2019届九年级数学 中考复习 一次方程及不等式 计算题 专项练习(含答案)

合集下载

中考数学总复习《一次函数与不等式组的综合应用》专项测试卷-附参考答案

中考数学总复习《一次函数与不等式组的综合应用》专项测试卷-附参考答案

中考数学总复习《一次函数与不等式组的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图,函数y=kx( k≠0)和y=ax+4( a≠0)的图象相交于点A (2,3),则不等式kx>ax+4的解集为()A.x>2B.x<C.x>3D.x<32.如图,一次函数y=kx+b的图像经过A,B两点,则kx+b>0解集是()A.x>0B.x>2C.x>-3D.-3<x<23.如图,一次函数y=−x+n与y=kx−1的图象相交于点P(2,1),则不等式−x+n≥kx−1的解集为()A.x≥2B.x≤2C.x≥1D.x≤14.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(12,32),则关于x的不等式kx+1<mx的解集为()A.x>12B.x<12C.x>32D.x<325.已知一次函数y=kx+b的图象如图所示,当x<1时,则y的取值范围是()A.-2<y<0B.-4<y<0C.y<-2D.y<-46.如图,一次函数y=−x+3与一次函数y=2x+m的图象交于点(−2,n),则关于x的不等式组{−x+3>02x+m>−x+3的解集为()A.x>−2B.x<3C.−2<x<3D.0<x<37.已知y1=x﹣5,y2=2x+1.当y1>y2时,则x的取值范围是()A.x>5B.x<12C.x<﹣6D.x>﹣68.已知甲、乙两个函数图象上的部分点的横坐标x与纵坐标y如表所示.若在实数范围内,甲、乙的函数值都随自变量的增大而减小,且两个图象只有一个交点,则关于这个交点的横坐标a,下列判断正确的是()x-2024y甲5432y乙65 3.50a<2D.2<a<49.一次函数y=kx+b的图象如图所示,则不等式kx+b<0的解集是()A.x>﹣2B.x<﹣2 C.x>﹣4 D.x<﹣410.如图,在平面直角坐标系中,点P(−12,a)在直线y=2x+2与直线y=2x+4之间,则a的取值范围是()A.2<a<4B.1<a<3C.1<a<2D.0<a<211.如图,直线y=kx+b(b>0)经过点(2,0),则关于x的不等式kx+b≥0的解集是()A.x>2B.x<2C.x≥2D.x≤212.如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是()A.x>3B.﹣2<x<3C.x<﹣2D.x>﹣2二、填空题(共6题;共6分)13.如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b<13x的解集为.14.如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是.15.如图,直线y=kx+b(k、b是常数k≠0)与直线y=2交于点A(4,2),则关于x的不等式kx+b <2的解集为.16.如图,直线y= kx+b与y= 13x交于A(3,1)与x轴交于B(6,0),则不等式组0 <kx+ b<13x的解集为.17.若函数y=kx﹣b的图象如图所示,则关于x的不等式kx﹣b<0的解集为.18.直线y=k1x+b与直线y=k2x+c在同一平面直角坐标系中的图象如图所示,则关于X的不等式k1x+b>k2x+c的解集为.三、综合题(共6题;共69分)19.如图,直线l:y1=﹣54x﹣1与y轴交于点A,一次函数y2=34x+3图象与y轴交于点B,与直线l交于点C(1)画出一次函数y2=34x+3的图象;(2)求点C坐标;(3)如果y1>y2,那么x的取值范围是.20.某技工培训中心有钳工20名、车工30名.现将这50名技工派往A,B两地工作,设派往A 地x名钳工,余下的技工全部派往B地,两地技工的月工资情况如下表:钳工/(元/月)车工/(元/月)A地36003200B地32002800x的取值范围;(2)根据预算,这50名技工的月工资总额不得超过155000元.当派往A地多少名钳工时,则这些技工的月工资总额最大?月工资总额最大为多少元?21.某商场计划购进A ,B 两种新型节能台灯共100盏,这两种台灯的进价、售价如下表:类型 价格 进价(元/盏) 售价(元/盏) A 型 30 45 B 型5070(2)若设商场购进A 型台灯m 盏,销售完这批台灯所获利润为P ,写出P 与m 之间的函数关系式.(3)若商场规定B 型灯的进货数量不超过A 型灯数量的4倍,那么A 型和B 型台灯各进多少盏售完之后获得利润最多?此时利润是多少元.22.小南根据学习函数的经验,对函数 y =a|x −2|+b 的图象与性质进行了探究.下表是小南探究过程中的部分信息:x … -4 -3 -2 -1 0 1 2 3 4 … y…321-1-2n-2-1…(1)该函数的解析式为 ,自变量 x 的取值范围为 ;(2)n 的值为 ;点 (12,−12) 该函数图象上;(填“在”或“不在”)(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为 坐标的点,并画出该函数的图象;(4)结合函数的图象,解决问题:①写出该函数的一条性质: ;②如图,在同一坐标系中是一次函数 y =−13x +13的图象,根据象回答,当 a|x −2|+b <−13x +13 时,则自变量 x 的取值范围为 .23.某商店出售普通练习本和精装练习本,150本普通练习本和100本精装练习本销售总额为1450元;200本普通练习本和50本精装练习本销售总额为1100元.(1)求普通练习本和精装练习本的销售单价分别是多少?(2)该商店计划再次购进500本练习本,普通练习本的数量不低于精装练习本数量的3倍,已知普通练习本的进价为2元/个,精装练习本的进价为7元/个,设购买普通练习本x个,获得的利润为W 元;①求W关于x的函数关系式②该商店应如何进货才能使销售总利润最大?并求出最大利润.24.2016年国际马拉松赛于承德市举办,起点承德市狮子园,赛道为外环路,终点为奥体中心(赛道基本为直线).在赛道上有A,B两个服务点,现有甲,乙两个服务人员,分别从A,B两个服务点同时出发,沿直线匀速跑向终点C(奥体中心),如图1所示,设甲、乙两人出发xh后,与B点的距离分别为y甲km、y乙km,y甲、y乙与x的函数关系如图2所示.(1)从服务点A到终点C的距离为km,a=h;(2)求甲乙相遇时x的值;(3)甲乙两人之间的距离应不超过1km时,则称为最佳服务距离,从甲、乙相遇到甲到达终点以前,保持最佳服务距离的时间有多长?参考答案1.【答案】A2.【答案】C3.【答案】B4.【答案】A5.【答案】C6.【答案】C7.【答案】C8.【答案】D9.【答案】C10.【答案】B11.【答案】D12.【答案】D13.【答案】3<x<614.【答案】x>3.15.【答案】x<416.【答案】3<x<617.【答案】x>218.【答案】x>119.【答案】(1)解:∵y2=34x+3∴当y2=0时,则34x+3=0,解得x=﹣4当x=0时,则y2=3∴直线y2=34x+3与x轴的交点为(﹣4,0),与y轴的交点B的坐标为(0,3).图象如下所示:(2)解:解方程组 {y =−54x −1y =34x +3,得 {x =−2y =32 则点C 坐标为(﹣2, 32 )(3)x <﹣2.20.【答案】(1)由题意可得y =3600x +3200(20−x)+2800×30=400x +148000即这50名技工的月工资总额 y (元 ) 与 x 之间的函数表达式是 y =400x +148000(0≤x ≤20) ;(2)∵月工资总额不得超过 155000 元. ∴400x +148000≤155000∴x ≤352又∵k=400>0∴∴ 当 x =17 时,则 y 取得最大值 154800 元即当派往 A 地17名钳工时,则这些技工的月工资总额最大,?月工资总额最大为154800元.21.【答案】(1)解:设商场应购进A 型台灯x 盏,则B 型台灯为(100﹣x )盏根据题意得,30x+50(100﹣x )=3500 解得x=75 所以,100﹣75=25答:应购进A 型台灯75盏,B 型台灯25盏。

初三中考数学复习 一次方程、方程组、一元二次方程 专项综合练习 含答案

初三中考数学复习  一次方程、方程组、一元二次方程  专项综合练习 含答案

初三中考数学复习一次方程、方程组、一元二次方程专项综合练习含答案2019 初三中考数学复习 一次方程、方程组、一元二次方程 专项综合练习 1.(2019·大连)方程2x +3=7的解是( D )A .x =5B .x =4C .x =3.5D .x =22.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( B )A .-4B .4C .-2D .23.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( B )A .k <5B .k <5,且k≠1C .k ≤5,且k≠1D .k >5 4.一元二次方程x 2-3x -2=0的两根为x 1,x 2,则下列结论正确的是( C )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=25. 若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( B )A .1或4B .-1或-4C .-1或4D .1或-4 6. 下列一元二次方程没有实数根的是( B )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=07. 已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( D )A .-43 B.83 C .-83 D.438.一个长方形的周长为30 cm ,若这个长方形的长减少1 cm ,宽增加2 cm 就可13.方程组⎩⎪⎨⎪⎧x -y =4,2x +y =-1的解是__⎩⎪⎨⎪⎧x =1y =-3__.14.已知(x -y +3)2+2-y =0,则x +y 的值是__1__.15.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是__1__.16.已知方程组⎩⎪⎨⎪⎧x +ay =2,5x -2y =3的解也是二元一次方程x -y =1的一个解,则a =__-52__.17.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做__9__个零件. 18. 一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为_150_元. 19. 解方程:5x +2=3(x +2).解:去括号得5x +2=3x +6,移项合并得2x =4,解得x =2 20. 解方程:2x -13=1-x -24.解:x =2 21. 解方程: (1)x 2-6x -4=0;解:x 1=3+13,x 2=3-13 (2)(x +3)2=4. 解:x 1=-1,x 2=-523. 解方程组:⎩⎪⎨⎪⎧3x -y =2,9x +8y =17.解:⎩⎪⎨⎪⎧3x -y =2 ①,9x +8y =17 ②,①×8+②得:33x =33,即x =1,把x =1代入①得y=1,则方程组的解为⎩⎪⎨⎪⎧x =1,y =124.解方程组⎩⎪⎨⎪⎧x +y =1,4x +y =-8.解:⎩⎪⎨⎪⎧x +y =1 ①,4x +y =-8 ②,②-①得3x =-9,解得x =-3,把x =-3代入x +y=1中,求出y =4,即方程组的解为⎩⎪⎨⎪⎧x =-3,y =425.已知a ,b ,c 均为实数,且a -2+|b +1|+(c +3)2=0,求关于x 的方程ax 2+bx +c =0的根.解:∵a -2+|b +1|+(c +3)2=0,∴a -2=0,b +1=0,c +3=0,∴a =2,b =-1,c =-3.方程ax 2+bx +c =0即为2x 2-x -3=0,解得x 1=32,x 2=-126. 随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.解:设该种药品平均每次降价的百分率是x ,由题意得:200(1-x)2=98解得x 1=1.7(不合题意舍去),x 2=0.3=30%.答:该种药品平均每次降价的百分率是30%27.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意得:⎩⎪⎨⎪⎧x +y =100,2x +3y =270,解得:⎩⎪⎨⎪⎧x =30,y =70,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶28. 为进一步发展基础教育,自2019年以来,某县加大了教育经费的投入,2019年该县投入教育经费6000万元.2019年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2019年该县投入教育经费多少万元.解:(1)设该县投入教育经费的年平均增长率为x ,根据题意得6000(1+x)2=8640,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去), 答:该县投入教育经费的年平均增长率为20%(2)因为2019年该县投入教育经费为8640万元,且增长率为20%,所以2019年该县投入教育经费为y =8640×(1+0.2)=10368(万元), 答:预算2019年该县投入教育经费10368万元。

历年初三数学中考方程与不等式复习测试及答案

历年初三数学中考方程与不等式复习测试及答案

中考数学方程与不等式复习测试一、方程与方程组 二、不等式与不等式组知识结构及内容: 1几个概念2一元一次方程(一)方程与方程组 3一元二次方程4方程组 5分式方程6应用1、 概念:方程、方程的解、解方程、方程组、方程组的解2、 一元一次方程:解方程的步骤:去分母、去括号、移项、合并同类项、系数化一(未知项系数不能为零)例题:.解方程:(1) 3131=+-x x (2)x x x -=--+22132 解:(3)关于x 的方程mx+4=3x+5的解是x=1,则m= 。

解:3、一元二次方程:(1) 一般形式:()002≠=++a c bx ax(2) 解法:直接开平方法、因式分解法、配方法、公式法求根公式()002≠=++a c bx ax ()042422≥--±-=ac b aac b b x 例题:①、解下列方程:(1)x 2-2x =0; (2)45-x 2=0;(3)(1-3x )2=1; (4)(2x +3)2-25=0. (5)(t -2)(t +1)=0; (6)x 2+8x -2=0(7 )2x 2-6x -3=0; (8)3(x -5)2=2(5-x ) 解:② 填空:(1)x 2+6x +( )=(x + )2;(2)x 2-8x +( )=(x - )2;(3)x 2+23x +( )=(x + )2(3)判别式△=b ²-4ac 的三种情况与根的关系当0>∆时有两个不相等的实数根 ,当0=∆时有两个相等的实数根 当0<∆时没有实数根。

当△≥0时有两个实数根例题.①.若关于x 的方程x 2+2x +k =0有两个相等的实数根,则k 满足( )A.k >1B.k ≥1C.k =1D.k <1②关于x 的一元二次方程01)12(2=-+++k x k x 根的情况是( )(A )有两个不相等实数根 (B )有两个相等实数根 (C )没有实数根 (D )根的情况无法判定③.已知方程022=++q px x 有两个不相等的实数根,则p 、q 满足的关系式是( )A 、042>-q pB 、02>-q pC 、042≥-q p D 、02≥-q p(4)根与系数的关系:x 1+x 2=ab-,x 1x 2=a c例题:已知方程011232=-+x x 的两根分别为1x 、2x ,则2111x x + 的值是( ) A 、112B 、211C 、112-D 、211-4、 方程组:−−−−→−−−−→代入消元代入消元加减消元加减消元三元一次方程组二元一次方程组一元一次方程 二元(三元)一次方程组的解法:代入消元、加减消元例题:解方程组⎩⎨⎧=-=+.82,7y x y x解解方程组20328x y x y -=⎧⎨+=⎩解解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩ 解解方程组:128x y x y -=⎧⎨+=⎩解解方程组:⎩⎪⎨⎪⎧x +y =93(x +y )+2x =33解5、分式方程:分式方程的解法步骤:(1) 一般方法:选择最简公分母、去分母、解整式方程,检验 (2) 换元法 例题:①、解方程:211442-=+-x x 的解为 065422=++-x x x 根为②、当使用换元法解方程03)1(2)1(2=-+-+x xx x 时,若设1+=x x y ,则原方程可变形为( )A .y 2+2y +3=0B .y 2-2y +3=0C .y 2+2y -3=0D .y 2-2y -3=0(3)、用换元法解方程433322=-+-xx x x 时,设x x y 32-=,则原方程可化为( ) (A )043=-+y y (B )043=+-y y (C )0431=-+y y (D )0431=++yy6、应用:(1)分式方程(行程、工作问题、顺逆流问题)(2)一元二次方程(增长率、面积问题)(3)方程组实际中的运用例题:①轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,求轮船在静水中的速度.(提示:顺水速度=静水速度+水流速度,逆水速度=静水速度-水流速度)解:②乙两辆汽车同时分别从A、B两城沿同一条高速公路驶向C城.已知A、C两城的距离为450千米,B、C两城的距离为400千米,甲车比乙车的速度快10千米/时,结果两辆车同时到达C城.求两车的速度解③某药品经两次降价,零售价降为原来的一半.已知两次降价的百分率一样,求每次降价的百分率.(精确到0.1%)解④已知等式(2A-7B) x+(3A-8B)=8x+10对一切实数x都成立,求A、B的值解⑤某校初三(2)班捐款(元) 1 2 3 4人数 6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x名同学,捐款3元的有y名同学,根据题意,可得方程组A、272366x yx y+=⎧⎨+=⎩B、2723100x yx y+=⎧⎨+=⎩C、273266x yx y+=⎧⎨+=⎩D、2732100x yx y+=⎧⎨+=⎩解⑥已知三个连续奇数的平方和是371,求这三个奇数.解⑦一块长和宽分别为60厘米和40厘米的长方形铁皮,要在它的四角截去四个相等的小正方形,折成一个无盖的长方体水槽,使它的底面积为800平方米.求截去正方形的边长.解:1几个概念(二)不等式与不等式组2不等式3不等式(组)1、几个概念:不等式(组)、不等式(组)的解集、解不等式(组)2、不等式:(1)怎样列不等式:1.掌握表示不等关系的记号2.掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a为非负数,a为正数,a不是正数解: ②(2)8与y 的2倍的和是正数; (3)x 与5的和不小于0;(5)x 的4倍大于x 的3倍与7的差;解:(2)不等式的三个基本性质不等式的性质1:如果a >b ,那么a +c >b +c ,a -c>b -c推论:如果a +c >b ,那么a>b -c 。

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题(含参考答案)

中考数学《方程与不等式》专题训练50题含参考答案一、单选题1.不等式组1036x x -<⎧⎨<⎩的解集是( )A .无解B .1x >C .2x <D .12x <<【答案】D【分析】分别解出两个不等式,取公共解集即可.【详解】解:1036x x -<⎧⎨<⎩①② 解①得:1x > , 解①得:2x < ,故此不等式组的解集为:12x << 故选D.【点睛】此题考查的是解不等式组,掌握解不等式的一般步骤、不等式的基本性质和不等式组公共解集的取法是解决此题的关键.2.如果3m =3n ,那么下列等式不一定成立的是( ) A . m -3=n -3 B .3m +3=3n +2 C .5+m =5+n D .3m -=3n -3.若()()221x ax x +--的展开式中不含x 的一次项,则a 的值为( )A .3-B .2-C .1-D .0【答案】B【分析】先将多项式展开,然后令x 的系数为0,求出a 的值即可.【详解】解:()()221x ax x +--32222x x ax ax x =-+--+()()32122x a x a x =+-+-++,①()()221x ax x +--展开后不含x 的一次项,①20a +=, ①2a =-; 故选:B .【点睛】本题考查了多项式乘多项式,熟练掌握多项式乘以多项式的运算法则是解题的关键. 4.方程23x +=11x -的解为( ) A .x =3 B .x =4C .x =5D .x =﹣5【答案】C【详解】方程两边同乘(x-1)(x+3),得 x+3-2(x-1)=0, 解得:x=5,检验:当x=5时,(x-1)(x+3)≠0, 所以x=5是原方程的解, 故选C.5.下列方程中,关于x 的一元二次方程的是( ) A .ax 2+bx +c =0 B .(x -1)2=x 2+3x +2 C .x 2=x +1D .2x 2-1x+1=0【答案】C【分析】根据一元二次方程的定义,逐项分析即可,一元二次方程的定义:含有一个未知数,未知数的最高次数是2;二次项系数不为0;是整式方程. 【详解】A. ax 2+bx +c =0(0a ≠),故该选项不正确,不符合题意;6.若2x-1=15与kx-1=15的解相同,则k的值为()A.8B.6C.-2D.2【答案】D【分析】先解2x-1=15求出x的值,再把求得的x的值代入kx-1=15,然后解关于k的方程即可求出k的值.【详解】①2x-1=15,①2x=16,①x=8.把x=8代入kx-1=15得8k-1=15,①k=2.故选D.【点睛】本题考查了一元一次方程解的定义及一元一次方程的解法,能使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解;解一元一次方程的基本步骤为:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.10080807644⨯-=B.2x-+=(100)7644x x【分析】利用平移的方法,平移后的剩余部分仍是矩形,且长与宽均减小x 米,从而由面积可列出方程.【详解】矩形场地上的两条路分别向上和向右平移后如图所示,则平移后剩余部分的长为(100-x )米,宽为(80-x )米,题意得:(100-x )(80-x )=7644 故选:C .【点睛】本题考查了一元二次方程的实际应用,关键是运用平移的思想,问题得以简化并得到解决.8.下列各组数中,是方程x+y=7的解的是( ) A .23x y =-⎧⎨=⎩B .31x y =-⎧⎨=⎩C .43x y =⎧⎨=⎩D .23x y =⎧⎨=⎩【答案】C【分析】将四个答案逐一代入,能使方程成立的即为方程的解. 【详解】解:A 、2317-+=≠,故此选项不符合题意; B 、3127-+=-≠,故此选项不符合题意; C 、437+=,故此选项符合题意; D 、2357+=≠,故此选项不符合题意; 故选C .【点睛】本题考查二元一次方程的解,理解掌握方程的解的定义是解答关键. 9.若表格中每对,的值都是同一个二元一次方程的解,则这个方程为( )A .53+=x yB .5x y +=C .20x y -=D .35x y +=【分析】设方程为y=kx+b ,把x 与y 的两对值代入求出k 与b 的值,即可确定出方程.【详解】解:设方程为y=kx+b ,把(0,5)与(1,2)代入得:52b k b =⎧⎨+=⎩ 解得:53b k =⎧⎨=-⎩,①这个方程为y=-3x+5,即3x+y=5, 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10.若0xy ≤x ,y 满足的条件是( ). A .0x ≥,0y ≥ B .0x ≥,0y ≤ C .0x ≤,0y ≥ D .0x ≤,0y ≤【答案】C【分析】根据二次根式有意义的条件得出20x y ≥,结合题意即可得出结果. 【详解】解:根据题意得,20x y ≥, ①20x ≥, ①0y ≥, ①0xy ≤, ①0x ≤, 故选C .【点睛】题目主要考查二次根式有意义的条件及不等式的性质,熟练掌握二次根式有意义的条件是解题关键.11.若a b <,则下列各式正确的是( ) A .22a b > B .22a b ->-C .34a b -<-D .22a b> 【答案】B【分析】根据不等式的性质,进行计算逐一判断即可解答. 【详解】解:A 、①a <b ,①2a <2b ,故该选项不符合题意; B 、①a <b ,①-2a >-2b ,故该选项符合题意;12.下列说法:①a为任意有理数,a2+1总是正数;①方程x+2=1x是一元一次方程;①若ab>0,a+b<0,则a<0,b<0;①代数式2,,23t a bb+都是整式;①若a2=(﹣2)2,则a=﹣2.其中错误的有()A.4个B.3个C.2个D.1个13.观察下列方程,经分析判断得知有实数根的是()A.33x=-B.22301x+=+C.()32x xx+=+D.221x xx-+=-【答案】C【分析】根据解分式方程的步骤逐一解答即可选出正确选项.去分母化为整式方程,解14.用配方法解一元二次方程x 2+6x ﹣3=0,原方程可变形为( ) A .(x +3)2=9 B .(x +3)2=12 C .(x +3)2=15 D .(x +3)2=39【答案】B【分析】移项后两边配上一次项系数一半的平方即可得. 【详解】解:①x 2+6x =3, ①x 2+6x +9=3+9,即(x +3)2=12, 故选:B .【点睛】本题考查了用配方法解一元二次方程,解题需要注意解题步骤的准确应用,选择配方法解一元二次方程时,最好使方程的二次项系数为1,一次项系数是2的倍数15.已知关于x 、y 的二元一次方程()()23230m x m y m -+-+-=,当m 每取一个值时,就有一个方程,而这些方程有一个公共解,这个公共解是( ) A .31x y =⎧⎨=-⎩B .13x y =⎧⎨=-⎩C .13x y =-⎧⎨=⎩D .31x y =-⎧⎨=⎩【答案】D【分析】把原方程整理得:m (x +y +2)-(2x +3y +3)=0,根据“当m 每取一个值时就有一个方程,而这些方程有一个公共解”,可知这个公共解与m 无关,得到关于x 和y 的二元一次方程组,解之即可. 【详解】解:原方程可整理得: m (x +y +2)-(2x +3y +3)=0,根据题意得:202330x y x y ++=⎧⎨++=⎩ 解得31x y =-⎧⎨=⎩.故选D .【点睛】本题考查了二元一次方程组的解以及解二元一次方程组,正确掌握解二元一次方程组是解题的关键. 16.利用求根公式求21562x x +=的根时,a ,b ,c 的值分别是( ) A .5,12,6 B .5,6,12C .5,﹣6,12D .5,﹣6,﹣1217.如表是德国足球甲级联赛某赛季的部分球队积分榜:规定:负一场积0分.观察后可知,柏林赫塔在这个赛季的胜场次数是( )A .18场 B .19场C .20场D .21场【答案】B胜场次数x 场,根据胜场积分与平场积分的和=总积分列出方程,解方程即可. 【详解】解:设球队胜一场积m 分,平一场积n 分, 由题意得:2166920767m n m n +=⎧⎨+=⎩, 解得:31m n =⎧⎨=⎩,球队胜一场积3分,平一场积1分,设柏林赫塔在这个赛季的胜场次数x 场,则平(34-x -8)=(26-x )场, 根据题意得:3x +(26-x )=64, 解得:x =19,①柏林赫塔在这个赛季的胜场次数是19, 故选:B .【点睛】考查了一元一次方程和二元一次方程组的应用,本类题型清楚积分的组成部分及胜负积分的规则及各个量之间的关系,并与一元一次方程相结合即可解该类题型.总积分等于胜场积分与平场的和.18.同型号的甲、乙两辆车加满气体燃料后均可行驶600km .它们各自单独行驶并返回的最远距离是300km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .380km B .400kmC .450kmD .500km【答案】B【分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回 A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【详解】解:如图,设行驶途中停下来的地点为C 地,AB xkm =,AC ykm =,根据题意,得226002600x y x y x +=⨯⎧⎨-+=⎩,解得400200x y =⎧⎨=⎩,①AB 的最大长度是400km .【点睛】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.19.关于x 的方程220ax +=是一元二次方程,则a 满足( ) A .a >0 B .a =1C .a ≥0D .a ≠0【答案】A【详解】根据一元二次方程的定义,得000a a a ≠⎧⇒>⎨≥⎩ .故选A. 20.代数式22244619x xy y x -+++的最小值是( ) A .10 B .9 C .19 D .11【答案】A【分析】把代数式22244619x xy y x -+++根据完全平方公式化成几个完全平方和的形式,再进行求解即可.【详解】解:2222244619(3)(2)10x xy y x x x y -+++=++-+ ①22(3)0,(2)0x x y +≥-≥①代数式22244619x xy y x -+++的最小值是10. 故选:A .【点睛】本题考查的知识点是配方法的应用-用配方法确定代数式的最值,解此题的关键是将原代数式化成几个完全平方和的形式.二、填空题21.含有____________的_________叫方程. 【答案】 未知数; 等式.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:(1)含有未知数(2)等式.【详解】解:根据方程的定义可知:含有未知数的等式是方程. 故答案为未知数;等式.【点睛】本题主要考查了方程的定义,熟记方程的定义是解题的关键.22.某童装店按每套88元的价格购进1000套童装,应缴纳的税费为销售额的10%,如果要获得不低于20000元的纯利润,则每套童装至少售价_____元.【分析】设每套童装的售价为x 元,根据利润=销售收入﹣税费﹣进货成本结合利润不低于20000元,即可得出关于x 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:设每套童装的售价为x 元,依题意,得:1000x ﹣10%×1000x ﹣88×1000≥20000,解得:x ≥120.故答案为:120.【点睛】此题主要考查一元一次不等式的应用,解题的关键是根据题意找到不等关系列式求解.23.如果方程1)k k x -(+3=0是关于x 的一元一次方程,那么k 的值是______. 【答案】-1【分析】根据一元一次方程的定义知|k |=1且未知数是系数k -1≠0,据此可以求得k 的值.【详解】解:①方程(k -1)x |k |+3=0是关于x 的一元一次方程,①|k |=1,且k -1≠0,解得,k =-1;故答案是:-1.【点睛】本题考查了一元一次方程的概念和绝对值方程.一元一次方程的未知数的指数为1,且未知数的系数不为零.24.我县某一天的最高气温是11①,最低气温是零下4①,则当天我县气温t (①)应满足的不等式是 __________.【答案】﹣4≤t ≤11【分析】根据题意写出不等式即可.【详解】解:因为最低气温是零下4①,所以﹣4≤t ,最高气温是11①,t ≤11,则今天气温t (①)的范围是﹣4≤t ≤11.故答案是:﹣4≤t ≤11.【点睛】本题考查的是不等式的定义,不等式的概念:用“>”或“<”号表示大小关系的式子,叫做不等式.25.已如m 是方程2350x x --=的一个根,则代数式262m m -的值为______.【答案】10-【分析】方程的根就是方程的解,就是能够使方程左右两边相等的未知数的值;即用这个数代替未知数所得式子仍然成立;将m 代入原方程即可求m 2-3m 的值,然后对原式进行变形代入计算.【详解】解:把x=m 代入方程2350x x --=可得:235m m -=①22622(3)2510=m m m m ---=-⨯=-;故答案为:-10.【点睛】此题考查了一元二次方程的解,解题时应注意把m 2-3m 当成一个整体.利用了整体的思想.26.如果x -2y =1,那么用含x 的代数式表示y ,则y =______.27.对任意四个有理数 a ,b ,c ,d 定义新运算:,a b ad bc c d =-那么当43 77x x=-时,x =________.28.某种药品的说明书上注明:口服,每天30~60mg ,分2~3次服用.这种药品一次服用的剂量范围是_____mg~_____mg.【答案】1030【详解】试题分析:根据等量关系:一次服用剂量=每日用量÷每日服用次数,即可求出服用剂量的最大值和最小值,而一次服用的剂量应介于两者之间,依题意列出不等式组求解即可.解:设这种药品一次服用的剂量为xmg当每日用量30mg,分3次服用时,一次服用的剂量最小;当每日用量60mg,分2次服用时,一次服用的剂量最大;根据依题意列出不等式组,解得所以这种药品一次服用的剂量范围是10mg~30mg.考点:一元一次不等式组的应用点评:解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的不等关系,列出不等式求解.29.若不等式(a﹣3)x>1的解集为13xa<-,则a的取值范围是_____.30.如果不等式组112x mx m-≤⎧⎨+≥⎩无解,则不等式2x+2<mx+m的解集是______.【答案】1x>-【详解】分析:首先根据不等式无解得出m的取值范围,然后根据不等式的解法得出不等式的解.详解:解不等式组可得:121x m x m ≤+⎧⎨≥-⎩,①不等式无解, ①2m -1>m+1,解得:m >2,①2x -mx <m -2, 即(2-m)x <m -2, ①m >2, ①2-m <0, ①x >-1. 点睛:本题主要考查的是解不等式及不等式组的方法,属于中等难度的题型.理解不等式的解法是解题的关键.系数含参时,我们首先要判断系数的正负性,然后进行求解.如果在不等式的两边同时乘以或除以一个负数,则不等符号需要改变. 31.已知关于x 的方程()344a x x a +-=-的解为2x =-,则=a ______.【答案】4【分析】将x=-2代入方程,然后解方程求得a 的值.【详解】解:①()344a x x a +-=-的解为2x =-,①()23424a a -+-=--,解得:4a =故答案为:4.【点睛】本题考查方程的解和解一元一次方程,掌握方程的解的概念及解一元一次方程的步骤,正确计算是解题关键.32.不等式2x-1>5的解集为______.【答案】x>3【详解】考点:解一元一次不等式.分析:先移项,再合并同类项,系数化为1即可.解:移项得,2x>5+1,合并同类项得,2x>6,系数化为1得,x>3.故答案为x>3.点评:本题考查的是解一元一次不等式,熟知不等式的基本性质是解答此题的关键. 33.若关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a 的最大整数值为_____.【答案】4.【分析】由关于x 的一元二次方程ax 2﹣4x +1=0有实数根,则a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解不等式得到a 的取值范围,最后确定a 的最大整数值.【详解】解:①关于x 的一元二次方程ax 2﹣4x +1=0有实数根,①a ≠0,且①≥0,即①=42﹣4a =16﹣4a ≥0,解得a ≤4,①a 的取值范围为a ≤4且a ≠0,所以a 的最大整数值为4.故答案为:4.【点睛】本题考查了一元二次方程ax 2+bx +c =0(a≠0,a ,b ,c 为常数)根的判别式①=b 2−4ac .当①>0,方程有两个不相等的实数根;当①=0,方程有两个相等的实数根;当①<0,方程没有实数根.也考查了一元二次方程的定义和不等式的特殊解. 34.已知代数式4x -与3(2)x 的值相等,则x 的值为______.【答案】1x =【分析】根据题意列方程,然后进行解答即可得出x 的值.【详解】解:由题意,得4-x=3(2-x)解得x=1故答案为1x =.【点睛】本题考查了解一元一次方程.关键在于根据题意列出方程.35.某水果店销售50千克香蕉,第一天售价为9元/千克,第二天降价为6元/千克,第三天再降为3元/千克.三天全部售完,共计所得300元.若该店第二天销售香蕉t 千克,则第三天销售香蕉____千克.(用含t 的代数式表示.)36.若x 1,x 2是方程x 2+x -1=0的两根,则(x 12+x 1-2)(x 22+x 2-2)的值为_______.【答案】1【分析】根据一元二次方程的定义得到2111x x +=,2221x x +=,代入计算即可.【详解】解:①x 1,x 2是方程x 2+x -1=0的两根,①21110x x +-=,22210x x +-=,①2111x x +=,2221x x +=,①()()22112222x x x x +-+-=()()1212--=1故答案为:1.【点睛】本题考查了一元二次方程的解,解体的关键是掌握方程的解能使方程等式两边成立.37.若实数m 、n 满足|m ﹣3|+0,且m 、n 恰好是Rt △ABC 的两条边长,则第三条边长为_______.5##5【分析】先由非负数的性质求出m =3,n =4,由于题中直角三角形的斜边不能确定,38.若方程(a-3)x |a|-1+2x-8=0是关于x 的一元二次方程,则a 的值是_____.【答案】-3【分析】根据一元二次方程的定义列方程求出a 的值即可.39.一种药品现在售价56.10元,比原来降低了15%,原售价为____元.【答案】66.【详解】试题分析:设这种药品的原售价为x 元,则比原来降低了15%后的售价为(1-15%)x 元,根据题意得(1-15%)x=56.1,解得x=66.故答案为66.考点:列一元一次方程解应用题.40.如果关于x 的方程22220x ax b +-+=有两个相等的实数根,且常数a 与b 互为负倒数,那么a b +=__________. 【答案】0【分析】根据根的判别式求出0⊿=,得到222a b +=,再根据完全平方公式求出即可.【详解】关于x 的方程22220x ax b +-+=有两个相等的实数根,()()2224120a b ∴-⨯⨯-+=⊿=,化简得:222a b +=常数a 与b 互为负倒数,即1ab =-()222222(1)0a b a b ab ∴+=++=+⨯-= 0a b ∴+=故答案为0【点睛】本题考查了根的判别式,得到等式222a b +=和1ab =-是解题的关键.三、解答题41.某农场去年种植了10亩地的南瓜,亩产量为2000kg ,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,今年南瓜亩产量的增长率是种植面积的增长率的12,设南瓜种植面积的增长率为x . (1)则今年南瓜的种植面积为________亩;今年南瓜亩产量为_______k g (用含x 的代数式表示)(2)今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.42.已知点P(2m﹣4,m+4),解答下列问题:(1)若点P在y轴上,则点P的坐标为______;(2)若点P的纵坐标比横坐标大7,求出点P坐标;(3)若点P在过A(2,3)点且与x轴平行的直线上,则AP的长为多少?【答案】(1)(0,6)(2)P点的坐标为(﹣2,5)(3)AP=8【分析】(1)让横坐标为0求得m的值,代入点P的坐标即可求解;(2)利用纵坐标-横坐标=7得m的值,代入点P的坐标即可求解;(3)利用纵坐标为3求得m的值,代入点P的坐标即可求解.(1)解:令2m-4=0,解得m=2,所以P点的坐标为(0,6),故答案为:(0,6);(2)解:令m+4-(2m-4)=7,解得m=1,所以P点的坐标为(-2,5);(3)解:①点P在过A(2,3)点且与x轴平行的直线上,①m+4=3,解得m=-1.①P点的坐标为(-6,3),①AP=2+6=8.【点睛】本题考查坐标与图形性质,解题的关键是理解题意,灵活运用所学知识解决问题.43.甲乙两个施工队在六安(六盘水——安顺)城际高铁施工中,每天甲队比乙队多铺设100米钢轨,甲队铺设5天的距离刚好等于乙队铺设6天的距离,若设甲队每天铺设x 米,乙队每天铺设y米.(1)依题意列出二元一次方程组;(2)求出甲乙两施工队每天各铺设多少米?【答案】(1)100 56x yx y-=⎧⎨=⎩(2)甲施工队每天各铺设600米,乙施工队每天各铺设500米.【分析】(1)利用每天甲队比乙队多铺设100米钢轨,得x-y=100;利用甲队铺设5天的距离刚好等于乙队铺设6天的距离,得5x=6y,从而可得答案(2)解方程组即可得到答案.(1)解:设甲队每天铺设x米,乙队每天铺设y米,则10056x y x y -=⎧⎨=⎩ (2)10056x y x y -=⎧⎨=⎩解得:600500x y =⎧⎨=⎩答:甲施工队每天各铺设600米,乙施工队每天各铺设500米.44.解不等式:并把不等式的解集在数轴上表示出来:4-()314x +≥()528x ++2 【答案】x ≤0,数轴表示见解析【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得,再在数轴上表示出来即可.【详解】解:去分母,得:32-6(x +1)≥5(x +2)+16,去括号,得:32-6x -6≥5x +10+16,移项,得:-6x -5x ≥10+16-32+6,合并,得:-11x ≥0,系数化为1,得:x ≤0,将不等式的解集表示在数轴上如下:【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变. 45.(1)用配方法解方程:21090x x -+=.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.【答案】(1)121,9x x ==;(2)平均每次降价的百分率为:20%.【详解】试题分析:(1)先配方,再进行开方,化简即可;(2)利用数量关系:商品原来价格×(1﹣每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.试题解析:(1)21090x x -+=210252590x x -+-+=()2516x -=54x -=±121,9x x ==;(2) 设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x )2=80,解得x 1=0.2=20%,x 2=﹣1.8(不合题意,舍去);故平均每次降价的百分率为:20%.考点:1. 配方法解方程,2. 一元二次方程的应用.46.解下列方程或不等式组:(1)解方程:122134x x -+=- (2)解不等式组()2563212x x x ⎧+≥⎨->+⎩47.在某校园超市中买1支英雄牌钢笔和3本硬皮笔记本需要18元钱;买同样的钢笔2支和笔记本5本需要31元.(1)求每支英雄牌钢笔和每本硬皮笔记本的价格;(2)九年一班准备用班费购买48件上述价格的钢笔和笔记本.作为毕业联欢会的奖品,已知班费不少于200元,求最少可以买多少本笔记本?【答案】(1)每支英雄牌钢笔3元,每本硬皮笔记本5元;(2)至少可以购买28本笔记本【分析】(1)用二元一次方程解决问题的关键是找到两个合适的等量关系.本问中两个等量关系是:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,根据这两个等量关系可以列出方程组;(2)本问可以列一元一次不等式解决.用钢笔数=48-笔记本数代入下列不等式关系:购买钢笔钱数+购买笔记本钱数≤200,可以列出一元一次不等式,求解即可.【详解】解:(1)设每支英雄牌钢笔x 元,每本硬皮笔记本y 元由题意得3182531x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩答:每支英雄牌钢笔3元,每本硬皮笔记本5元(2)设可以购买a 本笔记本由题意得()3485200a a -+≥解得28a ≥答:至少可以购买28本笔记本【点睛】本题考查了一元一次不等式的应用和二元一次方程组的应用,解题的关键是找出题中的等量关系或不等关系:1支钢笔的价钱+3本笔记本的价钱=18,2支钢笔的价钱+5本笔记本的价钱=31,购买钢笔钱数+购买笔记本钱数≤200.48.甲、乙两公司为“见义勇为基金会”各捐款3000元.已知甲公司的人数比乙公司的人数多20%,乙公司比甲公司人均多捐20元.请你根据上述信息,就这两个公司的“人数”或“人均捐款”提出一个用分式方程解决的题,并写出解题过程.【答案】问:甲、乙两公司各有多少名员工?;见解析;甲公司有30名员工,乙公司有25名员工【分析】问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,根据人均捐款钱数=捐款总钱数÷人数结合乙公司比甲公司人均多捐20元,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:问:甲、乙两公司各有多少名员工?设乙公司有x 名员工,则甲公司有1.2x 名员工,49.列方程(组)或不等式(组)解应用题:(1)甲工人接到240个零件的任务,工作1小时后,因要提前完成任务,调来乙和甲合作,合做了5小时完成.已知甲每小时比乙少做4个,那么甲、乙每小时各做多少个?(2)某工厂准备购进A 、B 两种机器共20台用于生产零件,经调查2台A 型机器和1台B 型机器价格为18万元,1台A 型机器和2台B 型机器价格为21万元.①求一台A 型机器和一台B 型机器价格分别是多少万元?①已知1台A 型机器每月可加工零件400个,1台B 型机器每月可加工零件800个,经预算购买两种机器的价格不超过140万元,每月两种机器加工零件总数不低于12400个,那么有哪几种购买方案,哪种方案最省钱?【答案】(1)甲每小时加工个20零件,乙每小时加工24个零件;(2)①A ,B 两种型号机器的单价分别为5万元和8万元;①有三种购买方案:方案一:购买A 型机器7台,B 型机器13台,方案二:购买A 型机器8台,B 型机器12台,方案三:购买A 型机器9台,B 型机器11台,方案三更省钱.【分析】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,利用乙每小时比甲多做4个,以及利用甲工作了1小时后,调来乙工人与甲合作了5小时完成,240个零件的任务得出等式方程求出即可;(2)①设A ,B 两种型号机器的单价分别为x 万元和y 万元,根据题意得方程组218221x y x y +⎧⎨+⎩==,解答即可; ①设购买A 型机器m 台,则购买B 型机器(20-m )台,根据购买总价和生产数量列出不等式组求解即可.【详解】(1)设甲每小时加工x 个零件,乙每小时加工y 个零件,根据题意得:465240x y x y +⎧⎨+⎩==,50.解方程组:(1)2(1)61x yx y+-=⎧⎨=-⎩(2)3(1)51135x yy x-=+⎧⎪-⎨=+⎪⎩【答案】(1)56 xy=⎧⎨=⎩(2)57x y =⎧⎨=⎩【分析】(1)用代入法求解即可;(2)用加减法求解即可.【详解】(1)解:()2161x y x y ⎧+-=⎨=-⎩①② , 将①代入①得:6y =,把6y =代入①得5x =,①原方程组的解为56x y =⎧⎨=⎩; (2)解:整理得:383520x y x y -=⎧⎨-=-⎩①②, ①-①,得428y =,解得:7y =,把7y =代入①,得378x -=,解得:5x =,①方程组的解是57x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握用代入法或加减法解二元一次方程组是解题的关键.。

2019届初三数学中考复习《一次函数的应用》专项训练(附参考答案)

2019届初三数学中考复习《一次函数的应用》专项训练(附参考答案)

2019届初三数学中考复习一次函数的应用专项训练1. 大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,大剧院制定了两种优惠方案,方案①:购买一张成人票赠送一张学生票;方案②:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别求出两种优惠方案中y 与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.2. 小李是某服装厂的一名工人,负责加工A,B两种型号服装,他每月的工作时间为22天,月收入由底薪和计件工资两部分组成,其中底薪900元,加工A型服装1件可得20元,加工B型服装1件可得12元.已知小李每天可加工A型服装4件或B型服装8件,设他每月加工A型服装的时间为x天,月收入为y元.(1)求y与x的函数关系式;(2)根据服装厂要求,小李每月加工A型服装数量应不少于B型服装数量的3,那么他的月收入最高能达到多少元?53. 某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式;(不要求写出自变量x的取值范围)(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.4. 昨天早晨7点,小明乘车从家出发,去西安参加中学生科技创新大赛,赛后,他当天按原路返回,如图,是小明昨天出行的过程中,他距西安的距离y(千米)与他离家的时间x(时)之间的函数图象.根据下面图象,回答下列问题:(1)求线段AB所表示的函数关系式;(2)已知昨天下午3点时,小明距西安112千米,求他何时到家?5. 胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费,假设组团参加甲、乙两家旅行社两日游的人数均为x人.(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y(元)与x(人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家.6. 科学研究发现,空气含氧量y(克/立方米)与海拔高度x(米)之间近似地满足一次函数关系.经测量,在海拔高度为0米的地方,空气含氧量约为299克/立方米;在海拔高度为2000米的地方,空气含氧量约为235克/立方米.(1)求出y与x的函数关系式;(2)已知某山的海拔高度为1200米,请你求出该山山顶处的空气含氧量约为多少?7. 小李从西安通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1 kg收费22元,超过1 kg,则超出部分按每千克10元加收费用.设该公司从西安到南昌快递樱桃的费用为y(元),所寄樱桃为x(kg).(1)求y与x之间的函数关系式;(2)已知小李给外婆快寄了2.5 kg樱桃,请你求出这次快寄的费用是多少元?8. “十一节”期间,申老师一家自驾游去了离家170千米的某地,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求他们出发半小时时,离家多少千米?(2)求出AB段图象的函数表达式;(3)他们出发2小时时,离目的地还有多少千米?9. 由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m3)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m3)与时间x(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m3)与时间x(天)的函数关系式,并求当x=20时的水库总蓄水量;(2)求当0≤x≤60时,水库的总蓄水量y(万m3)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m3为严重干旱,直接写出发生严重干旱时x的范围.10. 周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____km/h,H点坐标为__________________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?11. 根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.12. 小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m,如图是小明和爸爸所走的路程s(m)与小明的步行时间t(min)的函数图象.(1)直接写出小明所走路程s与时间t的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min到达公园,则小明在步行过程中停留的时间需作怎样的调整?13. 某物流公司引进A,B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,根据图象提供的信息,解答下列问题:(1)求y B关于x的函数解析式;(2)如果A,B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?14. 某学校计划组织500人参加社会实践活动,与某公交公司接洽后,得知该公司有A,B型两种客车,它们的载客量和租金如表所示:经测算,租用A,B型客车共13辆较为合理,设租用A型客车x辆,根据要求回答下列问题:(1)用含x的代数式填写下表:(2)采用怎样的租车方案可以使总的租车费用最低,最低为多少?15. 为了节约资源,科学指导居民改善居住条件,小强向房管部门提出了一个购买商品房的政策性方案:设一个3口之家购买商品房的人均面积为x平方米,缴纳房款y万元.(1)请求出y关于x的函数关系式;(2)若某3口之家欲购买120平方米的商品房,求其应缴纳的房款.16. 保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A 港口的物资为x 吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x 的取值范围;(2)求出最低费用,并说明费用最低时的调配方案. 参考答案:1. 解:(1)按优惠方案①可得y 1=20×4+(x -4)×5=5x +60(x≥4),按优惠方案②可得y 2=(5x +20×4)×90%=4.5x +72(x≥4) (2)因为y 1-y 2=0.5x -12(x≥4),①当y 1-y 2=0时,得0.5x -12=0,解得x =24,∴当x =24时,两种优惠方案付款一样多.②当y 1-y 2<0时,得0.5x -12<0,解得x <24,∴4≤x<24时,y 1<y 2,优惠方案①付款较少.③当y 1-y 2>0时,得0.5x -12>0,解得x >24,当x >24时,y 1>y 2,优惠方案②付款较少2. 解:(1)由题意得y =20×4x+12×8×(22-x)+900,即y =-16x +3012(2)依题意得4x≥35×8×(22-x),∴x≥12.在y =-16x +3012中,∵-16<0,∴y 随x 的增大而减小.∴当x =12时,y 取最大值,此时y =-16×12+3012=2820.答:当小李每月加工A 型服装12天时,月收入最高,可达2820元3. 解:(1)因为购买大型客车x 辆,所以购买中型客车(20-x)辆.y =62x +40(20-x)=22x +800(2)依题意得20-x <x.解得x >10,∵y =22x +800,y 随着x 的增大而增大,x 为整数,∴当x =11时,购车费用最省,为22×11+800=1042(万元),此时需购买大型客车11辆,中型客车9辆,答:购买大型客车11辆,中型客车9辆时,购车费用最省为1042万元4. 解:(1)设线段AB 所表示的函数关系式为y =kx +b ,依题意有⎩⎪⎨⎪⎧b =192,2k +b =0,解得⎩⎪⎨⎪⎧k =-96,b =192.故线段AB 所表示的函数关系式为:y =-96x +192(0≤x≤2)(2)12+3-(7+6.6)=1.4(小时),112÷1.4=80(千米/时),(192-112)÷80=1(小时),3+1=4(时).答:他下午4时到家 5. 解:(1)甲旅行社的总费用:y甲=640×0.85x=544x ;乙旅行社的总费用:当0≤x≤20时,y 乙=640×0.9x=576x ;当x >20时,y 乙=640×0.9×20+640×0.75(x-20)=480x +1920(2)当x =32时,y 甲=544×32=17408(元),y 乙=480×32+1920=17280,因为y 甲>y 乙,所以胡老师选择乙旅行社 6. 解:(1)设y =kx +b(k≠0),则⎩⎪⎨⎪⎧b =299,2000k +b =235,解得⎩⎪⎨⎪⎧k =-4125,b =299,∴y=-4125x +299(2)当x =1200时,y =-4125×1200+299=260.6(克/立方米),答:该山山顶处的空气含氧量约为260.6克/立方米7. 解:(1)由题意得,当0<x≤1时,y =22+6=28;当x >1时,y =28+10(x -1)=10x +18.∴y=⎩⎪⎨⎪⎧28(0<x≤1)10x +18(x >1)(2)当x =2.5时,y =10×2.5+18=43,∴这次快寄的费用是43元8. 解:(1)设OA 段图象的函数表达式为y =kx ,∵当x =1.5时,y =90,∴1.5k =90,∴k =60,∴y =60x(0≤x≤1.5),∴当x =0.5时,y =60×0.5=30,故他们出发半小时时,离家30千米(2)设AB 段图象的函数表达式为y =k′x+b ,∵A(1.5,90),B(2.5,170)在AB 上,∴⎩⎪⎨⎪⎧1.5k′+b =90,2.5k′+b =170,解得⎩⎪⎨⎪⎧k′=80,b =-30,∴y=80x -30(1.5≤x≤2.5)(3)∵当x =2时,y =80×2-30=130,∴170-130=40,故他们出发2小时时,离目的地还有40千米9. 解:(1)设y 1=k 1x +b 1,把(0,1200)和(60,0)代入到y 1=k 1x +b 1,得⎩⎪⎨⎪⎧b 1=1200,60k 1+b 1=0,解得⎩⎪⎨⎪⎧k 1=-20,b 1=1200.∴y 1=-20x +1200,当x =20时,y 1=-20×20+1200=800(2)设y 2=k 2x +b 2,把(20,0)和(60,1000)代入到y 2=k 2x +b 2中,得⎩⎪⎨⎪⎧20k 2+b 2=0,60k 2+b 2=1000, 解得⎩⎪⎨⎪⎧k 2=25,b 2=-500,∴y 2=25x -500,当0≤x≤20时,y =-20x +1200,当20<x≤60时,y =y 1+y 2=-20x +1200+25x -500=5x +700,y≤900,则5x +700≤900,x≤40,当y 1=900时,900=-20x +1200,x =15,∴发生严重干旱时x 的范围为15≤x≤4010. 解:(1)由函数图象可以得出,小芳家距离甲地的路程为10 km ,花费时间为0.5 h ,故小芳骑车的速度为:10÷0.5=20(km/h),由题意可得出,点H 的纵坐标为20,横坐标为:43+16=32,故点H 的坐标为(32,20)(2)设直线AB 的解析式为:y 1=k 1x +b 1,将点A(0,30),B(0.5,20)代入得:y 1=-20x +30,∵AB∥CD,∴设直线CD 的解析式为:y 2=-20x +b 2,将点C(1,20)代入得:b 2=40,故y 2=-20x +40,设直线EF 的解析式为:y 3=k 3x +b 3,将点E(43,30),H(32,20)代入得:k 3=-60,b 3=110,∴y 3=-60x +110,解方程组⎩⎪⎨⎪⎧y =-60x +110,y =-20x +40,得⎩⎪⎨⎪⎧x =1.75,y =5,∴点D 坐标为(1.75,5),30-5=25(km ),所以小芳出发1.75小时候被妈妈追上,此时距家25 km (3)将y =0代入直线CD 的解析式有:-20x +40=0,解得x =2,将y =0代入直线EF 的解析式有:-60x +110=0,解得x =116,2-116=16(h )=10(分钟),故小芳比预计时间早10分钟到达乙地11. 解:(1)暂停排水需要的时间为:2-1.5=0.5(小时).∵排水时间为:3.5-0.5=3(小时),一共排水900 m 3,∴排水孔排水速度是:900÷3=300(m 3/h )(2)当2≤t≤3.5时,设Q 关于t 的函数表达式为Q =kt +b ,易知图象过点(3.5,0).∵t =1.5时,排水300×1.5=450,此时Q =900-450=450(m 3),∴(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎪⎨⎪⎧2k +b =450,3.5k +b =0,解得⎩⎪⎨⎪⎧k =-300,b =1050,∴Q 关于t 的函数表达式为Q =-300t +1050 12. 解:(1)s =⎩⎪⎨⎪⎧ 50t (0≤t≤20),1000(20<t≤30),50t -500(30<t≤60)(2)设小明的爸爸所走的路程s 与小明的步行时间t 的函数关系式为:s =kt+b ,则⎩⎪⎨⎪⎧25k +b =1000,b =250,解得,⎩⎪⎨⎪⎧k =30,b =250,则小明的爸爸所走的路程与小明的步行时间的关系式为:s =30t +250,当50t -500=30t +250,即t =37.5 min 时,小明与爸爸第三次相遇(3)30t +250=2500,解得t =75,则小明的爸爸到达公园需要75 min ,∵小明到达公园需要的时间是60 min ,∴小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需减少5 min13. 解:(1)设y B 关于x 的函数解析式为y B =kx +b(k≠0).将点(1,0),(3,180)代入得⎩⎪⎨⎪⎧k +b =0,3k +b =180.解得k =90,b =-90.所以y B 关于x 的函数解析式为y B =90x -90(1≤x≤6)(2)设y A 关于x 的解析式为y A =k 1x.根据题意得3k 1=180.解得k 1=60.所以y A =60x.当x =5时,y A =60×5=300(千克);x =6时,y B =90×6-90=450(千克).450-300=150(千克).答:如果A ,B 两种机器人各连续搬运5小时,B 种机器人比A 种机器人多搬运了150千克14. (1) 28(13-x) 250(13-x)(2) 解:设租车的总费用为W元,则有:W=400x+250(13-x)=150x+3250.由已知得:45x+28(13-x)≥500,解得:x≥8.∵在W=150x+3250中150>0,∴当x=8时,W取最小值,最小值为4450元.故租A型车8辆,B型车5辆时,总的租车费用最低,最低为4450元15. 解:(1)当0≤x≤30时,y=3×0.4x=1.2x;当x>30时,y=3×0.9×(x -30)+3×0.4×30=2.7x-45(2)由题意知:该3口之家人均住房面积为:120÷3=40>30,在y=2.7x-45中,令x=40,则y=2.7×40-45=63.∴应缴纳的房款为63万元16. 解:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(80-x)吨,从乙仓库运往A港口的有(100-x)吨,运往B港口的有50-(80-x)=(x-30)吨,所以y=14x+20(100-x)+10(80-x)+8(x-30)=-8x+2560,x的取值范围是30≤x≤80(2)由(1)得y=-8x+2560,y随x的增大而减少,所以当x=80时总运费最小,当x=80时,y=-8×80+2560=1920,此时方案为:把甲仓库的物资全部运往A港口,再从乙仓库运20吨往A港口,乙仓库余下的物资全部运往B港口。

天津市西青区2019届中考复习《一次方程与不等式》专项练习含答案

天津市西青区2019届中考复习《一次方程与不等式》专项练习含答案

2019年九年级数学中考复习一次方程与不等式课后练习卷一、选择题:1、已知x=-3是关于x的方程2x-a=1的解,则a的值是()A.-5B.5C.-7D.22、已知a<b,下列四个不等式中不正确的是()A.4a<4b;B.-4a<-4b;C.a+4<b+4;D.a-4<b-4;3、关于的方程和有相同的解,则的值是()A.-8B.10C.-10D.84、若|x﹣2|=2﹣x,则x的取值范围是()A.x<2B.x≤2C.x>2D.x≥25、已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是()A. B. C. D.6、已知是方程组的解,则间的关系是().A. B. C. D.7、不等式3(x-2)<7的正整数解有()A.2个;B.3个;C.4个;D.5个;8、定义,若,则的值是()A.3B.4C.6D.99、二元一次方程组的解满足不等式x<0,y>0,则k的取值范围是()A.-7<k<B.-7<k<C.-7<k<D.-3<k<10、若方程组的解是,则方程组的解是()A. B. C. D.二、填空题:11、不等式的负整数解是 .12、当x=________时,代数式与的值相等.13、若2a﹣b=5,a﹣2b=4,则a﹣b的值为.14、甲、乙两人相距42千米,若两人同时相向而行,可在6小时后相遇;•而若两人同时同向而行,乙可在14小时后追上甲,设甲的速度为x千米/时,乙的速度为y•千米/时,列出的二元一次方程组为 .15、某次数学测验共20道选择题,规则是:选对一道得5分,选错一道得-1分,不选得零分,王明同学的卷面成绩是:选对16道题,选错2道题,有2道题未做,他的得分是.16、某商品的进价为1000元,售价为2000元,由于销售状况不好,商店决定打折出售,但又要保证利润不低于20%,则商店最多打折.三、解答题:17、解方程:3x﹣4(2x+5)=x+4; 18、解方程:19、解方程组: 20、解方程组:21、解不等式:22、解不等式组:23、为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造。

天津市南开区2019届中考复习《一次方程与不等式》专项练习含答案

天津市南开区2019届中考复习《一次方程与不等式》专项练习含答案

2019年九年级数学中考复习--一次方程与不等式专题复习一、选择题:1、某种书每本定价8元,若购书不超过10本,按原价付款;若一次购书10本以上,超过10本部分按八折付款.设一次购书数量为x本(x>10),则付款金额为( )A.6.4x元B.(6.4x+80)元C.(6.4x+16)元D.(144-6.4x)元2、下列说法不一定成立的是()A. B.C. D.3、把方程中的分母化为整数,结果应为( ).A. B.C. D.4、已知代数式的值为7,则的值为( )A. B. C.8 D.105、若与的和是单项式则( ).A. B. C. D.6、某种商品的进价为800元,标价为1200元,由于该商品积压,商店准备打折销售,但要保证利润率不低于20%,则最低可打()A.8折B.8.5折C.7折D.6折学7、不等式的负整数解有()A.1个B.2个C.3个D.4个8、某车间有26名工人,每人每天可以生产800个螺栓或1 000个螺母,1个螺栓需要配2个螺母,为使每天生产的螺栓和螺母刚好配套,设安排x名工人生产螺栓,则下面所列方程正确的是( )A.2×1 000(26x)=800xB.1 000(13x)=800xC.1 000(26x)=2×800xD.1 000(26x)=800x9、若方程组的解满足,则a的取值是()A. B. C. D.不能确定10、某商场有两个进价不同的电子琴都卖了960元,其中一个盈利20%,另一个亏损20%,则本次买卖中这家商场()A.不赔不赚B.赚了160元C.赔80元D.赚80元11、若关于x的不等式组只有5个整数解,则a的取值范围()A. B. C. D.12、如图所示的运算程序中,若开始输入的x值为96,我们发现第一次输出的结果为48,第二次输出的结果为24,…,则第2019次输出的结果为()A.6B.3C.D.6024二、填空题:13、若方程是一个一元一次方程,则等于 .14、已知方程2x﹣3y﹣1=0,用x表示y,则y= .15、如果a<b,那么-3a________-3b(用“>”或“<”填空).16、如果点P(m,1﹣2m)在第四象限,那么m的取值范围是.17、已知点P(2a﹣8,2﹣a)是第三象限的整点(横、纵坐标均为整数),则P点的坐标是 .18、若2x2a﹣b﹣1﹣3y3a+2b﹣16=10是关于x,y的二元一次方程,则a+b= .19、已知x2﹣2x=5,则代数式2x2﹣4x﹣1的值为 .20、若关于二元一次方程组的解满足则整数a的最大值为三、解答题:21、解下列方程或不等式:(1)解方程:3x﹣7(x﹣1)=3﹣2(x+3)(2)解方程:(3)解方程:(4)解方程组:(5)解方程组:(6)解方程组:(7)解不等式:5(x﹣2)﹣2(x+1)>3. (8)解不等式组:(9)解不等式组:22、现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品共用了160元.⑴.求A,B两种商品每件多少元?⑵.如果小亮准备购买A,B两种商品共10件,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?23、某乒乓球训练馆准备购买n副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知A、B两家超市都有这个品牌的乒乓球拍和乒乓球出售,且每副球拍的标价都为20元,每个乒乓球的标价都为1元.现两家超市正在促销,A超市所有商品均打九折(按原价的90%付费)销售,而B超市买1副乒乓球拍送3个乒乓球.若仅考虑购买球拍和乒乓球的费用,请解答下列问题:21·世纪*教育网(1)如果只在某一家超市购买所需球拍和乒乓球,那么去A超市还是B超市买更合算?(2)当k=12时,请设计最省钱的购买方案.24、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?注:利润=售价﹣成本.25、为了抓住当地“庙会”商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元:若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?参考答案1、C2、C3、B4、C5、B.6、A7、B8、C9、A10、C11、A12、B13、答案为:-314、答案为:y=2/3x-1/315、答案为:16、答案为:m>0.5.17、答案为:(﹣2,﹣1).18、答案为:7.19、答案为:9.20、答案为:3;21、(1)x=;(2)x= -13;(3)x=1;(4).(5);(6);(7)x>5;(8)-2≤x<-;(9);22、⑴A每件20元,B每件50元;⑵.方案一:当=5时,费用为350元;方案二:当=6时,费用为320元.∵350>320,∴购买A商品6件,B商品4件的费用最低;23、解:(1)由题意,去A超市购买n副球拍和kn个乒乓球的费用为0.9(20n+kn)元,去B超市购买n副球拍和k个乒乓球的费用为[20n+n(k﹣3)]元,由0.9(20n+kn)<20n+n(k﹣3),解得k>10;由0.9(20n+kn)=20n+n(k﹣3),解得k=10;由0.9(20n+kn)>20n+n(k﹣3),解得k<10.∴当k>10时,去A超市购买更合算;当k=10时,去A、B两家超市购买都一样;当3≤k<10时,去B超市购买更合算.(2)当k=12时,购买n副球拍应配12n个乒乓球.若只在A超市购买,则费用为0.9(20n+12n)=28.8n(元);若只在B超市购买,则费用为20n+(12n﹣3n)=29n(元);若在B超市购买n副球拍,然后再在A超市购买不足的乒乓球,则费用为20n+0.9×(12﹣3)n=28.1n(元)显然28.1n<28.8n<29n∴最省钱的购买方案为:在B超市购买n副球拍同时获得送的3n个乒乓球,然后在A超市按九折购买9n 个乒乓球.24、解:(1)设A种户型的住房建x套,则B种户型的住房建(80﹣x)套.由题意知2090≤25x+28(80﹣x)≤2096解得48≤x≤50∵x取非负整数,∴x为48,49,50.∴有三种建房方案:方案一:A种户型的住房建48套,B种户型的住房建32套,方案二:A种户型的住房建49套,B种户型的住房建31套,方案三:A种户型的住房建50套,B种户型的住房建30套;(2)设该公司建房获得利润W(万元).由题意知W=(30﹣25)x+(34﹣28)(80﹣x)=5x+6(80﹣x)=480﹣x,∴当x=48时,W最大=432(万元)即A型住房48套,B型住房32套获得利润最大;(3)由题意知W=(5+a)x+6(80﹣x)=480+(a﹣1)x∴当0<a<1时,x=48,W最大,即A型住房建48套,B型住房建32套.当a=1时,a﹣1=0,三种建房方案获得利润相等.当a>1时,x=50,W最大,即A型住房建50套,B型住房建30套.25、解:(1)设A购进一件A需要a元,购进一件B需要b元。

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题(含参考解析)

中考数学《方程与不等式》专题知识训练50题含答案(有理数、实数、代数、因式分解、二次根式)一、单选题1.已知一个不等式组的解集如图所示,则以下各数是该不等式组的解的是()A.﹣5B.2C.3D.4【答案】B【详解】由题意,得-2≤x<3,故选B.2.把不等式x<﹣1的解集在数轴上表示出来,则正确的是()A.B.C.D.【答案】C【分析】根据数轴上表示不等式解集的方法进行解答即可.【详解】解:∵此不等式不包含等于号,∵可排除B、D,∵此不等式是小于号,∵应向左化折线,∵A错误,C正确.故选C.【点睛】本题考查的是在数轴上表示不等式的解集,熟知实心圆点与空心圆点的区别是解答此题的关键.3.关于x的一元二次方程220kx x--=有实数根,则实数k的取值范围是()A.18k=-B.18k≥-C.18k≥-且0k≠D.18k≤-【答案】C【分析】根据一元二次方程的定义和根的情况列出不等式即可求出结论.4.下列命题中,是真命题的是()A.内错角相等B.对顶角相等C.若x2=4,则x=2D.若a>b,则a2>b2【答案】B【分析】判断命题是真命题还是假命题,假命题只需举出反例,可判断A、C、D;B 通过定义发现是同一角的邻补角可证明B为真命题.【详解】A、在两直线平行的条件下,内错角相等,没有平行线条件,不相等,故A 假命题,B、由对顶角的定义,知是两直线相交所成的角中,有共顶点,没有公共边的两个角是同一个角的补角,故相等,B为真命题,C、x=-2,也有x2=4,故x2=4,x=±2,故C为假命题,D、a=-1,b=-3,故有a>b,但a2<b2,故D为假命题.故选择:B【点睛】本题考查命题真假问题,判断命题是真命题还是假命题,能举出反例就为假命题,真命题是需要加以证明.5.不等式3x-2>-1的解集是()A.x>13B.x<13C.x>-1D.x<-1【点睛】本题考查了一元一次不等式的解法,熟知解一元一次不等式的基本步骤是解决问题的关键.6.已知关于x的方程:22222 4 2 1 03 0x x x x x x y ax bx=-=+++=++=①;②();③;④,其中是一元二次方程的有()A.1个B.2个C.3个D.4个【答案】A【分析】根据一元二次方程的定义逐个判断即可.【详解】解:2 2x=①,是一元二次方程;2 4x x x x-=+②(),化简后是一元一次方程;2 2 1 0x y++=③,有两个未知数,不是一元二次方程;2 3 0ax bx++=④,二次项系数为0时,不是一元二次方程;故选:A.【点睛】本题考查了一元二次方程的定义,解题关键是明确只含一个未知数,且未知数的最高次为2的整式方程是一元二次方程,注意:一元二次方程二次项系数不为0.7.不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示正确的是()A.B.C.D.【答案】C【分析】将每一个不等式的解集在数轴上表示出来,然后逐项进行对比即可得答案,方法是先定界点,再定方向.【详解】不等式组22xx>-⎧⎨≤⎩的解集在数轴上表示如下:故选:C.【点睛】本题考查了在数轴上表示不等式组的解集,解题的关键是掌握不等式的解集在数轴上的表示方法.8.某校拓展课书法培训班准备购买一批书法笔,购买一支A型书法笔与一支B型书法笔一共需要42元,用360元购买A 型书法笔与用450购买B 型书法笔的数量相同,设A 型书法笔的单价为x 元,依题意,下面所列方程正确的是( ) A .36045042x x=- B .36045042x x=+ C .36045042x x=-D .3604504242x x=-+9.如图,在长为10cm ,宽为8cm 的矩形的四个角上截去四个全等的正方形,使得留下的图形面积是原矩形面积的80%,所截去的小正方形的边长是多少?设小正方形的边长是x cm ,下列方程正确的是( )A .()()10810880%x x --=⨯⨯B .()()1028210880%x x --=⨯⨯C .()()10810820%x x --=⨯⨯D .21084=10880%x ⨯-⨯⨯ 【答案】D【分析】等量关系为:矩形面积-四个全等的小正方形面积=矩形面积80%⨯,即可列出方程.【详解】解:设小正方形的边长为xcm ,由题意得2108410880%x ⨯-=⨯⨯,故选:D .【点睛】此题考查了有实际问题抽象出一元二次方程,读懂题意,找到合适的等量关系是解决本题的关键.10.一元二次方程23210x x 的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根 C .没有实数根 D .只有一个实数根【答案】B【分析】直接利用判别式∵判断即可. 【详解】∵∆=()()22431160--⋅⋅-=> ∵一元二次方程有两个不等的实根 故选:B .【点睛】本题考查一元二次方程根的情况,注意在求解判别式∵时,正负号不要弄错了.11.二元一次方程432x y +=的解可以是( ) A .=1x -,2y = B .4x =,1y =C .1x =,2y =D .2x =-,2y =【答案】A【分析】分别把各选项中的值代入432x y +=验证即可.【详解】解:A.当=1x -,2y =时,4x+3y=-4+6=2,故是方程的解; B.当4x =,1y =时,4x+3y=16+3=19≠2,故不是方程的解; C.当1x =,2y =时,4x+3y=4+6=10≠2,故不是方程的解; D.当2x =-,2y =时,4x+3y=-8+6=-2≠2,故不是方程的解; 故选A .【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.12.某市2018年投入教育经费4900万元,预计2020年投入6400万元,设这两年投入教育经费的年平均增长率为x ,则( ) A .4900x 2=6400 B .4900(1+x)2=6400 C .4900 (1+x)=6400D .4900(1+x)+4900(1+x)2=6400 【答案】B【分析】这两年投入教育经费的年平均增长率为x ,根据某市2008年投入教育经费4900万元,预计2010年投入6400万元可列方程. 【详解】解:这两年投入教育经费的年平均增长率为x , 4900(1+x )2=6400. 故选:B .【点睛】本题考查了由实际问题抽象出一元二次方程中增长率问题,求平均变化率的方法为:若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 13.分式方程411(1)(2)x x x x -=--+的解是( ) A .=1x - B .1x = C .2x = D .3x =14.一件商品的进价500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打( )折 A .6 B .7 C .8 D .915.在不透明的袋子中有黑棋子10枚和白棋子若干(它们除颜色外都相同),现随机从中摸出10枚记下颜色后放回,这样连续做了10次,记录了如下的数据:根据以上数据,估算袋中的白棋子数量为()A.60枚B.50枚C.40枚D.30枚16.温州某服装店十月份的营业额为8000元,第四季度的营业额共为40000元.若平均每月的增长率为x,则由题意可列出方程为()A.8000(1+x)2=40000B.8000+8000(1+x)2=40000 C.8000+8000×2x=40000D.8000[1+(1+x)+(1+x)2]=40000【答案】D【详解】试题解析:设平均每月的增长率为x,则十一月份的营业额为8000(1+x),十二月份的营业额为8000(1+x)2,由此列出方程:8000[1+(1+x)+(1+x)2]=40000.故选D.17.某店商以1200元/件卖了两件进价不同的商品,其中一件盈利20%,另一件亏损20%,在这次买卖中,该店商( ) A .不赢不亏 B .盈利100元C .亏损100元D .亏损300元【答案】C【分析】根据题意列出方程求解,然后根据利润等于售价减去进价即可得出结果. 【详解】解:设盈利商品的进价为x 元,亏损商品的进价为y 元,根据题意可得:()120%1200x +=,()120%1200y -=,解得:1000x =,1500y =, ∴1200120010001500100+--=-, ∴该商店亏损100元, 故选:C .【点睛】题目主要考查一元一次方程的应用,理解题意,列出方程是解题关键. 18.如图,在ABC 中,AB AC =,AD BC ⊥于点 D ,点M 是ABC 内一点,连接BM 交AD 于点 N ,已知108∠=︒AMB ,若点M 是CAN △的内心,则 BAC ∠的度数为( )A .36°B .48°C .60°D .72°【答案】B【分析】过M 点作ME AD ⊥交AD 于点E ,根据在ABC 中,AB AC =,AD BC ⊥于点D ,可得ABC 是等腰三角形,AD 是BC 边上的中垂线,得到NB NC =,NBDNCD ;根据AD BC ⊥,ME AD ⊥,得到NMENBD ,再根据点M 是CAN △的内心,得到NAMMAC ,ANM CNM ∠=∠,设NAM x ,NBDy ,可得4BAC x ,NBD NCDNMEy ,2ENMCNMy ,利用108∠=︒AMB 可整理出18272y x yx,求解即可得到结果.【详解】解:如图示,过M 点作ME AD ⊥交AD 于点E ,∵在ABC 中,AB AC =,AD BC ⊥于点 D , ∵ABC 是等腰三角形,AD 是BC 边上的中垂线, ∵NB NC =,BAD CAD ∠=∠, ∵NBDNCD ,又∵AD BC ⊥,ME AD ⊥ ∵//EM BC ∵NMENBD ,∵点M 是CAN △的内心,即点M 在NAC ∠和ANC ∠的角平分线上, ∵NAM MAC ,ANM CNM ∠=∠, 设NAMx ,NBDy ,则有:4BAC x ,NBDNCDNMEy ,2ENMCNMy ,∵108∠=︒AMB ∵108AMEAMBEMNy则在AEM △中,10890x y,ANM 中,218010872x y ,即有18272y x yx ,解之得:1230x y∵441248BACx,故选:B .【点睛】本题考查了等腰三角形的性质,三角形的内心,角平分线的性质,平行线的判定与性质,解二元一次方程组等知识点,熟悉相关性质是解题的关键. 19.已知代数式 23-x 与 312x -的值互为相反数,则x 的值为( )A .117B .7C .711D .1220. 如图,点A 的坐标为(1,0),点B 在直线y=-x 上运动,当线段AB 最短时,点B 的坐标为 ( )A .(0,0)B .(-12,12)C .(2,-2) D .(12,-12)二、填空题21.方程218x --=的解是x=___________. 【答案】-20【分析】先移项,然后系数化为1即可求解. 【详解】解:移项得:-x=20, 系数化为1得:x=-20, 故答案为-20.【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题关键.22.“x 的2倍比y 小”用不等式表示为 _______. 【答案】2x <y##y >2x【分析】x 的2倍即为2x ,小即“<”,据此列不等式.【详解】解:由题意得,2x <y .故答案为:2x <y .【点睛】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系是关键.23.如果关于x 的方程1333k x x =---有增根,那么k =___________.24.分式方程3214x x =+-的解为 _____.25.若2(2)350m x x --+=是关于x 的一元二次方程,则m 的取值范围为______.【答案】2m ≠【分析】根据形如20(0)ax bx c a ++=≠叫做一元二次方程,列式计算即可.【详解】因为2(2)350m x x --+=是关于x 的一元二次方程,所以20m -≠,所以2m ≠,故答案为:2m ≠.【点睛】本题考查了一元二次方程的定义即形如20(0)ax bx c a ++=≠叫做一元二次方程,熟练掌握方程的条件是解题的关键.26.己知方程2310x y -+=,且含x 的式子表示y =________.27.若关于x 的分式方程x m x 1x 1---=2的解为正实数,则整数m 的最大值是______. 【答案】0【分析】分式方程去分母转化为整式方程,表示出方程的解x ,由解为正实数确定出m 的范围,即可求出所求.【详解】解:分式方程去分母得:x-m=2x-2,解得:x=2-m ,由分式方程的解为正实数,得到2-m >0,且2-m≠1,解得:m <2且m≠1,则整数m 的最大值是0,故答案为0【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.28.列方程解应用题.某商品原售价为25元,经过连续两次降价后售价为16元.求平均每次降价的百分率.【答案】平均每次降价的百分率为20%【分析】根据题意得出等量关系,列出方程求解即可.【详解】解:设平均每次降价的百分率为x ,由题意可得:()225116x -=,解得10.2=20%x =,2 1.8x =(舍去)答:平均每次降价的百分率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是利用增长(降低)率的知识找出等量关系.29.不等式2x ﹣7<5﹣2x 的非负整数解的个数为__个.【答案】3【分析】【详解】∵2x+2x<5+7,∵4x<12,∵x<3,则不等式的非负整数解有0、1、2这3个,故答案为:3.30.把一根 9m 长的钢管截成 1m 长和 2m 长两种规格均有的短钢管,且没有余料,设某种截法中 1m 长的钢管有 a 根,则 a 的值可能有_____种. 【答案】4【分析】根据题意列二元一次方程即可解决问题.【详解】设2m 的钢管b 根,根据题意得:a +2b =9, ∵a 、b 均为正整数, ∵14a b =⎧⎨=⎩,33a b =⎧⎨=⎩,52a b =⎧⎨=⎩,71a b =⎧⎨=⎩. a 的值可能有4种,故答案为:4.【点睛】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键. 31.某景点门票价是:每人5元,一次购票满30张,每张票可少收1元.当人数少于30人时,至少要有_______人去该景点,买30张票反而合算.【答案】25【分析】先求出购买30张票,优惠后需要多少钱,然后再利用5x >120时,求出买到的张数的取值范围再加上1即可.【详解】解:30×(5-1)=30×4=120(元),故5x >120时,解得:x >24,当有24人时,购买24张票和30张票的价格相同,再多1人时买30张票较合算, 24+1=25(人),则至少要有25人去世纪公园,买30张票反而合算.故答案为:25.【点睛】本题考查了一元一次不等式的应用,找到按5元的单价付款和4元单价付款的等量关系是解题的关键.32.某地区规划将21000平方米矩形土地用于修建文化广场,已知该片土地的宽为x 米,长比宽长10米,那么这块矩形土地的长是______米. 【答案】150【分析】土地的宽为x 米,则长为()10x +米,根据矩形面积为21000平方米列一元二次方程,求解即可.【详解】解:根据题意,土地的宽为x 米,则长为()10x +米,∵()1021000x x +=,解得1140x =,2150x =-(不合题意,舍去),∵矩形土地的长为14010150+=(米),故答案为:150.【点睛】本题考查了一元二次方程的应用,根据题意建立等量关系是解题的关键. 33.填空:(1)若10x +>,两边都加上1-,得____________________________(依据:_______________).(2)若26x >-,两边都除以2,得______________________________(依据:______________).(3)若1132x -≤,两边都乘3-,得_____________________________(依据:_______________).【答案】 1x >-##1x -< 不等式两边加(或减)同一个数(或式子),不等号的方向不变 3x >-##3x -< 不等式两边乘(或除以)同一个正数,不等号的方向不34.解方程412343x x-+=-1的第一步是方程左、右两边同时乘以________去分母,最后可得方程的解为________.35.从满足不等式组2173211xx+≤⎧⎨--⎩>的所有整数解中任意取一个数记作a,则关于y的一元二次方程230 4ay y--=有实数根的概率是_____________.36.商店将定价600元的商品降价10%后出售,至少要获利20%,那么这种商品的进价应不高于______元.【答案】450【分析】设这种商品的进价为x元,则降价后的价钱为600×(1-10%),然后根据仍能至少获利20%列出不等式,求出x的范围.【详解】设这种商品的进价为x元,由题意得,600×(1-10%)≥x(1+20%),解得:x≤450.即这种商品的进价应不超过450元.【点睛】此题主要考查了一元一次不等式的应用,解决本题的关键是得到商品售价的等量关系,列出不等式求出最小整数解.37.分解因式4m 3﹣mn 2的结果是____;二元一次方程组22x y x y +=⎧⎨-=-⎩的解是___. 【答案】 m (2m +n )(2m-n ) 02x y =⎧⎨=⎩ 【分析】利用提公因式法和公式法分解因式和加减消元法解二元一次方程组即可求解.【详解】解:4m 3﹣mn 2=m (4m 2﹣n 2)= m (2m +n )(2m-n );22x y x y +=⎧⎨-=-⎩①②, ∵+∵得:2x =0,得x =0 , 将x =0代入∵得y =2,方程组的解为02x y =⎧⎨=⎩, 故答案为:m (2m +n )(2m-n );02x y =⎧⎨=⎩【点睛】此题考查提公因式法和公式法分解因式和加减消元法解二元一次方程组,掌握相应的运算方法是解答此题的关键.38.若关于x 的一元一次不等式组20122x x m -<⎧⎪⎨+≥⎪⎩有4个整数解,则m 的取值范围为_______________________.732m < 【分析】先求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得出答案即可.【详解】解:解不等式122x m +,得:不等式组有4个整数解,,732m < 故答案为732m <【点睛】本题主要考查的是不等式的解集,由不等式无解判断出是解题的关键.39220x --≤的解集是_______.40.已知25x y -=,若用含x 的代数式表示y ,则y =_____________.【答案】2x-5.【分析】将x 看做已知数求出y 即可.【详解】2x-y=5,解得:y=2x-5.故答案为2x-5.【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .三、解答题41.解不等式2(3)3(2)x x -+>+【答案】x <−12【分析】根据解一元一次不等式的步骤:先去括号,再移项、合并同类项,最后系数化为1即可.【详解】解:去括号,得−6+2x >3x +6,移项、合并同类项,得−x >12,系数化为1,得x <−12.【点睛】本题考查了解简单不等式的能力,解不等式要依据不等式的基本性质: ∵在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;∵在不等式的两边同时乘以或除以同一个正数不等号的方向不变;∵在不等式的两边同时乘以或除以同一个负数不等号的方向改变.42.解方程:(1)()235x x +=-;(2)325123y y ---=. 【答案】(1)11x =-;(2)5y =-【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可; (2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键. 43.解方程:(1)5(21)x x --=(2)1324x x +-= 【答案】(1)2x =;(2)13x =.【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解是多少即可.【详解】(1)去括号,得:521x x -+=,移项,得:251x x --=--,合并同类项,得:36x -=-,系数化为1,得:2x =; (2)去分母,得:()2112x x -+=,去括号,得:2112x x --=,移项,得:2121x x -=+,合并同类项,得:13x =.【点睛】本题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.44.(1)计算:1202020131)(1)2-⎛⎫+-+- ⎪⎝⎭(2)解方程:132x x =+45.我县化工园区一化工厂,组织20辆汽车装运A 、B 、C 三种化学物资共200吨到某地.按计划20辆汽车都要装运,每辆汽车只能装运同一种物资且必须装满.请结合表中提供的信息,解答下列问题:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y.求y与x的函数关系式;(2)如果装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,若要求总运费最少,应如何安排使得总运费最少,并求出最少总运费.【答案】(1)y=20-2x(2)装运A种物资的车8辆,装运B种物资的车4辆,装运C种物资的车8辆;最少为48640元【详解】试题分析:(1)设装运A种物资的车辆数为x,装运B种物资的车辆数为y,所以装运C种物资的车辆数(20-x-y),然后根据化学物资共200吨,可得函数关系式y=20-2x;(2)根据装运A种物资的车辆数不少于5辆,装运B种物资的车辆数不少于4辆,可求出x的取值范围,设总运费为M元,然后求出函数关系式M=-1920x+64000,然后利用一次函数的增减性,x取最大值时,M最小.试题解析:解:(1)根据题意得:12x+10y+8(20-x-y)=2001分12x+10y+160-8x-8y=2002x+y=20,2分∵y=20-2x4分(2)根据题意得:5{2024xx≥-≥,解得58x≤≤,5分设总运费为M元,则M=12×240x+10×320(20-2x)+8×200(20-x+2x-20)6分即:M=-1920x+640007分∵M是x的一次函数,且M随x增大而减小,x取正整数,∵当x=8时,M 最小,最少为48640元. 8分 即装运A 种物资的车8辆,装运B 种物资的车4辆,装运C 种物资的车8辆 9分考点:1.确定一次函数解析式;2.不等式组;3.一次函数的实际应用.46.每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元.(1)求甲、乙两种型号设备的价格;(2)公司决定购买甲、乙两种型号的设备共10台,且该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司甲种型号的设备至多购买几台? 【答案】(1)甲、乙两种型号设备每台的价格分别为12万元和10万元(2)至多购买5台【分析】(1)设甲、乙两种型号设备每台的价格分别为x 万元和y 万元,再根据“购买3台甲型设备比购买2台乙型设备多花16万元,购买2台甲型设备比购买3台乙型设备少花6万元”建立方程组,解方程组即可得;(2)设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,再根据“资金不超过110万元”建立不等式,解不等式即可得.(1)解:甲、乙两种型号设备每台的价格分别为x 万元和y 万元,由题意得:3216236x y x y -=⎧⎨-+=⎩, 解得1210x y =⎧⎨=⎩, 答:甲、乙两种型号设备每台的价格分别为12万元和10万元.(2)解:设购买甲种型号的设备m 台,则购买乙种型号的设备(10)m -台,由题意得:1210(10)110m m +-≤,解得5m ≤,答:该公司甲种型号的设备至多购买5台.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,正确建立方程组和不等式是解题关键.47.已知关于x的一元二次方程x2﹣3x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)选一个适当的k值使得此一元二次方程的根都是整数.48.解方程:(1)224-=.x x(2)2320x x-+=.∵x 1=1,x 2=2. 【点睛】此题考查了解一元二次方程,利用因式分解法解方程时,首先将方程右边化为0,左边化为积的形式,再由利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.49.完成下列各题: (1)解方程:∵2111x x x +=+- ∵22216224x x x x x -+-=+-- (2)观察下列等式,并探索它们的规律:111111111,,12223233434=-=-=-⨯⨯⨯...,试用正整数n 表示这个规律,并加以证明.50.(1)251x yx y-=⎧⎨+=⎩,(2)325429m nm n-=⎧⎨+=⎩,(3)357425x yx y-=⎧⎨+=⎩。

初三中考数学复习 一次方程、方程组、一元二次方程 专项综合练习 含答案-学习文档

初三中考数学复习  一次方程、方程组、一元二次方程  专项综合练习 含答案-学习文档

2019 初三中考数学复习 一次方程、方程组、一元二次方程 专项综合练习 1.(2019·大连)方程2x +3=7的解是( D )A .x =5B .x =4C .x =3.5D .x =22.已知a ,b 满足方程组⎩⎪⎨⎪⎧a +5b =12,3a -b =4,则a +b 的值为( B )A .-4B .4C .-2D .23.若关于x 的一元二次方程(k -1)x 2+4x +1=0有两个不相等的实数根,则k 的取值范围是( B )A .k <5B .k <5,且k≠1C .k ≤5,且k≠1D .k >5 4.一元二次方程x 2-3x -2=0的两根为x 1,x 2,则下列结论正确的是( C )A .x 1=-1,x 2=2B .x 1=1,x 2=-2C .x 1+x 2=3D .x 1x 2=25. 若x =-2是关于x 的一元二次方程x 2-52ax +a 2=0的一个根,则a 的值为( B )A .1或4B .-1或-4C .-1或4D .1或-4 6. 下列一元二次方程没有实数根的是( B )A .x 2+2x +1=0B .x 2+x +2=0C .x 2-1=0D .x 2-2x -1=07. 已知x 1,x 2是一元二次方程3x 2=6-2x 的两根,则x 1-x 1x 2+x 2的值是( D )A .-43 B.83 C .-83 D.438.一个长方形的周长为30 cm ,若这个长方形的长减少1 cm ,宽增加2 cm 就可成为一个正方形,设长方形的长为x cm,可列方程为( D )A.x+1=(30-x)-2 B.x+1=(15-x)-2C.x-1=(30-x)+2 D.x-1=(15-x)+29. 某商店换季促销,将一件标价为240元的T恤打8折售出,获利20%,则这件T恤的成本为( B )A.144元 B.160元 C.192元 D.200元10.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2019年底某市汽车拥有量为16.9万辆.已知2019年底该市汽车拥有量为10万辆,设2019年底至2019年底该市汽车拥有量的平均年增长率为x,根据题意列方程得( A )A.10(1+x)2=16.9 B.10(1+2x)=16.9C.10(1-x)2=16.9 D.10(1-2x)=16.911.小明在某商店购买商品A,B共两次,这两次购买商品A,B的数量和费用如表:若小丽需要购买3个商品A和2个商品B,则她要花费( C )A.64元 B.65元 C.66元 D.67元12. 一元二次方程x2-3x=0的根是____x1=0,x2=3 ____.13.方程组⎩⎪⎨⎪⎧x -y =4,2x +y =-1的解是__⎩⎪⎨⎪⎧x =1y =-3__.14.已知(x -y +3)2+2-y =0,则x +y 的值是__1__.15.关于x 的一元二次方程x 2+2x +m =0有两个相等的实数根,则m 的值是__1__.16.已知方程组⎩⎪⎨⎪⎧x +ay =2,5x -2y =3的解也是二元一次方程x -y =1的一个解,则a =__-52__.17.甲、乙二人做某种机械零件,已知甲是技术能手每小时比乙多做3个,甲做30个所用的时间与乙做20个所用的时间相等,那么甲每小时做__9__个零件. 18. 一商场对某款羊毛衫进行换季打折销售,若这款羊毛衫每件按原价的8折(即按照原价的80%)销售,售价为120元,则这款羊毛衫的原销售价为_150_元. 19. 解方程:5x +2=3(x +2).解:去括号得5x +2=3x +6,移项合并得2x =4,解得x =2 20. 解方程:2x -13=1-x -24.解:x =2 21. 解方程: (1)x 2-6x -4=0;解:x 1=3+13,x 2=3-13 (2)(x +3)2=4. 解:x 1=-1,x 2=-523. 解方程组:⎩⎪⎨⎪⎧3x -y =2,9x +8y =17.解:⎩⎪⎨⎪⎧3x -y =2 ①,9x +8y =17 ②,①×8+②得:33x =33,即x =1,把x =1代入①得y=1,则方程组的解为⎩⎪⎨⎪⎧x =1,y =124.解方程组⎩⎪⎨⎪⎧x +y =1,4x +y =-8.解:⎩⎪⎨⎪⎧x +y =1 ①,4x +y =-8 ②,②-①得3x =-9,解得x =-3,把x =-3代入x +y=1中,求出y =4,即方程组的解为⎩⎪⎨⎪⎧x =-3,y =425.已知a ,b ,c 均为实数,且a -2+|b +1|+(c +3)2=0,求关于x 的方程ax 2+bx +c =0的根.解:∵a -2+|b +1|+(c +3)2=0,∴a -2=0,b +1=0,c +3=0,∴a =2,b =-1,c =-3.方程ax 2+bx +c =0即为2x 2-x -3=0,解得x 1=32,x 2=-126. 随着国家“惠民政策”的陆续出台,为了切实让老百姓得到实惠,国家卫计委通过严打药品销售环节中的不正当行为,某种药品原价200元/瓶,经过连续两次降价后,现在仅卖98元/瓶,现假定两次降价的百分率相同,求该种药品平均每次降价的百分率.解:设该种药品平均每次降价的百分率是x ,由题意得:200(1-x)2=98解得x 1=1.7(不合题意舍去),x 2=0.3=30%.答:该种药品平均每次降价的百分率是30%27.食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A ,B 两种饮料共100瓶,需加入同种添加剂270克,其中A 饮料每瓶需加添加剂2克,B 饮料每瓶需加添加剂3克,饮料加工厂生产了A ,B 两种饮料各多少瓶?解:设A 种饮料生产了x 瓶,B 种饮料生产了y 瓶,根据题意得:⎩⎪⎨⎪⎧x +y =100,2x +3y =270,解得:⎩⎪⎨⎪⎧x =30,y =70,答:A 种饮料生产了30瓶,B 种饮料生产了70瓶28. 为进一步发展基础教育,自2019年以来,某县加大了教育经费的投入,2019年该县投入教育经费6000万元.2019年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2019年该县投入教育经费多少万元.解:(1)设该县投入教育经费的年平均增长率为x ,根据题意得6000(1+x)2=8640,解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去), 答:该县投入教育经费的年平均增长率为20%(2)因为2019年该县投入教育经费为8640万元,且增长率为20%,所以2019年该县投入教育经费为y =8640×(1+0.2)=10368(万元), 答:预算2019年该县投入教育经费10368万元。

初三中考数学复习 一次方程(组)及其应用 专项复习训练 含答案-最新教育文档

初三中考数学复习  一次方程(组)及其应用  专项复习训练 含答案-最新教育文档

2019 初三中考数学复习 一次方程(组)及其应用 专项复习训练1. 在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( B )A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)2.若2(a +3)的值与4互为相反数,则a 的值为( C )A .-1B .-72C .-5 D.123.设x ,y ,c 是实数,则正确的为( B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y 4.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( A )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×1205.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =85 6.如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意列方程组正确的是( B )A.⎩⎪⎨⎪⎧x +2y =75y =3xB.⎩⎪⎨⎪⎧x +2y =75x =3yC.⎩⎪⎨⎪⎧2x -y =75y =3xD.⎩⎪⎨⎪⎧2x +y =75x =3y7.某企业决定投资不超过20万元建造A ,B 两种类型的温室大棚,经测算,投资A 种类型的大棚6万元/个,B 种类型的大棚7万元/个,那么建造方案有( B )A .2种B .3种C .4种D .5种8.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为( C )A .24里B .12里C .6里D .3里9.二元一次方程组x +y 2=2x -y 3=x +2的解是__⎩⎪⎨⎪⎧x =-5y =-1__. 10.已知⎩⎪⎨⎪⎧x =3,y =-2是方程组⎩⎪⎨⎪⎧ax +by =3,bx +ay =-7的解,则代数式(a +b)(a -b)的值为__-8__.10.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为__⎩⎪⎨⎪⎧x -y =34x +5y =435__. 11.王经理到襄阳出差带回襄阳特产——孔明菜若干袋,分给朋友们品尝,如果每人分5袋,还余3袋;如果每人分6袋,还差3袋,则王经理带回孔明菜__33__袋.12.解方程:43[34(12x -1)-3]=2x +1; 解:12x -1-4=2x +1,-32x =6,x =-4. 13. 解方程组:⎩⎪⎨⎪⎧x +y =5,2x +3y =11. 解:⎩⎪⎨⎪⎧x +y =5①,2x +3y =11②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1. 14.小明和小华同时解方程组⎩⎪⎨⎪⎧mx +y =5,2x -ny =13,小明看错了m ,解得⎩⎪⎨⎪⎧x =72,y =-2;小华看错了n ,解得⎩⎪⎨⎪⎧x =3,y =-7.你能求出原方程组的正确解吗? 解:把⎩⎪⎨⎪⎧x =72,y =-2代入2x -ny =13得7+2n =13,n =3;把⎩⎪⎨⎪⎧x =3,y =-7代入mx +y =5得3m -7=5,m =4,∴原方程组为⎩⎪⎨⎪⎧4x +y =5,2x -3y =13,解得⎩⎪⎨⎪⎧x =2,y =-3. 15.为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码为2,8,11时,则发送方发出的密码是多少?解:(1)由题意得⎩⎪⎨⎪⎧A =2×2-3,B =2×3,C =3+5,解得A =1,B =6,C =8.答:接收方收到的密码是1,6,8.(2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,解得a =3,b =4,c =7.答:发送方发出的密码是3,4,7.16.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__2__cm ,放入一个大球水面升高__3__cm ;(2)如果要使水面上升到50 cm ,应放入大球、小球各多少个? 解:(2)设应放入大球m 个,小球n 个,由题意得⎩⎪⎨⎪⎧m +n =10,3m +2n =50-26,解得⎩⎪⎨⎪⎧m =4,n =6.答:如果要使水面上升到50 cm ,应放入大球4个,小球6个.。

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年 初三数学中考专题复习: 不等式及一元一次不等式(组) 综合训练题1. 不等式3x +2>-1的解是( )A .x >-13B .x <-13C .x >-1D .x <-1 2.一元一次不等式2(x +1)≥4的解在数轴上表示为( )A B C D3. 如图,数轴上所表示关于x 的不等式组的解是( )A .x ≥2B .x >2C .x >-1D .-1<x≤24.不等式组⎩⎪⎨⎪⎧x +1>2,x -1≤2的解是( ) A .x <1 B .x ≥3 C .1≤x <3 D .1<x≤35. 对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解是-52<x ≤2 6. 不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m >1 的解是x >1,则m 的取值范围是( ) A .m ≥1 B .m ≤1 C .m ≥0 D .m ≤07. 如果关于x 的分式方程a x +1-3=1-x x +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -4,3x +42<x +1的解为x <-2,那么符合条件的所有整数a 的积是( )A .-3B .0C .3D .98. 不等式3x +1<-2的解是_______________.9.不等式3x +134>x 3+2的解是_____________. 10. 在实数范围内规定新运算“△”,其规则是a △b =2a -b.已知不等式x△k≥1的解在数轴上如图表示,则k 的值是____________.11. 若关于t 的不等式组⎩⎪⎨⎪⎧t -a≥0,2t +1≤4恰有3个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为 . 12. 不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是 . 13. 已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n ,x +2y =5n (0<n <3).若y >1,则m 的取值范围是 . 14. 解不等式:3x -5≤2(x+2)15. 解不等式组:⎩⎪⎨⎪⎧5x -3<4x ,4(x -1)+3≥2x.16. 光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度.(1) 求这个月晴天的天数.(2) 已知该家庭每月平均用电为150度,若按每月发电550度计,至少需要几年才能收回成本?(不计其他费用,结果取整数)参考答案:1---7 CAADB DD8. x <-19. x >-310. -311. 0或112. -313. 25<m <2314. 解:3x -5≤2x+4,x ≤9.15. 解:⎩⎪⎨⎪⎧5x -3<4x , ①4(x -1)+3≥2x, ② 由①,得x <3.由②,得x≥12. ∴原不等式组的解为12≤x <3. 16. 解:(1)设这个月晴天天数为x 天,由题意得30x +5(30-x)=550,解得x =16,∴这个月的晴天天数是16天.(2)需要x 年才能收回成本,由题意得(550-150)·(0.52+0.45)·12x≥40 000,4 656x ≥40 000,x ≥8.6,∴至少需要9年才能收回成本.2019-2020学年数学中考模拟试卷一、选择题1.如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直.若AD =8,则点P 到BC 的距离是( )A .8B .6C .4D .22.下列运算正确的是( )A.3a +2a =a 5B.a 2·a 3=a 6C.(a +b )(a -b )=a 2-b 2D.(a +b)2=a 2+b 2 3.分式方程的解是( ) A.3 B.-3 C. D.94.在正方形ABCD 中,对角线AC=BD=12cm ,点P 为AB 边上的任一点,则点P 到AC ,BD 的距离之和为( )A .6cmB .7cmC .cmD .cm5.样本数据3,a ,4,b ,8的平均数是5,众数是3,则这组数据的中位数是( )A .2B .3C .4D .86.已知:点A (2016,0)、B (0,2018),以AB 为斜边在直线AB 下方作等腰直角△ABC ,则点C 的坐标为( )A .(2,2 )B .(2,﹣2 )C .(﹣1,1 )D .(﹣1,﹣1 )7.已知A 样本的数据如下:67,68,68,71,66,64,64,72,B 样本的数据恰好是A 样本数据每个都加6,则A 、B 两个样本的下列统计量对应相同的是( )A .平均数B .方差C .中位数D .众数 8.已知关于x 的一元二次方程(m ﹣1)x 2﹣2x+1=0有实数根,则m 的取值范围是( )A .m≤2B .m≥2C .m≤2且m≠1D .m≥﹣2且m≠19.已知四边形ABCD 中,∠A=∠B=∠C=90°,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是( )A.∠D=90°B.AB=CDC.AD=BCD.BC=CD10.tan60︒的值为( )A .3B .3C D11.函数y =中自变量x 的取值范围是( ) A .x>1 B .x≤1 C .x<1 D .x≥112.肥皂泡的泡壁厚度大约是0.0000007m ,将0.0000007用科学计数法可表示为( )A .60.710-⨯B .7710-⨯C .6710-⨯D .70.710-⨯二、填空题13.如图,在Rt △ABC 中,∠C =90°,AC =BC =4,点D 是AC 的中点,点F 是边AB 上一动点,沿DF 所在直线把△ADF 翻折到△A′DF 的位置,若线段A′D 交AB 于点E ,且△BA′E 为直角三角形,则BF 的长为_____.14.如图,等腰△ABC 内接于圆⊙O ,AB =AC ,∠ACB =70°,则∠COB 的度数是_____.15.(2017辽宁省盘锦市,第18题,3分)如图,点A 1(1,1)在直线y=x 上,过点A 1分别作y 轴、x 轴的平行线交直线2y x =于点B 1,B 2,过点B 2作y 轴的平行线交直线y=x 于点A 2,过点A 2作x 轴的平行线交直线y x =于点B 3,…,按照此规律进行下去,则点A n 的横坐标为______.16.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的有_____个.17.一元二次方程x 2-2x=0的解是_______.18.如图,已知A (,2)、B (,1),将△AOB 绕着点O 逆时针旋转,使点A 旋转到点A′(,)的位置,则图中阴影部分的面积为_____.三、解答题19.如图,在平面直角坐标系中点A 在反比例函数图象上,一条抛物线的顶点是(1,2)且过点(2,3),解答下列问题.(1)求反比例函数的解析式;(2)求抛物线的解析式,并在已给的坐标系中画出这条抛物线;(3)根据图象直接判断方程2223x x x-=+在实数范围内有几个根.20.(1)计算-32+(15)-101()8+2cos45°×tan60°;(2)已知a ,b 为实数,试比较2a b 3+与a 2b 3+的大小. 21.在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)和P 2(x 2,y 2),称d (P 1,P 2)=|x 1﹣x 2|+|y 1﹣y 2|为P 1、P 2两点的直角距离.(1)已知:点A (1,2),直接写出d (O ,A )= ;(2)已知:B 是直线y =34x -+3上的一个动点. ①如图1,求d (O ,B )的最小值;②如图2,C 是以原点O 为圆心,1为半径的圆上的一个动点,求d (B ,C )的最小值.22.计算:(13﹣π)0+4cos60°﹣|﹣3|+(12)﹣1.23.计算:||+(﹣13)﹣1﹣2sin45°+(π﹣2015)0. 24.先化简,再求值:111()a a a ⎛⎫+- ⎪-⎝⎭,其中a=12 . 25.如图,在平面直角坐标系xOy 中,已知直线y=kx+b (k≠0)与双曲线y=m x (m≠0)交于点A (2,-3)和点B (n ,2);(1)求直线与双曲线的表达式;(2)点P 是双曲线y=m x(m≠0)上的点,其横、纵坐标都是整数,过点P 作x 轴的垂线,交直线AB 于点Q ,当点P 位于点Q 下方时,请直接写出点P 的坐标.【参考答案】***一、选择题二、填空题13.6或28514.80°.15.1(3n -. 16.117.120,2x x ==18.78π. 三、解答题19.(1)2y x =;(2)y =(x ﹣1)2+2,(3)方程在实数范围内只有1个根. 【解析】【分析】(1)将A 点坐标代入反比例函数的解析式中,即可求出待定系数的值;(2)已知了抛物线的顶点坐标,可用顶点式设抛物线的解析式,再将点(2,3)的坐标代入,即可求出抛物线的解析式;(3)所求的方程的根即为两个函数的交点横坐标,可通过观察两个函数图象有几个交点,即可确定所求方程有几个根.【详解】解:(1)∵反比例函数经过A (﹣1,2), ∴21k =- ,k =﹣2; ∴反比例函数的解析式为:2.y x =-(2)依题意,设抛物线的解析式为y =a (x ﹣1)2+2,由于抛物线经过(2,3),得:a (2﹣1)2+2=3,a =1;∴二次函数的解析式为:y =(x ﹣1)2+2(3)根据图象,方程在实数范围内只有1个根.【点睛】此题考查了反比例函数、二次函数解析式的确定,二次函数图象的画法以及函数图象交点的求法.20.(1)2-;(2)2233a b a b ++<. 【解析】【分析】(1)根据负整数指数幂、0指数幂、平方、立方的意义及特殊角的三角函数值,先计算32、(15)-1018⎛⎫ ⎪⎝⎭、cos45°、tan60°的值,再按实数的运算法则进行计算即可; (2)先计算两个整式的差,再分类讨论得结果.【详解】解:(1)原式=-9+5-(-2;(2)∵2a b 3+-a 2b 3+ =2a b a 2b 3+-- =a b 3- 当a >b 时,a-b >0, 所以a b 3->0 即2a b 3+>a 2b 3+; 当a=b 时,a-b=0, 所以a b 3-=0 即2a b 3+=a 2b 3+; 当a <b 时,a-b <0, 所以a b 3-<0 即2a b 3+<a 2b 3+. 【点睛】本题主要考查了实数运算和整式大小的比较,掌握0指数幂、负整数指数幂的意义、特殊角的三角函数值及整式比较大小的方法是解决本题的关键.21.(1)3;(2)①d (O ,B )的最小值为3;②4125 【解析】【分析】(1)根据直角距离概念列式计算可得;(2)①设B (a ,﹣34a+3),得出d (O ,B )=|﹣a|+|34a ﹣3|,再分a <0、a =0、0<a <4、a =4及a >4分别求解可得;②当点C 在过原点且与直线y =﹣34x+3垂直的直线上时,点B 与点C 的“直角距离”最小.设点C 的坐标为(x ,y )(点C 位于第一象限),由22431y x x y ⎧=⎪⎨⎪+=⎩得点C (35,45).由43334y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩得B (3625,4825),再根据直角距离概念求解可得.【详解】解:(1)d (O ,A )=|0﹣1|+|0﹣2|=1+2=3,故答案为:3.(2)①设B (a ,﹣34a+3), 则d (O ,B )=|0﹣a|+|0﹣(﹣34a+3)|=|﹣a|+|34a ﹣3|, 当a <0时,d (O ,B )=﹣a ﹣34a+3=﹣74a+3>3; 当a =0时,d (O ,B )=3; 当0<a <4时,d (O ,B )=a ﹣34a+3=14a+3>3; 当a =4时,d (O ,B )=4;当a >4时,d (O ,B )=a+34a ﹣3=74a ﹣3>4; 综上,d (O ,B )的最小值为3;②当点C 在过原点且与直线y =﹣34x+3垂直的直线上时,点B 与点C 的“直角距离”最小.设点C 的坐标为(x ,y )(点C 位于第一象限), 则22431y x x y ⎧=⎪⎨⎪+=⎩.解得:3545 xy⎧=⎪⎪⎨⎪=⎪⎩∴点C(35,45).由43334yxy x⎧=⎪⎪⎨⎪=-+⎪⎩得36254825xy⎧=⎪⎪⎨⎪=⎪⎩,∴B(3625,4825),则d(B,C)的最小值为|3625﹣35|+|4825﹣45|=4125.【点睛】本题考查了圆的综合题:掌握直线与圆的位置关系、绝对值的意义和直线与直线的交点问题;通过阅读理解新概念、新定义的意义.22.【解析】【分析】直接利用负指数幂的性质、零指数幂的性质以及特殊角的三角函数值分别化简得出答案.【详解】(13﹣π)0+4cos60°﹣|﹣3|+(12)﹣1=1+4×12﹣3+2,=1+2﹣3+2,=2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.-2【解析】【分析】原式第一项利用绝对值的代数意义化简,第二项利用负指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果.【详解】||+(﹣13)﹣1﹣2sin45°+(π﹣2015)0﹣3+1=﹣2.【点睛】本题考查了实数的运算,涉及了负指数幂,特殊角的三角函数值,0指数幂,熟练掌握各运算的运算法则是解本题的关键.24.2a ﹣1,0【解析】【分析】根据乘法分配律可以化简题目中的式子,然后将a 的值代入化简后的式子即可解答本题.【详解】解:(11a a +-)(a ﹣1) =a+(a ﹣1)a+a ﹣1=2a ﹣1,当a =12时,原式=2×12﹣1=1﹣1=0. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.25.(1) 反比例函数的解析式为y=-6x ,一次函数的解析式为y=-x-1.(2) (-6,1)或(1,-6). 【解析】【分析】(1)利用待定系数法即可解决问题.(2)由题意点P 在点B 的左侧或在y 轴的右侧点A 的左侧,再根据点P 的横坐标与纵坐标为整数,即可确定点P 坐标.【详解】(1)双曲线y=m x (m≠0)经过点A(2,-3), ∴m=-6,∴反比例函数的解析式为y=-6x , ∵B(n ,2)在y=-6x 上, ∴n=-3,∴B(-3,2),则有:{2k b 33k b 2+=--+=, 解得:{k 1b 1=-=-,∴一次函数的解析式为y=-x-1;(2)由题意点P 在点B 的左侧或在y 轴的右侧点A 的左侧,∵点P的横坐标与纵坐标为整数,∴满足条件点点P坐标为(-6,1)或(1,-6).【点睛】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.2019-2020学年数学中考模拟试卷一、选择题1.下列关于0的说法中,正确的个数是( )①0既不是正数,也不是负数;②0既是整数也是有理数;③0没有倒数;④0没有绝对值.A.1B.2C.3D.4 2.已知,二次函数()22y x k =++向左平移1个单位,再向下平移3个单位,得到二次函数()21y x h =+-,则h 和k 的值分别为( )A.3,4-B.1,4-C.1,2D.3,23.昆明市有关负责人表示,预计年昆明市的地铁修建资金将达到亿元,将亿用科学记数法表示为( )A. B. C. D. 4.下列四个命题中:①若,则;②反比例函数,当时,y 随x 的增大而增大;③垂直于弦的直径平分这条弦; ④平行四边形的对角线互相平分,真命题的个数是( )A.1个B.2个C.3个D.4个5.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为( )A .1:3B .1:4C .1:5D .1:66.如图,正方形ABCD 中,E 为CD 的中点,F 为BC 边上一点,且EF ⊥AE ,AF 的延长线与DC 的延长线交于点G ,连接BE ,与AF 交于点H ,则下列结论中不正确的是( )A.AF =CF+BCB.AE 平分∠DAFC.tan ∠CGF =34D.BE ⊥AG7.左下图是由六个相同的小立方块搭成的几何体,这个几何体的俯视图是A .B .C .D .8.下列运算中正确的是( )A .235()a a =B .()()2212121x x x +-=-C .824a a a =D .22(3)69a a a -=-+ 9.如图,以正方形ABCD 的AB 边为直径作半圆O ,过点C 作直线切半圆于点E ,交AD 边于点F ,则sin ∠FCD =( )A .34 B .35 C .45 D .10.对于一组数据: 4, 3,6, 4, 8,下列说法错误的是( )A .众数是4B .平均数是5C .众数等于中位数D .中位数是5 11.已知,二次函数()22y x k =++向左平移1个单位,再向下平移3个单位,得到二次函数()2+h 1y x =-,则h 和k 的值分别为( )A.3,-4B.1,-4C.1, 2D.3, 2 12.二次函数y =ax 2+bx+c (a≠0)的图象如图所示,给出下列四个结论:①abc >0;3b+2c <0;③4a+c<2b ;④当y >0时,﹣52<x <12.其中结论正确的个数是( )A .2B .3C .4D .1二、填空题13.某公司向银行申请了甲、乙两种贷款,共计68万元,每年需付出8.42万元利息。

初三中考数学复习 一次方程(组)及其应用 专项复习训练 含答案

初三中考数学复习  一次方程(组)及其应用  专项复习训练 含答案

初三中考数学复习一次方程(组)及其应用专项复习训练含答案2019 初三中考数学复习 一次方程(组)及其应用 专项复习训练1. 在解方程x -13+x =3x +12时,方程两边同时乘以6,去分母后,正确的是( B ) A .2x -1+6x =3(3x +1)B .2(x -1)+6x =3(3x +1)C .2(x -1)+x =3(3x +1)D .(x -1)+x =3(x +1)2.若2(a +3)的值与4互为相反数,则a 的值为( C )A .-1B .-72C .-5 D.123.设x ,y ,c 是实数,则正确的为( B )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y 3c,则2x =3y 4.闽北某村原有林地120公顷,旱地60公顷,为适应产业结构调整,需把一部分旱地改造为林地,改造后,旱地面积占林地面积的20%,设把x 公顷旱地改造为林地,则可列方程为( A )A .60-x =20%(120+x)B .60+x =20%×120C .180-x =20%(60+x)D .60-x =20%×1205.小明到商店购买“五四青年节”活动奖品,购买20只铅笔和10本笔记本共需110元,但购买30支铅笔和5本笔记本只需85元.设每支铅笔x 元,每本笔记本y 元,则可列方程组( B )A.⎩⎪⎨⎪⎧20x +30y =11010x +5y =85B.⎩⎪⎨⎪⎧20x +10y =11030x +5y =85C.⎩⎪⎨⎪⎧20x +5y =11030x +10y =85D.⎩⎪⎨⎪⎧5x +20y =11010x +30y =856.如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为43[34(12x -1)-3]=2x +1; 解:12x -1-4=2x +1,-32x =6,x =-4. 13. 解方程组:⎩⎪⎨⎪⎧x +y =5,2x +3y =11. 解:⎩⎪⎨⎪⎧x +y =5①,2x +3y =11②,①×3-②得x =4,把x =4代入①得y =1,则方程组的解为⎩⎪⎨⎪⎧x =4,y =1.14.小明和小华同时解方程组⎩⎪⎨⎪⎧mx +y =5,2x -ny =13,小明看错了m ,解得⎩⎪⎨⎪⎧x =72,y =-2;小华看错了n ,解得⎩⎪⎨⎪⎧x =3,y =-7.你能求出原方程组的正确解吗? 解:把⎩⎪⎨⎪⎧x =72,y =-2代入2x -ny =13得7+2n =13,n =3;把⎩⎪⎨⎪⎧x =3,y =-7代入mx +y =5得3m -7=5,m =4,∴原方程组为⎩⎪⎨⎪⎧4x +y =5,2x -3y =13,解得⎩⎪⎨⎪⎧x =2,y =-3. 15.为确保信息安全,在传输时往往需加密,发送方发出一组密码a ,b ,c 时,则接收方对应收到的密码为A ,B ,C.双方约定:A =2a -b ,B =2b ,C =b +c ,例如发出1,2,3,则收到0,4,5.(1)当发送方发出一组密码为2,3,5时,则接收方收到的密码是多少?(2)当接收方收到一组密码为2,8,11时,则发送方发出的密码是多少?解:(1)由题意得⎩⎪⎨⎪⎧A =2×2-3,B =2×3,C =3+5,解得A =1,B =6,C =8.答:接收方收到的密码是1,6,8.(2)由题意得⎩⎪⎨⎪⎧2a -b =2,2b =8,b +c =11,解得a =3,b =4,c =7.答:发送方发出的密码是3,4,7.16.根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高__2__cm ,放入一个大球水面升高__3__cm ;(2)如果要使水面上升到50 cm ,应放入大球、小球各多少个? 解:(2)设应放入大球m 个,小球n 个,由题意得⎩⎪⎨⎪⎧m +n =10,3m +2n =50-26,解得⎩⎪⎨⎪⎧m =4,n =6.答:如果要使水面上升到50 cm ,应放入大球4个,小球6个.。

初三复习方程与不等式检测题及答案

初三复习方程与不等式检测题及答案

方程与不等式检测题A卷(共100分)一、选择题(本大题共12小题,每小题3分,共36分)1.已知a,b满足方程组(了匪/?,则a+b的值为()L3a- b=4A. —4B. 4C.—2D. 22.天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值A. 3B. 8A.—1B. 2 或—1C.—2 或3D. 3 6.若关于x的一元二次方程ax2+bx - 3=0满足4a-2b=3,则该方程一定有的根是(A . 1B . 2 C. - 1 D. - 2A kOB k A 2 或kz- 1C 0 冰 A 2 且k^- 1D - 2乂切2 i4m 一&若关于x的方程:+ --- =2的解为正数,则m的取值范围是()A. m< 6B. m> 6C. m< 6 且0D. m> 6 且m Z89.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形图.如果要使整个挂图的面积是5400cnf,设金色纸边的宽为xcm,那么x满足的方程是()。

范围,在数轴上可表示为(3•已知‘一’是二元一次方程组I nx - w=l的解,则「的值为(ax2+bx+c=0 (a老),此方程可变形为()(x+ -)2 a5.方程2xx2— 47.若关于x的方程2 ( k+1 ) x2-(k十2x+書=0有实数根,则k的取值范围是(4•用配方法解一元二次方程2 h ■: - •:2 2 2 2A . x+130x-1400=0B . x+65x-350=0C. x-130x-1400=0 D . x-65x-350=010.若关于x的分式方程2irH-x _ d.x -3_丄无解,则m的值为()i:A - 1.5B 1C-1.5 或2 D - 0.5 或—1.5x 3(x2) 411.若关于x的不等式组3x a2x 无解,则a的取值范围是()A a< 1 B. a < l C. 1 D. a> 1x m012 .关于x的不等式7 2x1的整数解共有4个,则m的取值范围是A. 6 v m K 7B. 6< m< 7C. 6< m< 7D. 6v rni< 7二、填空题(本大题共4小题,每小题5分,共20分)1 k x13.方程x 1 x 1 x 1 有增根,则k的值为 ____________ 。

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年中考专题《不等式及一元一次不等式组》综合训练题含答案

2019年 初三数学中考专题复习: 不等式及一元一次不等式(组) 综合训练题1. 不等式3x +2>-1的解是( )A .x >-13B .x <-13 C .x >-1 D .x <-12.一元一次不等式2(x +1)≥4的解在数轴上表示为( )A B C D 3. 如图,数轴上所表示关于x 的不等式组的解是( )A .x ≥2B .x >2C .x >-1D .-1<x≤24.不等式组⎩⎪⎨⎪⎧x +1>2,x -1≤2的解是( )A .x <1B .x ≥3C .1≤x <3D .1<x≤35. 对于不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x +2>3(x -1),下列说法正确的是( )A .此不等式组无解B .此不等式组有7个整数解C .此不等式组的负整数解是-3,-2,-1D .此不等式组的解是-52<x ≤26. 不等式组⎩⎪⎨⎪⎧x +5<5x +1,x -m >1 的解是x >1,则m 的取值范围是( )A .m ≥1B .m ≤1C .m ≥0D .m ≤07. 如果关于x 的分式方程a x +1-3=1-xx +1有负分数解,且关于x 的不等式组⎩⎪⎨⎪⎧2(a -x )≥-x -4,3x +42<x +1的解为x<-2,那么符合条件的所有整数a 的积是( ) A .-3 B .0 C .3 D .98. 不等式3x +1<-2的解是_______________. 9.不等式3x +134>x3+2的解是_____________.10. 在实数范围内规定新运算“△”,其规则是a △b =2a -b.已知不等式x△k≥1的解在数轴上如图表示,则k 的值是____________.11. 若关于t 的不等式组⎩⎪⎨⎪⎧t -a≥0,2t +1≤4恰有3个整数解,则关于x 的一次函数y =14x -a 的图象与反比例函数y =3a +2x的图象的公共点的个数为 . 12. 不等式组⎩⎪⎨⎪⎧3x +10>0,163x -10<4x 的最小整数解是 .13. 已知关于x 的方程2x =m 的解满足⎩⎪⎨⎪⎧x -y =3-n ,x +2y =5n (0<n <3).若y >1,则m 的取值范围是 .14. 解不等式: 3x -5≤2(x+2)15. 解不等式组:⎩⎪⎨⎪⎧5x -3<4x ,4(x -1)+3≥2x.16. 光伏发电惠民生,据衢州晚报载,某家庭投资4万元资金建造屋顶光伏发电站,遇到晴天平均每天可发电30度,其他天气平均每天可发电5度,已知某月(按30天计)共发电550度. (1) 求这个月晴天的天数.(2) 已知该家庭每月平均用电为150度,若按每月发电550度计,至少需要几年才能收回成本?(不计其他费用,结果取整数)参考答案:1---7 CAADB DD 8. x <-1 9. x >-3 10. -3 11. 0或1 12. -313. 25<m <2314. 解:3x -5≤2x+4,x ≤9.15. 解:⎩⎪⎨⎪⎧5x -3<4x , ①4(x -1)+3≥2x, ②由①,得x <3.由②,得x≥12.∴原不等式组的解为12≤x <3.16. 解:(1)设这个月晴天天数为x 天,由题意得30x +5(30-x)=550,解得x =16, ∴这个月的晴天天数是16天. (2)需要x 年才能收回成本,由题意得 (550-150)·(0.52+0.45)·12x≥40 000, 4 656x ≥40 000, x ≥8.6,∴至少需要9年才能收回成本.2019-2020学年数学中考模拟试卷一、选择题1.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时2.深圳沙井某服装厂2017年销售额为8亿元,受中美贸易战影响,估计2019年销售额降为5.12亿元,设平均每年下降的百分比为x,可列方程为()A.8(1﹣x)=5.12 B.8(1+x)2=5.12C.8(1﹣x)2=5.12 D.5.12(1+x)2=83.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张4.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()cm cm D.4cm5.下列计算正确的是()A. B.C. D.6.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别是2S 甲、2S 乙,如果22>S S 乙甲,那么两个队中队员的身高较整齐的是( ) A .甲队B .乙队C .两队一样整齐D .不能确定7.如图,在Rt △ABC 中,∠B=90°,AB=6,BC=8,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A.10B.8C.6D.48.如图,△ABC 中,下面说法正确的个数是( )个. ①若O 是△ABC 的外心,∠A =50°,则∠BOC =100°; ②若O 是△ABC 的内心,∠A =50°,则∠BOC =115°; ③若BC =6,AB+AC =10,则△ABC 的面积的最大值是12; ④△ABC 的面积是12,周长是16,则其内切圆的半径是1.A .1B .2C .3D .49.如图,是由几个大小相同的小立方体搭成的几何体的俯视图,其中小正方形中的数字表示在该位置的小立方体的个数,则这个几何体的主视图是( )A .B .C .D .10.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=36°,那么∠2=( )A .54°B .56°C .44°D .46°11最接近的是( )A.1B.2C.3D.412.甲,乙两个班参加了学校组织的2019年“国学小名士”国学知识竞赛选拔赛,他们成绩的平均数、中位数、方差如下表所示,规定成绩大于等于95分为优异,则下列说法正确的是( )A .甲、乙两班的平均水平相同B .甲、乙两班竞赛成绩的众数相同C .甲班的成绩比乙班的成绩稳定D .甲班成绩优异的人数比乙班多二、填空题 13.如图,在O 中,»»AB AC =,若40AOB ∠=︒,点D 在O 上,连结CD 、AD ,则ADC ∠=_____︒.14.在一个不透明的口袋中装有5个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球实验后发现,摸到红球的概率稳定在0.25附近,则估计口袋中大约共有__________个白球. 15.若44α∠=︒,则α∠的余角是______°.16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.一个三角形三个内角的度数之比为1:2:3,则三角形按角分它的形状是_____三角形. 18.若关于x 的分式方程x mx 1x 1---=2的解为正实数,则整数m 的最大值是______. 三、解答题19.计算:(π0﹣3|+(12)﹣120.如图,已知△ABC 内接于⊙O ,AB 是直径,点D 在⊙O 上,OD ∥BC ,过点D 作DE ⊥AB ,垂足为E ,连接CD 交OE 边于点F . (1)求证:△DOE ∽△ABC ; (2)求证:∠ODF=∠BDE ;(3)连接OC .设△DOE 的面积为S .sinA=23,求四边形BCOD 的面积(用含有S 的式子表示)21.如图,已知AB 是⊙O 的直径,⊙O 与Rt △ACD 的两直角边分别交于点E 、F ,点F 是弧BE 的中点,∠C=90°,连接AF .(1)求证:直线DF 是⊙O 的切线. (2)若BD=1,OB=2,求tan ∠AFC 的值.22.先化简,再求值: 1-21x x -+÷2433x x -+,其中 2.23.一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外都相同,其中红球有1个,若从中随机摸出一个球,这个球是白球的概率为23. (1)求袋子中白球的个数;(请通过列式或列方程解答)(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,求两次都摸到相同颜色的小球的概率.(请结合树状图或列表解答)24.如图,直线y =2x ﹣8分别交x 轴、y 轴于点A 、点B ,抛物线y =ax 2+bx (a≠0)经过点A ,且顶点Q 在直线AB 上.(1)求a ,b 的值.(2)点P 是第四象限内抛物线上的点,连结OP 、AP 、BP ,设点P 的横坐标为t ,△OAP 的面积为s 1,△OBP 的面积为s 2,记s =s 1+s 2,试求s 的最值.25.如图,△ABC 内接于⊙O ,BC 为直径,∠BAC 的平分线与BC 和⊙O 分别相交于D 和E ,P 为CB 延长线上一点,PB =5,PA =10,且∠DAP =∠ADP .(1)求证:PA与⊙O相切;(2)求sin∠BAP的值;(3)求AD•AE的值.【参考答案】***一、选择题二、填空题13.2014.1515.46º16.1217.直角18.0三、解答题19【解析】【分析】直接利用绝对值的性质以及负指数幂的性质、零指数幂的性质分别化简得出答案.【详解】原式=1﹣(3+2【点睛】此题主要考查了实数运算,正确化简各数是解题关键.20.(1)见解析;(2)见解析;(3)S四边形BCOD=72 S.【解析】【分析】(1)根据圆周角定理和垂直(DE ⊥AB )得出∠DEO=∠ACB ;根据平行(OD ∥BC )得出∠DOE=∠ABC ;根据相似三角形的判定即可证明;(2)根据相似三角形的性质可得∠ODE=∠A ,根据圆周角定理可得∠A=∠BDC ,进而推出∠ODE=∠BDC ,等式两边同时减去∠EDF 即可证明∠ODF=∠BDE.(3)根据相似三角形的性质可得S △ABC =4S △DOE =4S ,进而可得S △BOC =2S ;由sinA=23,∠A=∠ODE 及圆的半径相等(OD=OB ),可得1122BDEODES S S ==,将三部分的面积相加,即可解答本题. 【详解】(1)证明:∵AB 是⊙O 的直径, ∴∠ACB=90°, ∵DE ⊥AB , ∴∠DEO=90°, ∴∠DEO=∠ACB , ∵OD ∥BC , ∴∠DOE=∠ABC , ∴△DOE ∽△ABC ;(2)证明:∵△DOE ∽△ABC , ∴∠ODE=∠A ,∵∠A 和∠BDC 是BC 所对的圆周角, ∴∠A=∠BDC , ∴∠ODE=∠BDC , ∴∠ODF=∠BDE ;(3)解:∵△DOE ∽△ABC ,∴21()4DOE ABCS OD SAB ==, 即S △ABC =4S △DOE =4S , ∵OA=OB , ∴12BOCABCSS =,即S △BOC =2S ,∵sinA=23,sinA=sin ∠ODE , ∴23OE OD =, ∴OE=2233OB OD =,∴12BE OE =,∴1122BDE ODES S S==,∴S四边形BCOD=S△BOC+S△DOE+17222 BDES S S S S=++=.【点睛】本题考查了相似三角形的性质和判定,圆周角定理,平行线的性质,三角形的面积、锐角三角函数等知识点,能综合运用知识点进行推理是解此题的关键..21.(1)详见解析;(2【解析】【分析】(1)连结OF,BE,根得到BE∥CD,根据平行线的性质得到∠OFD=90°,根据切线的判定定理证明;(2)由OF∥AC可得比例线段求出AC长,再由勾股定理可求得DC长,则能求出CF长,tan∠AFC的值可求.【详解】(1)证明:连结OF,BE,∵AB是⊙O的直径,∴∠AEB=90°,∵∠C=90°,∴∠AEB=∠ACD,∴BE∥CD,∵点F是弧BE的中点,∴OF⊥BE,∴OF⊥CD,∵OF为半径,∴直线DF是⊙O的切线;(2)解:∵∠C=∠OFD=90°,∴AC∥OF,∴△OFD∽△ACD,∴OF OD AC AD=,∵BD=1,OB=2,∴OD=3,AD=5,∴251033 AC⨯==,∴3,∵CF CD OA AD=,∴CD OACFAD⨯==3,∴tan∠AFC=10 ACCF==【点睛】本题考查的是切线的判定、三角函数的计算,掌握切线的判定定理是解题的关键.22.1【解析】【分析】按照运算顺序,先算除法,再算减法化简后代入数值即可.【详解】原式=()()()3121122xxx x x+--?++-=3 12x-+=12 xx-+当2时,原式1 =-【点睛】本题考查的是分式的化简求值,掌握分式的混合运算法则及正确的分解因式并约分是关键.23.(1)袋子中白球有2个;(2)见解析,59 .【解析】【分析】(1)首先设袋子中白球有x个,利用概率公式求即可得方程:213xx=+,解此方程即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到相同颜色的小球的情况,再利用概率公式即可求得答案.【详解】解:(1)设袋子中白球有x 个, 根据题意得:213x x =+, 解得:x =2,经检验,x =2是原分式方程的解,∴袋子中白球有2个;(2)画树状图得:∵共有9种等可能的结果,两次都摸到相同颜色的小球的有5种情况, ∴两次都摸到相同颜色的小球的概率为:59. 【点睛】此题考查了列表法或树状图法求概率.注意掌握方程思想的应用.注意概率=所求情况数与总情况数之比. 24.(1)14a b =⎧⎨=-⎩;(2)当t =3时,s 取得最大值,最大值为18. 【解析】【分析】(1)利用一次函数图象上点的坐标特征可求出点A ,B 的坐标,由二次函数的对称性可得出抛物线的对称轴为直线x =2,利于一次函数图象上点的坐标特征可求出抛物线的顶点Q 的坐标,由点A ,P 的坐标,利用待定系数法即可求出a ,b 的值;(2)利用二次函数图象上点的坐标特征可得出点P 的坐标,利用三角形的面积公式可找出s 1,s 2,进而可得出s 关于t 的函数关系式,再利用二次函数的性质即可解决最值问题.【详解】解:(1)∵直线y =2x ﹣8分别交x 轴、y 轴于点A 、点B ,∴点A 的坐标为(4,0),点B 的坐标为(0,﹣8).∵抛物线y =ax 2+bx (a≠0)经过点A ,点O ,∴抛物线的对称轴为直线x =2.当x =2时,y =2x ﹣8=﹣4,∴抛物线顶点Q 的坐标为(2,﹣4).将A (4,0),Q (2,﹣4)代入y =ax 2+bx ,得: 1640424a b a b +=⎧⎨+=-⎩,解得:14a b =⎧⎨=-⎩. (2)由(1)得:抛物线解析式为y =x 2﹣4x ,∵点P 的横坐标为t ,∴点P 的坐标为(t ,t 2﹣4t ),∴s 1=12×4×(4t ﹣t 2)=8t ﹣2t 2,s 2=12×8×t=4t , ∴s =s 1+s 2=﹣2t 2+12t =﹣2(t ﹣3)2+18.∵﹣2<0,且0<t <4,∴当t =3时,s 取得最大值,最大值为18.【点睛】本題考查了二次函数的性质、待定系数法求二次函数解析式、一次的数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次数解析式;(2)利用三角形的面积公式,找出s 关于t 的数关系式.25.(1)详见解析;(2;(3)90. 【解析】【分析】(1)连接OA ,由三角形的外角性质和角平分线得出∠PAB =∠C ,由等腰三角形的性质得出∠OAC =∠C =∠PAB ,由圆周角定理得出∠BAC =90°,证出∠OAP =90°,即AP ⊥OA ,即可得出PA 与⊙O 相切;(2)证明△PAB ∽△PCA ,得出1,2AB PB AC PA == 得出5AB BC ==,即可得出结果; (3)连接CE ,由切割线定理求出PC =20,得出BC =PC ﹣PB =15,求出5AB BC ==2AC AB ==ACE ∽△ADB ,得出AE AC AB AD =,即可得出结果. 【详解】(1)证明:连接OA ,如图1所示:∵AE 平分∠BAC ,∴∠BAD =∠CAD ,∵∠DAP =∠BAD+∠PAB ,∠ADP =∠CAD+∠C ,∠DAP =∠ADP ,∴∠PAB =∠C ,∵OA =OC ,∴∠OAC =∠C =∠PAB ,∵BC 为直径,∴∠BAC =90°,即∠OAC+∠OAB =90°,∴∠PAB+∠OAB =90°,即∠OAP =90°,∴AP ⊥OA ,∴PA 与⊙O 相切;(2)解:∵∠P =∠P ,∠PAB =∠C ,∴△PAB ∽△PCA , ∴1,2AB PB AC PA == ∵∠CAB =90°,∴AB BC ==∴sin ∠BAP =sin ∠C ; (3)解:连接CE ,如图2所示:∵PA 与⊙O 相切,∴PA 2=PB×PC,即102=5×PC,∴PC =20,∴BC =PC ﹣PB =15,∵AB BC =∴AB BC ==2AC AB == ∵AE 是∠BAC 的角平分线,∴∠BAD =∠CAE ,∵∠E =∠ABD ,∴△ACE ∽△ADB , ∴AE AC AB AD=∴90AD AE AB AC ⋅=⋅==.【点睛】本题是圆的综合题目,考查了圆周角定理、切线的判定与性质、切割线定理、等腰三角形的性质、相似三角形的判定与性质、三角函数定义等知识;本题综合性强,证明三角形相似是解题的关键.2019-2020学年数学中考模拟试卷一、选择题1.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A.()2,2B.()2,3C.()2,4D.(2,5)2.有以下三种说法:①一组数据的平均数、中位数和众数都是唯一的 ②一组数据中最大值与最小值的平均数,就是这组数据的中位数 ③极差与方差都反映数据的波动,所以对于两组数据,极差大的一定方差大,方差大的一定极差大.其中,正确的说法有( )A .3个B .2个C .1个D .0个3.如图所示物体的俯视图是( )A .B .C .D .4.下列计算正确的是( )A .222()a b a b +=+B .()22424a a -=-C .532a a a ÷=D .4711a a a +=5.某文化衫经过两次涨价,每件零售价由81元提高到100元.已知两次涨价的百分率都为x ,根据题意,可得方程( )A .81(1+x)2=100B .81(1﹣x)2=100C .81(1+x%)2=100D .81(1+2x)=1006.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,则下列结论正确的是( )A .AD DE DB BC = B .BF EF BC AB = C .AE EC FC DE =D .EF BF AB BC= 7.如图,在平面直角坐标系中,直线l :y =与y 轴交于点B 1,以OB 1为一边在OB 1右侧作等边三角形A 1OB 1,过点A 1作A 1B 2平行于y 轴,交直线l 于点B 2,以A 1B 2为一边在A 1B 2右侧作等边三角形A 2A 1B 2,过点A 2作A 2B 3平行于y 轴,交直线l 于点B 3,以A 2B 3为一边在A 2B 3右侧作等边三角形A 3A 2B 3,……则点A 2019的纵坐标是( )A. B. C. D.8 )A .πB .3πC .4πD .12π9.若一个多边形的内角和等于1620°,则这个多边形的边数为( )A .9B .10C .11D .1210.某校九年级3月份中考模拟总分760分以上有300人,同学们在老师们的高效复习指导下,复习效果显著,在4月份中考模拟总分760分以上人数比3月份增长5%,且5,6月份的760分以上的人数按相同的百分率x 继续上升,则6月份该校760分以上的学生人数( ).A .()()30015%12x ++人B .()()230015%1x ++人 C .()()3005%3002++人 D .()30015%2x ++人 11.某机构调查了某小区部分居民当天行走的步数(单位:千步),并将数据整理绘制成如下不完整的频数直方图和扇形统计图.根据统计图,得出下面四个结论:①此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④扇形图中,表示行走步数为12~16千步的扇形圆心角是72°.其中正确的结论有( )A .①②③B .①②④C .②③④D .①③④12.如图,在△ABC 中,∠B =90°,AB =3cm ,BC =6cm ,动点P 从点A 开始沿AB 向点B 以1cm/s 的速度移动,动点Q 从点B 开始沿BC 向点C 以2cm/s 的速度移动,若P ,Q 两点分别从A ,B 两点同时出发,P 点到达B 点运动停止,则△PBQ 的面积S 随出发时间t 的函数关系图象大致是( )A .B .C .D .二、填空题13.如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是( )A .5cmB .6cmC .485cmD .245cm ; 14.如图,在Rt △ABC 中,∠ACB=90°,BC=9,AC=12.分别以点A 和点B 为圆心、大于AB 一半的长为半径作圆弧,两弧相交于点E 和点F ,作直线EF 交AB 于点D ,连结CD .则CD 的长为______.15.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖 块.16.一抛物线和另一抛物线y =﹣2x 2的形状和开口方向完全相同,且顶点坐标是(﹣2,1),则该抛物线的解析式为_____.17.已知一次函数1y kx =+(k 为常数,0k ≠),点()11,A y -和点()22,By 是其图象上的两个点,且满足12y y >,写出一个符合条件的k 的值为____________.18.我们知道,四边形不具有稳定性,容易变形.一个矩形发生变形后成为一个平行四边形,设这个平行四边形相邻两个内角中较小的一个内角为α,我们把的值叫做这个平行四边形的变形度.如图,矩形ABCD的面积为5,如果变形后的平行四边形A1B1C1D1的面积为3,那么这个平行四边形的变形度为___.三、解答题19.由山脚下的一点A测得山顶D的仰角是45°,从A沿倾斜角为30°的山坡前进1500米到B,再次测得山顶D的仰角为60°,求山高CD.20.如图,AB是⊙O的直径,AD、BD是半圆的弦,且∠PDA=∠PBD.(1)求证:PD是⊙O的切线;∠=PD,求PA的长.(2)如果tan BDE21.在“学习雷锋活动月”中,某校九(2)班全班同学都参加了“广告清除、助老助残、清理垃圾、义务植树”四个志愿活动(每人只参加一个活动).为了了解情况,小明收集整理相关的数据后,绘制如图所示,不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,广告清除部分对应的圆心角的度数.22.为了掌握我区中考模拟数学试题的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,将随机抽取的部分学生成绩(得分为整数,满分为130分)分为5组:第一组55∼70;第二组70∼85;第三组85∼100;第四组100∼115;第五组115∼130,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)本次调查共随机抽取了__ _名学生;(2)补全频数分布直方图;(3)将得分转化为等级,规定:得分低于70分评为“D”,70∼100分评为“C”,100∼11评为“B”,115∼130分评为“A”,根据目前的统计,请你估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有多少名?23.阅读下列材料,解答后面的问题:=2-1=1(1)写出下一个等式;(2(3)的运算结果.24.如图是集体跳绳的示意图,绳子在最高处和最低处时可以近似看作两条对称的抛物线,分别记为C1和C2,绳子在最低点处时触地部分线段CD=2米,两位甩绳同学的距离AB=8米,甩绳的手最低点离地面高度AE=BN=1516米,最高点离地AF=BM=2316米,以地面AB、抛物线对称轴GH所在直线为x轴和y轴建立平面直角坐标系.(1)求抛物线C1和C2的解析式;(2)若小明离甩绳同学点A距离1米起跳,至少要跳多少米以上才能使脚不被绳子绊住?(3)若集体跳绳每相邻两人(看成两个点)之间最小距离为0.8米,腾空后的人的最高点头顶与最低点脚底之距为1.5米,请通过计算说明,同时进行跳绳的人数最多可以容纳几人?(温馨提醒:所有同学起跳处均在直线CD上,不考虑错时跳起问题,即身体部分均在C1和C2之间才算通过),=1.41425.在平面直角坐标系中,己知O为坐标原点,点(2,0),(0,4)A B,以点A为旋转中心,把ABO顺时针旋转,得ACD.(Ⅰ)如图①,当旋转后满足//DC x轴时,求点C的坐标.(Ⅱ)如图②,当旋转后点C恰好落在x轴正半轴上时,求点D的坐标.(Ⅲ)在(Ⅱ)的条件下,边OB上的一点P旋转后的对应点为P',当DP AP'+取得最小值时,求点P 的坐标(直接写出结果即可)【参考答案】***一、选择题二、填空题13.D14.15 215.16.y=﹣2(x+2)2+1.17.-2(答案不唯一)18..三、解答题19.山高CD为米.【解析】【分析】首先根据题意分析图形;过点B作CD,AC的垂线,垂足分别为E,F,构造两个直角三角形△ABF与△DAC,分别求解可得AF与FC的值,再利用图形关系,进而可求出答案【详解】解:过点B作CD,AC的垂线,垂足分别为E,F,∵∠BAC=30°,AB=1500米,∴BF=EC=750米.=AF=AB•cos∠BAC=1500×2设FC=x米,∵∠DBE=60°,∴DE米.又∵∠DAC=45°,∴AC=CD.即:=米,解得x=750.∴CD=)米.答:山高CD为米.【点睛】本题考查俯角、仰角的定义,要求学生能借助俯角、仰角构造直角三角形并结合图形利用三角函数解直角三角形.20.(1)证明见解析;(2)PA=1.【解析】【分析】(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA.【详解】(1)证明:如图1,连接OD,∵AB是圆O的直径,∴∠ADB=90°∴∠ADO+∠BDO=90°,又∵DO=BO,∴∠BDO=∠PBD∵∠PDA=∠PBD,∴∠BDO=∠PDA∴∠ADO+∠PDA=90°,即PD⊥OD∵点D在⊙O上,∴直线PD为⊙O的切线.(2)∵BE是⊙O的切线,∴∠EBA=90°∵∠BED=60°,∴∠P=30°∵PD为⊙O的切线,∴∠PDO=90°在Rt△PDO中,∠P=30°,PD∴tan30°=ODPD,解得OD=1∴PO 2∴PA=PO-AO=2-1=1【点睛】此题考查了切线的判定及三角函数的有关计算等知识点,难度中等.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.21.(1)该班的人数是56人;(2)折线统计如图所示:见解析;(3)广告清除部分对应的圆心角的度数是45°.【解析】【分析】(1)根据参加助老助残的人数以及百分比,即可解决问题;(2)先求出义务植树的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可.【详解】(1)该班全部人数:14÷25%=56(人).答:该班的人数是56人;(2)56×50%=28(人),折线统计如图所示:(3)756×360°=45°. 答:广告清除部分对应的圆心角的度数是45°.【点睛】本题考查折线统计图、扇形统计图等知识,解题的关键是记住基本概念,属于中考常考题型.22.(1) 50;(2)见解析;(3) 1620.【解析】【分析】(1)根据第三组的数据,用人数除以百分数得出结论即可;(2)根据抽取的总人数减去前4组的人数,即可得到第五组的频数,并画图;(3)用样本中考试成绩评为“B”级及其以上的学生数占抽取的总人数的百分比,乘上全区该年级4500名考生数,即可得出结论.【详解】解:(1)20÷40%=50名,故答案为:50;(2)50-4-8-20-14=4,画图如下:(3)(4+14)÷50×4500=1620.答:估计全区该年级4500名考生中,考试成绩评为“B”级及其以上的学生大约有1620名.【点睛】本题主要考查了直方图和扇形图以及用样本估计总体的知识,根据直方图和扇形图中都有的数据求出抽取的学生总数是解决此题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.23.(1=-1;(2)9;(3)2020. 【解析】【分析】(1)利用前面的规律写出下一个等式;(2)利用题中的等式规律得到原式1;(3)先分母有理化,然后把括号内合并后利用平方差公式计算.【详解】(1-1;(2)原式=10-1=9;(3)原式=)=)=2120-100=2020.【点睛】本题考查了二原式=次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.24.(1) 221213911,y x 16161616y x =+=-;(2) 至少要12跳米以上才能使脚不被绳子绊住;(3) 8人. 【解析】【分析】(1)先写出点C 、D 、E 、F 的坐标,然后设解析式代入求解即可;(2)小明离甩绳同学点A 距离1米起跳,可得此点的横坐标,代入C 2解析式,即可求得;(3)用y 1减去y 2,让其等于1.5,解出相应点的横坐标,求出这两个点的横坐标之间的距离,然后用间隔0.8乘以人数减1,即可解出.【详解】解:(1)由已知得:C (﹣1,0),D (1,0),E (﹣4,1516),F (﹣4,2316), 设C 2解析式为:2y = a ( x + 1 ) ( x - 1 ),把154,16⎛⎫- ⎪⎝⎭代入得15a =1516, ∴116a =,∴22111616y x =-. 由对称性,设C 1解析式21116y x c =-+,把F (﹣4,2316)代入得c =3916, ∴211391616y x =-+ 故答案为:抛物线C 1和C 2的解析式分别为:211391616y x =-+,22111616y x =-. (2)把x =﹣3代入22111616y x =-得2111916162y =⨯-=, ∴至少要跳12米以上才能使脚不被绳子绊住. (3)由y 1﹣y 2=1.5得:2213911 1.516161616x x -+-+=∴12x x ==-,∴x 1﹣x 2= 5.656,设同时进行跳绳的人数最多可以容纳x 人则0.8(x ﹣1)≤5.656,∴x≤8.07∴同时进行跳绳的人数最多可以容纳8人.【点睛】本题是二次函数的实际应用题,需要分析题意,构建函数模型,从而求解,难点在于如何分析题意列式.25.(Ⅰ)(6,2)C ;(Ⅱ)(2D +;(Ⅲ)点P 坐标. 【解析】【分析】(Ⅰ)如图①中,作CH ⊥x 轴于H .根据旋转的性质和三个角是直角的四边形是矩形得出四边形ADCH 是矩形,利用矩形的性质即可解决问题;(Ⅱ)如图②中,作DK ⊥AC 于K .在Rt △ADC 中,求出DK 、AK 即可解决问题;(Ⅲ)如图③中,连接PA 、AP′,作点A 关于y 轴的对称点A′,连接DA′交y 轴于P′,连接AP′.由题意PA=AP′,推出AP′+PD=PA+PD,根据两点之间线段最短,可知当点P 与点P′重合时,PA+PD 的值最小.只要求出直线A′D 的解析式即可解决问题;【详解】解:(Ⅰ)如图①中,作CH x ⊥轴于H.∵//90CD AH D AHC ∠=∠=︒,,∴90DAH ∠=︒,∴四边形ADCH 是矩形,∴24AD OA CH CD OB AH ======,,∴6OH =,∴()6,2C(Ⅱ)如图②中,作DK AC ⊥于K.在Rt ADC 中,∵2,4AD CD ==,∴AC = ∵1122AD DC AC DK ⋅⋅=⋅⋅,∴DK AK ==∴2OK =,∴2,55D ⎛+ ⎝⎭(Ⅲ)如图③中,连接PA 、AP′,作点A 关于y 轴的对称点A′,连接DA′交y 轴于P′,连接AP′.由题意PA=AP′,∴AP′+PD=PA+PD,根据两点之间线段最短,可知当点P 与点P′重合时,PA+PD 的值最小.A (2,0),D 2'⎛-+ ⎝⎭,∴直线A′D 的解析式为y =+ ,点P 坐标40,19⎛⎫- ⎪ ⎪⎝⎭【点睛】本题考查了几何变换综合题、解直角三角形,两点之间线段最短等知识,解题的关键是会利用两点之间线段最短解决最短路径问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档