoethylamine巯基乙胺unit (in CoA) were recruited to serve as efficient carriers ofactivated electrons and chemical units⏹ a function not readily performed by RNA itself⏹When protein replaced RNA as the major catalysts to achieve greater versatility and DNAformed by reverse transcription of RNA replaced RNA as the genetic material⏹because its double helix is a more stable and reliable store of genetic information than issingle-stranded RNA⏹the ribonucleotide enzymes stayed essentially unchanged because they were already well suitedto their metabolic role and RNA was left with roles it has retained to this day⏹as the information carrier (mRNA) and adapter (tRNA) in protein synthesis and as criticalcomponents (rRNA) of ribosomes and other assemblies that mediate gene expression That molecules and motifs of metabolism are common to all forms of life testifies to their common origin共同起源and to the retention of functioning modules功能模式持续至今over billion of years of evolution.SummaryAll cells extract energy from their environment and convert foodstuffs into cellular components by ahighly integrated network of chemical reactions called metabolismMost of the central molecules of metabolism are the same in all forms of life. Ribonucleotides such asATP and NADH are especially prominent, reflecting their ancient origin. Moreover, many metabolic patterns are essentially the same in bacteria, plants, and animalsA reaction can occur spontaneously only if the change in free energy (△G) is negative. Athermodynamically unfavorable reaction can be driven by a thermodynamically favorable one ATP, the universal currency of energy to biological systems, is an energy-rich molecule because itcontains two phosphoanhydride bondsThe repulsion between the negatively charged phosphate groups is reduced when ATP ishydrolyzedADP and Pi are stabilized by resonance more than is A TPthis is why ATP has a higher phosphoryl group-transfer potentialThe hydrolysis of ATP shifts the equilibrium of a coupled reaction by a factor of about 108The basic strategy of metabolism is to form ATP, NADPH, and building blocks for biosynthesisATP is consumed in muscle contraction and other motions of cells, active transport, signal transductionprocesses, and biosynthesesNADPH, which carries two electrons at a high potential, provides reducing power in the biosynthesis ofcell components from more-oxidized precursorsATP and NADPH are continuously generated and consumedVitamins are small biomolecules that are needed in small amounts in the diet of higher animalsThe water-soluble ones are VC (ascorbate, an antioxidant) and VB complex (components ofcoenzymes)Ascorbate is required for the hydroxylation of Pro residues in collagen, which stabilizes the triplehelixThe fat-soluble ones are V A (a precursor of retinal), VD (a regulator of calcium and phosphorusmetabolism), VE (an antioxidant in membranes), and VK (a participant in the carboxylation ofGlu).There are 3 stages in the extraction of energy from foodstuffs by aerobic organismsIn the first one, large molecules are broken down into smaller molecules, such as amino acids,sugars, and fatty acidsIn the second one, these small molecules are degraded to a few simple units that have a pervasiverole in metabolism. One of them is the acetyl unit of acetyl CoA, a carrier of activated acylgroupsThe third one of metabolism is the citric acid cycle and oxidative phosphorylation, in which ATPis generated as electrons flow to O2, the ultimate electron acceptor, and fuels are completelyoxidized to CO2Most transfers of activated groups in metabolism are mediated by a recurring set of carriersMetabolism is regulated in a variety of waysThe amounts of some critical enzymes are controlled by regulation of the rate of proteinsynthesis and degradationIn addition, the catalytic activities of many enzymes are regulated by allosteric interactions (as infeedback inhibition) and by covalent modificationThe movement of many substrates into cells and subcellular compartments is also controlledDistinct pathways for biosynthesis and degradation also contribute to metabolic regulationThe energy charge, which depends on the relative amounts of ATP, ADP, and AMP, plays a role inmetabolic regulationA high energy charge inhibits ATP-generating (catabolic) pathways, whereas it stimulatesATP-utilizing (anabolic) pathwaysThe level of ATP and other key metabolites in living organisms can be monitored noninvasively by NMR(nuclear magnetic resonance核磁共振).Chapter 19 GlycolysisGlycolysis is the sequence of reactions that metabolizes one molecule of glucose to two molecules of pyruvate丙酮酸with the concomitant net production of two molecules of ATP.An overview of key structures and reactions♌the structure of the reactants•Hexose己糖or triose丙糖and their derivatives•phosphorylatedEster酯or anhydride酸酐♌the kinds of reactions•Phosphoryl transfer 转移by kinase激酶•Phosphoryl shift移位by mutase变位酶。

相关文档
最新文档