第一章有理数单元计划
2024年人教版七年级上册教学设计第一章 有理数第一章 有理数
一、单元学习主题本单元是“数与代数”领域“数与式”主题中的“有理数”.二、单元学习内容分析1.课标分析《义务教育数学课程标准(2022年版)》(以下简称《标准2022》)指出初中阶段数与代数领域包括“数与式”“方程与不等式”和“函数”三个主题,是学生理解数学符号,以及感悟用数学符号表达事物的性质、关系和规律的关键内容,是学生初步形成抽象能力和推理能力、感悟用数学的语言表达现实世界的重要载体.“数与式”是代数的基本语言,初中阶段关注用字母表述代数式,以及代数式的运算,字母可以像数一样进行运算和推理,通过字母的运算和推理得到的结论具有一般性.课标的内容要求:①理解负数的意义,会用正数和负数表示具体情境中具有相反意义的量;理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.②借助数轴理解相反数和绝对值的意义,初步体会数形结合的思想方法,掌握求有理数的相反数和绝对值的方法.教师应把握数与式的整体性,一方面,通过对有理数的认识,帮助学生进一步感悟数是对数量的抽象,知道绝对值是对数量大小和线段长度的表达;另一方面,通过代数式和代数式运算的教学,让学生进一步理解用字母表示数的意义,通过基于符号的运算和推理,建立符号意识,感悟数学结论的一般性,理解运算方法与运算律的关系,提升运算能力.在教学过程中,要关注数学知识与实际的结合,让学生在实际背景中理解数量关系和变化规律,经历从实际问题中建立数学模型、求解模型、验证反思的过程,形成模型观念;要关注基于代数的逻辑推理,能在比较复杂的情境中,提升学生发现问题、提出问题、分析问题和解决问题的能力,以及有逻辑地表达与交流的能力.2.本单元教学内容分析人教版教材七年级上册第一章“有理数”,本章包括两个小节:1.1正数和负数;1.2有理数及其大小比较.数及其运算是中小学数学课程的核心内容.小学已经安排了自然数、正分数及其运算等学习内容.本单元借助生活实例引入负数.通过添加负数这一类“新数”,使数的范围扩张到有理数.引入负数是实际的需要,也是学习后续内容,特别是“数与代数”内容的需要,学生可以从中体会根据实际和数学的需要引入“新数”的好处.有理数的概念可以利用数轴来认识、理解;同时,利用数轴又可以把这些概念串在一起.数轴是数形结合思想的产物.引进数轴后,可以用数轴上的点直观地表示有理数,为学生提供了理解相反数、绝对值的直观工具,同时也为学习有理数的运算法则做了准备.引入相反数的概念,一方面可以加深对相反意义的量的认识,另一方面可以为学习绝对值、有理数运算做准备.绝对值概念借助距离概念加以定义.在数轴上,一个点由方向和距离(长度)确定;相应地,一个实数由符号与绝对值确定.这里,“方向”与“符号”对应,“距离”与“绝对值”对应,又一次体现了数与形的结合、转化.所以,绝对值概念可以促进对数轴概念的理解,同时也是学习数的大小比较、数的运算的基础.本单元重点是理解正负数、有理数和绝对值的相关概念;难点是在理解概念的基础上,养成良好的思维习惯.三、单元学情分析本单元内容是人教版教材数学七年级上册第一章有理数.学生在小学已经学习了自然数、正分数及其运算、用字母表示数的知识,这些都是学习本章的基础.实际上,小学学过的数及运算的知识,就是有理数及其运算的知识,数的范围限制在“正数和0”.因此,本单元内容的教学,首先要做好与以往算术知识和方法的衔接,在原有基础上自然引申出新的问题和思路.例如,对负数的认识,借助实际生活、生产中大量存在的“相反意义的量”,提出引入“新数”的需要,然后借助“大于0的数叫作正数”,自然引入“在正数前面加上符号‘-’(负号)的数叫作负数”.另外,本单元渗透了用字母表示数的知识,例如,用-a表示a的相反数;用字母表示求一个数的绝对值的结论;等等.这样,既使问题阐述得更简明、更深入,也使学过的数与代数的知识得到巩固、加强和提高.总之,加强与小学学过的数及运算的衔接,不仅有利于学生理解本单元知识,也有利于培养学生提出问题的能力.四、单元学习目标1.理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小.2.能借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数和绝对值的方法,知道|a|的含义(这里a表示有理数).五、单元学习内容及学习方法概览有理数课时划分内容本质与研究方法1.1正数和负数通过提出问题,根据问题归纳正数和负数的概念;培养学生观察、发现问题的能力,培养学生积极思考、合作交流的意识和能力续表有理数课时划分内容本质与研究方法1.2有理数及其大小比较1.2.1有理数的概念提出问题,根据问题归纳有理数的概念,并对有理数进行分类;培养学生观察、发现问题的能力,培养学生分类讨论的数学思想1.2.2数轴提出问题,根据问题归纳数轴的概念,让学生积极参与探究数轴的活动,并学会与他人交流合作;让学生感受在特定的条件下数与形是可有理数课时划分内容本质与研究方法以互相转化的,让学生体验生活中的数学1.2.3相反数通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;渗透数形结合思想,感受事物之间的对应统一的辩证思想1.2.4绝对值提出问题,通过探索求一个数绝对值的方法让学生通过观察,发现规律,总结方法;培养学生积极参与数学活动,在数学活动中体验成功的乐趣1.2.5有理数的大小比较经历用数轴比较有理数大小的方法和形成过程,体会负数的大小比较与自己原有认知体系的不同;经历形式多样的数学活动,让学生通过观察、思考和自己动手操作,体验有理数大小比较法则的探索过程六、单元评价与课后作业建议本单元课后作业整体设计体现以下原则:针对性原则:每课时课后作业严格按照《标准2022》设定针对性的课后作业,及时反馈学生的学业质量情况.层次性原则:教师注意将课后作业分层进行,注重知识的层次性和学生的层次性.知识由易到难,由浅入深,循序渐进,突出基础知识,基本技能,渗透人人学习数学,人人有所获.重视过程与方法,发展数学的应用意识和创新意识.生活性原则:本节课的知识来源于生活,应回归于生活,体现数学的应用价值.根据以上建议,本单元课后作业设置为两部分,基础性课后作业和拓展性课后作业.。
人教版七年级数学上册第一章《有理数》(大单元教学设计)
5.掌握有理数的乘方运算规则,能够求解简单的乘方问题。
(二)过程与方法
1.通过小组讨论、互动问答等方式,培养学生合作学习的能力,提高解决问题的效率。
2.通过实际例题的分析与解答,培养学生运用数学知识解决实际问题的能力,让学生体会数学与生活的紧密联系。
为了巩固学生对有理数知识的掌握,培养他们运用所学解决问题的能力,特布置以下作业:
1.基础知识巩固:
-完成课本第1-2页的练习题,涉及有理数的概念、分类及简单的加减运算。
-结合实际生活,举例说明有理数在生活中的应用。
2.运算能力提升:
-完成课本第3-4页的练习题,涵盖有理数的混合运算,包括加减乘除及括号的运用。
1.回顾本节课所学内容:引导学生回顾有理数的概念、运算规则、相反数和绝对值等知识点。
2.归纳总结:教师总结本节课的重点和难点,强调有理数运算的注意事项。
3.布置作业:布置适量的课后作业,要求学生在课后巩固所学知识。
4.激发兴趣:鼓励学生在课后继续探索有理数的奥秘,提高他们的自主学习能力。
五、作业布置
1.教学方法:
-采用启发式教学,引导学生通过观察、思考、总结,发现有理数的运算规律。
-利用数轴、符号等工具,形象地展示有理数的特点,帮助学生理解和记忆。
-设计丰富的教学活动,如小组讨论、互动问答、实际例题分析等,激发学生的学习兴趣和参与度。
2.教学策略:
-针对学生的认知水平,逐步引导他们从整数运算向有理数运算过渡,降低学习难度。
-对运算过程中容易出错的地方进行重点讲解和示范,帮助学生掌握正确的运算方法。
-注重培养学生的数学思维,引导他们在解决实际问题时,能够灵活运用所学知识。
最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数).
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的负数就是让学生去感受和体验这一点.使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了.
人教版七年级上学期数学教案第一章
课题:1.1正数和负数(1)
教学目标
1,整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2,能区分两种不同意义的量,会用符号表示正数和负数;
3,体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学兴趣。
教学难点
正确区分两种不同意义的量。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习
教科书第5页练习
课堂小结
围绕下面两点,以师生共同交流的方式进行:
1,0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2,正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
举一反三思维拓展
经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.
2024年人教版七年级数学上册的教学计划(二篇)
2024年人教版七年级数学上册的教学计划一、本学期的教学目标二、教材分析本学期的教学内容包括有理数、整式的加减、一元一次方程、图形认识初步。
第一章有理数1、通过实际例子,感受引入负数的必要性。
会用正负数表示实际问题中的数量。
2、理解有理数的意义,能用数轴上的点表示有理数。
借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。
通过上述内容的学习,体会从数与形两方面考虑问题的方法。
3、掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。
能运用有理数的运算解决简单的问题。
4、理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主).通过实例进一步感受大数,并能用科学记数法表示。
了解近似数与有效数字的概念。
第二章整式的加减1、理解并掌握单项式、多项式、整式等等概念,弄清它们之间的区别与联系。
2、理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3、理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解为的运算律和运算性质在整式的加减运算中仍然成立。
4、能分析实际问题中的数量关系,并列出整式表示。
体会用字母表示数后,从算术到代数的进步。
第三章一元一次方程1、经历“把实际问题抽象为数学方程”的过程,体会方程是刻画现实世界的一种有效的数学模型,了解一元一次方程及其相关概念,认识从算式到方程是数学的进步。
2、通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法。
3、了解解方程的基本目标(使方程逐步转化为____=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴涵的化归思想。
4、能够“找出实际问题中的已知数和未知数,分析它们之间的关系,设未知数,列出方程表示问题中的等量关系”,体会建立数学模型的思想。
七年级数学上册各章单元教学计划
第一章《有理数》一、单元教学内容及教材分析1.本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
2.本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。
3.本章涉及到的主要数学思想及方法:a.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
b.数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
c.化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。
d.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。
在学习过程中要时时考虑符号问题。
用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。
二、单元教学重点、难点:重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。
三、单元教学目标:1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范四、主要教学方法、手段、选用的教学媒体小组合作、讲授法、练习法;小黑板,班班通。
人教版七年级数学上册第一章《有理数》全章教学设计
第一章有理数镇中教案1.1.1正数和负数(1)[学习目标]1、理解正数和负数的概念,会判断一个数是正数还是负数2、会用正数和负数来表示具有相反意义的量3、理解数0的意义[学习过程]一、板书课题:(一)讲述:同学们,今天我们来学习第一章有理数.1.1.1正数和负数(教师板书)二、出示目标(一)过渡语:要达到什么教学目标呢?请看投影(二)屏幕显示学习目标1、理解正数和负数的概念,会判断一个数是正数还是负数2、会用正数和负数来表示具有相反意义的量3、理解数0的意义三、自学指导(一)过渡语:怎样才能当堂达到学习目标呢?请同学们按照指导认真自学。
(二)出示自学指导认真看课本(P1-3练习前面)①理解正数的概念,会仿照正数的概念,解释负数的含义;②理解正数、负数和0表示的实际含义,注意黄色书签的内容;③回答P3“思考”中的问题。
如有疑部问,可以小声请教同桌或举手问老师。
6分钟后,比谁能正确做出检测题。
四、先学(一)学生看书,教师巡视,师督促每一位学生认真、紧张的自学,鼓励学生质疑问难。
(二)检测1、过渡语:同学们,看完的请举手。
懂了的请举手。
好下面就比一比,看谁能正确做出检测题。
2、检测题P3:1、2、3、43、学生练习,教师巡视。
(改集错误解进行二次备课)五、后教(一)更正:请同学们仔细看一看这四名同学的板演,发现错解的请举手(指名更正)(二)讨论:评第1题:(教师要强调解题格式)①正数找的对吗?为什么对?师引导生回答:比0大的数是正数(师板书)(如对,教师打√)②你还举一些正数的例子吗?③负数找的对吗?为什么?师引导生回答:在正数前加“一”的数是负数④你能仿照正数的定义来说说负数的吗?师引导生回答:比0小的数是负数。
(师板书)(如对,教师打√)评2、3、4题答案正确吗?为什么?师引导生回答:数0既不是正数也不是负数,是正、负数的分界线。
(师板书)强调“0”的意义不仅是表示“没有”,还可以表示温度读报00C(表示标准),山脚的高度0米等(表示起点)。
第一章《有理数》总体整体规划
第一章《有理数》总体整体规划一、教材分析1、本章教材的地位和作用本章是初中学段教科书的第一章,既承接小学学段的内容,又为进一步学习打下基础。
本章主要内容是有理数的有关概念及其运算。
首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的运算。
引入负数是实际的需要,也是学习初中学段数学内容,特别是数与代数内容的需要。
引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。
引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。
引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。
两个负数比较大小,有理数运算也要借助绝对值这个概念。
2、本章教材编写特点(1)加强与实际的联系①从实际出发引入有关内容章前引言注意与实际的联系,用温度、净胜球、增长率的实例引入本章的内容。
通过第一节开头回顾学过的数的产生和发展的过程,说明数的产生和发展离不开生活和生产的需要。
有理数的有关概念注意从实际引入。
例如,数轴是通过描述位置的问题引出的,并让学生通过温度计加深对数轴的认识。
又如,通过一个“思考”,栏目,给出未来一周天气预报,提出问题“你能将图中给出的各个温度按从低到高的顺序排列吗?”,从而引出有理数比较大小的内容。
从实际出发引入有理数的运算。
例如,通过足球比赛中,计算章前引言中红队和蓝队的净胜球数,出现4+(-2),1+(-1),引出正数与负数的加法.又如,通过某地一天的气温是-3 ℃~4 ℃,这天的温差(℃)就是4-(-3),引出正数与负数的减法.②运用有关内容解决实际问题教科书通过引言中温度、净胜球、增长率的实例引出负数后,进一步介绍正负数在实际中的应用。
例如,在地形图上表示某地的高度要用到正负数。
又如,银行储蓄中存入用正数表示,支出用负数表示。
七年级数学第一章有理数单元教学计划
第一章《有理数》一、单元教学内容及教材分析1.本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
2.本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。
3.本章涉及到的主要数学思想及方法:a.分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
b.数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
c.化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。
d.类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。
在学习过程中要时时考虑符号问题。
用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。
二、单元教学重点、难点:重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。
三、单元教学目标:1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范四、主要教学方法、手段、选用的教学媒体小组合作、讲授法、练习法;小黑板,班班通。
有理数单元教学计划
第一章《有理数》教学计划一、本章的主要内容:对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
重点:有理数加、减、乘、除、乘方运算难点:混合运算的运算顺序,对结果符号的确定及对科学计数法、有效数字的理解。
二、本章的地位及作用:本章的知识是本册教材乃至整个初中数学知识体系的基础,它一方面是算术到代数的过渡,另一方面是学好初中数学及与之相关学科的关键,尤其有理数的运算在整个数学及相关学科中占有极为重要的地位,可以说这一章内容是构建“数学大厦”的地基。
三、本章涉及到的主要数学思想及方法:1、分类讨论的思想:主要体现在有理数的分类及绝对值一节课的教学中。
2、数形结合的思想:主要体现在数轴一节课的学习上,用数字表示数轴(图形)的形态,反过来用数轴(图形)反映数字的具体意义,达到数字与图形微观与宏观的统一,具体与抽象的结合,即用数说明图形的形象,用图形说明数字的具体,尤其利用数轴比较有理数的大小,理解相反数与绝对值的几何意义,更是形象直观。
3、化归转化的思想:主要体现在有理数的减法转化为有理数的加法,有理数的乘法转化为有理数的除法。
4、类比法:对于有理数加、减、乘、除、乘方运算可类比小学学过的加、减、乘、除、混合运算等内容学习,总的来说计算方法不变,只是把数字的范围扩大了,增加了负数。
在学习过程中要时时考虑符号问题。
用类比的方法去学习会对新知识有“似曾相识”之感,不会觉得陌生,学起来自然会轻松的多。
四、课程学习目标1、通过实际例子,感受引入负数的必要性,会用正负数表示实际问题中的数量。
2、理解有理数的意义,能用数轴上的点表示有理数,借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值,会比较有理数的大小,通过上述内容的学习,体会从数与形两方面考虑问题的方法。
最新人教版初一数学七年级上册 第一章 有理数 全单元教案设计
第一章有理数1.1正数和负数目标预设:一、知识与能力借助生活中的实例会判断一个数是正数还是负数,能用正负数表示具有相反意义的量二、过程与方法1、过程:通过实例引入负数,指导学生会识别正负数及其表示法,能应用正负数表示具有相反意义的量。
2、方法:讨论法、探究法、讲授法、观察法。
三、情感、态度、价值观乐于接触社会环境中的数学信息,愿意谈论数学话题,在数学活动中发挥积极作用教学重难点:一、重点:理解正数和负数的概念,判断一个数是正数还是负数,应用正负数表示具有相反意义的量二、难点:负数的意义,理解具有相反意义的量。
教学准备:带有负数的实例若干预习导学:在生活、生产、科研中,经常遇到数的表示与数的运算的问题。
例如,⑴天气预报2003年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?⑵有三个队参加的足球比赛中,红队胜黄队(4∶1),黄队胜蓝队(1∶0),蓝队胜红队(1∶0),如何确定三个队的净胜球数与排名顺序?⑶某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?合格产品的长度范围是多少?(问题1-3友情提示、全班交流、教师点评)教学过程:一、创设情景,谈话引入在小学里我们已经学过哪些类型的数(自然数和分数),它们都是由实际需要而产生的,由记数、排序产生数1,2,3……,由表示“没有”“空位”,产生数0,由分物、测量产生分数,,……,但在预习导学中表示温度、净胜球数、加工允许误差时用到数:-3, 3, 2, -2, 0, +0.5, -0.5。
二、精讲点拨,质疑问难这里出现了一种新数:-3,-2,-0.5。
在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,小于设计尺寸0.5mm,像-3,-2,-0.5这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数。
而3,2,+0.5在问题中分别表示零上3摄氏度,净胜2球,大于设计尺寸0.5mm,它们与负数具有相反的意义。
七年级数学第1章有理数教学计划
七年级数学第1章有理数教学计划共19课时第二章代数式共9课时第三章一元一次方程共16课时第四章图形的认识共9课时第五章数据的收集与统计图共8课时教学课题入学教育第一课:总第1课时主备人复备时间审核人集体备课时间集体备课成员教学目标重点难点教学方法导学案集体备课记录个人复备教学反思第一章有理数教学计划与安排一、教材分析1、这一章的内容是初等数学的重要基础。
有理数的有关运算,在数学、物理、化学等学科中有广泛的应用。
中考或竞赛中均有适量的不同难易程度的题目出现,因此,本章内容很重要。
这是初中学生入校系统学习代数知识的第一章节,学习状况与效果好坏,直接影响学生三年乃至一生能否学好代数。
2、这一章的内容包含七小节两大部分:前三小节是“有理数的认识”,后四小节是“有理数的运算”。
教材里每一个知识点的出现,都是从学生常见的、熟悉的情景和事例入手,通过“观察”、“动脑筋”、“猜猜看”、“说一说”、“探究”等活动,老师带领学生一起活动,指导学生获取知识与技能,同时发展学生思维、培养学生思想,获得相应的数学活动经验。
二、教学目标(1)理解有理数的有关概念及其分类;(2)能用数轴上的点表示有理数,会求有理数的相反数和绝对值,比较其大小;(3)理解有理数的运算法则和运算率,能熟练进行有理数的有关计算;(4)能用有理数的知识解决有关的实际问题;(5)通过观察、感受一些情景,分析一些熟悉的事例,让学生感受到数学来源于现实生活,是为了解决现实中的问题而产生的,培养学生热爱数学、自觉学习的习惯。
(6)经历观察、思考、讨论与合作探究,获取相应数学知识技能和活动经验。
(7)通过学习有理数的加、减、乘、除、乘方运算,培养学生仔细分析、独立思考、认真作业的态度和习惯,提高学生运算能力,发展学生思维,激发学生创新意识。
三、教学的重点与难点重点:有理数的运算;难点:对有理数法则的理解(特别是符号的决定法则);理解绝对值的代数意义和几何意义。
第1章有理数单元教学计划
第1章有理数单元教学计划第一章有理数单元教学计划一、教材分析1、内容特点本章,既承接前两个学段的内容,又为进一步学习打下基础。
本章主要内容是有理数的有关概念及其运算。
首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的运算。
2、知识结构对正、负数的认识;有理数的概念及分类;相反数与绝对值的概念及求法;数轴的概念、画法及其与相反数与绝对值的关系;比较两个有理数大小的方法;有理数加、减、乘、除、乘方运算法则及相关运算律;科学计数法、近似数、有效数字的概念及求法。
二、单元目标1、通过实际例子,感受引入负数的必要性。
会用正负数表示实际问题中的数量。
2、理解有理数的意义,能用数轴上的点表示有理数。
借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。
通过上述内容的学习,体会从数与形两方面考虑问题的方法。
掌握有理数的加、减、乘、除运算,理解有理数的运算律,并能运用运算律简化运算。
能运用有理数的运算解决简单的问题。
3、理解乘方的意义,会进行乘方的运算及简单的混合运算(以三步为主)。
通过实例进一步感受大数,并能用科学记数法表示。
了解近似数与有效数字的概念。
三、教学重点、难点及关键1、本章的重点有理数的运算.有理数的运算是初等数学的基本运算,掌握有理数的运算,是学好后续内容的重要前提。
2、本章的难点对有理数运算法则的理解,特别是对有理数乘法法则的理解,重要的是运用法则进行运算,并运用有理数运算解决问题。
减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。
四、教学方法与手段1、承上启下,注重基础有理数作为中学阶段的入门章节,非常重视与前面学段的衔接。
如:有理数一节中,首先列举了一些数-3,3,2,-2,0,+0.5,-0.5这些数中那些数的形式与以前学习的数有区别,从而自然的把新知识看成是旧知识的延续,便于正数和负数的概念的讲解。
人教版初一上册数学第一章教学计划:有理数
人教版初一上册数学第一章教学计划:有理数
人教版初一上册数学第一章教学计划:有理数教学计划决定着教学内容总的方向和总的结构,并对有关学校的教学、教育活动,生产劳动和课外活动校外活动等各方面作出全面安排。
下文为您准备了初一上册数学第一章教学计划:
一、指导思想:
深化教学改革,以促使学生全面、持续、和谐的发展为出发点,课堂中以学生的发展为本,活动为主线,创新为主旨,培
养学生的创新意识和实践能力为重点,充分体现新课程、新标准、新教法坚持走教研之路,努力探索减负增效的教育教学模式,从培养学生学数学、用数学的能力入手,持之以恒地开展教研活动。
充分发展学生数学思维,全面提高教育教学质量。
二、学生情况分析
七年级学生往往延用小学的学习方法,死记硬背,这样既没读懂弄透,又使其自学能力和实际应用能力得不到很好的训练,要重视对学生的读法指导。
七年级学生往往对课程增多、课堂学习容量加大不适应,顾此失彼,精力分散,使听课效率下降,要重视听法的指导。
学习离不开思维,善思则学得活,效率高,不善思则学得死,效果差。
七年级学生常常固守小学算术中的思维定势,思路狭窄、呆滞,不利于后继学习,要重视对学生进行思法指导。
学生在解题时,在书写上。
七年级上学期数学第一单元教学计划:有理数
七年级上学期数学第一单元教学方案:有理数通过教学方案可以具体规定一定学校的学科设置、各门学科的教学顺序、教学时数以及各种活动等。
为此查字典数学网初中频道为大家提供了七年级上学期数学第一单元教学方案,希望可以作为大家的参考!一、说教材1、地位作用:有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种根本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的根底上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法和开方的根底,起到承前启后、铺路架桥的作用。
在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
2、教学目标:(1)让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;能够正确进行有理数的乘方运算。
(2)在生动的情境中让学生获得有理数乘方的初步经验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推广的过程,从中感受转化的数学思想。
(3)让学生通过观察、推理,归纳出有理数乘方的符号法那么,增进学生学好数学的自信心。
(4)经历知识的拓展过程,培养学生探究的能力和动手操作的能力,体会与他人合作交流的重要性。
3、教学重点:有理数的乘方、幂、底数、指数的概念及其相互间的关系;有理数乘方的运算方法。
4、教学难点:有理数的乘方、幂、底数、指数的概念及其相互间的关系的理解。
二、说教学方法启发诱导式、实践探究式。
三、说学法根据初一学生好动、好问、好奇的心理特征,课堂上采取由浅入深的启发诱导,随着教学内容的深入,让学生一步一步的跟着动脑、动手、动口,在合作交流中培养学生学习的积极性和主动性,使学习方式由学会变为会学。
四、说教学手段利用多媒体教学,目的之一是使课堂生动、形象又直观,能激发学生的学习兴趣,目的之二是增大教学容量,增强教学效果。
初中七年级数学上册《第一章 有理数》大单元整体教学设计
初中七年级数学上册《第一章有理数》大单元整体教学设计一、内容分析与整合(一)教学内容分析有理数章节,作为初中数学课程体系的基石,其重要性不言而喻。
这一章节不仅是代数知识体系的开端,更是学生后续学习方程、不等式、函数等高等数学内容的先决条件。
深入理解和掌握有理数的相关知识,对于学生构建完整的数学知识框架,提升数学素养具有至关重要的作用。
本章节的教学内容设计精妙,循序渐进地引导学生从熟悉的正数世界跨入包含负数在内的有理数领域。
通过负数的引入,打破学生对数的传统认知,拓宽数的范围,使学生理解数轴上点的位置与数的大小之间的对应关系,为后续的数学学习奠定直观基础。
数轴的使用,不仅帮助学生直观感受数的顺序关系,还促进了学生对相反数概念的深刻理解,即任何数在数轴上都有其对应的相反数,它们关于原点对称,这一概念的掌握对于简化运算、理解数学规律至关重要。
绝对值概念的引入,让学生学会了如何度量一个数“距离”0的远近,无论该数是正是负,其绝对值总是非负的。
这一概念的学习,不仅丰富了学生的数学语言,更为解决一系列实际问题提供了有力工具。
在有理数的运算部分,加减乘除的基本法则和运算顺序是教学的核心。
通过大量的练习,学生需熟练掌握这些基本运算,同时理解并掌握有理数运算中的特殊规则,如负数相乘得正数、除以一个数等于乘以它的倒数等。
有理数的乘方运算,特别是负整数指数幂的学习,进一步拓宽了学生的数学视野,使他们能够更加灵活地处理数学问题。
有理数的混合运算,则是检验学生综合运用所学知识解决实际问题能力的关键环节。
通过解决包含多种运算的有理数问题,学生不仅能够巩固基本运算技能,还能在实践中锻炼逻辑思维能力,学会如何根据问题的具体条件,合理选择运算顺序,高效准确地得出答案。
有理数章节的教学,不仅仅是知识的传授,更是学生思维方式和解决问题能力的培养。
通过这一章节的学习,学生不仅能够建立起扎实的数学基础,还能在探索数学奥秘的过程中,体验到数学的魅力,激发对数学学习的兴趣,为未来的数学学习之路铺就坚实的基石。
有理数单元计划及教案
第一元(章)教学计划制定计划时间:二0一0年9 月1 日本单元教学内容第一章有理数本单元教学目标(包括认识、情感、技能)1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数。
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点后表示的数。
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值。
(4)会利用数轴和绝对值比较有理数的大小。
2.过程与方法经历探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法。
3.情感、态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言。
教学重难点重点正确理解有理数、相反数、绝对值等概念;会用正负数表示具有相反意义的量,会求一个数的相反数和绝对值。
难点准确理解负数、绝对值等概念。
课时划分课(节)名称课时数正数和负数 2有理数 1有理数的加减法 2有理数的乘除法 5有理数的乘方 2小结与复习 1小组讨论意见第单元课时教案小组讨论意见课时教案本单元(课、节)第课时、累计第课时课题近似数和有效数字课型新授课知识与技能了解近似数和有效数字的概念过程与方法能按要求取近似数和保留有效数字情感与价值体会近似数的意义及在生活中的作用教学重难点有效数字概念的理解,能按要求取近似数和有效数字教学过程设置情境引入课题1、据自己已有的生活经验,观察身边熟悉的事物,收集一些数据(投影演示)(1)我班有名学生,名男生,女生。
(2)我班教室约为平方米。
(3)我的体重约为公斤,我的身高约为厘米(4)中国大约有亿人口。
2、在这些数据中,哪些数是与实际相接近的?哪些数与实际完合符合的?3、与实际接近的数就是我们今天要学的近似数。
小组合作分析问题教师提出问题:生活中哪些地方用到近似数?学生纷纷举例:(1)2000年第一次人口普查表明,我国的人口总数为12.9533亿。
(2)某词典共1234页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章有理数
单元计划
一.教学内容
本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.
通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位臵关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
1)数轴能反映出数形之间的对应关系.
2)数轴能反映数的性质。
3)数轴能解释数的某些概念,如相反数、绝对值、近似数。
4)数轴可使有理数大小的比较形象化.
对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.正确理解绝对值的概念是难点.根据有理数的绝对值的两种
意义,可以归纳出有理数的绝对值有如下性质:
1)任何有理数都有唯一的绝对值.
2)有理数的绝对值是一个非负数,即最小的绝对值是零.
3)两个互为相反数的绝对值相等,即│a│=-a.
4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.5)若│a│=│b│,则a=b,或a=-b或a=b=0.
二.教学目标
(一).知识与技能:
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.
(2)掌握数轴的画法,能将已知数在数轴上表示出来,•能说出数轴上已知点所表示的解.
(3)理解相反数、绝对值的几何意义和代数意义,•会求一个数的相反数和绝对值.
(4)会利用数轴和绝对值比较有理数的大小.
(二).过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.
(三).情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.
三.教学重点、难点与关键
1.教学重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.教学难点:准确理解负数、绝对值等概念.
3.教学关键:正确理解负数的意义和绝对值的意义.
四.教学质量目标:通过本单元的学习,在单元检测中,学生的平均成绩达到50分。
五.教学措施
课时划分
1.1 正数和负数2课时
1.2 有理数5课时
1.3 有理数的加减法4课时
1.4 有理数的乘除法5课时
1.5 有理数的乘方4课时
第一章有理数(小结复习)2课时。