Convenio+Especulativo+2_4

合集下载

斯仑贝谢所有测井曲线英文名称

斯仑贝谢所有测井曲线英文名称

斯仑贝谢所有测井曲线英文名称OCEAN DRILLING PROGRAMACRONYMS USED FOR WIRELINE SCHLUMBERGER TOOLS ACT Aluminum Clay ToolAMS Auxiliary Measurement SondeAPS Accelerator Porosity SondeARI Azimuthal Resistivity ImagerASI Array Sonic ImagerBGKT Vertical Seismic Profile ToolBHC Borehole Compensated Sonic ToolBHTV Borehole TeleviewerCBL Casing Bond LogCNT Compensated Neutron ToolDIT Dual Induction ToolDLL Dual LaterologDSI Dipole Sonic ImagerFMS Formation MicroScannerGHMT Geologic High Resolution Magnetic Tool GPIT General Purpose Inclinometer ToolGR Natural Gamma RayGST Induced Gamma Ray Spectrometry Tool HLDS Hostile Environment Lithodensity Sonde HLDT Hostile Environment Lithodensity Tool HNGS Hostile Environment Gamma Ray SondeLDT Lithodensity ToolLSS Long Spacing Sonic ToolMCD Mechanical Caliper DeviceNGT Natural Gamma Ray Spectrometry Tool NMRT Nuclear Resonance Magnetic ToolQSST Inline Checkshot ToolSDT Digital Sonic ToolSGT Scintillation Gamma Ray ToolSUMT Susceptibility Magnetic ToolUBI Ultrasonic Borehole ImagerVSI Vertical Seismic ImagerWST Well Seismic ToolWST-3 3-Components Well Seismic ToolOCEAN DRILLING PROGRAMACRONYMS USED FOR LWD SCHLUMBERGER TOOLSADN Azimuthal Density-NeutronCDN Compensated Density-NeutronCDR Compensated Dual ResistivityISONIC Ideal Sonic-While-DrillingNMR Nuclear Magnetic ResonanceRAB Resistivity-at-the-BitOCEAN DRILLING PROGRAMACRONYMS USED FOR NON-SCHLUMBERGER SPECIALTY TOOLS MCS Multichannel Sonic ToolMGT Multisensor Gamma ToolSST Shear Sonic ToolTAP Temperature-Acceleration-Pressure ToolTLT Temperature Logging ToolOCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR WIRELINE SCHLUMBERGER LOGS AFEC APS Far Detector Counts (cps)ANEC APS Near Detector Counts (cps)AX Acceleration X Axis (ft/s2)AY Acceleration Y Axis (ft/s2)AZ Acceleration Z Axis (ft/s2)AZIM Constant Azimuth for Deviation Correction (deg)APLC APS Near/Array Limestone Porosity Corrected (%)C1 FMS Caliper 1 (in)C2 FMS Caliper 2 (in)CALI Caliper (in)CFEC Corrected Far Epithermal Counts (cps)CFTC Corrected Far Thermal Counts (cps)CGR Computed (Th+K) Gamma Ray (API units)CHR2 Peak Coherence, Receiver Array, Upper DipoleCHRP Compressional Peak Coherence, Receiver Array, P&SCHRS Shear Peak Coherence, Receiver Array, P&SCHTP Compressional Peak Coherence, Transmitter Array, P&SCHTS Shear Peak Coherence, Transmitter Array, P&SCNEC Corrected Near Epithermal Counts (cps)CNTC Corrected Near Thermal Counts (cps)CS Cable Speed (m/hr)CVEL Compressional Velocity (km/s)DATN Discriminated Attenuation (db/m)DBI Discriminated Bond IndexDEVI Hole Deviation (degrees)DF Drilling Force (lbf)DIFF Difference Between MEAN and MEDIAN in Delta-Time Proc. (microsec/ft) DRH HLDS Bulk Density Correction (g/cm3)DRHO Bulk Density Correction (g/cm3)DT Short Spacing Delta-Time (10'-8' spacing; microsec/ft)DT1 Delta-Time Shear, Lower Dipole (microsec/ft)DT2 Delta-Time Shear, Upper Dipole (microsec/ft)DT4P Delta- Time Compressional, P&S (microsec/ft)DT4S Delta- Time Shear, P&S (microsec/ft))DT1R Delta- Time Shear, Receiver Array, Lower Dipole (microsec/ft)DT2R Delta- Time Shear, Receiver Array, Upper Dipole (microsec/ft) DT1T Delta-Time Shear, Transmitter Array, Lower Dipole (microsec/ft) DT2T Delta-Time Shear, Transmitter Array, Upper Dipole (microsec/ft) DTCO Delta- Time Compressional (microsec/ft)DTL Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLF Long Spacing Delta-Time (12'-10' spacing; microsec/ft)DTLN Short Spacing Delta-Time (10'-8' spacing; microsec/ftDTRP Delta-Time Compressional, Receiver Array, P&S (microsec/ft) DTRS Delta-Time Shear, Receiver Array, P&S (microsec/ft)DTSM Delta-Time Shear (microsec/ft)DTST Delta-Time Stoneley (microsec/ft)DTTP Delta-Time Compressional, Transmitter Array, P&S (microsec/ft) DTTS Delta-Time Shear, Transmitter Array, P&S (microsec/ft)ECGR Environmentally Corrected Gamma Ray (API units)EHGR Environmentally Corrected High Resolution Gamma Ray (API units) ENPH Epithermal Neutron Porosity (%)ENRA Epithermal Neutron RatioETIM Elapsed Time (sec)FINC Magnetic Field Inclination (degrees)FNOR Magnetic Field Total Moment (oersted)FX Magnetic Field on X Axis (oersted)FY Magnetic Field on Y Axis (oersted)FZ Magnetic Field on Z Axis (oersted)GR Natural Gamma Ray (API units)HALC High Res. Near/Array Limestone Porosity Corrected (%)HAZI Hole Azimuth (degrees)HBDC High Res. Bulk Density Correction (g/cm3)HBHK HNGS Borehole Potassium (%)HCFT High Resolution Corrected Far Thermal Counts (cps)HCGR HNGS Computed Gamma Ray (API units)HCNT High Resolution Corrected Near Thermal Counts (cps)HDEB High Res. Enhanced Bulk Density (g/cm3)HDRH High Resolution Density Correction (g/cm3)HFEC High Res. Far Detector Counts (cps)HFK HNGS Formation Potassium (%)HFLC High Res. Near/Far Limestone Porosity Corrected (%)HEGR Environmentally Corrected High Resolution Natural Gamma Ray (API units) HGR High Resolution Natural Gamma Ray (API units)HLCA High Res. Caliper (inHLEF High Res. Long-spaced Photoelectric Effect (barns/e-)HNEC High Res. Near Detector Counts (cps)HNPO High Resolution Enhanced Thermal Nutron Porosity (%)HNRH High Resolution Bulk Density (g/cm3)HPEF High Resolution Photoelectric Effect (barns/e-)HRHO High Resolution Bulk Density (g/cm3)HROM High Res. Corrected Bulk Density (g/cm3)HSGR HNGS Standard (total) Gamma Ray (API units)HSIG High Res. Formation Capture Cross Section (capture units)HSTO High Res. Computed Standoff (in)HTHO HNGS Thorium (ppm)HTNP High Resolution Thermal Neutron Porosity (%)HURA HNGS Uranium (ppm)IDPH Phasor Deep Induction (ohmm)IIR Iron Indicator Ratio [CFE/(CCA+CSI)]ILD Deep Resistivity (ohmm)ILM Medium Resistivity (ohmm)IMPH Phasor Medium Induction (ohmm)ITT Integrated Transit Time (s)LCAL HLDS Caliper (in)LIR Lithology Indicator Ratio [CSI/(CCA+CSI)]LLD Laterolog Deep (ohmm)LLS Laterolog Shallow (ohmm)LTT1 Transit Time (10'; microsec)LTT2 Transit Time (8'; microsec)LTT3 Transit Time (12'; microsec)LTT4 Transit Time (10'; microsec)MAGB Earth's Magnetic Field (nTes)MAGC Earth Conductivity (ppm)MAGS Magnetic Susceptibility (ppm)MEDIAN Median Delta-T Recomputed (microsec/ft) MEAN Mean Delta-T Recomputed (microsec/ft) NATN Near Pseudo-Attenuation (db/m)NMST Magnetometer Temperature (degC)NMSV Magnetometer Signal Level (V)NPHI Neutron Porosity (%)NRHB LDS Bulk Density (g/cm3)P1AZ Pad 1 Azimuth (degrees)PEF Photoelectric Effect (barns/e-)PEFL LDS Long-spaced Photoelectric Effect (barns/e-)PIR Porosity Indicator Ratio [CHY/(CCA+CSI)]POTA Potassium (%)RB Pad 1 Relative Bearing (degrees)RHL LDS Long-spaced Bulk Density (g/cm3)RHOB Bulk Density (g/cm3)RHOM HLDS Corrected Bulk Density (g/cm3)RMGS Low Resolution Susceptibility (ppm)SFLU Spherically Focused Log (ohmm)SGR Total Gamma Ray (API units)SIGF APS Formation Capture Cross Section (capture units) SP Spontaneous Potential (mV)STOF APS Computed Standoff (in)SURT Receiver Coil Temperature (degC)SVEL Shear Velocity (km/s)SXRT NMRS differential Temperature (degC)TENS Tension (lb)THOR Thorium (ppm)TNRA Thermal Neutron RatioTT1 Transit Time (10' spacing; microsec)TT2 Transit Time (8' spacing; microsec)TT3 Transit Time (12' spacing; microsec)TT4 Transit Time (10' spacing; microsec)URAN Uranium (ppm)V4P Compressional Velocity, from DT4P (P&S; km/s)V4S Shear Velocity, from DT4S (P&S; km/s)VELP Compressional Velocity (processed from waveforms; km/s)VELS Shear Velocity (processed from waveforms; km/s)VP1 Compressional Velocity, from DT, DTLN, or MEAN (km/s)VP2 Compressional Velocity, from DTL, DTLF, or MEDIAN (km/s)VCO Compressional Velocity, from DTCO (km/s)VS Shear Velocity, from DTSM (km/s)VST Stonely Velocity, from DTST km/s)VS1 Shear Velocity, from DT1 (Lower Dipole; km/s)VS2 Shear Velocity, from DT2 (Upper Dipole; km/s)VRP Compressional Velocity, from DTRP (Receiver Array, P&S; km/s)VRS Shear Velocity, from DTRS (Receiver Array, P&S; km/s)VS1R Shear Velocity, from DT1R (Receiver Array, Lower Dipole; km/s) VS2R Shear Velocity, from DT2R (Receiver Array, Upper Dipole; km/s) VS1T Shear Velocity, from DT1T (Transmitter Array, Lower Dipole; km/s) VS2T Shear Velocity, from DT2T (Transmitter Array, Upper Dipole; km/s) VTP Compressional Velocity, from DTTP (Transmitter Array, P&S; km/s)VTS Shear Velocity, from DTTS (Transmitter Array, P&S; km/s)#POINTS Number of Transmitter-Receiver Pairs Used in Sonic Processing W1NG NGT Window 1 counts (cps)W2NG NGT Window 2 counts (cps)W3NG NGT Window 3 counts (cps)W4NG NGT Window 4 counts (cps)W5NG NGT Window 5 counts (cps)OCEAN DRILLING PROGRAMACRONYMS AND UNITS USED FOR LWD SCHLUMBERGER LOGSAT1F Attenuation Resistivity (1 ft resolution; ohmm)AT2F Attenuation Resistivity (2 ft resolution; ohmm)AT3F Attenuation Resistivity (3 ft resolution; ohmm)AT4F Attenuation Resistivity (4 ft resolution; ohmm)AT5F Attenuation Resistivity (5 ft resolution; ohmm)ATR Attenuation Resistivity (deep; ohmm)BFV Bound Fluid Volume (%)B1TM RAB Shallow Resistivity Time after Bit (s)B2TM RAB Medium Resistivity Time after Bit (s)B3TM RAB Deep Resistivity Time after Bit (s)BDAV Deep Resistivity Average (ohmm)BMAV Medium Resistivity Average (ohmm)BSAV Shallow Resistivity Average (ohmm)CGR Computed (Th+K) Gamma Ray (API units)DCAL Differential Caliper (in)DROR Correction for CDN rotational density (g/cm3).DRRT Correction for ADN rotational density (g/cm3).DTAB AND or CDN Density Time after Bit (hr)FFV Free Fluid Volume (%)GR Gamma Ray (API Units)GR7 Sum Gamma Ray Windows GRW7+GRW8+GRW9-Equivalent to Wireline NGT window 5 (cps) GRW3 Gamma Ray Window 3 counts (cps)-Equivalent to Wireline NGT window 1GRW4 Gamma Ray Window 4 counts (cps)-Equivalent to Wireline NGT window 2GRW5 Gamma Ray Window 5 counts (cps)-Equivalent to Wireline NGT window 3 GRW6 Gamma Ray Window 6 counts (cps)-Equivalent to Wireline NGT window 4 GRW7 Gamma Ray Window 7 counts (cps)GRW8 Gamma Ray Window 8 counts (cps)GRW9 Gamma Ray Window 9 counts (cps)GTIM CDR Gamma Ray Time after Bit (s)GRTK RAB Gamma Ray Time after Bit (s)HEF1 Far He Bank 1 counts (cps)HEF2 Far He Bank 2 counts (cps)HEF3 Far He Bank 3 counts (cps)HEF4 Far He Bank 4 counts (cps)HEN1 Near He Bank 1 counts (cps)HEN2 Near He Bank 2 counts (cps)HEN3 Near He Bank 3 counts (cps)HEN4 Near He Bank 4 counts (cps)MRP Magnetic Resonance PorosityNTAB ADN or CDN Neutron Time after Bit (hr)PEF Photoelectric Effect (barns/e-)POTA Potassium (%) ROPE Rate of Penetration (ft/hr)PS1F Phase Shift Resistivity (1 ft resolution; ohmm)PS2F Phase Shift Resistivity (2 ft resolution; ohmm)PS3F Phase Shift Resistivity (3 ft resolution; ohmm)PS4F Phase Shift Resistivity (4 ft resolution; ohmm)PS5F Phase Shift Resistivity (5 ft resolution; ohmm)PSR Phase Shift Resistivity (shallow; ohmm)RBIT Bit Resistivity (ohmm)RBTM RAB Resistivity Time After Bit (s)RING Ring Resistivity (ohmm)ROMT Max. Density Total (g/cm3) from rotational processing ROP Rate of Penetration (m/hr)ROP1 Rate of Penetration, average over last 1 ft (m/hr). ROP5 Rate of Penetration, average over last 5 ft (m/hr) ROPE Rate of Penetration, averaged over last 5 ft (ft/hr) RPM RAB Tool Rotation Speed (rpm)RTIM CDR or RAB Resistivity Time after Bit (hr)SGR Total Gamma Ray (API units)T2 T2 Distribution (%)T2LM T2 Logarithmic Mean (ms)THOR Thorium (ppm)TNPH Thermal Neutron Porosity (%)TNRA Thermal RatioURAN Uranium (ppm)OCEAN DRILLING PROGRAMADDITIONAL ACRONYMS AND UNITS(PROCESSED LOGS FROM GEOCHEMICAL TOOL STRING)AL2O3 Computed Al2O3 (dry weight %)AL2O3MIN Computed Al2O3 Standard Deviation (dry weight %) AL2O3MAX Computed Al2O3 Standard Deviation (dry weight %) CAO Computed CaO (dry weight %)CAOMIN Computed CaO Standard Deviation (dry weight %) CAOMAX Computed CaO Standard Deviation (dry weight %) CACO3 Computed CaCO3 (dry weight %)CACO3MIN Computed CaCO3 Standard Deviation (dry weight %) CACO3MAX Computed CaCO3 Standard Deviation (dry weight %) CCA Calcium Yield (decimal fraction)CCHL Chlorine Yield (decimal fraction)CFE Iron Yield (decimal fraction)CGD Gadolinium Yield (decimal fraction)CHY Hydrogen Yield (decimal fraction)CK Potassium Yield (decimal fraction)CSI Silicon Yield (decimal fraction)CSIG Capture Cross Section (capture units)CSUL Sulfur Yield (decimal fraction)CTB Background Yield (decimal fraction)CTI Titanium Yield (decimal fraction)FACT Quality Control CurveFEO Computed FeO (dry weight %)FEOMIN Computed FeO Standard Deviation (dry weight %) FEOMAX Computed FeO Standard Deviation (dry weight %) FEO* Computed FeO* (dry weight %)FEO*MIN Computed FeO* Standard Deviation (dry weight %) FEO*MAX Computed FeO* Standard Deviation (dry weight %) FE2O3 Computed Fe2O3 (dry weight %)FE2O3MIN Computed Fe2O3 Standard Deviation (dry weight %)FE2O3MAX Computed Fe2O3 Standard Deviation (dry weight %) GD Computed Gadolinium (dry weight %)GDMIN Computed Gadolinium Standard Deviation (dry weight %) GDMAX Computed Gadolinium Standard Deviation (dry weight %) K2O Computed K2O (dry weight %)K2OMIN Computed K2O Standard Deviation (dry weight %)K2OMAX Computed K2O Standard Deviation (dry weight %)MGO Computed MgO (dry weight %)MGOMIN Computed MgO Standard Deviation (dry weight %) MGOMAX Computed MgO Standard Deviation (dry weight %)S Computed Sulfur (dry weight %)SMIN Computed Sulfur Standard Deviation (dry weight %) SMAX Computed Sulfur Standard Deviation (dry weight %)SIO2 Computed SiO2 (dry weight %)SIO2MIN Computed SiO2 Standard Deviation (dry weight %)SIO2MAX Computed SiO2 Standard Deviation (dry weight %) THORMIN Computed Thorium Standard Deviation (ppm) THORMAX Computed Thorium Standard Deviation (ppm)TIO2 Computed TiO2 (dry weight %)TIO2MIN Computed TiO2 Standard Deviation (dry weight %) TIO2MAX Computed TiO2 Standard Deviation (dry weight %) URANMIN Computed Uranium Standard Deviation (ppm) URANMAX Computed Uranium Standard Deviation (ppm) VARCA Variable CaCO3/CaO calcium carbonate/oxide factor。

骨填充网袋椎体成形术与经皮椎体后凸成形术治疗骨质疏松性椎体压缩骨折的比较

骨填充网袋椎体成形术与经皮椎体后凸成形术治疗骨质疏松性椎体压缩骨折的比较

收稿日期:2019-11-11;修订日期:2020-01-06作者简介:罗川贵(1979-),男,四川籍,主治医师研究方向:骨科相关疾病的诊治电子邮箱:292812021@ ㊃临床研究㊃骨填充网袋椎体成形术与经皮椎体后凸成形术治疗骨质疏松性椎体压缩骨折的比较罗川桂,秦登明,吴巍(成都市郫都区骨科医院骨科,四川成都611730)摘要:目的㊀比较骨填充网袋椎体成形术(vesselplasty)与经皮椎体后凸成形术(percutaneous kyphoplasty,PKP)治疗骨质疏松性椎体压缩骨折(osteoporotic vertebral compression fractures,OVCFs)的疗效差异㊂方法㊀回顾性研究2015年1月~2017年12月收治的138例OVCFs的患者,根据手术方式分为vesselplasty组(30例)和PKP组(108例)㊂记录两组手术时间㊁骨水泥注射量㊁骨水泥渗漏率㊁骨水泥弥散面积率㊂比较两组VAS评分㊁伤椎前缘高度㊁伤椎后凸Cobb角㊂结果㊀术后随访12~36个月,平均21.4个月㊂vesselplasty组的手术时间㊁骨水泥弥散面积率小于PKP组(P<0.05),两组骨水泥注入量比较无明显统计学差异(P>0.05)㊂vesselplasty组骨水泥渗漏率为6.67%,PKP组为16.67%㊂两组患者术后1d VAS评分较术前降低(P< 0.05),末次随访时较术后1d进一步降低(P<0.05)㊂两组患者术后1d伤椎前缘高度㊁伤椎后凸Cobb角较术前改善(P< 0.05),末次随访时较术后1d无明显变化(P>0.05)㊂两组各时间点的VAS评分㊁伤椎前缘高度及伤椎后凸Cobb角比较无明显统计学差异(P>0.05)㊂结论㊀骨填充网袋椎体成形术治疗骨质疏松性椎体压缩骨折可取得与经皮椎体后凸成形术相似疗效,且骨填充网袋椎体成形术能缩短手术时间㊁减少骨水泥渗漏㊂关键词:骨填充网袋成形术;经皮椎体后凸成形术;骨质疏松;椎体骨折中图分类号:R683.2㊀㊀文献标识码:A㊀㊀文章编号:1005-7234(2021)01-0059-04DOI:10.3969/j.issn.1005-7234.2021.01.014Comparison of vesselplasty and percutaneous kyphoplasty in the treatment of osteoporotic vertebral burst fractures LUO Chuan-gui,QIN Deng-ming,WU Wei(Department of Orthopedics,Chengdu Pidu District Orthopaedic Hospital,Chengdu,611730,China)Abstract:Objective㊀To compare the efficacy of vesselplasty and percutaneous kyphoplasty(PKP)in the treatment of osteoporotic vertebral compression fractures(OVCFs).Methods㊀Retrospective analysis of138patients with OVCFs from January2015to December2017.According to the treatment,they were divided into two groups:vesselplasty group(n=30)and PKP group(n=108). The operative time,cement injection volume,bone cement leakage rate and bone cement dispersion area rate were recorded.The visual analog score(VAS),the anterior edge height of injured vertebrae and Cobb angle of kyphosis were compared between the two groups. Results㊀The follow-up period ranged from12months to36months,with an average of21.4months.The operation time and bone cement diffusion area rate in vesselplasty group were lower than those in PKP group(P<0.05).There was no significant difference in bone cement injection between the two groups(P>0.05).The rate of bone cement leakage was6.67%,but16.67%in the PKP group.The VAS score of the two groups were lower than those before operation on the1d after operation(P<0.05),and further decreased at the last follow-up(P<0.05).The anterior edge height of injured vertebrae and Cobb angle of kyphosis in both groups were improved at1d after operation(P<0.05),but there was no significant change at the last follow-up compared with that at1d after operation(P>0.05).There was no significant difference in VAS score,the anterior edge height of injured vertebrae and Cobb angle of kyphosis between the two groups at each time point(P<0.05).Conclusions㊀The effect of vesselplasty in the treatment of osteoporotic vertebral compression fractures is similar to that of percutaneous kyphoplasty,and vesselplasty can shorten the operation time and reduce the leakage of bone cement.Key words:vesselplasty;percutaneous kyphoplasty;osteoporosis;vertebral fracture㊀㊀经皮椎体后凸成形术(percutaneous kyphoplasty,PKP)是治疗骨质疏松性椎体压缩骨折(osteoporoticvertebral compression fractures,OVCFs)的首选方式[1-2],其最常见并发症是骨水泥渗漏[3],可高达40%[4]㊂骨填充网袋椎体成形术(vesselplasty)是在PKP的基础上研发,可有效降低骨水泥渗漏[5-8]㊂笔者采用回顾性病例对照研究探讨骨填充网袋椎体成形术与PKP治疗OVCFs的疗效差异㊂1㊀资料与方法1.1㊀一般资料纳入标准:①年龄>60岁;②骨质疏松性骨折:骨密度T值ɤ-2.5SD;③伤椎前缘高度丢失<50%,伤椎后凸Cobb角<30ʎ;④CT检查显示椎体压缩骨折,椎管无占位;⑤MRI检查显示骨折椎体T1加权像低信号,T2加权及抑脂像中高信号,即新鲜骨折[9]㊂排除标准:①伴严重的内科疾病;②椎体病理性骨折;③凝血功能障碍者;④伴有其它严重的脊柱疾病;⑤对骨水泥过敏者㊂回顾2015年1月~2017年12月本院治疗的138例单椎体OVCFs患者,根据手术方式不同,分为vesselplasty组(30例)和PKP组(108例)㊂两组基本情况见表1,基线资料差异无统计学意义(P> 0.05),有可比性㊂表1㊀两组患者基线资料比较组别例数性别(例)男女年龄(xʃs,岁)骨折节段(个)胸椎腰椎病程(d)vesselplasty组3092172.75ʃ7.521218 5.38ʃ3.12 PKP组108238571.81ʃ7.946147 5.85ʃ2.74 t/x20.9990.580 2.560-0.804 P0.3180.5630.1100.4231.2㊀手术方法Vesselplasty组:全麻下,取俯卧位,胸部和髂前垫高,悬空腹部㊂C型臂X线机透视定位,常规消毒铺巾㊂采用左侧10:00点㊁右侧2:00点钟方向穿刺进针㊂抽出内芯,置入导丝,置入工作套管,使其前缘位于病椎前2/3处㊂移出导丝,精细钻扩大导丝针道,并取精细钻上骨组织送病理活检㊂放置骨扩张矫形器,使其位于病椎中线前1/3处,撑开骨扩张矫形器,椎体复位满意后取出骨扩张矫形器,置入大小适合的骨填充网袋[山东冠龙公司,国食药监械(准)字2014第3461268号]于病椎前1/4,在透视监视下,多次㊁缓慢㊁低压灌注骨水泥(聚甲基丙烯酸甲酯,PMMA,德国贺利氏医疗有限公司,国械注进20143655901)㊂当网袋在椎体内完全膨胀或发生骨水泥渗漏时,停止灌注㊂PKP组:麻醉㊁体位㊁穿刺方法㊁骨水泥灌注方法同vesselplasty组㊂穿刺后更换工作套管,依次循序置入导针㊁扩张管和工作套管,建立工作通道㊂置入球囊[山东冠龙公司,国食药监械(准)字2015第3040284号]至病椎中线前1/3处㊂注入碘海醇,使球囊撑开扩张,椎体复位满意后取出球囊,灌注骨水泥㊂骨水泥弥散均匀或有渗漏水时停止灌注㊂1.3㊀观察指标记录两组手术时间㊁骨水泥注射量㊁骨水泥渗漏率㊁骨水泥弥散面积率[通过64排CT扫描获得层厚0.75mm图像,采用手工逐层勾画骨水泥弥散面积边界,然后再画出相应平面椎体边缘,骨水泥弥散面积率=(骨水泥弥散面积/椎体面积)ˑ100%,取其最大值)]㊂采用VAS评分㊁伤椎前缘高度㊁伤椎后凸Cobb角评价疗效㊂1.4㊀统计学处理采用SPSS21.0软件进行统计分析㊂计数资料以频数表示,进行x2检验;计量资料以(xʃs)表示,组间比较采用独立样本t检验,组内比较采用单因素方差分析㊂P<0.05为差异有统计学意义㊂2㊀结果2.1㊀手术情况138例均顺利完成手术,vesselplasty组的手术时间㊁骨水泥弥散面积率小于PKP组(P<0.05);两组骨水泥注射量无统计学差异(P>0.05)㊂vesselplasty 组骨水泥渗漏2例(6.67%),渗漏至椎前1例,椎旁1例;PKP组骨水泥渗漏18例(16.67%),渗漏至椎旁8例,椎前6例,椎间隙3例,椎管渗漏1例(渗漏骨水泥沿后纵韧带分布),均无神经脊髓相关症状㊂术后随访12~36个月,平均21.4个月㊂随访过程中vesselplasty组1例术椎再骨折,1例非手术椎骨折,PKP组9例非手术椎骨折,两组差异无统计学意义(P>0.05)㊂见表2㊂表2㊀两组患者术中㊁术后情况比较组别例数手术时间(min)骨水泥注射量(ml)骨水泥渗漏率(例/%)骨水泥弥散面积率(%)术后并发症(例/%)vesselplasty组3035.75ʃ7.65 4.98ʃ0.932(6.67%)55.68ʃ7.842(6.67%) PKP组10839.42ʃ8.82 5.13ʃ1.0218(16.67%)65.95ʃ8.279(8.33%) t/x2-2.072-0.726 1.174t=-6.0830.000 P值0.0400.4690.276P<0.001 1.0002.2㊀临床疗效两组患者术后1d的VAS评分较术前降低(P< 0.05),末次随访时较术后1d进一步降低(P<0.05)㊂两组各时间点的VAS评分比较,无明显统计学差异(P>0.05)㊂见表3㊂2.3㊀影像学指标两组患者术后1d的伤椎前缘高度较术前显著增高(P<0.05),伤椎后凸Cobb角较术前减小(P< 0.05),末次随访时两项指标较术后1d无明显变化(P>0.05)㊂两组各时间点的伤椎前缘高度及伤椎后凸Cobb角比较,无明显统计学差异(P>0.05)㊂见表4㊂表3㊀两组患者VAS评分比较(xʃs)组别例数术前术后1d末次随访F值P值vesselplasty组30 6.97ʃ1.13 3.56ʃ0.95∗ 1.47ʃ0.73∗#255.758<0.001 PKP组108 6.75ʃ1.04 3.36ʃ0.79∗ 1.39ʃ0.70∗#1084.638<0.001 t值 1.006 1.1720.549P值0.3160.2430.584㊀㊀注:∗与术前比较P<0.05,#与术后1d比较P<0.05表4㊀两组患者伤椎前缘高度和伤椎后凸Cobb角比较(ʎ,xʃs)组别例数术前术后1d末次随访术前术后1d末次随访vesselplasty组3015..56ʃ2.4820.64ʃ2.12∗20.60ʃ2.18∗19.77ʃ5.2711.90ʃ3.78∗11.94ʃ3.82∗PKP组10815.17ʃ2.1420.43ʃ2.25∗20.41ʃ2.27∗18.84ʃ4.8311.75ʃ3.29∗11.78ʃ3.34∗t值0.8520.4580.4090.9150.2140.225 P值0.3960.6480.6830.3620.8310.822㊀㊀注:∗与术前比较P<0.053㊀讨论PKP治疗OVCFs最常见的并发症是骨水泥渗漏[3]㊂其渗漏路径有三种[10]:沿椎体基底静脉渗漏至椎体后缘及硬膜前方;沿骨皮质破损处可能渗漏至椎旁任何部位;沿节段静脉渗漏,骨水泥多局限于节段静脉内,但也可能进入腔静脉,导致肺栓塞㊂渗漏因素主要有骨折线㊁骨折类型㊁骨密度㊁骨水泥粘度㊁骨折严重程度等[4]㊂骨填充网袋是一种生物相容性材料PET织成的网袋,具有较好的可压缩性及延展性,可减少骨水泥渗漏[5-8]㊂本研究vesselplasty 组骨水泥渗漏2例(6.67%),PKP组骨水泥渗漏18例(16.67%),虽两组比较无统计学差异,但数据表明,骨填充网袋减少了骨水泥渗漏㊂骨填充网袋主要通过 狼牙效应 和 洋葱效应 来减少骨水泥渗漏[11]㊂术中向骨填充网袋内灌注骨水泥,大部分骨水泥被包裹于网袋内,少量渗出骨水泥弥散于网袋周围,与骨小梁紧密相结合,形成 狼牙效应 ;骨水泥填满网袋后,不再膨胀,会从网眼中缓慢渗出,其中心压力最高,外周压力逐渐降低,骨水泥产生层层包裹效果即 洋葱效应 ㊂但骨填充网袋在减少骨水泥渗漏的同时,也降低了骨水泥的弥散,本研究ves-selplasty组骨水泥弥散率(55.68%)明显低于PKP 组(65.95%)㊂两组患者术后1d的VAS评分较术前明显改善,末次随访时较术后1d进一步降低,且两组比较无明显差异,说明骨填充网袋椎体成形术可以部分恢复伤椎高度,矫正后凸畸形,且与PKP效果相似㊂骨扩张矫形器在伤椎扩张㊁抬高椎体终板,同时利用网袋的填充包裹和骨水泥流体静压作用,可部分恢复椎体高度[12];此外,利用网袋外均匀弥散的骨水泥可整体进行椎体撑开,可较好地恢复伤椎高度及矫正后凸畸形[13]㊂侯伟等[14]将120例OVCF患者随机分成骨扩张矫形器组和PKP组,结果术后两组在伤椎高度恢复与后凸角改善方面效果相似㊂网袋中心压力最大,逐步释放压力,外周压力逐渐减小,使邻椎发生继发性骨折的概率减小㊂vesselplasty组术后再骨折率为6.67%,PKP组为8.33%,两组术后再发骨折无明显差异㊂vesselplasty术中应注意:①骨扩张矫形器扩张矫形过程中,不要过度撑开,以免发生终板骨折;②术中根据椎体大小选择合适型号的骨填充网袋,若网袋偏小,则椎体复位不良,骨水泥弥散欠佳,因为骨水泥仅在骨填充网袋周围弥散,无法弥漫到椎体边缘;③分次缓慢灌注骨水泥,当骨水泥填满整个网袋时,应减慢速度,预防网袋破损,减少渗漏并锚定椎体;④骨填充网袋常采用单侧穿刺,如单侧骨水泥灌注不满意,可对侧补充穿刺灌注骨水泥[15];⑤掌握灌注骨水泥的窗口期,早期可灌注高粘度骨水泥,封堵骨折线,后期可灌注拉丝期骨水泥,既可减少渗漏,又可达到骨水泥弥散均匀㊂参考文献:[1]㊀杨惠林,胡侦明,邱贵兴,等.经皮椎体成形术治疗的相关建议[J].中华骨与关节外科杂志,2015,8(5):375-376. [2]㊀Bouza C,López-Cuadrado T,Almendro N,et al.Safety of balloonkyphoplasty in the treatment of osteoporotic vertebral compression fractures in Europe:a meta-analysis of randomized controlled trials [J].Eur Spine J,2015,24(4):715-723.[3]㊀Eck JC,Nachtigall D,Humphreys SC,et parison of verte-broplasty and balloon kyphoplasty for treatment of vertebral com-pression fractures:a meta-analysis of the literature[J].Spine J, 2008,8(3):488-497.[4]㊀许正伟,贺宝荣,郝定均,等.胸腰椎骨质疏松性骨折经皮椎体成形术后骨水泥渗漏的研究进展[J].中华骨科杂志,2016,36(17):1142-1148.[5]㊀许兵,王萧枫,叶小雨,等.骨填充网袋椎体成形术与经皮球囊后凸成形术治疗骨质疏松性椎体压缩性骨折[J].中国骨伤, 2018,31(11):993-997.[6]㊀徐德世,范跟东.骨填充网袋椎体成形术治疗OVCF42例疗效分析[J].颈腰痛杂志,2019,40(5):633-635.[7]㊀王智黔,赵安菊,彭智,等.骨填充网袋椎体成形术与经皮椎体后凸成形术治疗老年骨质疏松性椎体压缩骨折的疗效比较[J].中华创伤杂志,2018,34(7):618-623.[8]㊀王永虎.网袋椎体成形术与常规PVP手术治疗骨质疏松性椎体压缩骨折的疗效对比[J].颈腰痛杂志,2018,39(6):745 -747.[9]㊀康茬,唐可,肖艳,等.核素骨显像和MRI定位骨质疏松性椎体压缩骨折责任椎体的价值[J].中华创伤杂志,2016,32(9): 789-793.[10]㊀Yeom JS,Kim WJ,Choy WS,et a1.Leakage of cement in percuta-neous transpedicular vertebroplasty for painful osteoporotic com-pression fractures[J].J Bone Joint Surg Br,2003,85(1):83-89.[11]㊀黄浩然,冯丽,梁华,等.骨填充网袋治疗老年性骨质疏松性椎体压缩骨折的特点[J].中国组织工程研究,2018,22(26):4110-4115.[12]㊀El-Fiki M.Vertebroplasty,kyphoplasty,lordoplasty,expandabledevice,and current treatment of painful osteoporotic vertebral frac-tures[J].World Neurosurg,2016,91:628-632. [13]㊀唐海,贾璞,陈浩,等.新型Vessel-X经皮椎体强化系统在脊柱微创治疗的临床应用[J].中华医学杂志,2017,97(33):2567-2572.[14]㊀侯伟,熊小明,万趸,等.球囊与扩张矫形器辅助的椎体后凸成形术治疗骨质疏松性椎体压缩骨折的比较[J].中国矫形外科杂志,2017,25(18):1633-1636.[15]㊀邓晓强,吴永生,王慧敏.对侧补充穿刺在单侧经皮椎体成形术骨水泥弥散不佳中的应用[J].中国骨伤,2018,31(12):1168-1171.。

AVVIO RAPIDO Router mobili 5G 安装指南说明书

AVVIO RAPIDO Router mobili 5G 安装指南说明书

Per caricare la batteria, collegare il cavo USB al router mobile, quindi collegarlo a una presa a muro utilizzando l'adattatore di alimentazione CA o una porta USB del computer.Assicurarsi che l'orientamento della scheda nano SIM coincida con l'orientamento indicato sull'etichetta del dispositivo e inserirla delicatamente, quindi posizionare la batteria e il coperchio posteriore.NOTA: utilizzare solo le dita per inserire o rimuovere la scheda nano SIM. L'utilizzo di altri oggetti potrebbe danneggiare il dispositivo.1. COM'È FATTO IL DISPOSITIVO2. INSTALLAZIONE DELLA SIM E DELLA BATTERIAIl router mobile viene fornito con i seguenti componenti:• Router mobile Nighthawk® M6 o M6 Pro 5G*• Coperchio della batteria • Batteria• Cavo USB Tipo C• Alimentatore (varia in base all’area geografica)• Adattatori con presa Tipo C (per la maggior parte dei Paesi europei)•Adattatori con presa Tipo G (per il Regno Unito)*Illustrazioni del modello Nighthawk M6 per scopi illustrativi.antenna esterna (TS-9)antenna esterna (TS-9)USB Tipo CEthernetCONFORMITÀ NORMATIVA E NOTE LEGALIPer informazioni sulla conformità alle normative, compresala Dichiarazione di conformità UE, visitare il sito Web https:///it/about/regulatory/.Prima di collegare l'alimentazione, consultare il documento relativo alla conformità normativa.Può essere applicato solo ai dispositivi da 6 GHz: utilizzare il dispositivo solo in un ambiente al chiuso. L'utilizzo di dispositivi a 6 GHz è vietato su piattaforme petrolifere, automobili, treni, barche e aerei, tuttavia il suo utilizzo è consentito su aerei di grandi dimensioni quando volano sopra i 3000 metri di altezza. L'utilizzo di trasmettitori nella banda 5.925‑7.125 GHz è vietato per il controllo o le comunicazioni con sistemi aerei senza equipaggio.SUPPORTO E COMMUNITYDalla pagina del portale di amministrazione Web, fare clic sull'icona con i tre puntini nell'angolo in alto a destra per accedere ai file della guida e del supporto.Per ulteriori informazioni, visitare il sito netgear.it/support per accedere al manuale dell'utente completo e per scaricare gli aggiornamenti del firmware.È possibile trovare utili consigli anche nella Community NETGEAR, alla pagina /it.GESTIONE DELLE IMPOSTAZIONI TRAMITE L'APP NETGEAR MOBILEUtilizzare l'app NETGEAR Mobile per modificare il nome della rete Wi-Fi e la password. È possibile utilizzarla anche per riprodurre e condividere contenutimultimediali e accedere alle funzioni avanzate del router mobile.1. Accertarsi che il dispositivo mobile sia connesso a Internet.2. Eseguire la scansione del codice QR per scaricare l'appNETGEAR Mobile.Connessione con il nome e la password della rete Wi-Fi 1. Aprire il programma di gestione della rete Wi‑Fi deldispositivo.2. Individuare il nome della rete Wi‑Fi del router mobile(NTGR_XXXX) e stabilire una connessione.3. Only Connessione tramite EthernetPer prolungare la durata della batteria, l'opzione Ethernet è disattivata per impostazione predefinita. Per attivarla, toccare Power Manager (Risparmio energia) e passare a Performance Mode (Modalità performance).4. CONNESSIONE A INTERNETÈ possibile connettersi a Internet utilizzando il codice QR del router mobile da uno smartphone oppure selezionando manualmente il nome della rete Wi‑Fi del router e immettendo la password.Connessione tramite codice QR da uno smartphone 1. Toccare l'icona del codice QR sulla schermata inizialedello schermo LCD del router mobile.NOTA: quando è inattivo, lo schermo touch si oscura per risparmiare energia. Premere brevemente e rilasciare il pulsante di alimentazione per riattivare lo schermo.3. CONFIGURAZIONE DEL ROUTER MOBILETenere premuto il pulsante di accensione per due secondi, quindi seguire le istruzioni visualizzate sullo schermo per impostare un nome per la rete Wi‑Fi e una password univoci.La personalizzazione delle impostazioni Wi‑Fi consente di proteggere la rete Wi‑Fi del router mobile.Impostazioni APNIl router mobile legge i dati dalla scheda SIM e determina automaticamente le impostazioni APN (Access Point Name) corrette con i piani dati della maggior parte degli operatori. Tuttavia, se si utilizza un router mobile sbloccato con un operatore o un piano meno comune, potrebbe essere necessario immettere manualmente le impostazioni APN.Se viene visualizzata la schermata APN Setup Required (Configurazione APN richiesta), i dati APN dell’operatore non sono presenti nel nostro database ed è necessario inserirli manualmente. Immettere i valori fornitidall’operatore nei campi corrispondenti, quindi toccare Save (Salva) per completare la configurazione.NOTA: l’operatore determina le proprie informazioni APN e deve fornire le informazioni per il proprio piano dati. Si consiglia di contattare il proprio operatore per le impostazioni APN corrette e di utilizzare solo l’APN suggerito per il piano specifico.Schermata inizialeAl termine della configurazione, il router visualizza la schermata iniziale:Wi‑FiPotenza Carica Rete Codice QR connessione rapida Wi‑FiNome e Wi‑FiIcona del codice QR。

七氟醚下调TRPV4

七氟醚下调TRPV4

前期研究发现,机械通气可上调花生四烯酸(AA )代谢途径关键限速酶胞质型磷脂酶A2(C-PLA2)活性使肺内AA 及其致炎性代谢产物生成增加继而引起VILI ,而七氟醚可通过阻断上述病理过程发挥其抗VILI 保护作用[1,2],但机械通气及七氟醚调控C-PLA2的具体机制尚未完全阐明。

由于细胞内钙离子浓度的增加是C-PLA2活化必不可少的条件[3],而TRPV4作为一种位于细胞膜上的钙离子通道,可被机械力直接激活[4],活化的TRPV4可上调C-PLA2表达继而引起高血压小鼠动脉内皮细胞收缩[5]。

体外实验研究发现,机械通气可激活TRPV4造成肺屏障功能破坏[6],而七氟醚可通过阻断瞬时受体电位钙离子通道发挥其心肌保护作用[7]。

据此我们推测机械通气所产生的机械力激活C-PLA2的具体机制与TRPV4有关,而七氟醚可通过阻断TRPV4/C-PLA2信号通路发挥其抗VILI 保护作用。

Sevoflurane alleviates ventilator-induced lung injury in rats by down-regulating the TRPV4/C-PLA2signaling pathwayWANG Wenfa 1,YANG Yong 2,WANG LI 3,GUO Xin 3,TIAN Lingfang 1,WANG He 1,HU Yuzhen 1,LIU Rui 31Department of Anesthesiology,Chuxiong Yi Autonomous Prefecture People's Hospital,Chuxiong 675000,China;2Experimental Center of Medical Function,Kunming Medical University,Kunming 650500,China;3Department of Anesthesiology,First People's Hospital of Yunnan Province/Affiliated Hospital of Kunming University of Science and Technology,Kunming 650032,China摘要:目的探讨七氟醚抗呼吸机诱导的肺损伤(VILI )的保护作用机制。

Omega FL-1500流量计说明书

Omega FL-1500流量计说明书

B-45e Exatidão de ±2% do Fundo de Escala e R epetibilidade de Fundo de Escala de ±1⁄2%e C onstrução em Vidro e Aço Inoxidável Proporcionando Compatibilidade com Vários Meios e E quações de Correlação para Uso com Diversos Fluidose Construção com Chapa Laterale Escala de 250 mm (9,85")e Escala de Fluxo de 10 a 100%e B lindado para Uso em Sistemas Pressurizados e Somente para Montagem VerticalOs medidores de vazão FL-1500 da OMEGA™ combinam exatidão de 2% e construção com chapalateral. Estes medidores apresentam construção em vidro e açoinoxidável 316, com chapas lateraisde alumínio e proteções de plástico acrílico. O desenho do flutuador oferece alta imunidade à variação de viscosidade e as conexões de rosca NPT facilitam a instalação emsistemas industriais e laboratoriais.ROTÂMETROS DE ALTA EXATIDÃOCAPACIDADES: 0,078 a 6,28 GPM para Água,FL-1501A-B, mostrado com conexões terminais de latão opcionais (o padrão é aço inox 316), em tamanho menorque o real.Vem completo, com manual do usuário.Para modelos com conexões terminais de latão, adicione o sufixo “-B” ao código do produto; consulte a engenharia de fluxos.Exemplos de Pedido: rotâmetros FL-1503A-B com conexão terminal de latão; 1,045 a 10,45 SCFM, 0,253 a 2,53 GPM.FL-1501A, conexão terminal de aço inoxidável 316, 0,317 a 3,17 SCFM, 0,078 a 0,78 GPM.ESPECIFICAÇÕESEscala: fundida no tubo medidor, 10 a 100% da escala do fluxoTubo Medidor: vidro borossilicato Flutuador e Limitadores: aço inoxidável 316Conexões Terminais:Padrão: aço inoxidável 316 Opcional: latãoAnel de Vedação: FKM-A Estrutural:Chapa Lateral: proteções de alumínio; de plástico acrílico, na frente e atrásPressão Máxima:FL-1501 e FL-1502: 20,68 bar (300 psig)FL-1503: 12,06 bar (175 psig) FL-1504: 6,9 bar (100 psig)Temperatura Máxima: 121°C (250°F)Exatidão: ±2% do fundo de escala Repetibilidade: ±0,5% do fundo de escalaSérie FL-1500A。

机器人辅助腹腔镜与传统腹腔镜行结直肠癌手术的安全性和有效性比较

机器人辅助腹腔镜与传统腹腔镜行结直肠癌手术的安全性和有效性比较
李书原,楼 征,张 卫
(海军军医大学第一附属医院肛肠外科 上海 200433)
摘 要 结直肠癌是最常见的消化道恶性肿瘤之一,严重威胁着患者的身体健康。外科手术是治疗结直肠癌 的有效方法。目前,微创手术因创伤小、恢复快等优点,成为许多患者的首选。传统腹腔镜手术在技术上存在一定 的难度,它需要外科医生拥有丰富的腹腔镜操作经验。而达芬奇机器人拥有高清的 3D 镜头、灵活的机械臂以及更 符合人体工程学的操作方式,在设计上优于腹腔镜。但多项研究结果显示,机器人结直肠手术的围手术期结果、远 期结果与传统腹腔镜相比未见明显优势,而费用却明显增加。目前,机器人结直肠手术已被证实是安全可行的,其 便于进行体内肠吻合,并可以缩短学习曲线。达芬奇机器人可在手术空间狭小、解剖复杂的盆腔内操作。在面对内 脏肥胖、骨盆狭窄、低位肿瘤等病例时,它的视觉系统也有助于辨识解剖层次,更好的保留盆腔自主神经,可能会 促进泌尿与性功能的术后恢复。随着各领域的新技术不断发展和融合,以及外科医生机器人手术经验的积累,相信 机器人手术在未来会拥有更广阔的应用前景。
使用 PubMed 数据库搜索 2015 年至 2020 年 4 月期间的“robotic”、“robot”“laparoscopic”、 “robot-assisted”、“colorectal”、“colonel”、 “rectal”等术语。文章的参考部分也被搜索并 添加到相关研究。因为机器人手术是相对较新源自的技术,所以多中心随机研究的数量有限。
虽然机器人结肠癌手术已经在多个国家和 地区广泛开展,但是缺乏有力的临床证据。本 文通过收录的 10 篇高质量文献来探讨机器人在 结肠癌手术中的安全性及有效性(见表 1)[13-22]。
2.1 术中和围手术期效果
部分研究表明,机器人辅助腹腔镜行结肠

1_例复发性胸腺瘤患者信迪利单抗治疗过程中出现心肌损伤的原因及处理

1_例复发性胸腺瘤患者信迪利单抗治疗过程中出现心肌损伤的原因及处理

1例复发性胸腺瘤患者信迪利单抗治疗过程中出现心肌损伤的原因及处理李泞甫1,2,李智可1,2,陈旭澜1,2,皈燕21 川北医学院临床医学系,四川南充637000;2 川北医学院附属医院肿瘤科摘要:目的 总结复发性胸腺瘤患者信迪利单抗治疗过程中出现心肌损伤的原因,探讨有效处理方法。

方法 对1例复发性胸腺瘤信迪利单抗治疗过程中出现心肌损伤的患者临床资料作回顾性分析。

结果 患者2年前因胸腺瘤接受手术切除(R2切除) + 术后放射治疗,2年后出现复发伴肺转移,4周期CAP方案(环磷酰胺890 mg + 盐酸表柔比星130 mg + 顺铂80 mg)化疗后疾病进展。

与患者家属沟通后,予以信迪利单抗200 mg静脉注射(每三周一次)联合CAP化疗。

联合治疗1周期后,出现心肌酶谱升高、完全性右束支传导阻滞、眼睑下垂等心肌损伤症状,考虑为免疫性心肌炎。

使用甲强龙500 mg冲击治疗及其他对症支持治疗后,症状无明显好转,加用抗心律失常药物(胺碘酮、艾司洛尔)、吗替麦考酚酯及免疫球蛋白,但患者病情恶化于次日凌晨2时突发呼吸心脏骤停,抢救无效死亡。

结论 复发性胸腺瘤患者应用信迪利单抗治疗过程中可能发生心肌损伤,发生原因可能与胸腺为免疫器官及免疫治疗联合化疗的不良反应有关。

对于使用免疫治疗联合化疗的胸腺瘤患者应高度警惕,需动态监测心肌损伤指标,早期识别,分级治疗。

关键词:心肌损伤;心肌炎;免疫性心肌炎;药物不良反应;免疫检查点抑制剂doi:10.3969/j.issn.1002-266X.2023.33.018中图分类号:R730.51 文献标志码:A 文章编号:1002-266X(2023)33-0076-04恶性肿瘤和心血管疾病是全球范围内导致死亡的两大主要原因[1]。

免疫治疗、蒽环类药物及靶向药的应用明显改善患者预后,但其心血管不良反应已经成为影响肿瘤患者生存和预后的重要因素。

蒽环类药物引起心肌损伤的机制主要为加重氧化应激、干扰铁代谢,而免疫治疗主要是是通过激活全身免疫反应,抑制肿瘤细胞免疫逃逸[2-3]。

The light curves of type Ia Supernova 2004fu

The light curves of type Ia Supernova 2004fu

a rXiv:as tr o-ph/6651v23Jan27Peremennye Zvezdy 26,No.4,2006Variable Stars 26,No.4,2006SAI,INASAN,Astronet.ru Moscow,Russia 2June 2006THE LIGHT CURVES OF TYPE Ia SUPERNOVA 2004fu D.YU.TSVETKOV 1Sternberg Astronomical Institute,University Ave.13,119992Moscow,Russia;e-mail:tsvetkov@sai.msu.su Abstract CCD UBV RI photometry is presented for type Ia supernova 2004fu in NGC 6949.The light and colour curves are typical for this class of objects,absolute magnitude at maximum and decline rate are in agreement with the relationship between these parameters,established for SNe Ia.SN 2004fu was discovered by Arbour (2004)on unfiltered CCD images taken with a 0.3-m Schmidt-Cassegrain reflector on November 4.87(at mag approximately 16.8)and 5.81(mag approximately 16.5).The new object was located at α=20h 35m 11s .54,δ=+64◦48′25′′.7(equinox 2000.0),which is 29′′east and 15′′north of the center of the Sc galaxy NGC 6949.Modjaz et al.(2004)report that a spectrum (range 350-740nm)of SN 2004fu,obtained on November 10.17UT with the F.L.Whipple Observatory 1.5-m telescope,shows it to be a type-Ia supernova,several days before maximum light.We started photometric observations of SN 2004fu immediately after discovery,on November 6,with 60-cm reflector of Crimean Observatory of Sternberg Astronomical Institute (C60)equipped with Roper Scientific VersArray1300B CCD camera,and con-tinued monitoring nearly each night until November 25.On November 22images wereobtained at 38-cm reflector of Crimean Astrophysical Observatory (C38)with Apogee AP-47p CCD camera.From 2004December 29until 2005March 26we observed SN 2004fu on four nights at 70-cm reflector in Moscow (M70)with AP-47p CCD camera,and on 2005May 4last images were obtained at C60.The reductions and photometric techniques were described by Tsvetkov (2006)and Tsvetkov et al.(2006).The image of SN 2004fu with comparison stars is shown in Fig.1.Supernova is far away form the center of the galaxy and from the spiral arms,and the galaxy background does not affect the measurements.The magnitudes of the comparison stars are presented in Table 1,and photometry of SN is reported in Table 2.The light curves are shown in Fig.2,where we also plotted the data obtained by amateur observers in the BV R bands reported at SNWeb.†Their data in B are in good agreement with our results,while in the V and R bands some systematic differences can be found.We achieved excellent photometric coverage on premaximum rise and first few days of brightness decline,but later only sporadic observations were obtained.We can derive dates and magnitudes of maximum light:B max =15.87on JD 2453326.3(November16.8),V max=15.42on JD2453327.2,R max=15.18on JD2453327.4.The date of maximum light in I is difficult to estimate with the same accuracy,as the light curve is quiteflat near maximum,with I max=ing the data by amateurs,we can derive the decline rate parameter∆m15(B)=1.3.Wefitted the data with the light curves of the well studied SN Ia1994D(Richmond et al.,1995,Altavilla et al.,2004)with nearly the same value of∆m15(B).The agreement between the light curves of SN2004fu and1994D is nearly perfect in the B and V bands near maximum,while in R and I some differences are evident.At late stages the difference between these objects is prominent in all bands except I,but the late light curves are not well sampled by our observations to allow definite conclusions.The colour curves for SN2004fu are shown in Fig.3and are compared to those for SN1994D.We see very good agreement between SN2004fu and SN1994D in(B−V) and some differences in(V−R).We shifted the(U−B),(B−V)and(V−R)colour curves of SN1994D by0.5,0.41and0.25mag,respectively.As the light of SN1994D suffered negligible extinction both in the Galaxy and in the host galaxy(Altavilla et al., 2004),these values represent the total colour excess for paring these data with the estimates of galactic extinction from Schlegel et al.(1998)A U=2.10,A B= 1.67,A V=1.28,A R=1.03we conclude that all extinction towards SN2004fu originated in the Galaxy.Taking these values for extinction and distance modulusµ=33.19from the LEDA database,we derive absolute magnitudes at maximum light:M B=−18.99,M V=−19.05,M R=−19.04.These values are slightly fainter than average luminosity for SNe Ia and are in good agreement with the relationship between decline rate parameter and absolute magnitude for SNe Ia as presented by Phillips(2005)and Altavilla et al.(2004).We conclude that SN2004fu is a typical object for its class regarding photometric behavior,with rate of decline after maximum slightly faster,and maximum luminosity lower than average,in accordance with the relationship between these parameters for SNe Ia.Acknowledgements:This research has made use of the Lyon-Meudon Extragalactic Database(LEDA).The author is grateful to I.M.Volkov for help in the observations.The work was partly supported by RFBR grant05-02-17480.References:Altavilla,G.,Fiorentino,G.,Marconi,M.,et al.,2004,MNRAS,349,1344Arbour,R.,2004,IAU Circ.,No.8428Modjaz,M.,Challis,P.,Kirshner,R.,Westover,M.,2004,IAU Circ.,No.8436 Richmond,M.W.,Treffers,R.R.,Filippenko,A.V.,et al.,1995,Astron.J.,109,2121 Phillips,M.M.,2005,ASP Conf.Ser.,342,211,in1604-2004:Supernovae as cosmological lighthouses,M.Turatto et al.eds.Schlegel,D.,Finkbeiner,D.,Davis,M.,1998,Astrophys.J.,500,525Tsvetkov,D.Yu.,2006,Permennye Zvezdy(Variable Stars),23,No.3Tsvetkov,D.Yu.,Volnova,A.A.,Shulga,A.P.,et al.,2006,Astron.&Astrophys.(sub-mitted),astro-ph/0605184Figure1.SN2004fu in NGC6949with comparison starsFigure2.BV RI light curves of SN2004fu,showing our photometry(dots)and that of amateurobservers(crosses).The dashed lines are the light curves of SN1994DFigure3.(U−B),(B−V)and(V−R)colour curves of SN2004fu.The dashed lines are the colourcurves of SN1994DTable1:Magnitudes of comparison stars114.660.0614.590.0313.850.0413.340.0212.920.02216.000.0415.250.0413.960.0313.190.0312.550.02315.730.0715.250.0414.220.0413.590.0313.120.02JD2453000+UσU BσB VσV RσR IσI Tel.。

奥林匹斯EVIS 140系列产品说明书

奥林匹斯EVIS 140系列产品说明书

The CLV-U40 light source...A new vision of endoscopic excellence You have always relied on us for the finest endoscopic equipment available...now OLYMPUS brings you the most advanced endoscopic equipment to date: the EVIS 140 series. Our newest addition to the OLYMPUS family of products combines an unsurpassed standard of optics with easier reprocessing for optimum performance and safety you can depend on.Today and tomorrow, OLYMPUS brings you VISIONARY IMAGING.Complete compatibilitywith all scopesThe CLV-U40 is auniversal light source foruse with all OLYMPUSendoscopes. By actuatingthe Mode Selector, thelight source can be setfor any scope __from theEVIS 100, 130, 140, and200 Series videoscopesto the OES fiberscopesand all rigid endoscopes.300W Xenon LightSourceProvides approximately1.5x greater light intensityfor clearer, more vivid images to enhance detailed observation.(Only in combination with 200 series scopes.)Optimum Light Density Adjustment for Video TapingAutomatically selects the ideal sensitivity required. Manual override offers variable adjustment by the endoscopist.Automatic Exposure Control for Still Photography Automatically sets light source at the optimum exposure for still or Polaroid photography. Manual override gives the endoscopist complete control of this function.Built-In Emergency Lamp The CLV-U40 system includes a built-in 150W Halogen emergency lamp which is automatically actuated in theevent of Xenon lamp failure.Malfunction Indicator Any malfunction in the emergency system triggers the panel light malfunction indicator.Transillumination Feature Increases illumination to allow confirmation of target area from outside the body. Automatically returns to original setting after approximately 7 seconds.ITEM SpecificationsAuto/Manual: time control byLIGHT SOURCE shutter Innovative Features areStandard forExceptional PerformanceExposure controlShutter speedShortest recycle timeExposure light amountAutomatic exposuresensitivity settingManual exposuresensitivity settingPumpPressure Switching1/4 to 1/50 sec.1 sec.Flash output (approx. 1.5 timesvisual light output)9 steps: 1 step 1/2 EV. Exposuredecreases from INDEX “1”to “5”(or from “+2”to “-2”)10 steps: 1 step 1/2 EV, except for1 EV between “F”and “1”.Still PhotographyLinear type pump1-level switching (“OFF”, “LOW”,“MED”, “HIGH”)At OUTPUT socket•High: less than 0.05MP (at flowrate 0)•Medium: more than 1.6l/min. (at0.09MPa)•Low: 0.0075~0.015MPa (at flowrate 0)Air FeedingPerformanceAir pressurization of WATERCONTAINER (detachable)Indication of Absent lamp, Burn-out or in operationWater Feeding MethodIndication on theFront PanelEmergency lampFiltersMemorization ofselected settingSelected setting are retained even when theLIGHT SOURCE is switched off, by internal batterySetting of filter: 1, 2 or NoneXenon short-arc lamp (ozone-free)300WApprox. 300 hours on continuoususe, (over 20000 flashes)•On intermittent use the lamp lifemay differ slightly.Switching regulatorLight-path diaphragm controlForced-air coolingPossible by using exchangeablefilter (filter “2”)Halogen lamp (without mirror) 24V150WLampLamp IifeIgnitionLight output adjustmentCoolingColor conversionEmergency lampEmergency lamp lifeFEATURESRemote, FootOperated ControlVariableAir ControlBENEFITSProvides “Hands-Free”operation of ancillary equipmentRegulates air pressure and water feed pressure to one offour settings: High, Medium, Low, or OffPermits ease of use and maintenance.Flat membrane switches are easy to actuate andwipe cleanMaintains established settings even when power isswitched offSelect appropriate manual exposure for still photographs,or place in automatic mode to autoregulate as required.Sensitivity selector manually adjusts to desired exposureManually select desired level of illumination, or place inautomatic mode to auto-regulate as required. Sensitivityselector manually adjusts to desired intensity levelPress to elevate illumination in order to highlight targetarea external of the torso. Automatically returns to normalsetting in approximately 7 seconds150W Halogen lamp actuates automatically in the eventof Xenon lamp failureManually select filter 1, 2, or noneAllows +2 to -2 EV (exposure value) adjustment at 1/2 EVincrements to regulate exposure as requiredAutomatically dims light intensity when scope is removedfrom CLV-U40 to protect patient and operatorIndicate approximate cumulative working hours of XenonlampCLV-U40 is compatible with all the range of endoscopesfrom OES fiberscopes to EVIS 100, 130, 140 and 200series videoscopesMeets IEC601-1 International Standard for MedicalEquipment, Part 1: General Requirement for Safety.UL544 Standard for Safety: Medical and DentalEquipmentIlluminationControl PanelSet PointMemoryApprox. 500 hours.Servodiaphragm methodAUTO/MANUALExposure Selection Visual Observation Automatic brightness•VideoscopeAdjustment17 steps: 1 step 1/4 EV (F; fulladmission)Exposure decreases from INDEXNUMBER “F”to “5”.•Video Automatic exposuresettingClassification(Electro-medicalequipment)Type of protectionagainst electric shockDegree of protectionagainst electric shockDegree of protectionagainst explosionAUTO/MANUALBrightness SelectionClass 1Type BF (Body Floating). TransilluminationVoltageVoltage fluctuationFrequencyFrequency fluctuationInput currentAmbient temperatureRelative humidityAtmospheric pressureDimensionsWeightEmergency LampFilter selectionExposureCompensationAutomaticLight ReductionLamp Life MeterThe LIGHT SOURCE should bekept away from the zone of risk offlammable gases.120VWithin ±10%50/60HzWithin ±1Hz3A (at observation)4A (at flash)10–40°(50°F–104°F)30–85%700–1060 hPa587(W)x165(H)x537(D)mm(Max.)22kgPower RequirementsFull CompatibilityOperatingEnvironmentSizeIndependentSafety RequirementlevelMeeting your need for Visionary ImagingIt takes a tremendous amount of skill to build areputation as an innovator among industries asdiverse as communications, medicine, informationand science. Yet that’s exactly what OLYMPUS hasdone since its inception in 1919.Our range of products encompasses a broad spectrumof technological introductions and achievements. Notonly in cameras, but also in our wide range ofEndoscopes... Microscopes... Fiberscopes...Microcassette Recorders... Clinical AnalysisEquipment... and Video Equipment.And more breakthroughs are just around the corner,particularly in the exciting new field of optoelectronics,which combines cutting edge optical technology,electronics and precision engineering.At OLYMPUS, we’ve earned our reputation for anunfailing commitment to ground-breaking research anddevelopment, an uncompromising dedication toquality, precision and accuracy... and a commitment toremain the leading provider of optical instrumentation.That’s why we’ll continue to lead the way with thehighest quality precision products that will meet yourprofessional needs. Today and tomorrow. Look toOLYMPUS for Visionary Imaging.Olympus business areasMedical andhealth-careareaImaging andinformationareaIndustrialapplicationsareaPrinted in Japan F570E-0596B。

二氯吡啶酸+二甲四氯

二氯吡啶酸+二甲四氯
2011-3709 2012-04-25
page 1
(Container)
CurtailTM M
Herbicide
GROUP
4
HERBICIDE
For selective control of various broadleaved weeds in wheat, barley, oats and flax (including low linolenic acid varieties). For sale for use in the prairie provinces and the Peace River, Okanagan and Creston regions ONLY of British Columbia.
PHYSICAL OR CHEMICAL HAZARDS COMBUSTIBLE. Do not use or store near heat or open flame. FIRST AID Take container, label or product name and Pest Control Product Registration Number with you when seeking medical attention. If swallowed: Call a poison control centre or doctor immediately for treatment advice. Do not induce vomiting unless told to do so by a poison control centre or doctor. Do not give any liquid to the person. Do not give anything by mouth to an unconscious person. If on skin or clothing: Take off contaminated clothing. Rinse skin immediately with plenty of water for 15-20 minutes. Call a poison control centre or doctor for treatment advice. If inhaled: Move person to fresh air. If person is not breathing, call 911 or an ambulance, then give artificial respiration, preferably by mouth-to-mouth, if possible. Call a poison control centre or doctor for further treatment advice. If in eyes: Hold eye open and rinse slowly and gently with water for 15-20 minutes. Remove contact lenses, if present, after the first 5 minutes, then continue rinsing eye. Call a poison control centre or doctor for treatment advice.

NETGEAR Orbi 系列路由器使用指南说明书

NETGEAR Orbi 系列路由器使用指南说明书

Per iniziareOrbiScopri tutto quello che puoi fare con l'app Orbi! Metti in pausa Internet, esegui un test di velocità, imposta i parental control intelligenti e molto altro.(La disponibilità dei servizi software può variare a seconda dell'area geografica.)Sul telefono cellulare, scarica l'app Orbi e segui le istruzioni per la configurazione.Proteggi i tuoi dispositivi con NETGEAR Armor2Con l'app si può fare di più3NETGEAR Armor™ protegge la rete Wi-Fidella tua famiglia con uno scudo automatico di protezione sui dispositivi connessi.Tocca l'icona Security (Sicurezza) sull'app Orbi per iniziare il periodo di prova gratuito.Supporto e CommunityVisitare netgear.it/support/ per trovare le risposte alle domande e accedere agli ultimi download.Puoi cercare anche utili consigli nella nostra Community NETGEAR visitando la pagina /it.Per la conformità alle normative vigenti, compresa la Dichiarazione di conformità UE, visitare il sito Web https:///it/about/regulatory/.Prima di collegare l'alimentazione, consulta il documento relativo alla conformità normativa.Può essere applicato solo ai dispositivi da 6 GHz: utilizzare il dispositivo solo in un ambiente al chiuso. L'utilizzo di dispositivi a 6 GHz è vietato su piattaforme petrolifere, automobili, treni, barche e aerei, tuttavia il suo utilizzo è consentito su aerei di grandi dimensioni quando volano sopra i 10.000 piedi di altezza. L'utilizzo di trasmettitori nella banda 5.925-7.125 GHz è vietato per il controllo o le comunicazioni con sistemi aerei senza equipaggio.NETGEAR, Inc.350 East Plumeria DriveSan Jose, CA 95134, Stati Uniti © NETGEAR, Inc. NETGEAR e il logo NETGEAR sono marchi di NETGEAR, Inc. Qualsiasi marchio non-NETGEAR è utilizzato solo come riferimento.NETGEAR INTERNATIONAL LTD Floor 6, Penrose 2, Penrose Dock, Cork, T23 YY09, IrlandaNovembre 2022Conformità normativa e note legaliRisoluzione dei problemiIn caso di problemi con l'installazione, provare a effettuare le seguenti operazioni:•Se possiedi un altro router Orbi e hai già utilizzato l'app Orbi in passato, dalla dashboard, tocca > SET UP A NEW ORBI SYSTEM (CONFIGURA UN NUOVO SISTEMA ORBI).•Spegni il modem e il router Orbi e scollega l'uno dall'altro. Riavvia il modem. Ricollega il router Orbi al modem e prova a eseguire nuovamente l'installazione tramite l'app Orbi.•Se l'installazione del router Orbi tramite l'app Orbi non è ancora riuscita, installalo manualmente utilizzando l'interfaccia Web del router. Visita il sito per accedere all'interfaccia Web del router.Per ulteriori informazioni, consulta la pagina /orbihelp.Contenuto Router Orbi Satellite Orbi Alimentatore di alimentazione X 2 (varia in base all'areageografica)Adattatori presa Tipo C X 2(per la maggior parte dei Paesi europei)Adattatori presa Tipo G X 2(per il Regno Unito)Cavo EthernetPanoramicaRouter Orbi Satellite Orbi1Pulsante disincronizzazione 2Porta Internet a 10 G 3Porta Ethernet a 2,5 G 4Porte Gigabit Ethernet 5Pulsante di ripristino 6Connettore di alimentazione 7LED di alimentazione。

LaVO4/TiO2光催化复合材料对芥子气模拟剂2-氯乙基乙基硫醚的降解性能

LaVO4/TiO2光催化复合材料对芥子气模拟剂2-氯乙基乙基硫醚的降解性能

第33卷㊀第6期2014年㊀㊀6月环㊀境㊀化㊀学ENVIRONMENTALCHEMISTRYVol.33,No.6June㊀2014㊀2013年9月23日收稿.㊀∗国家自然科学基金(21207160)资助.㊀∗∗通讯联系人,E⁃mail:linfzjy@163.comDOI:10.7524/j.issn.0254⁃6108.2014.06.010LaVO4/TiO2光催化复合材料对芥子气模拟剂2⁃氯乙基乙基硫醚的降解性能∗郑㊀禾1㊀钟近艺1,2∗∗㊀韩世同1,2㊀陈新启1,2㊀闵㊀崎1(1.防化研究院,北京,102205;㊀2.国民核生化灾害防护国家重点实验室,北京,102205)摘㊀要㊀通过可见光响应半导体的复合,成功提高了TiO2对芥子气模拟剂2⁃CEES降解的光催化活性.TiO2在掺杂1wt%LaVO4时可见光催化活性最高,LaVO4/TiO2在24h后对甲苯的降解率仍然保持在70%以上,对0 24g㊃L-12⁃CEES的太阳光催化降解率较商业化TiO2提高20%.关键词㊀光催化,半导体复合,2⁃CEES,消毒.Photocatalyticdegradationofsulfurmustardmimickingagent(2⁃CEES)onLaVO4/TiO2ZHENGHe1㊀㊀ZHONGJinyi1,2∗∗㊀㊀HANShitong1,2㊀㊀CHENXinqi1,2㊀㊀MINQi1(1.ResearchInstituteofChemicalDefense,Beijing,102205,China;2.StateKeyLaboratoryofNBCProtectionforCivilian,Beijing,102205,China)Abstract:Coupledwithvisiblelightabsorbingsemiconductor,LaVO4compositematerialswerepreparedandappliedsuccessfullytoimprovethephotocatalyticactivityofTiO2.ItwasfoundthatthecompositeofTiO21wt%LaVO4hadthebestphotocatalyticactivitytodegrade70%tolueneevenafter24h.Thedegradationrateofsulfurmustardmimickingagent(2⁃CEES)onLaVO4/TiO2increasedby20%fromcommercialTiO2undersimulatedsunlight.Keywords:photocatalysis,semiconductorcoupled,2⁃CEES,decontamination.二氧化钛(TiO2)作为常用光催化剂,具有活性高㊁安全㊁无污染㊁成本低等优点.但由于TiO2仅能吸收波长小于387nm的紫外光,对太阳光的利用率只有3% 5%,严重制约了其在太阳光下催化降解化学污染物的能力.可见光响应半导体复合技术可以很好地解决这一难题.钒酸镧(LaVO4)因为具有很好的可见光响应性质,已经逐渐成为半导体复合的热点研究对象.与此同时,光催化技术在化学毒剂消毒领域的研究也越来越广泛,张建宏[1]等采用气相色谱质谱和红外等技术手段,考察了沙林模拟剂氯磷酸二乙酯(DECP)在TiO2表面的光催化反应历程.韩世同[2⁃3]考察了P25在紫外光下降解2⁃氯乙基乙基硫醚(2⁃CEES)的降解产物,发现2⁃CEES在P25表面通过脱氯㊁裂解等方式发生分解,而采用H2SO4酸化处理的TiO2对于2⁃CEES具有较稳定的催化效果.国外关于光催化消毒方面的工作主要是通过原位红外技术研究TiO2(P25)降解不同毒剂和模拟剂的反应机理[4⁃9],以及采用离子掺杂或金属沉积方式对TiO2进行改性[3,10⁃12],而采用半导体复合掺杂技术改性对可见光条件下的化学毒剂消毒研究还未见公开报道.另一方面,目前有研究表明[13],在光催化降解苯的实验中,通过掺杂LaVO4能够使TiO2在可见光下具有持续高效的光催化性能.本文选择LaVO4掺杂的方式对TiO2进行改性,考察不同LaVO4掺杂比例下制备的LaVO4/TiO2光催1000㊀环㊀㊀境㊀㊀化㊀㊀学33卷化复合材料在可见光下对甲苯的降解效率的影响,并以此为基础,初步测试了LaVO4/TiO2在模拟太阳光下对芥子气模拟剂2⁃CEES的催化消毒性能.1㊀实验部分1.1㊀实验试剂偏钒酸铵㊁六水合硝酸镧㊁钛酸四丁酯均为分析纯,国药集团化学试剂有限公司;P25(商业化TiO2),德国Dgussa公司;甲苯,分析纯,北京化工厂;2⁃氯乙基乙基硫醚(2⁃CEES,CH3CH2SCH2CH2Cl),98%,Aldrich公司.1.2㊀实验仪器BrukerD8Advance型X射线衍射分析仪(CuKα射线,工作电压40kV,电流40mA);VarianCarry500型紫外⁃可见光光度计(标准BaSO4粉末作参比,采用小积分球附件测定,扫描范围350 800nm);泊菲莱科技有限公司的300W氙灯.1.3㊀实验方法1.3.1㊀LaVO4纳米材料的制备分别将0.26g氢氧化钠(分析纯)和0.76g偏钒酸铵加入30mL去离子水中,磁力搅拌形成溶液A.取2.8g六水合硝酸镧溶入50mL去离子水搅拌溶解形成溶液B.将溶液B逐滴加入到溶液A中,搅拌30min后,转入100mL水热反应釜,以1ħ㊃min-1升温速率升温至200ħ,保持48h.待自然冷却后取出沉淀物,分别用水和乙醇交替洗涤3次,100ħ干燥12h得到绿色粉末.1.3.2㊀LaVO4/TiO2复合物的制备首先按照文献[13]提供的方法制备TiO2溶胶,然后分别掺杂0wt%㊁1wt%㊁2wt%㊁5wt%㊁8wt%LaVO4到TiO2溶胶中,剧烈搅拌24h.微波干燥至无液态水后置于马弗炉中,以3ħ㊃min-1的升温速率升温至450ħ,保持3h,冷却后得到不同掺杂量的催化剂,分别命名为LT0㊁LT1㊁LT2㊁LT5㊁LT8.1.3.3㊀可见光降解甲苯性能测试将450mg催化剂(60 80目)装入石英反应器中,300W氙灯模拟太阳光作为激发光源,装载420nm的滤光片,保证透过光均为可见光,光源距反应器18cm.采用Agilent4890N气相色谱(配备TCD和FID检测器)在线监测持续通入的0.4g㊃L-1甲苯和矿化产物二氧化碳的浓度.1.3.4㊀模拟太阳光消毒性能测试选择0.24g㊃L-1模拟剂2⁃CEES作为研究对象,采用Agilent6890N气相色谱(配备FID检测器)分析2⁃CEES浓度,300W氙灯模拟太阳光源.2㊀结果与讨论2.1㊀光催化材料表征图1为样品的X射线衍射图,通过与JCPDS卡片的比对,发现合成的LaVO4中所有峰位置均与谱图No.50⁃0367相一致,证明产物为单斜相LaVO4(晶胞参数a=7.043,b=7.279,c=6.721).LT0谱图与P25基本一致,而经过LaVO4的复合后,虽然LT系列材料的XRD谱图峰强度稍有降低,但峰位置没有变化,说明掺杂并没有影响TiO2的晶型结构.几种光催化材料的紫外可见吸收光谱如图2所示.可以看出,LaVO4具有很好的可见光响应,而未复合的LT0与P25的光吸收范围均在400nm以下,无法吸收波长大于400nm的光.经过与LaVO4复合后,LT系列复合材料的光吸收范围普遍得到拓宽[13],但不同掺杂量比例对光吸收性质影响相差不大.2.2㊀可见光催化降解甲苯性能测试甲苯作为一种常见污染物,常常在工业生产中被作为反应原料和有机溶剂使用,处理不当或发生泄漏会带来非常严重的环境危害.本文通过降解甲苯实验来对不同掺杂量光催化剂及LaVO4本身的性能进行研究,实验结果如图3所示.㊀6期郑禾等:LaVO4/TiO2光催化复合材料对芥子气模拟剂2⁃氯乙基乙基硫醚的降解性能1001㊀图1㊀LaVO4/TiO2样品XRD图Fig.1㊀XRDpatternofLaVO4/TiO2samples图2㊀各种光催化材料的紫外可见光谱Fig.2㊀UV⁃visabsorptionspectraofvariousphotocatalysts从图3中可以看到,未复合的LT0与P25在可见光下无法完全降解甲苯,而单独使用窄带半导体LaVO4时,基本没有任何光催化性能,但经过半导体复合掺杂改性后,TiO2的催化性能得到显著提高.LT系列复合材料对甲苯的初始降解率均能超过95%,并且对持续通入甲苯的降解率迅速达到100%.Huang等[13]同样研究了可见光下LaVO4复合TiO2材料对苯的降解,发现复合材料的反应活性大大优于单纯LaVO4和TiO2.这是由于掺杂后,原本无法激发TiO2的光子通过激发LaVO4使光生电子跃迁至TiO2导带,拓宽了催化剂的光响应范围;另一方面,光生电子跃迁至TiO2导带,分离后的空穴留在LaVO4价带中,有效阻隔了电子⁃空穴的复合,从而提高了光催化反应效率.图3㊀可见光下各种催化剂对持续通入甲苯的降解情况Fig.3㊀Degradationperformanceofsustainedtolueneonphotocatalystsundervisiblelight然而,随着光催化反应的进行,甲苯在反应中会被部分氧化生成难挥发的苯甲酸等中间产物.这些难挥发的物质会吸附在催化剂表面,占据催化剂的活性位点,阻碍甲苯进一步的催化降解,从而造成催化剂中毒失活,缩短了光催化材料的使用寿命[14⁃15].但是,由图3可以明显看到,复合光催化剂中掺杂量为1wt%的LT1可见光催化活性最高,使用寿命长,在持续反应24h后,对甲苯的降解率仍然能够保持在70%以上.甲苯的矿化率常常用生成CO2的浓度来进行评价,LT1在光催化反应中产生的CO2明显高于其他催化剂,说明LT1对于甲苯的矿化效果远远优于其他几种催化剂(图3).值得注意的是,甲苯降解率也随着LaVO4掺入量的增加发生明显衰减.这可能是由于过多半导体的掺入占据了TiO2的活性位点,影响了TiO2的催化活性.由此可以推断,半导体复合仅起激发光生电子㊁抑制光生电子⁃空穴复合的作用,其本身的光催化反应对体系影响不大.2.3㊀模拟太阳光降解2⁃CEES性能测试2⁃CEES在结构上同化学毒剂芥子气仅相差一个氯原子,物化性质比较接近,而且毒性不强,常作为模拟剂使用.本实验用前期研究中可见光催化活性最高的LT1和商用P25对比测试了对芥子气模拟剂的消毒性能,图4是P25和LT1两个催化剂在模拟太阳光下对2⁃CEES(0.24g㊃L-1)的催化反应结果.1002㊀环㊀㊀境㊀㊀化㊀㊀学33卷图4㊀模拟太阳光下3种催化剂对2⁃CEES(0.24g㊃L-1)的降解情况Fig.4㊀Degradationperformanceof2⁃CEES(0.24g㊃L-1)onthreephotocatalystsundersimulatedsunlight㊀㊀由于存在紫外光吸收响应,LT0和P25在太阳光下也具有一定的光催化性能,但是催化效果不如半导体复合后的LT1.LT1在反应开始阶段对2⁃CEES的降解就达到50%左右,而LT0和P25仅有30%和10%;持续光照9h后,LT1对模拟剂的降解率逐渐达到70%,LT0达到60%,而P25仅有约50%.可以看出,LT1对模拟剂2⁃CEES具有更好的催化反应活性,在模拟太阳光下光催化降解率较P25提高了20%.因此通过半导体复合光催化技术可以增强光催化性能,从而能够更加有效地控制和消除化学毒剂.3㊀结论半导体复合掺杂技术能够有效地提升TiO2的太阳光利用率,不仅可以有效消除常见的甲苯等有机污染物,甚至能够用于模拟剂的消毒.通过对不同LaVO4掺杂量TiO2复合材料的光催化性能研究,发现掺杂量为1wt%时,复合材料的可见光催化活性最高,对芥子气模拟剂2⁃CEES的降解效果优于商业化P25和未掺杂的TiO2光催化剂.参㊀考㊀文㊀献[1]㊀张建宏,郭楠,韩世同,等.DECP在TiO2上的热降解与光催化降解[J].环境化学,2008,27(5):553⁃558[2]㊀韩世同,习海玲,付贤智,等.芥子气模拟剂2⁃氯乙基乙基硫醚的光催化降解[J].物理化学学报,2004,20:296⁃301[3]㊀HanST,ZhangGY,XiHL,etal.SulfatedTiO2decontaminate2⁃CEESandDMMPinvaporPhase[J].CatalLett,2008,122:106⁃110[4]㊀习海玲,韩世同,左言军.TiO2光催化降解乙酰甲胺磷[J].环境化学,2008,27(5):559⁃564[5]㊀PanayotovDA,MorrisJR.Thermaldecompositionofachemicalwarfareagentsimulant(DMMP)onTiO2:Adsorbatereactionswithlatticeoxygenasstudiedbyinfraredspectroscopy[J].JPhysChemC,2009,113:15684⁃15691[6]㊀PanayotovDA,MorrisJR.Uptakeofachemicalwarfareagentsimulant(DMMP)onTiO2:Reactiveadsorptionandactivesitepoisoning[J].Langmuir,2009,25:3652⁃3658[7]㊀HirakawaT,SatoK,KomanoA,etal.ExperimentalstudyonadsorptionandphotocatalyticdecompositionofisopropylmethylphosphonofluoridateatsurfaceofTiO2photocatalyst[J].JPhysChemC,2010,114:2305⁃2314[8]㊀BermudezVM.First⁃principlesstudyofadsorptionofdimethylmethylphosphonateontheTiO2anatase(001)surface:Formationofastabletitanyl(Ti O)site[J].JPhysChemC,2011,115:6741⁃6747[9]㊀KomanoA,HirakawaT,SatoK,etal.Titaniumdioxidephotocatalyticdecompositionofethyl⁃S⁃dimethylaminoethylmethylphosphonothiolate(VX)inaqueousphase[J].ApplCatal(B:Environ),2013,134⁃135:19⁃25[10]㊀KozlovaEA,VorontsovAV.NoblemetalandsulfuricacidmodifiedTiO2photocatalysts:mineralizationoforganophosphorouscompounds[J].ApplCatal(B:Environ),2006,63:114⁃123[11]㊀PanayotovDA,MorrisJR.Catalyticdegradationofachemicalwarfareagentsimulant:reactionmechanismsonTiO2⁃supportedAunanoparticles[J].JPhysChemC,2008,112:7496⁃7502[12]㊀OsterlundL,StenglV,MattssonA,etal.EffectofsamplepreparationandhumidityonthephotodegradationrateofCEESonpureandZndopedanataseTiO2nanoparticlespreparedbyhomogeneoushydrolysis[J].ApplCatal(B:Environ),2009,88:194⁃203[13]㊀HuangHJ,LiDZ,LinQ,etal.EfficientdegradationofbenzeneoverLaVO4/TiO2nanocrystallineheterojunctionphotocatalystundervisiblelightirradiation[J].EnvironSciTechnol,2009,43:4164⁃4168[14]㊀MendezRR,CardonaMN.Relationshipbetweentheformationofsurfacespeciesandcatalystdeactivationduringthegas⁃phasephotocatalyticoxidationoftoluene[J].CatalToday,1998,40:353⁃365[15]㊀于秀娟,王永强,李朝林,等.光催化氧化苯甲酸时TiO2的中毒机理及再生方法的研究[J].环境科学学报,2006,26:433⁃437。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档