2010年山东省淄博市中考数学试题及答案
山东省淄博市2010年中考物理试题(word版 有答案)
绝密★启用前试卷类型:A淄博市2010年中等学校招生考试理化试题注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分。
第Ⅰ卷(1~4页)为选择题,其中1~15题为化学部分,每小题1分,共15分;16~25题为物理部分,每小题2分,共20分;第Ⅰ卷满分为35分。
第Ⅱ卷为非选择题,化学部分35分,物理部分50分;全卷满分为120分。
考试时间120分钟。
2. 考生在答卷前,务必在答题卡及试卷的规定位置将姓名、考试号、座号等内容填写(涂)正确。
3. 第Ⅰ卷每题选出答案后,须用2B铅笔把答题卡上对应题目的答案标号(A B C D)涂黑,如需改动,必须先用橡皮擦干净后,再选涂其它答案。
第Ⅱ卷用蓝、黑钢笔或圆珠笔直接答在试卷上(作图可以用铅笔)。
考生不允许使用计算器。
4.考试结束,第Ⅰ卷、第Ⅱ卷和答题卡一并收回。
第Ⅰ卷(选择题共35分)一、选择题(本题包括25小题。
1~15题每小题1分,16~25题每小题2分,共35分。
每小题只有一个选项符合题意)16.下列自然现象的形成过程属于液化现象的是A.雾B.霜C.雪D.冰雹17.下列成语所反映的情景中,属于光的折射现象的是A.镜花水月B.坐井观天C.海市蜃楼D.立竿见影18.下列关于声现象的说法中,正确的是A.在噪声较大的环境中工作时,人们常佩带耳罩,属于在声源处减弱噪声B.用一根棉线和两个纸杯可以制成“土电话”,说明固体能够传声C.我们无法听到蝴蝶飞过的声音,是因为它发出声音的响度太小D.我们能区分出小提琴和二胡的声音,是因为它们发出声音的音调不同19.关于太阳能的下列说法中,不正确的是A.太阳能分布广阔,获取比较方便B.太阳能安全、清洁,利用太阳能不会给环境带来污染C.太阳能是克供人类利用的一种新能源,但无法被人类直接利用D.对人类来说,太阳能几乎是一种取之不尽、用之不竭的永久性能源20.汶川地震后的5月14日,我空降兵15勇士不畏牺牲,勇敢地从4999m的高空跳伞执行侦查营救任务,为上级决策提供了第一手资料,为组织大规模救援赢得了宝贵时间,受到了中21222324C.生活现象与物理知识D.物理知识与应用倒影凸透镜成像惯性热气球升空手影光的直线传播大气压跳远助跑摄影平面镜成像浮力注射器肌注药液25.如右下图所示,四个相同的容器内水面一样高,a容器内只有水,b容器内有木块漂浮在水面上,c容器内漂浮着一块冰块,d容器中悬浮着一个空心球。
2010年淄博中考数学试题和答案
淄博市二○一○年中等学校招生考试数 学 试 题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,42分;第Ⅱ卷(5—12页)为非选择题,78分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共42分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~6小题每题3分,第7~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1.(2010山东淄博,1,3分)下列四个数中最小的是 (A )-10 (B )-1 (C )0 (D )0.1 【答案】A2.(2010山东淄博,2,3分)计算b a ab 2253⋅的结果是 (A )228b a (B )338b a (C )3315b a (D )2215b a 【答案】C3.(2010山东淄博,3,3分)八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是(A )想去上海世博会参观的学生占全班学生的60% (B )想去上海世博会参观的学生有12人 (C )想去上海世博会参观的学生肯定最多 (D )想去上海世博会参观的学生占全班学生的61【答案】D4.(2010山东淄博,4,3分)下列结论中不能由0=+b a 得到的是 (A )ab a -=2 (B )b a = (C )0=a ,0=b (D )22b a =【答案】C 5.(2010山东淄博,5,3分)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A )平移 (B )轴对称 (C )旋转 (D )平移后再轴对称【答案】D 6.(2010山东淄博,6,3分)下列运算正确的是(A )1=---a b bb a a (B )b a n m b n a m --=-(C )a a b a b 11=+-(D )ba b a b a b a -=-+--1222 【答案】D 7.(2010山东淄博,7,4分)已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是(A )在点B 右侧 (B )与点B 重合(C )在点A 和点B 之间 (D )在点A 左侧 【答案】A 8.(2010山东淄博,8,4分)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个 正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在(A )①(B )② (C )③CBAB ′BA ′BC ′(第5题)(第7题)(D )④ 【答案】B9.(2010山东淄博,9,4分)有长度分别为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段能够组成三角形的概率是 (A )43(B )32(C )21(D )41【答案】A10.(2010山东淄博,10,4分)如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠NFD ′等于(A )144°(B )126° (C )108° (D )72° 【答案】B11.(2010山东淄博,11,4分)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B12.(2010山东淄博,12,4分)如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有(第10题)(第11题)(A )①②(B )①③④ (C )②③④ (D )①②③④【答案】D绝密★启用前 试卷类型:A淄博市二○一○年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共78分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(2010山东淄博,13,4分)三个连续整数中,n 是最小的一个,这三个数的和为 . 【答案】33+n14.(2010山东淄博,14,4分)分解因式:3222b ab b a +-= . 【答案】2)(b a b -15.(2010山东淄博,15,4分)如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个__________条.【答案】8(第15题)CA(第12题)16.(2010山东淄博,16,4分)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .【答案】2 17.(2010山东淄博,17,4分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF =∠AEC ,则直线BF 对应的函数表为 .【答案】1-=x y ,1+-=x y三、解答题:本大题共7小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤.18.(2010山东淄博,18,7分)解方程24)5(6-=-x .【答案】解:方程两边同时除以6得x -5=-4,移项得x =5-4, x =1.19.(2010山东淄博,19,7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90ºBA(第19题)∵E 为BC 延长线上的点,∴∠DCE =90º,∴∠BCD =∠DCE .∵CE =CF ,∴△BCF ≌△DCE ,∴DE =BF .20.(2010山东淄博,20,8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?【答案】解:(1)一班:7,7,7.二班:7,7,7;(2)一班的方差21S =2.6,二班的方差22S =1.4,二班选手水平发挥更稳定,应该选择二班;一班前三名选手的成绩更突出,应该选择一班.21.(2010山东淄博,21,8分)已知关于x 的方程014)3(222=--+--k k x k x . (1)若这个方程有实数根,求k 的取值范围; (2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xmy =的图象上,求满足条件的m 的最小值.【答案】解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0化简得 102+-k ≥0,解得k ≤5.(2)将1代入方程,整理得2660k k -+=,解这个方程得 13k =23k =(3)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12m x x =.又由一元二次方程根与系数的关系得21241x x k k =--,那么()521422--=--=k k k m ,所以,当k =2时m 取得最小值-522.(2010山东淄博,22,8分)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.【答案】解:设小明从家走到商店的平均速度为x 米/分,则他从商店到学校的平均速度为(x +25)米/分,根据题意列方程得500303025xx x +=+ 解这个方程得x =50经检验x =50是所列方程的根. 50+25=75(米/分),所以小明从商店到学校的平均速度为75米/分.23.(2010山东淄博,23,10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长;(2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan30°=1,∴PF =21,∴DP =22DF PF =210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3,∴cos∠PDF =PDDF=23,∴∠PDF =30°. ∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.DACB(第23题)(第23题)B(2)B (1)(3)CP =23. 在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ =CP DP ⋅=49.24.(2010山东淄博,24,10分)已知直角坐标系中有一点A (—4,3),点B 在x 轴上,△AOB 是等腰三角形. (1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22AC OC +=5. (1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0). 当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则OD OA OA OB =,解得OB =825,点B 的坐标为(-825,0)题B (3)B(4)(第23题)(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bx ax y +=2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=.(当OA =OB 时,同理得x x y 415432--=. (3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB =90°,△AOC ∽△PBE ,43==OC AC BE PE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,-3m ),代入x x y 231632--=,解得m =3.则点P 的坐标为(4,-9),S 梯形ABPO =S △ABO +S △BPO =48. 若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9), S 梯形AOPB =S △ABO +S △BPO =48.(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB =90°,△AOC ∽△PBF ,43==OC AC BF PF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23. 则点P 的坐标为(1,-29),(第24题)S 梯形ABPO =S △ABO +S △BPO =475. 若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BCACOF PF .设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB=S △ABO +S △BPO=75.。
山东省淄博市中考数学试卷含答案解析版修订稿
山东省淄博市中考数学试卷含答案解析版 Document number【SA80SAB-SAA9SYT-SAATC-SA6UT-SA18】2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017淄博)﹣23的相反数是( ) A .32 B .−32 C .23 D .﹣23【考点】14:相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣23与23是只有符号不同的两个数, ∴﹣23的相反数是23. 故选C .【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .×108【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017淄博)下列几何体中,其主视图为三角形的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017淄博)下列运算正确的是()A.a2a3=a6B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017淄博)若分式|x|−1x+1的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式|x|−1x+1的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017淄博)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【考点】AA:根的判别式.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【考点】MO:扇形面积的计算;KW:等腰直角三角形.【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S△BOD +S扇形COD=12×2×2+90?x×22360=2+π,故选A.【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .38B .58C .14D .12【考点】X6:列表法与树状图法;15:绝对值.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m ﹣n|≤1的有10种结果,∴两人“心领神会”的概率是1016=58, 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t 之间的变化情况的是( )A .B .C .D .【考点】E6:函数的图象.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h (cm )与注水时间t (min )的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D .【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017淄博)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C .103D .154【考点】S9:相似三角形的判定与性质;KF :角平分线的性质;KJ :等腰三角形的判定与性质.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF∽△ABC可得DF=163,据此得出EF=DF﹣DE=103.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵{∠xxx=∠xxx xx=xx∠xxx=∠xxx,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC=√xx2+xx2=√62+82=10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF ∥BC ,∴△ADF ∽△ABC ,∴xx xx =xx xx ,即46=xx 8, 解得:DF=163, 则EF=DF ﹣DE=163﹣2=103, 故选:C .【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017淄博)分解因式:2x 3﹣8x= 2x (x ﹣2)(x+2) .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2x ,再对余下的项利用平方差公式分解因式.【解答】解:2x 3﹣8x ,=2x (x 2﹣4),=2x (x+2)(x ﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式. 运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017淄博)已知α,β是方程x 2﹣3x ﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .【考点】AB :根与系数的关系.【专题】11 :计算题.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣xx,x1x2=xx.15.(4分)(2017淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是﹣959 .【考点】1M:计算器—基础知识.【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】解:根据题意得:(﹣)×312+√4=﹣959,故答案为:﹣959.【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017淄博)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=2√3.【考点】KK:等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2√3,根据S △ABD +S △ACD =S △ABC 即可得出DE+DF=AG=2√3. 【解答】解:如图,作AG ⊥BC 于G , ∵△ABC 是等边三角形, ∴∠B=60°,∴AG=√32AB=2√3, 连接AD ,则S △ABD +S △ACD =S △ABC , ∴12ABDE+12ACDF=12BCAG , ∵AB=AC=BC=4, ∴DE+DF=AG=2√3, 故答案为:2√3.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE+DF=AG 是解题的关键.17.(4分)(2017淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CDn EnFn,其面积S=2(x+1)(x+2).【考点】38:规律型:图形的变化类;K3:三角形的面积.【分析】先连接D1E1,D2E2,D3E3,依据D1E1∥AB,D1E1=12AB,可得△CD1E1∽△CBA,且x1x1xx1=x1x1xx=12,根据相似三角形的面积之比等于相似比的平方,即可得到S△CD1E1=14S△ABC=14,依据E1是BC的中点,即可得出S△D1E1F1=13S△BD1E1=13×14=112,据此可得S1=13;运用相同的方法,依次可得S2=16,S2=16;根据所得规律,即可得出四边形CDn EnFn,其面积Sn=1(x+1)2+1(x+1)2×n×11+x+1,最后化简即可.【解答】解:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=12AB,∴△CD1E1∽△CBA,且x1x1xx1=x1x1xx=12,∴S△CD1E1=14S△ABC=14,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=14,∴S△D1E1F1=13S△BD1E1=13×14=112,∴S1=S△CD1E1+S△D1E1F1=14+112=13,同理可得:图2中,S2=S△CD2E2+S△D2E2F2=19+118=16,图3中,S3=S△CD3E3+S△D3E3F3=116+380=110,以此类推,将AC,BC边(n+1)等分,得到四边形CDn EnFn,其面积Sn =1(x+1)2+1(x+1)2×n×11+x+1=2(x+1)(x+2),故答案为:2(x+1)(x+2).【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017淄博)解不等式:x−22≤7−x3.【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017淄博)已知:如图,E,F为ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质. 【分析】证明△AEB ≌△CFD ,即可得出结论. 【解答】证明:∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AB=DC . ∴∠BAE=∠DCF .在△AEB 和△CFD 中,{xx =xx∠xxx =∠xxxxx =xx ,∴△AEB ≌△CFD (SAS ). ∴BE=DF .【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度. 【考点】B7:分式方程的应用.【分析】求的汽车原来的平均速度,路程为420km ,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h .等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h ,根据题意得:420x ﹣420(1+50%)x =2,解得:x=70经检验:x=70是原方程的解. 答:汽车原来的平均速度70km/h .【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)30 40 70 80 90 110 120 140天数(t) 1 2 3 5 7 6 4 2说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90 ,中位数90 ;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=xx(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【考点】GB:反比例函数综合题.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=xx(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=3x ;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中{xx=xx∠xxx=∠xxx xx=xx∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【考点】MR:圆的综合题.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN ∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,{∠xxx=∠xxx∠x=∠xxx=90°xx=xx,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=√xx2+xx2=2√4+x2.∵BM=MP=2OE,∴2√4+x2=2×(4﹣a),解得:a=3 2,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得xxxx的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由xxxx=xxxx=xxxx的值,可求得PH和OH,可求得P点坐标;当P点在第三象限时,同理可求得P点坐标.【解答】解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得{4x+2x=294x+32x=0,解得{x=2x=−3,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD 于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC =S△CDO+S△CDB=12CDOE+12CDBF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中{∠xxx=∠xxx xx=xx∠xxx=∠xxx∴△AOB≌△NOB(ASA),∴ON=OA=3 2,∴N(0,32),∴可设直线BN解析式为y=kx+3 2,把B点坐标代入可得2=2k+32,解得k=14,∴直线BN的解析式为y=14x+32,联立直线BN和抛物线解析式可得{x=14x+32x=2x2−3x,解得{x=2x=2或{x=−38x=4532,∴M (﹣38,4532),∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2), ∴OB=2√2,OC=√2,∵△POC ∽△MOB , ∴xx xx =xx xx=2,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH , ∴xx xx =xx xx =xx xx=2, ∵M (﹣38,4532),∴MG=38,OG=4532,∴PH=12MG=316,OH=12OG=4564,∴P (4564,316);当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564,∴P(﹣316,4564);综上可知存在满足条件的点P,其坐标为(4564,316)或(﹣316,4564).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
2010年山东省淄博市中考数学试题及答案
2010年山东省淄博市中等学校招生考试数 学 试 题一、选择题(第1~6小题每题3分,第7~12小题每题4分,满分42分)1.下列四个数中最小的是( )A .-10B .-1C .0D .0.1 2.计算b a ab 2253⋅的结果是( )A .228b aB .338b aC .3315b aD .2215b a3.八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是( ) A .想去上海世博会参观的学生占全班学生的60% B .想去上海世博会参观的学生有12人 C .想去上海世博会参观的学生肯定最多 D .想去上海世博会参观的学生占全班学生的61 4.下列结论中不能由0=+b a 得到的是( )A .ab a -=2B .b a =C .0=a ,0=bD .22b a = 5.如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是( )A .平移B .轴对称C .旋转D .平移后再轴对称6.下列运算正确的是( )A .1=---a b b b a a B .b a nm b n a m --=- C .a a b a b 11=+- D .ba b a b a b a -=-+--1222 7.已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是( )A .在点B 右侧 B .与点B 重合C .在点A 和点B 之间D .在点A 左侧8.图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个正八棱柱的三个侧面,在图中标注的4个区(第7题)CBAB ′BA ′BC ′(第5题)域中,应该选择站在( )A .①B .②C .③D .④9.有长度分别为3cm 、5cm 、7cm 、9cm 的四条线段,从中任取三条线段能够组成三角形的概率是( ) A .43 B .32 C .21 D .41 10.如图,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D′,C′的位置.若∠AMD′=36°,则∠NFD′等于( )A .144°B .126°C .108°D .72°11.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为( )A .6B .3C .200623 D .10033231003⨯+12.如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD=CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有( )(第11题)(第10题)A .①②B .①③④C .②③④D .①②③④二、填空题(每小题4分,满分20分)13.三个连续整数中,n 是最小的一个,这三个数的和为 . 14.分解因式:a 2b -2ab 2+b 3= . 15.如图是由4个边长为1的正方形构成的“田字格”.只用没有刻度的直尺在这个“田字格”中最多可以作出长度为5的线段 条.16.在一块长为8、宽为23的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .17.如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为 ⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,并且 ∠ABF =∠AEC ,则直线BF 的函数表达式为 .三、解答题(满分58分)18.(7分)解方程24)5(6-=-x .19.(7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .A(第12题)20.(8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班级代表参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?21.(8分)已知关于x 的方程014)3(222=--+--k k x k x .(1)若这个方程有实数根,求k 的取值范围;(2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xmy =的图象上,求满足条件的m 的最小值.22.(8分)小明7∶20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8∶00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7∶55.求小明从商店到学校的平均速度. 23.(10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长; (2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D 、P 、B 、Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3. (1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan30°=1,∴PF =21,∴DP =22DF PF =210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3,∴cos ∠PDF =PDDF =23,∴∠PDF =30°.∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.(3)CP =23.B (3)B(4)(第23题)(第23题)B(2)B (1)在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ =CP DP ⋅=49. 24.(10分)已知直角坐标系中有一点A (-4,3),点B 在x 轴上,△AOB 是等腰三角形.(1)求满足条件的所有点B 的坐标;(2)求过O 、A 、B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22AC OC +=5. (1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0). 当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则OD OA OA OB =,解得OB =825,点B 的坐标为(-825,0)(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bxax y +=2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=.题(当OA =OB 时,同理得x x y 415432--=. (3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB =90°,△AOC ∽△PBE ,43==OC AC BE PE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,-3m ),代入x x y 231632--=,解得m =3.则点P 的坐标为(4,-9), S 梯形ABPO =S △ABO +S △BPO =48. 若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9), S 梯形AOPB =S △ABO +S △BPO =48.(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB =90°,△AOC ∽△PBF ,43==OC AC BF PF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23.(第24题)则点P 的坐标为(1,-29), S 梯形ABPO =S △ABO +S △BPO =475.若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BCACOF PF .设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB =S △ABO +S △BPO =75.。
淄博市中考数学试卷及答案(解析)
山东省淄博市中考数学试卷一、选择题(共12小题,每小题4分)1.(4分)(山东淄博)计算(﹣3)2等于()A.﹣9 B.﹣6 C. 6 D.9考点:有理数的乘方.分析:根据负数的偶次幂等于正数,可得答案.解答:解:原式=32=9.故选:D.点评:本题考查了有理数的乘方,负数的偶次幂是正数.2.(4分)(山东淄博)方程﹣=0解是()A.x=B.x=C.x=D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:3x+3﹣7x=0,解得:x=,经检验x=是分式方程的解.故选B点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3.(4分)(山东淄博)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况.则这些车的车速的众数、中位数分别是()A.8,6 B.8,5 C.52,53 D.52,52考点:频数(率)分布直方图;中位数;众数.专题:计算题.分析:找出出现次数最多的速度即为众数,将车速按照从小到大顺序排列,求出中位数即可.解答:解:根据题意得:这些车的车速的众数52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55,中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D点评:此题考查了频数(率)分布直方图,中位数,以及众数,弄清题意是解本题的关键.4.(4分)(山东淄博)如图是三个大小不等的正方体拼成的几何体,其中两个较小正方体的棱长之和等于大正方体的棱长.该几何体的主视图、俯视图和左视图的面积分别是S1,S2,S3,则S1,S2,S3的大小关系是()A.S1>S2>S3B.S3>S2>S1C.S2>S3>S1D.S1>S3>S2考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,根据边角面积的大小,可得答案.解答:解:主视图的面积是三个正方形的面积,左视图是两个正方形的面积,俯视图是一个正方形的面积,S1>S3>S2,故选:D.点评:本题考查了简单组合体的三视图,分别得出三视图是解题关键.5.(4分)(山东淄博)一元二次方程x2+2x﹣6=0的根是()A.x1=x2=B.x1=0,x2=﹣2C.x1=,x2=﹣3D.x1=﹣,x2=3考点:解一元二次方程-公式法.分析:找出方程中二次项系数a,一次项系数b及常数项c,再根据x=,将a,b及c的值代入计算,即可求出原方程的解.解答:解:∵a=1,b=2,c=﹣6∴x====﹣±2,∴x1=,x2=﹣3;故选C.点评:此题考查了利用公式法求一元二次方程的解,利用公式法解一元二次方程时,首先将方程化为一般形式,找出二次项系数,一次项系数及常数项,计算出根的判别式,当根的判别式大于等于0时,将a,b及c的值代入求根公式即可求出原方程的解.6.(4分)(山东淄博)当x=1时,代数式ax3﹣3bx+4的值是7,则当x=﹣1时,这个代数式的值是()A.7 B. 3 C. 1 D.﹣7考点:代数式求值.专题:整体思想.分析:把x=1代入代数式求值a、b的关系式,再把x=﹣1代入进行计算即可得解.解答:解:x=1时,ax3﹣3bx+4=a﹣3b+4=7,解得a﹣3b=3,当x=﹣1时,ax3﹣3bx+4=﹣a+3b+4=﹣3+4=1.故选C.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(4分)(山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.8.(4分)(山东淄博)如图,二次函数y=x2+bx+c的图象过点B(0,﹣2).它与反比例函数y=﹣的图象交于点A(m,4),则这个二次函数的解析式为()A.y=x2﹣x﹣2 B.y=x2﹣x+2 C.y=x2+x﹣2 D.y=x2+x+2考点:待定系数法求二次函数解析式;反比例函数图象上点的坐标特征.专题:计算题.分析:将A坐标代入反比例解析式求出m的值,确定出A的坐标,将A与B坐标代入二次函数解析式求出b与c的值,即可确定出二次函数解析式.解答:解:将A(m,4)代入反比例解析式得:4=﹣,即m=﹣2,∴A(﹣2,4),将A(﹣2,4),B(0,﹣2)代入二次函数解析式得:,解得:b=﹣1,c=﹣2,则二次函数解析式为y=x2﹣x﹣2.故选A.点评:此题考查l待定系数法求二次函数解析式,以及反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.9.(4分)(山东淄博)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙B.甲丙乙C.乙丙甲D.丙甲乙考点:正方形的性质;线段的性质:两点之间线段最短;比较线段的长短.分析:根据正方形的性质得出AB=BC=CD=AD,∠B=∠ECF,根据直角三角形得出AF>AB,EF>CF,分别求出甲、乙、丙行走的距离,再比较即可.解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=90°,甲行走的距离是AB+BF+CF=AB+BC=2AB;乙行走的距离是AF+EF+EC+CD;丙行走的距离是AF+FC+CD,∵∠B=∠ECF=90°,∴AF>AB,EF>CF,∴AF+FC+CD>2AB,AF+FC+CD<AF+EF+EC+CD,∴甲比丙先到,丙比乙先到,即顺序是甲丙乙,故选B.点评:本题考查了正方形的性质,直角三角形的性质的应用,题目比较典型,难度适中.10.(4分)(山东淄博)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B. C. D. 2考点:勾股定理;线段垂直平分线的性质;矩形的性质.分析:本题要依靠辅助线的帮助,连接CE,首先利用线段垂直平分线的性质证明BC=EC.求出EC后根据勾股定理即可求解.解答:解:如图,连接EC.∵FC垂直平分BE,∴BC=EC(线段垂直平分线的性质)又∵点E是AD的中点,AE=1,AD=BC,故EC=2利用勾股定理可得AB=CD==.故选:C.点评:本题考查的是勾股定理、线段垂直平分线的性质以及矩形的性质,本题的关键是要画出辅助线,证明BC=EC后易求解.本题难度中等.11.(4分)(山东淄博)如图,直线AB与⊙O相切于点A,弦CD∥AB,E,F为圆上的两点,且∠CDE=∠ADF.若⊙O的半径为,CD=4,则弦EF的长为()A. 4 B.2C.5D. 6 考点:切线的性质.分析:首先连接OA,并反向延长交CD于点H,连接OC,由直线AB与⊙O相切于点A,弦CD∥AB,可求得OH的长,然后由勾股定理求得AC的长,又由∠CDE=∠ADF,可证得EF=AC,继而求得答案.解答:解:连接OA,并反向延长交CD于点H,连接OC,∵直线AB与⊙O相切于点A,∴OA⊥AB,∵弦CD∥AB,∴AH⊥CD,∴CH=CD=×4=2,∵⊙O的半径为,∴OA=OC=,∴OH==,∴AH=OA+OH=+=4,∴AC==2.∵∠CDE=∠ADF,∴=,∴=,∴EF=AC=2.故选B.点评:此题考查了切线的性质、圆周角定理、垂径定理以及勾股定理等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.12.(4分)(山东淄博)已知二次函数y=a(x﹣h)2+k(a>0),其图象过点A(0,2),B(8,3),则h的值可以是()A. 6 B. 5 C. 4 D. 3考点:二次函数的性质.专题:计算题.分析:根据抛物线的顶点式得到抛物线的对称轴为直线x=h,由于所给数据都是正数,所以当对称轴在y轴的右侧时,比较点A和点B都对称轴的距离可得到h<4.解答:解:∵抛物线的对称轴为直线x=h,∴当对称轴在y轴的右侧时,A(0,2)到对称轴的距离比B(8,3)到对称轴的距离小,∴x=h<4.故选D.点评:本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<﹣时,y随x的增大而增大;x>﹣时,y随x的增大而减小;x=﹣时,y取得最大值,即顶点是抛物线的最高点.二、填空题(共5小题,每小题4分,满分20分)13.(4分)(山东淄博)分解因式:8(a2+1)﹣16a=8(a﹣1)2.考点:提公因式法与公式法的综合运用.分析:首先提取公因式8,进而利用完全平方公式分解因式得出即可.解答:解:8(a2+1)﹣16a=8(a2+1﹣2a)=8(a﹣1)2.故答案为:8(a﹣1)2.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练应用完全平方公式是解题关键.14.(4分)(山东淄博)某实验中学九年级(1)班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是108度.考点:扇形统计图.分析:首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.解答:解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故答案为:108.点评:此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.15.(4分)(山东淄博)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是AD=DC.考点:菱形的判定;平行四边形的性质.专题:开放型.分析:根据菱形的定义得出答案即可.解答:解:∵邻边相等的平行四边形是菱形,∴平行四边形AB CD的对角线AC、BD相交于点O,试添加一个条件:可以为:AD=DC;故答案为:AD=DC.点评:此题主要考查了菱形的判定以及平行四边形的性质,根据菱形的定义得出是解题关键.16.(4分)(山东淄博)关于x的反比例函数y=的图象如图,A、P为该图象上的点,且关于原点成中心对称.△PAB中,PB∥y轴,AB∥x轴,PB与AB相交于点B.若△PAB的面积大于12,则关于x的方程(a﹣1)x2﹣x+=0的根的情况是没有实数根.考点:根的判别式;反比例函数的性质.分析:由比例函数y=的图象位于一、三象限得出a+4>0,A、P为该图象上的点,且关于原点成中心对称,得出2xy>12,进一步得出a+4>6,由此确定a的取值范围,进一步利用根的判别式判定方程根的情况即可.解答:解:∵反比例函数y=的图象位于一、三象限,∴a+4>0,a>﹣4,∵A、P关于原点成中心对称,PB∥y轴,AB∥x轴,△PAB的面积大于12,∴2xy>12,即a+4>6,a>2∴a>2.∴△=(﹣1)2﹣4(a﹣1)×=2﹣a<0,∴关于x的方程(a﹣1)x2﹣x+=0没有实数根.故答案为:没有实数根.点评:此题综合考查了反比例函数的图形与性质,一元二次方程根的判别式,注意正确判定a的取值范围是解决问题的关键.17.(4分)(山东淄博)如图,在正方形网格中有一边长为4的平行四边形ABCD,请将其剪拼成一个有一边长为6的矩形.(要求:在答题卡的图中画出裁剪线即可)考点:作图—应用与设计作图;图形的剪拼.分析:如图先过D点向下剪出一个三角形放在平行四边形的左边,再在剪去D点下面两格的小正方形放在右面,就组成了一人矩形.解答:解:如图:点评:本题一方面考查了学生的动手操作能力,另一方面考查了学生的空间想象能力,重视知识的发生过程,让学生体验学习的过程.三、解答题(共7小题,共52分)18.(5分)(山东淄博)计算:•.考点:分式的乘除法.专题:计算题.分析:原式约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.19.(5分)(山东淄博)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.考点:平行线的性质.分析:根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.解答:解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.点评:本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.20.(8分)(山东淄博)节能灯根据使用寿命分成优等品、正品和次品三个等级,其中使用寿命大于或等于8000小时的节能灯是优等品,使用寿命小于6000小时的节能灯是次品,其余的节能灯是正品.质检部门对某批次的一种节能灯(共200个)的使用寿命进行追踪调查,并将结果整理成此表.(1)根据分布表中的数据,在答题卡上写出a,b,c的值;(2)某人从这200个节能灯中随机购买1个,求这种节能灯恰好不是次品的概率.寿命(小时)频数频率4000≤t≤5000 10 0.055000≤t<6000 20 a6000≤t<7000 80 0.407000≤t<8000 b 0.158000≤t<9000 60 c合计 200 1考点:频数(率)分布表;概率公式.分析:(1)由频率分布表中的数据,根据频率=频数÷数据总数及频数=数据总数×频率即可求出a、b、c的值;(2)根据频率分布表中的数据,用不是次品的节能灯个数除以节能灯的总个数即可求解.解答:解:(1)根据频率分布表中的数据,得a==0.1,b=200×0.15=30,c==0.3;(Ⅱ)设“此人购买的节能灯恰好不是次品”为事件A.由表可知:这批灯泡中优等品有60个,正品有110个,次品有30个,所以此人购买的节能灯恰好不是次品的概率为P(A)==0.85.点评:本题考查了读频数(率)分布表的能力和利用统计图获取信息的能力及古典概型的概率,用到的知识点:频率=频数÷数据总数,概率=所有出现的情况数与总数之比.21.(8分)(山东淄博)为鼓励居民节约用电,某省试行阶段电价收费制,具体执行方案如表:档次每户每月用电数(度)执行电价(元/度)第一档小于等于200 0.55第二档大于200小于400 0.6第三档大于等于400 0.85例如:一户居民七月份用电420度,则需缴电费420×0.85=357(元).某户居民五、六月份共用电500度,缴电费290.5元.已知该用户六月份用电量大于五月份,且五、六月份的用电量均小于400度.问该户居民五、六月份各月电多少度?考点:二元一次方程组的应用.分析:某户居民五、六月份共用电500度,就可以得出每月用电量不可能都在第一档,分情况讨论,当5月份用电量为x度≤200度,6月份用电(500﹣x)度,当5月份用电量为x 度>200度,六月份用电量为(500﹣x)度>x度,分别建立方程求出其解即可.解答:解:当5月份用电量为x度≤200度,6月份用电(500﹣x)度,由题意,得0.55x+0.6(500﹣x)=290.5,解得:x=190,∴6月份用电500﹣x=310度.当5月份用电量为x度>200度,六月份用电量为(500﹣x)度,由题意,得0.6x+0.6(500﹣x)=290.5,300=290.5,原方程无解.∴5月份用电量为190度,6月份用电310度.点评:本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,分类讨论思想的运用,解答时由总价=单价×数量是关键.22.(8分)(山东淄博)如图,在直角坐标系中,点A的坐标是(0.3),点C是x轴上的一个动点,点C在x轴上移动时,始终保持△ACP是等边三角形.当点C移动到点O时,得到等边三角形A OB(此时点P与点B重合).(1)点C在移动的过程中,当等边三角形ACP的顶点P在第三象限时(如图),求证:△AOC≌△ABP;由此你发现什么结论?(2)求点C在x轴上移动时,点P所在函数图象的解析式.考点:一次函数综合题.分析:(1)由等边三角形的性质易证AO=AB,AC=AP,∠CAP=∠OAB=60°;然后由图示知∠CAP+∠PAO=∠OAB+∠PAO,即∠CAO=∠PAB.所以根据SAS证得结论;(2)利用(1)中的结论PB⊥AB.根据等边三角形的性质易求点B的坐标为B(,).再由旋转的性质得到当点P移动到y轴上的坐标是(0,﹣3),所以根据点B、P的坐标易求直线BP的解析式.解答:(1)证明:∵△AOB与△ACP都是等边三角形,∴AO=AB,AC=AP,∠CAP=∠OAB=60°,∴∠CAP+∠PAO=∠OAB+∠PAO,∴∠CAO=∠PAB,在△AOC与△ABP中,∴△AOC≌△ABP(SAS).∴∠COA=∠PBA=90°,∴点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°.故结论是:点P在过点B且与AB垂直的直线上或PB⊥AB或∠ABP=90°;(2)解:点P在过点B且与AB垂直的直线上.∵△AOB是等边三角形,A(0,3),∴B(,).当点C移动到点P在y轴上时,得P(0,﹣3).设点P所在的直线方程为:y=kx+b(k≠0).把点B、P的坐标分别代入,得,解得,所以点P所在的函数图象的解析式为:y=x﹣3.点评:本题综合考查了待定系数法求一次函数解析式,旋转的性质,全等三角形的判定与性质等知识.解答(2)题时,求得点P位于y轴负半轴上的坐标是解题的关键.23.(9分)(山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD.连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.考点:相似三角形的判定与性质;等腰直角三角形;三角形中位线定理.分析:(1)根据等腰三角形的性质,可得AM是高线、顶角的角平分线,根据直角三角形的性质,可得∠EAB+∠EBA=90°,根据三角形外角的性质,可得答案;(2)根据三角形中位线的性质,可得MF与AC的关系,根据等量代换,可得MF与BD 的关系,根据等腰直角三角形,可得BM与NM的关系,根据等量代换,可得NM与BC 的关系,根据同角的余角相等,可得∠CBD与∠NMF的关系,根据两边对应成比例且夹角相等的两个三角形相似,可得答案.解答:(1)答:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴∠MNB=∠NAB+∠ABN=(∠BAE+∠ABE)=45°.∴△BMN是等腰直角三角形;(2)答:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,FM=AC.∵AC=BD,∴FM=BD,即.∵△BMN是等腰直角三角形,∴NM=BM=BC,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC,∴∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.点评:本题考查了相似三角形的判定与性质,利用了锐角是45°的直角三角形是等腰直角三角形,两边对应成比例且夹角相等的两个三角形相似.24.(9分)(山东淄博)如图,点A与点B的坐标分别是(1,0),(5,0),点P是该直角坐标系内的一个动点.(1)使∠APB=30°的点P有无数个;(2)若点P在y轴上,且∠APB=30°,求满足条件的点P的坐标;(3)当点P在y轴上移动时,∠APB是否有最大值?若有,求点P的坐标,并说明此时∠APB最大的理由;若没有,也请说明理由.考点:圆的综合题;三角形的外角性质;等边三角形的性质;勾股定理;矩形的判定与性质;垂径定理;圆周角定理;切线的性质.专题:综合题;探究型.分析:(1)已知点A、点B是定点,要使∠APB=30°,只需点P在过点A、点B的圆上,且弧AB所对的圆心角为60°即可,显然符合条件的点P有无数个.(2)结合(1)中的分析可知:当点P在y轴的正半轴上时,点P是(1)中的圆与y轴的交点,借助于垂径定理、等边三角形的性质、勾股定理等知识即可求出符合条件的点P的坐标;当点P在y轴的负半轴上时,同理可求出符合条件的点P的坐标.(3)由三角形外角的性质可证得:在同圆或等圆中,同弧所对的圆周角大于同弧所对的圆外角.要∠APB最大,只需构造过点A、点B且与y轴相切的圆,切点就是使得∠APB最大的点P,然后结合切线的性质、三角形外角的性质、矩形的判定与性质、勾股定理等知识即可解决问题.解答:解:(1)以AB为边,在第一象限内作等边三角形ABC,以点C为圆心,AC为半径作⊙C,交y轴于点P1、P2.在优弧AP1B上任取一点P,如图1,则∠APB=∠ACB=×60°=30°.∴使∠APB=30°的点P有无数个.故答案为:无数.(2)①当点P在y轴的正半轴上时,过点C作CG⊥AB,垂足为G,如图1.∵点A(1,0),点B(5,0),∴OA=1,OB=5.∴AB=4.∵点C为圆心,CG⊥AB,∴AG=BG=AB=2.∴OG=OA+AG=3.∵△ABC是等边三角形,∴AC=BC=AB=4.∴CG===2.∴点C的坐标为(3,2).过点C作CD⊥y轴,垂足为D,连接CP2,如图1,∵点C的坐标为(3,2),∴CD=3,OD=2.∵P1、P2是⊙C与y轴的交点,∴∠AP1B=∠AP2B=30°.∵CP2=CA=4,CD=3,∴DP2==.∵点C为圆心,CD⊥P1P2,∴P1D=P2D=.∴P2(0,2﹣).P1(0,2+).②当点P在y轴的负半轴上时,同理可得:P3(0,﹣2﹣).P4(0,﹣2+).综上所述:满足条件的点P的坐标有:(0,2﹣)、(0,2+)、(0,﹣2﹣)、(0,﹣2+).(3)当过点A、B的⊙E与y轴相切于点P时,∠APB最大.①当点P在y轴的正半轴上时,连接EA,作EH⊥x轴,垂足为H,如图2.∵⊙E与y轴相切于点P,∴PE⊥OP.∵EH⊥AB,OP⊥OH,∴∠EPO=∠POH=∠EHO=90°.∴四边形OPEH是矩形.∴OP=EH,PE=OH=3.∴EA=3.∵∠EHA=90°,AH=2,EA=3,∴EH===∴OP=∴P(0,).②当点P在y轴的负半轴上时,同理可得:P(0,﹣).理由:①若点P在y轴的正半轴上,在y轴的正半轴上任取一点M(不与点P重合),连接MA,MB,交⊙E于点N,连接NA,如图2所示.∵∠ANB是△AMN的外角,∴∠ANB>∠AMB.∵∠APB=∠ANB,∴∠APB>∠AMB.②若点P在y轴的负半轴上,同理可证得:∠APB>∠AMB.综上所述:当点P在y轴上移动时,∠APB有最大值,此时点P的坐标为(0,)和(0,﹣).点评:本题考查了垂径定理、圆周角定理、勾股定理、等边三角形的性质、矩形的判定与性质,切线的性质、三角形外角性质等知识,综合性强.同时也考查了创造性思维,有一定的难度.构造辅助圆是解决本题关键.。
山东省淄博市中考数学试卷
山东省淄博市中考数学试卷一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)﹣的相反数是()A.B.C.D.﹣2.(4分)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107D.0.1×1083.(4分)下列几何体中,其主视图为三角形的是()A.B.C.D.4.(4分)下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c25.(4分)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.26.(4分)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣17.(4分)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2 8.(4分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=09.(4分)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π10.(4分)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m﹣n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是()A.B.C.D.11.(4分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h 与注水时间t之间的变化情况的是()A.B.C.D.12.(4分)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)分解因式:2x3﹣8x=.14.(4分)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为.15.(4分)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是.16.(4分)在边长为4的等边三角形ABC中,D为BC边上的任意一点,过点D 分别作DE⊥AB,DF⊥AC,垂足分别为E,F,则DE+DF=.17.(4分)设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n E n F n,其面积S=.三、解答题(本大题共7小题,共52分)18.(5分)解不等式:≤.19.(5分)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.20.(8分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.21.(8分)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数,中位数;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?22.(8分)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.23.(9分)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC 上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.24.(9分)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A (,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017•淄博)﹣的相反数是()A.B.C.D.﹣【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与是只有符号不同的两个数,∴﹣的相反数是.故选C.【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017•淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为()A.1×106B.100×104C.1×107D.0.1×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(4分)(2017•淄博)下列几何体中,其主视图为三角形的是()A.B.C.D.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017•淄博)下列运算正确的是()A.a2•a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2•a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017•淄博)若分式的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017•淄博)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017•淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017•淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k•(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k•(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017•淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A.2+πB.2+2πC.4+πD.2+4π【分析】如图,连接CD,OD,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD,OD,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S △BOD +S 扇形COD =2×2+=2+π,故选A .【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017•淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )A .B .C .D .【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m ﹣n |≤1的有10种结果, ∴两人“心领神会”的概率是=,故选:B .【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017•淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:D.【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017•淄博)如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB的平分线相交于点E,过点E作EF∥BC交AC于点F,则EF的长为()A.B.C.D.【分析】延长FE交AB于点D,作EG⊥BC、作EH⊥AC,由EF∥BC可证四边形BDEG是矩形,由角平分线可得ED=EH=EG、∠DAE=∠HAE,从而知四边形BDEG 是正方形,再证△DAE≌△HAE、△CGE≌△CHE得AD=AH、CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF∽△ABC可得DF=,据此得出EF=DF﹣DE=.【解答】解:如图,延长FE交AB于点D,作EG⊥BC于点G,作EH⊥AC于点H,∵EF∥BC、∠ABC=90°,∴FD⊥AB,∵EG⊥BC,∴四边形BDEG是矩形,∵AE平分∠BAC、CE平分∠ACB,∴ED=EH=EG,∠DAE=∠HAE,∴四边形BDEG是正方形,在△DAE和△HAE中,∵,∴△DAE≌△HAE(SAS),∴AD=AH,同理△CGE≌△CHE,∴CG=CH,设BD=BG=x,则AD=AH=6﹣x、CG=CH=8﹣x,∵AC===10,∴6﹣x+8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF∥BC,∴△ADF∽△ABC,∴=,即=,解得:DF=,则EF=DF﹣DE=﹣2=,故选:C.【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017•淄博)分解因式:2x3﹣8x=2x(x﹣2)(x+2).【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017•淄博)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为 0 .【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a (α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a (α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c=0(a ≠0)的两根时,x 1+x 2=﹣,x 1x 2=.15.(4分)(2017•淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是 ﹣7 .【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】解:根据题意得:(3.5﹣4.5)×32+=﹣7,故答案为:﹣7.【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017•淄博)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2 . 【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2.【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=AB=2,连接AD ,则S △ABD +S △ACD =S △ABC , ∴AB•DE +AC•DF=BC•AG ,∵AB=AC=BC=4,∴DE +DF=AG=2, 故答案为:2.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG 是解题的关键.17.(4分)(2017•淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=.如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=;如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=;…按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= .【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=AB ,可得△CD 1E 1∽△CBA ,且==,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD1E1=S △ABC =,依据E 1是BC 的中点,即可得出S △D1E1F1=S △BD1E1=×=,据此可得S 1=;运用相同的方法,依次可得S 2=,S 2=;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =+×n ×,最后化简即可.【解答】解:如图所示,连接D 1E 1,D 2E 2,D 3E 3,∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=AB ,∴△CD 1E 1∽△CBA ,且==, ∴S △CD1E1=S △ABC =,∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=,∴S △D1E1F1=S △BD1E1=×=, ∴S 1=S △CD1E1+S △D1E1F1=+=,同理可得:图2中,S 2=S △CD2E2+S △D2E2F2=+=, 图3中,S 3=S △CD3E3+S △D3E3F3=+=, 以此类推,将AC ,BC 边(n +1)等分,得到四边形CD n E n F n ,其面积S n=+×n×=,故答案为:.【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017•淄博)解不等式:≤.【分析】不等式去分母,去括号,移项合并,把x系数化为1,即可求出解集.【解答】解:去分母得:3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017•淄博)已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017•淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.【分析】求的汽车原来的平均速度,路程为420km,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h.等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h,根据题意得:﹣=2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017•淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017•淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE 是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017•淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP 为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM==2.∵BM=MP=2OE,∴2=2×(4﹣a),解得:a=,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017•淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x 轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)由直线解析式可求得B点坐标,由A、B坐标,利用待定系数法可求得抛物线的表达式;(2)过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD于点F,可设出C点坐标,利用C点坐标可表示出CD的长,从而可表示出△BOC的面积,由条件可得到关于C点坐标的方程,可求得C点坐标;(3)设MB交y轴于点N,则可证得△ABO≌△NBO,可求得N点坐标,可求得直线BN的解析式,联立直线BM与抛物线解析式可求得M点坐标,过M作MG ⊥y轴于点G,由B、C的坐标可求得OB和OC的长,由相似三角形的性质可求得的值,当点P在第一象限内时,过P作PH⊥x轴于点H,由条件可证得△MOG∽△POH,由==的值,可求得PH和OH,可求得P点坐标;当P 点在第三象限时,同理可求得P点坐标.【解答】解:(1)∵B(2,t)在直线y=x上,∴t=2,∴B(2,2),把A、B两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=2x2﹣3x;(2)如图1,过C作CD∥y轴,交x轴于点E,交OB于点D,过B作BF⊥CD 于点F,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC =S△CDO+S△CDB=CD•OE+CD•BF=(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中∴△AOB≌△NOB(ASA),∴ON=OA=,∴N(0,),∴可设直线BN解析式为y=kx+,把B点坐标代入可得2=2k+,解得k=,∴直线BN的解析式为y=x+,联立直线BN和抛物线解析式可得,解得或,∴M(﹣,),∵C(1,﹣1),∴∠COA=∠AOB=45°,且B(2,2),∴OB=2,OC=,∵△POC∽△MOB,∴==2,∠POC=∠BOM,当点P在第一象限时,如图3,过M作MG⊥y轴于点G,过P作PH⊥x轴于点H,∵∠COA=∠BOG=45°,∴∠MOG=∠POH,且∠PHO=∠MGO,∴△MOG∽△POH,∴===2,∵M(﹣,),∴MG=,OG=,∴PH=MG=,OH=OG=,∴P(,);当点P在第三象限时,如图4,过M作MG⊥y轴于点G,过P作PH⊥y轴于点H,同理可求得PH=MG=,OH=OG=,∴P(﹣,﹣);综上可知存在满足条件的点P,其坐标为(,)或(﹣,﹣).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C点坐标表示出△BOC的面积是解题的关键,在(3)中确定出点P的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
山东省淄博市中考数学试卷(word版 解析版)
山东省淄博市中考数学试卷一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.95.(4分)与最接近整数是()A.5B.6C.7D.86.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.7.(4分)化简结果为()A. B.a﹣1 C.a D.18.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.09.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A. B.C. D.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.812.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=度.14.(4分)分解因式:2x3﹣6x2+4x=.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.参考答案与试题解析一.选择题:本大题共12个小题,每小题4分,共48分.在每小题给出四个选项中,只有一项是符合题目要求.1.(4分)计算结果是()A.0B.1C.﹣1D.【考点】1A:有理数减法;15:绝对值.【分析】先计算绝对值,再计算减法即可得.【解答】解:=﹣=0,故选:A.【点评】本题主要考查绝对值和有理数减法,解题关键是掌握绝对值性质和有理数减法法则.2.(4分)下列语句描述事件中,是随机事件为()A.水能载舟,亦能覆舟B.只手遮天,偷天换日C.瓜熟蒂落,水到渠成D.心想事成,万事如意【考点】X1:随机事件.【分析】直接利用随机事件以及必然事件.不可能事件定义分别分析得出答案.【解答】解:A.水能载舟,亦能覆舟,是必然事件,故此选项错误;B.只手遮天,偷天换日,是不可能事件,故此选项错误;C.瓜熟蒂落,水到渠成,是必然事件,故此选项错误;D.心想事成,万事如意,是随机事件,故此选项正确.故选:D.【点评】此题主要考查了随机事件,正确把握相关定义是解题关键.3.(4分)下列图形中,不是轴对称图形是()A. B. C. D.【考点】P3:轴对称图形.【分析】观察四个选项图形,根据轴对称图形概念即可得出结论.【解答】解:根据轴对称图形概念,可知:选项C中图形不是轴对称图形.故选:C.【点评】本题考查了轴对称图形,牢记轴对称图形概念是解题关键.4.(4分)若单项式a m﹣1b2与和仍是单项式,则n m值是()A.3B.6C.8D.9【考点】35:合并同类项;42:单项式.【分析】首先可判断单项式a m﹣1b2与是同类项,再由同类项定义可得m.n 值,代入求解即可.【解答】解:∵单项式a m﹣1b2与和仍是单项式,∴单项式a m﹣1b2与是同类项,∴m﹣1=2,n=2,∴m=3,n=2,∴n m=8.故选:C.【点评】本题考查了合并同类项知识,解答本题关键是掌握同类项中两个相同.5.(4分)与最接近整数是()A.5B.6C.7D.8【考点】2B:估算无理数大小;27:实数.【分析】由题意可知36与37最接近,即与最接近,从而得出答案.【解答】解:∵36<37<49,∴<<,即6<<7,∵37与36最接近,∴与最接近是6.故选:B.【点评】此题主要考查了无理数估算能力,关键是整数与最接近,所以=6最接近.6.(4分)一辆小车沿着如图所示斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.7.(4分)化简结果为()A. B.a﹣1 C.a D.1【考点】6B:分式加减法.【分析】根据分式运算法则即可求出答案.【解答】解:原式=+==a﹣1故选:B.【点评】本题考查分式运算法则,解题关键是熟练运用分式运算法则,本题属于基础题型.8.(4分)甲.乙.丙.丁4人进行乒乓球单循环比赛(每两个人都要比赛一场),结果甲胜了丁,并且甲.乙.丙胜场数相同,则丁胜场数是()A.3B.2C.1D.0【考点】O2:推理与论证.【分析】四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;由此进行分析即可.【解答】解:四个人共有6场比赛,由于甲.乙.丙三人胜场数相同,所以只有两种可能性:甲胜1场或甲胜2场;若甲只胜一场,这时乙.丙各胜一场,说明丁胜三场,这与甲胜丁矛盾,所以甲只能是胜两场,即:甲.乙.丙各胜2场,此时丁三场全败,也就是胜0场.答:甲.乙.丙各胜2场,此时丁三场全败,丁胜0场.故选:D.【点评】此题是推理论证题目,解答此题关键是先根据题意,通过分析,进而得出两种可能性,继而分析即可.9.(4分)如图,⊙O直径AB=6,若∠BAC=50°,则劣弧AC长为()A.2πB.C.D.【考点】MN:弧长计算;M5:圆周角定理.【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC长为=.【解答】解:如图,连接CO,∵∠BAC=50°,AO=CO=3,∴∠ACO=50°,∴∠AOC=80°,∴劣弧AC长为=,故选:D.【点评】本题考查了圆周角定理,弧长计算,熟记弧长公式是解题关键.10.(4分)“绿水青山就是金山银山”.某工程队承接了60万平方米荒山绿化任务,为了迎接雨季到来,实际工作时每天工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化面积为x万平方米,则下面所列方程中正确是()A.B.C. D.【考点】B6:由实际问题抽象出分式方程.【分析】设实际工作时每天绿化面积为x万平方米,根据工作时间=工作总量÷工作效率结合提前30 天完成任务,即可得出关于x分式方程.【解答】解:设实际工作时每天绿化面积为x万平方米,则原来每天绿化面积为万平方米,依题意得:﹣=30,即.故选:C.【点评】考查了由实际问题抽象出分式方程.找到关键描述语,找到合适等量关系是解决问题关键.11.(4分)如图,在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN ∥BC交AC于点N,且MN平分∠AMC,若AN=1,则BC长为()A.4B.6C.D.8【考点】KO:含30度角直角三角形;JA:平行线性质;KJ:等腰三角形判定与性质.【分析】根据题意,可以求得∠B度数,然后根据解直角三角形知识可以求得NC长,从而可以求得BC长.【解答】解:∵在Rt△ABC中,CM平分∠ACB交AB于点M,过点M作MN∥BC交AC于点N,且MN平分∠AMC,∴∠AMB=∠NMC=∠B,∠NCM=∠BCM=∠NMC,∴∠ACB=2∠B,NM=NC,∴∠B=30°,∵AN=1,∴MN=2,∴AC=AN+NC=3,∴BC=6,故选:B.【点评】本题考查30°角直角三角形.平行线性质.等腰三角形判定与性质,解答本题关键是明确题意,找出所求问题需要条件,利用数形结合思想解答.12.(4分)如图,P为等边三角形ABC内一点,且P到三个顶点A,B,C距离分别为3,4,5,则△ABC面积为()A. B. C. D.【考点】R2:旋转性质;KK:等边三角形性质;KS:勾股定理逆定理.【分析】将△BPC绕点B逆时针旋转60°得△BEA,根据旋转性质得BE=BP=4,AE=PC=5,∠PBE=60°,则△BPE为等边三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延长BP,作AF⊥BP于点FAP=3,PE=4,根据勾股定理逆定理可得到△APE为直角三角形,且∠APE=90°,即可得到∠APB度数,在直角△APF中利用三角函数求得AF和PF长,则在直角△ABF中利用勾股定理求得AB长,进而求得三角形ABC面积.【解答】解:∵△ABC为等边三角形,∴BA=BC,可将△BPC绕点B逆时针旋转60°得△BEA,连EP,且延长BP,作AF⊥BP于点F.如图,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°,在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+PA2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.∴∠APF=30°,∴在直角△APF中,AF=AP=,PF=AP=.∴在直角△ABF中,AB2=BF2+AF2=(4+)2+()2=25+12.则△ABC面积是•AB2=•(25+12)=.故选:A.【点评】本题考查了等边三角形判定与性质.勾股定理逆定理以及旋转性质:旋转前后两个图形全等,对应点与旋转中心连线段夹角等于旋转角,对应点到旋转中心距离相等.二.填空题(每题4分,共5个小题,满分20分,将直接填写最后结果)13.(4分)如图,直线a∥b,若∠1=140°,则∠2=40度.【考点】JA:平行线性质.【分析】由两直线平行同旁内角互补得出∠1+∠2=180°,根据∠1度数可得答案.【解答】解:∵a∥b,∴∠1+∠2=180°,∵∠1=140°,∴∠2=180°﹣∠1=40°,故答案为:40.【点评】本题主要考查平行线性质,解题关键是掌握两直线平行同旁内角互补.14.(4分)分解因式:2x3﹣6x2+4x=2x(x﹣1)(x﹣2).【考点】57:因式分解﹣十字相乘法等;53:因式分解﹣提公因式法.【分析】首先提取公因式2x,再利用十字相乘法分解因式得出答案.【解答】解:2x3﹣6x2+4x=2x(x2﹣3x+2)=2x(x﹣1)(x﹣2).故答案为:2x(x﹣1)(x﹣2).【点评】此题主要考查了提取公因式法以及十字相乘法分解因式,正确分解常数项是解题关键.15.(4分)在如图所示平行四边形ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内点E处,且AE过BC中点O,则△ADE周长等于10.【考点】PB:翻折变换(折叠问题);L5:平行四边形性质.【分析】要计算周长首先需要证明E.C.D共线,DE可求,问题得解.【解答】解:∵四边形ABCD是平行四边形∴AD∥BC,CD=AB=2由折叠,∠DAC=∠EAC∵∠DAC=∠ACB∴∠ACB=∠EAC∴OA=OC∵AE过BC中点O∴AO=BC∴∠BAC=90°∴∠ACE=90°由折叠,∠ACD=90°∴E.C.D共线,则DE=4∴△ADE周长为:3+3+2+2=10故答案为:10【点评】本题考查了平行四边形性质.轴对称图形性质和三点共线证明.解题时注意不能忽略E.C.D三点共线.16.(4分)已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B左侧),将这条抛物线向右平移m(m>0)个单位,平移后抛物线于x轴交于C,D两点(点C在点D左侧),若B,C是线段AD三等分点,则m值为2.【考点】HA:抛物线与x轴交点;H6:二次函数图象与几何变换.【分析】先根据三等分点定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B坐标可得AB长,从而得结论.【解答】解:如图,∵B,C是线段AD三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为:2.【点评】本题考查了抛物线与x轴交点问题.抛物线平移及解一元二次方程问题,利用数形结合思想和三等分点定义解决问题是关键.17.(4分)将从1开始自然数按以下规律排列,例如位于第3行.第4列数是12,则位于第45行.第8列数是2018.【考点】37:规律型:数字变化类.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行.第8列数是2025﹣7=2018;【解答】解:观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行.第8列数是2025﹣7=2018,故答案为2018.【点评】本题考查规律型﹣数字问题,解题关键是学会观察,探究规律,利用规律解决问题.三.解答题(本大题共7小题,共52分.解答应写出文字说明.证明过程或演算步骤.)18.(5分)先化简,再求值:a(a+2b)﹣(a+1)2+2a,其中.【考点】4J:整式混合运算—化简求值;76:分母有理化.【分析】先算平方与乘法,再合并同类项,最后代入计算即可.【解答】解:原式=a2+2ab﹣(a2+2a+1)+2a=a2+2ab﹣a2﹣2a﹣1+2a=2ab﹣1,当时,原式=2(+1)()﹣1=2﹣1=1.【点评】本题考查了整式混合运算﹣化简求值,能正确根据整式运算法则进行化简是解此题关键.19.(5分)已知:如图,△ABC是任意一个三角形,求证:∠A+∠B+∠C=180°.【考点】K7:三角形内角和定理.【分析】过点A作EF∥BC,利用EF∥BC,可得∠1=∠B,∠2=∠C,而∠1+∠2+∠BAC=180°,利用等量代换可证∠BAC+∠B+∠C=180°.【解答】证明:过点A作EF∥BC,∵EF∥BC,∴∠1=∠B,∠2=∠C,∵∠1+∠2+∠BAC=180°,∴∠BAC+∠B+∠C=180°,即∠A+∠B+∠C=180°.【点评】本题考查了三角形内角和定理证明,作辅助线把三角形三个内角转化到一个平角上是解题关键.20.(8分)“推进全科阅读,培育时代新人”.某学校为了更好地开展学生读书活动,随机调查了八年级50名学生最近一周读书时间,统计数据如下表:时间(小时)678910人数58121510(1)写出这50名学生读书时间众数.中位数.平均数;(2)根据上述表格补全下面条形统计图.(3)学校欲从这50名学生中,随机抽取1名学生参加上级部门组织读书活动,其中被抽到学生读书时间不少于9小时概率是多少?【考点】X4:概率公式;VC:条形统计图;W2:加权平均数;W4:中位数;W5:众数.【分析】(1)先根据表格提示数据得出50名学生读书时间,然后除以50即可求出平均数;在这组样本数据中,9出现次数最多,所以求出了众数;将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,从而求出中位数是8.5;(2)根据题意直接补全图形即可.(3)从表格中得知在50名学生中,读书时间不少于9小时有25人再除以50即可得出结论.【解答】解:(1)观察表格,可知这组样本数据平均数为:(6×5+7×8+8×12+9×15+10×10)÷50=8.34,故这组样本数据平均数为2;∵这组样本数据中,9出现了15次,出现次数最多,∴这组数据众数是9;∵将这组样本数据按从小到大顺序排列,其中处于中间两个数是8和9,∴这组数据中位数为(8+9)=8.5;(2)补全图形如图所示,(3)∵读书时间是9小时有15人,读书时间是10小时有10,∴读书时间不少于9小时有15+10=25人,∴被抽到学生读书时间不少于9小时概率是=【点评】本题考查了加权平均数.众数以及中位数,用样本估计总体知识,解题关键是牢记概念及公式.21.(8分)如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间函数关系式;(2)直接写出当x>0时,不等式x+b>解集;(3)若点P在x轴上,连接AP把△ABC面积分成1:3两部分,求此时点P坐标.【考点】G8:反比例函数与一次函数交点问题.【分析】(1)求得A(1,3),把A(1,3)代入双曲线y=,可得y与x之间函数关系式;(2)依据A(1,3),可得当x>0时,不等式x+b>解集为x>1;(3)分两种情况进行讨论,AP把△ABC面积分成1:3两部分,则CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,进而得出点P坐标.【解答】解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入双曲线y=,可得m=1×3=3,∴y与x之间函数关系式为:y=;(2)∵A(1,3),∴当x>0时,不等式x+b>解集为:x>1;(3)y1=﹣x+4,令y=0,则x=4,∴点B坐标为(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y=0,则x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC面积分成1:3两部分,∴CP=BC=,或BP=BC=,∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).【点评】本题考查了反比例函数与一次函数交点问题:求反比例函数与一次函数交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.22.(8分)如图,以AB为直径⊙O外接于△ABC,过A点切线AP与BC延长线交于点P,∠APB平分线分别交AB,AC于点D,E,其中AE,BD(AE<BD)长是一元二次方程x2﹣5x+6=0两个实数根.(1)求证:PA•BD=PB•AE;(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.【考点】MR:圆综合题.【分析】(1)易证∠APE=∠BPD,∠EAP=∠B,从而可知△PAE∽△PBD,利用相似三角形性质即可求出答案.(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,易求得AE=2,BD=3,由(1)可知:,从而可知cos∠BDF=cos∠BAC=cos∠APC=,从而可求出AD和DG长度,进而证明四边形ADFE是菱形,此时F点即为M点,利用平行四边形面积即可求出菱形ADFE面积.【解答】解:(1)∵DP平分∠APB,∴∠APE=∠BPD,∵AP与⊙O相切,∴∠BAP=∠BAC+∠EAP=90°,∵AB是⊙O直径,∴∠ACB=∠BAC+∠B=90°,∴∠EAP=∠B,∴△PAE∽△PBD,∴,∴PA•BD=PB•AE;(2)过点D作DF⊥PB于点F,作DG⊥AC于点G,∵DP平分∠APB,AD⊥AP,DF⊥PB,∴AD=DF,∵∠EAP=∠B,∴∠APC=∠BAC,易证:DF∥AC,∴∠BDF=∠BAC,由于AE,BD(AE<BD)长是x2﹣5x+6=0,解得:AE=2,BD=3,∴由(1)可知:,∴cos∠APC==,∴cos∠BDF=cos∠APC=,∴,∴DF=2,∴DF=AE,∴四边形ADFE是平行四边形,∵AD=AE,∴四边形ADFE是菱形,此时点F即为M点,∵cos∠BAC=cos∠APC=,∴sin∠BAC=,∴,∴DG=,∴在线段BC上是否存在一点M,使得四边形ADME是菱形其面积为:DG•AE=2×=【点评】本题考查圆综合问题,涉及圆周角定理,锐角三角函数定义,平行四边形判定及其面积公式,相似三角形判定与性质,综合程度较高,考查学生灵活运用知识能力.23.(9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC中点M,N,G,连接GM,GN.小明发现了:线段GM与GN数量关系是MG=NG;位置关系是MG⊥NG.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般锐角三角形,其中AB>AC,其它条件不变,小明发现上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)基础上,又作了进一步探究.向△ABC内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN形状,并给与证明.【考点】KY:三角形综合题.【分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)方法即可得出结论;(3)同(1)方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)方法得,MG=NG,同(1)方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)方法得,MG⊥NG.【点评】此题是三角形综合题,主要考查等腰直角三角形性质,全等三角形判定和性质,平行线判定和性质,三角形中位线定理,正确作出辅助线用类比思想解决问题是解本题关键.24.(9分)如图,抛物线y=ax2+bx经过△OAB三个顶点,其中点A(1,),点B(3,﹣),O为坐标原点.(1)求这条抛物线所对应函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上两点,且n<m,求t取值范围;(3)若C为线段AB上一个动点,当点A,点B到直线OC距离之和最大时,求∠BOC大小及点C坐标.【考点】HF:二次函数综合题.【分析】(1)将已知点坐标代入即可;(2)利用抛物线增减性可解问题;(3)观察图形,点A,点B到直线OC距离之和小于等于AB;同时用点A(1,),点B(3,﹣)求出相关角度.【解答】解:(1)把点A(1,),点B(3,﹣)分别代入y=ax2+bx得解得∴y=﹣(2)由(1)抛物线开口向下,对称轴为直线x=当x>时,y随x增大而减小∴当t>4时,n<m.(3)如图,设抛物线交x轴于点F分别过点A.B作AD⊥OC于点D,BE⊥OC于点E∵AC≥AD,BC≥BE∴AD+BE≥AC+BE=AB∴当OC⊥AB时,点A,点B到直线OC距离之和最大.∵A(1,),点B(3,﹣)∴∠AOF=60°,∠BOF=30°∴∠AOB=90°∴∠ABO=30°当OC⊥AB时,∠BOC=60°点C坐标为(,).【点评】本题考查综合考查用待定系数法求二次函数解析式,抛物线增减性.解答问题时注意线段最值问题转化方法.。
山东淄博中考数学试题及答案.doc
2014年山东淄博中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
山东省淄博市中考数学试题(含答案)
2022年中考往年真题练习: 中考数学试题(山东淄博)(本试卷满分120分, 考试时间120分钟)第Ⅰ卷(挑选题 共45分)一、 挑选题: 本题共12小题, 在每小题所给出的 四个选项中, 只有一个是 正确的 , 请把正确的 选项涂在答题卡的 相应位置上.第1~3小题每题3分, 第4~12小题每题4分, 错选、 不选或选出的 答案超过一个, 均记零分.1.和数轴上的 点一一对应的 是 【 】(A) 整数(B) 有理数 (C) 无理数(D) 实数【答案解析】D 。
2.要调查下面的 问题, 适合做全面调查的 是 【 】 (A) 某班同学“立定跳远”的 成绩 (B) 某水库中鱼的 种类(C) 某鞋厂制作的 鞋底承受的 弯折次数 (D) 某型号节能灯的 使用寿命【答案解析】A 。
3.下列命题为假命题的 是 【 】(A) 三角形三个内角的 和等于180° (B) 三角形两边之和大于第三边(C) 三角形两边的 平方和等于第三边的 平方(D) 三角形的 面积等于一条边的 长与该边上的 高的 乘积的 一半【答案解析】C 。
4.若a b >, 则下列不等式不一定成立的 是 【 】(A) a m b m +>+ (B) 22a(m 1)b(m 1)+>+ (C) a b22-<-(D) 22a b >【答案解析】D 。
5.已知一等腰三角形的 腰长为5, 底边长为4, 底角为β.满足下列条件的 三角形不一定与已知三角形全等的 是 【 】(A) 两条边长分别为4, 5, 它们的 夹角为β (B) 两个角是 β, 它们的 夹边为4(C) 三条边长分别为4, 5, 5(D) 两条边长是 5, 一个角是 β【答案解析】D 。
6.九张同样的 卡片分别写有数字-4, -3, -2, -1, 0, 1, 2, 3, 4, 任意抽取一张, 所抽卡片上数字的 绝对值小于2的 概率是 【 】(A)19(B)13(C)59(D)23【答案解析】B 。
2010-2023历年高级中等学校招生全国统一考试数学卷(山东淄博)
2010-2023历年高级中等学校招生全国统一考试数学卷(山东淄博)第1卷一.参考题库(共20题)1.如图,AB∥CD,AE交CD于点C,DE⊥AE,垂足为E,∠A=37º,求∠D的度数2.如图,点A,B,C的坐标分别为.从下面四个点,,,中选择一个点,以A,B,C与该点为顶点的四边形不是中心对称图形,则该点是A.MB.NC.PD.Q3.在等腰直角三角形ABC中,∠C=90º,则sinA等于A.B.C.D.14.已知是方程的两个实数根,且.(1)求及a的值;(2)求的值.5.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为6.时代中学举行了一次科普知识竞赛.满分100分,学生得分的最低分31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为7.计算的结果是A.B.C.D.8.矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为A.8B.C.4D.9.如图,在平面直角坐标系中,正方形OABC的边长是2.O为坐标原点,点A在x的正半轴上,点C在y的正半轴上.一条抛物线经过A点,顶点D是OC的中点.(1)求抛物线的表达式;(2)正方形OABC的对角线OB与抛物线交于E点,线段FG过点E与x轴垂直,分别交x轴和线段BC于F,G点,试比较线段OE与EG的长度;(3)点H是抛物线上在正方形内部的任意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC于I、J点,点K在y轴的正半轴上,且OK=OH,请证明△OHI≌△JKC.10.如图,一艘旅游船从A点驶向C点.旅游船先从A点沿以D为圆心的弧AB行驶到B点,然后从B点沿直径行驶到圆D上的C点.假如旅游船在整个行驶过程中保持匀速,则下面各图中,能反映旅游船与D点的距离随时间变化的图象大致是11.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(),则A P=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.12.某中学共有学生2000名,各年级男女生人数如下表:六年级七年级八年级九年级男生250z254258女生x244y252若从全校学生中任意抽一名,抽到六年级女生的概率是0.12;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28°.(1)求x,y,z的值;(2)求各年级男生的中位数;(3)求各年级女生的平均数;(4)从八年级随机抽取36名学生参加社会实践活动,求抽到八年级某同学的概率.13.如图,直线经过和两点,利用函数图象判断不等式的解集为A.B.C.D.14.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是A.B.C.D.15.如图,两个同心圆的圆心是O,大圆的半径为13,小圆的半径为5,AD是大圆的直径.大圆的弦AB,BE分别与小圆相切于点C,F.AD,BE相交于点G,连接BD.(1)求BD 的长;(2)求∠ABE+2∠D的度数;(3)求的值.16.解不等式:5x–12≤2(4x-3)17.如图,在3×3的方阵图中,填写了一些数和代数式(其中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求x,y的值;(2)在备用图中完成此方阵图18.如果,则“”内应填的实数是A.B.C.D.19.家电下乡是我国应对当前国际金融危机,惠农强农,带动工业生产,促进消费,拉动内需的一项重要举措.国家规定,农民购买家电下乡产品将得到销售价格13%的补贴资金.今年5月1日,甲商场向农民销售某种家电下乡手机20部.已知从甲商场售出的这20部手机国家共发放了2340元的补贴,若设该手机的销售价格为x元,以下方程正确的是A.B.C.D.20.如图,四边形EFGH是由四边形经过旋转得到的.如果用有序数对(2,1)表示方格纸上A点的位置,用(1,2)表示B 点的位置,那么四边形旋转得到四边形EFGH时的旋转中心用有序数对表示是.第1卷参考答案一.参考题库1.参考答案:53°2.参考答案:C3.参考答案:B4.参考答案:(1)(2)15.参考答案:37S6.参考答案:0 17.参考答案:D8.参考答案:B9.参考答案:(1)(2)OE=EG(3)证明略10.参考答案:B11.参考答案:(1)(2)当时,以P,Q,M,N为顶点的四边形是平行四边形(3)以P,Q,M,N为顶点的四边形不能为等腰梯形12.参考答案:(1)240(2)256(3)245.5(4)13.参考答案:D14.参考答案:A15.参考答案:(1)10(2)180°(3)16.参考答案:x≥-217.参考答案:(1)(2)略18.参考答案:D19.参考答案:A20.参考答案:(5,2)。
淄博市中考数学试及答案
绝密★启用前 试卷种类: A淄博市二○○九年中等学校招生考试数学试题注意事项:1.答题前请考生务必在答题卡及试卷的规定地点将自己的姓名、考试号、考试科目、座号等内容填写(涂) 正确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷( 1— 4 页)为选择题, 36 分;第Ⅱ卷( 5— 12 页)为非选择题,84 分;共 120 分.考试时间为 120 分钟.3.第Ⅰ卷每题选出答案后,一定用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需变动,须先用橡皮擦洁净,再改涂其余答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔挺接答在试卷上.考试时,不同意使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并回收.第Ⅰ卷(选择题共 36分)一、选择题:此题共12 小题,在每题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应地点上.每题3 分,错选、不选或选出的答案超出一个,均记 0 分.1.假如2 1 ,则“”内应填的实数是( )3(A)3 (B)2 (C)2 (D)3 23322.计算1 的结果是123(A)7 3 (B)3 32(C) 3(D)5 3 3333.在等腰直角三角形ABC 中,∠ C=90o ,则 sinA 等于12(A)(B)2 23(D)1(C)24.化简a2b 22的结果为a abba b(A)(B)aa(C)a b(D) ba5.小明在白纸上随意画了一个锐角,他画的角在45o 到 60o 之间的概率是11(A)(B)6312(C)(D)236.如图 ,一艘旅行船从 A 点驶向 C 点 . 旅行船先从 A 点沿以 D 为圆心的弧 AB 行驶到 B 点,而后从 B 点沿直径行驶到圆 D 上的 C 点 .若是旅行船在整个行驶过程中保持匀速,则下边各图中 ,能反应旅行船与 D 点的距离随时间变化的图象大概是距离距离CA DO时间O时间(A)(B)距离距离B(第6题)O时间O(D)时间(C)7.家电下乡是我国应付目前国际金融危机,惠农强农,带动工业生产,促使花费,拉动内需的一项重要措施.国家规定,农民购置家电下乡产品将获得销售价钱13%的补助资本.今年 5 月 1 日,甲商场向农民销售某种家电下乡手机 20部.已知从甲商场售出的这20 部手机国家共发放了2340 元的补助,若设该手机的销售价钱为x 元,以下方程正确的选项是(A) 20x 13002340(B) 20x 23401300(C) 20x(11300)2340(D) 1300 x23408.如图,梯形 ABCD 中,∠ ABC 和∠ DCB 的均分线订交于梯形中位线EF 上的一点 P,若 EF =3,则梯形 ABCD 的周长为(A)9A D(B)10.5E PF(C)12(D)15B C(第 8题)9.如图,点 A,B,C 的坐标分别为(0, 1),(0,2),(3,0) .从下边四个点M (3,3) , N (3, 3) , P ( 3,0) , Q( 3,1)中选择一个点,以A, B, C 与该点为极点的四边形不是中心对称图形,则该点是(A)M(B)N(C)P(D)Q10.假如一个圆锥的主视图是正三角形,则其侧面睁开图的圆心角为(A)120 o(B) 约 156o(C)180 o(D) 约 208o11.矩形纸片 ABCD 的边长 AB=4, AD=2.将矩形纸片沿EF 折叠,使点 A 与点 C 重合,折叠后在其一面着色(如图 ),则着色部分的面积为(A) 8G(B)11D F C2F(C) 45(D)2A E B(第 11 题)12.如图,直线y kx b 经过 A(2,1) 和 B( 3,0) 两点,利用函数图象判断不等式1kx b 的解集为x(A) x313 或x313y2235x 35(B)22313x 313B(-3, 0)(C)22O x 3535(D) x或0A(-2,-1)22x(第 12 题)绝密★启用前试卷种类: A淄博市二○○九年中等学校招生考试数学试题第 Ⅱ 卷(非选择题 共 84分)得分评卷人二、填空题:此题共5 小题,满分20 分.只需求填写最后结果,每题填对得4分.13.国家统计局 2009 年 4 月 16 日公布 :一季度,乡村居民人均现金收入1622 元,与昨年同期对比增加 8.6% ,将 1622 元用科学记数法表示为元.14.时代中学举行了一次科普知识比赛.满分 100 分 ,学生得分的最低分频数散布直方图的一部分.参加此次知识比赛的学生共有40 人,则得分在31 分.如图是依据学生比赛成绩绘制的60~70 分的频次为.人数 /人1510FECGH5BDA(第 15 题)708090C100 成绩 /分30405060(第 14 题)15.如图,四边形 EFGH 是由四边形 ABCD 经过旋转获得的.假如用有序数对(2,1)表示方格纸上 A 点的地点,用 (1,2) 表示 B 点的地点,那么四边形ABCD 旋转获得四边形 EFGH 时的旋转中心用有序数对表示是.16.请写出切合以下三个条件的一个函数的分析式.①过点 (3,1) ;②在第一象限内③当自变量的值为y 随 x 的增大而减小;2 时,函数值小于2.角形 17.如图,网格中的每个四边形都是菱形.假如格点三角形 ABC 的面积为A 1B 1C 1 的面积是 7S ,格点三角形 A 2B 2C 2 的面积是 19S ,那么格点三角形S ,依据以下图方式获得的格点三A 3B 3C 3 的面积为 .A 3 A 2 A 1ACC 1C 2C 3BB 1三、解答题:本大题共8 小题,共64 分.解答要写出必需的文字说明、证明过程或演算步骤.得分评卷人18. (此题满分 6 分 )解不等式: 5x–12≤ 2( 4x- 3)得分评卷人19. (此题满分 6 分 )如图, AB ∥CD, AE 交 CD 于点 C,DE ⊥ AE,垂足为E,∠ A=37o,求∠ D 的度数.ECDA B(第 19 题)得分评卷人20. (此题满分8 分 )如图,在 3×3 的方阵图中,填写了一些数和代数式(此中每个代数式都表示一个数),使得每行的3个数、每列的3个数、斜对角的3个数之和均相等.(1)求 x, y 的值;34x(2)在备用图中达成此方阵图.–2y a得分评卷人21. (此题满分8 分 )某中学共有学生男生2000 名,各年级男女生人数以下表:六七八九年级年级年级年级250z254258女x244y252生若从全校学生中随意抽一名,抽到六年级女生的概率是0.12 ;若将各年级的男、女生人数制作成扇形统计图,八年级女生对应扇形的圆心角为44.28 °.(1)求 x, y, z 的值;(2)求各年级男生的中位数;(3)求各年级女生的均匀数;(4)从八年级随机抽取 36 名学生参加社会实践活动,求抽到八年级某同学的概率.得 分评 卷 人22. (此题满分 8 分 )如图,两个齐心圆的圆心是 O ,大圆的半径为13,小圆的半径为5, AD 是大圆的直径.大圆的弦AB , BE 分别与小圆相切于点 C , F . AD , BE 订交于点 G ,连结 BD .(1)求 BD 的长;B(2)求∠ ABE+2 ∠D 的度数;(3)求BG的值.CAGDGOFAE(第 22 题)得分评卷人23. (此题满分 8 分 )二已知 x1, x2是方程 x2 2 x a 0 的两个实数根,且 x1 2 x232 .1(1)求 x1, x2及 a 的值;81(2)求 x133x122x1x2的值.三922122232425总分座号得分评卷人24. (此题满分10 分 )如图,在平面直角坐标系中,正方形OABC 的边长是 2.O 为坐标原点,点 A 在 x 的正半轴上,点 C 在 y 的正半轴上.一条抛物线经过 A 点,极点 D 是 OC 的中点.( 1)求抛物线的表达式;( 2)正方形 OABC 的对角线OB 与抛物线交于 E 点,线段 FG 过点 E 与 x 轴垂直,分别交 x 轴和线段 BC 于 F ,G 点,试比较线段OE 与 EG 的长度;( 3)点 H 是抛物线上在正方形内部的随意一点,线段IJ过点H与x轴垂直,分别交x轴和线段BC 于 I、J 点,点 K 在 y 轴的正半轴上,且OK=OH,请证明△ OHI ≌△ JKC .yG J BC得分评卷人25. (此题满分10 分)如图,在矩形 ABCD 中, BC =20cm, P,Q, M,N 分别从 A,B,C,D 出发沿 AD ,BC,CB ,DA 方向在矩形的边上同时运动,当有一个点先抵达所在运动边的另一个端点时,运动即停止.已知在同样时间内,若BQ=xcm( x0 ),则AP=2 xcm,CM=3 xcm,DN=x2cm.(1)当 x 为什么值时,以 PQ,MN 为两边 ,以矩形的边( AD 或 BC)的一部分为第三边组成一个三角形;(2)当 x 为什么值时,以 P, Q, M, N 为极点的四边形是平行四边形;( 3)以 P,Q, M,N 为极点的四边形可否为等腰梯形?假如能,求 x 的值;假如不可以,请说明原因.A P N DBQ M C(第 25 题)淄博市二○○九年中等学校招生考试数学试题( A 卷)参照答案及评分标准评卷说明:1.选择题和填空题中的每题,只有满分和零分两个评分档,不给中间分.2.解答题每题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.每题只给出一种或两种解法,对考生的其余解法,请参照评分建议进行评分.3.假如考生在解答的中间过程出现计算错误,但并无改变试题的本质和难度,后来续部分酌情给分,但最多不超出正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一、选择题(本大题共12 小题,每题 3 分,共 36 分):题号12345678910 11 12答案D D B B A B A C C C B D二、填空题(本大题共 5 小题,每题 4 分,共 20 分):13. 1.622 10314. 0. 115.( 5, 2)1 x2 ,y3,y 1 x2517. 37S16.如y3x62三、解答题(本大题共8 小题,共 64 分):18.(此题满分 6 分)解: 5x–12≤ 8x- 6.···························2分3x≤6.························4分x≥- 2 .·························6分19.(此题满分 6 分)解:∵AB∥CD,∠ A=37o,∴∠ ECD =∠ A=37o.··························3分∵DE ⊥ AE,∴∠ D =90o–∠ ECD =90o–37o=53o.························6分20.(此题满分8 分)3 4 xxy 2 y ,解:( 1)由题意,得3 2 2 y x34 ······2 分x.3 4 –1x ,–226解得1y··························5 分2.( 2)如图······················8 分5121.(此题满分 8 分) 解: ( 1)由题意:x240 (人).·······················1 分0.12 ,解得 x2000y44.28246 (人).·······················2 分2000360z=2000- 250-240- 244- 254- 246- 258- 252=256(人). ·········3 分(2)各年级男生的中位数为 254 256 255 (人). ··············4 分2(3)各年级女生的均匀数为 240 244 246 252 ········6 分4245.5 (人).(4)抽到八年级某同学的概率为9 .·······················8 分12522.(此题满分 8 分)B解: (1)连结 OC ,并延伸 BO 交 AE 于点H ,∵AB 是小圆的切线, C 是切点,∴OC ⊥ AB ,CG D∴C 是 AB 的中点. ············1 分OF∵AD 是大圆的直径, A∴O 是 AD 的中点.∴OC 是△ ABD 的中位线.H∴BD =2OC=10. ··············2 分(2) 连结 AE ,由( 1)知 C 是 AB 的中点.E同理 F 是 BE 的中点. (第 22 题)由切线长定理得 BC=BF .∴BA =BE .························3 分∴∠ BAE=∠ E .∵∠ E=∠D ,·······································4 分∴∠ ABE+2 ∠D =∠ABE+∠ E+∠ BAE=180o . ·······················5 分( 3) 连结 BO ,在 Rt △OCB 中,∵OB=13, OC=5,∴BC =12.···········································6 分 由( 2)知∠ OBG =∠OBC =∠OAC . ∵∠ BGO=∠ AGB ,∴△ BGO ∽△ AGB . ·······································7 分∴ BG OB 13 . ·······································8 分AG AB 2423.(此题满分 8 分)x 1 x 2 , 解:( 1)由题意,得2x 1 2x 2···························2 分32.解得 x112,x21 2 .·····························3 分因此 a x1 x2(12)(12) 1 .························4 分(2)法一:由题意,得 x12 2 x1 1 0 .因此 x133x122x1x2 = x132x12x1x123x1x2···············6分=x12 2 x11x1x21211.·························8 分法二:由题意,得 x122x1 1 ,因此 x133x122x1x2 = x1 (2 x11)3(2x11) 2 x1x2··············6 分=2x12x16x13 2 x1x2 = 2(2x11)3x13x2=4x123x13x2x1x2121 1 .·······················8 分24.(此题满分 10 分)解:( 1)由题意,设抛物线的分析式为:y ax2 b .·············1 分将点 D 的坐标( 0, 1),点 A 的坐标( 2, 0)代入,得a =1, b=1.4所求抛物线的分析式为y 1 x2 1 .·························3 分4( 2)因为点 E 在正方形的对角线OB 上,又在抛物线上,设点 E 的坐标为( m, m)(0m 2 ),则m 121.4m解得m12 2 2 , m2222(舍去).····················4分因此 OE=2m42 2 .··························5分因此 EG GF EF2m2(222)4 2 2 .因此 OE=EG.·························6 分( 3)设点 H 的坐标为( p, q)(0p2,0q 2 ),因为点 H 在抛物线y 121 上,x4因此 q 1 p2 1 ,即 p2 4 4q .4因为OH2OI 2HI 2p2q 244q q 2(2 q) 2,·············8 分因此 OH=2– q.因此 OK=OH=2 – q.因此 CK=2-( 2- q)=q=IH . (9)分因为 CJ=OI ,∠ OIH =∠ JCK=90o,因此△ OHI ≌△ JKC.··································10分25.(此题满分10 分)解:( 1)当点 P 与点 N 重合或点Q 与点 M 重合时,以PQ,MN 为两边,以矩形的边(AD 或 BC)的一部分为第三边可能组成一个三角形.①当点 P 与点 N 重合时,由x22x 20,得 x1211 ,x221 1(舍去). ·············1分因为 BQ+CM= x 3x4( 211) 20 ,此时点Q 与点 M 不重合.因此 x21 1 切合题意.·································2分②当点 Q 与点 M 重合时,由x 3x20,得 x 5 .此时 DN x22520 ,不切合题意.故点 Q 与点 M 不可以重合.因此所求 x 的值为21 1.···························3 分(2)由( 1)知,点 Q 只好在点 M 的左边,①当点 P 在点 N 的左边时,由 20 (x3x)20(2 x x2 ) ,解得 x10(舍去 ),x2 2 .当 x=2 时四边形 PQMN 是平行四边形.·························5 分②当点 P 在点 N 的右边时,由 20 (x3x)(2 x x2 )20 ,解得 x110(舍去 ) ,x2 4.当 x=4 时四边形 NQMP 是平行四边形.因此当 x 2 或x 4 时,以 P, Q,M, N 为极点的四边形是平行四边形.···7分( 3)过点 Q, M 分别作 AD 的垂线,垂足分别为点E,F.因为 2x>x,因此点 E 必定在点 P 的左边.若以 P, Q,M, N 为极点的四边形是等腰梯形,则点 F 必定在点 N 的右边,且 PE=NF,·························8 分即 2 x x x23x .解得 x10(舍去 ),x2 4 .因为当 x=4 时,以P,Q,M,N为极点的四边形是平行四边形,因此以 P, Q, M, N 为极点的四边形不可以为等腰梯形.···········10分。
山东省淄博市中考数学试卷含答案解析版
2017年山东省淄博市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分)1.(4分)(2017?淄博)﹣23的相反数是( ) A .32 B .−32 C .23 D .﹣23【考点】14:相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣23与23是只有符号不同的两个数, ∴﹣23的相反数是23. 故选C .【点评】本题考查的是相反数的定义,熟知只有符号不同的两个数叫互为相反数是解答此题的关键.2.(4分)(2017?淄博)C919大飞机是中国完全具有自主知识产权的干线民用飞机,其零部件总数超过100万个,请将100万用科学记数法表示为( )A .1×106B .100×104C .1×107D .×108【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:将100万用科学记数法表示为:1×106.故选:A .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017?淄博)下列几何体中,其主视图为三角形的是( )A.B.C.D.【考点】U1:简单几何体的三视图.【分析】找出四个选项中几何体的主视图,由此即可得出结论.【解答】解:A、圆柱的主视图为矩形,∴A不符合题意;B、正方体的主视图为正方形,∴B不符合题意;C、球体的主视图为圆形,∴C不符合题意;D、圆锥的主视图为三角形,∴D符合题意.故选D.【点评】本题考查了简单几何体的三视图,牢记圆锥的主视图为三角形是解题的关键.4.(4分)(2017?淄博)下列运算正确的是()A.a2?a3=a6 B.(﹣a2)3=﹣a5C.a10÷a9=a(a≠0)D.(﹣bc)4÷(﹣bc)2=﹣b2c2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的乘法、除法、积的乘方和幂的乘方进行计算即可.【解答】解:A、a2?a3=a5,故A错误;B、(﹣a2)3=﹣a6,故B错误;C、a10÷a9=a(a≠0),故C正确;D、(﹣bc)4÷(﹣bc)2=b2c2,故D错误;故选C.【点评】本题考查了同底数幂的乘法、除法、积的乘方和幂的乘方,掌握运算法则是解题的关键.5.(4分)(2017?淄博)若分式|x|−1x+1的值为零,则x的值是()A.1 B.﹣1 C.±1 D.2【考点】63:分式的值为零的条件.【分析】直接利用分式的值为零,则分子为零,分母不为零,进而得出答案.【解答】解:∵分式|x|−1x+1的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选:A.【点评】此题主要考查了分式的值为零,正确把握相关定义是解题关键.6.(4分)(2017?淄博)若a+b=3,a2+b2=7,则ab等于()A.2 B.1 C.﹣2 D.﹣1【考点】4C:完全平方公式.【分析】根据完全平方公式得到(a+b)2=9,再将a2+b2=7整体代入计算即可求解.【解答】解:∵a+b=3,∴(a+b)2=9,∴a2+2ab+b2=9,∵a2+b2=7,∴7+2ab=9,∴ab=1.故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.7.(4分)(2017?淄博)将二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是()A.y=(x+3)2﹣2 B.y=(x+3)2+2 C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2【考点】H6:二次函数图象与几何变换.【分析】根据题目中的函数解析式,可以先化为顶点式,然后再根据左加右减的方法进行解答即可得到平移后的函数解析式.【解答】解:∵y=x2+2x﹣1=(x+1)2﹣2,∴二次函数y=x2+2x﹣1的图象沿x轴向右平移2个单位长度,得到的函数表达式是:y=(x+1﹣2)2﹣2=(x﹣1)2﹣2,故选D.【点评】本题考查二次函数的图象与几何变换,解答本题的关键是明确二次函数平移的特点,左加右减、上加下减,注意一定将函数解析式化为顶点式之后再平移.8.(4分)(2017?淄博)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<﹣1 D.k<﹣1或k=0【考点】AA:根的判别式.【分析】利用一元二次方程的定义和判别式的意义得到k≠0且△=(﹣2)2﹣4k?(﹣1)>0,然后其出两个不等式的公共部分即可.【解答】解:根据题意得k≠0且△=(﹣2)2﹣4k?(﹣1)>0,解得k>﹣1且k≠0.故选B.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.(4分)(2017?淄博)如图,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合,若BC=4,则图中阴影部分的面积是()A .2+πB .2+2πC .4+πD .2+4π【考点】MO :扇形面积的计算;KW :等腰直角三角形.【分析】如图,连接CD ,OD ,根据已知条件得到OB=2,∠B=45°,根据三角形和扇形的面积公式即可得到结论.【解答】解:如图,连接CD ,OD ,∵BC=4,∴OB=2,∵∠B=45°,∴∠COD=90°,∴图中阴影部分的面积=S △BOD +S 扇形COD =12×2×2+90?π×22360=2+π, 故选A .【点评】本题考查了扇形的面积的计算,等腰直角三角形的性质,正确的作出辅助线是解题的关键.10.(4分)(2017?淄博)在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m ,再由乙猜这个小球上的数字,记为n .如果m ,n 满足|m ﹣n |≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( ) A .38 B .58 C .14 D .12【考点】X6:列表法与树状图法;15:绝对值.【分析】画出树状图列出所有等可能结果,由树状图确定出所有等可能结果数及两人“心领神会”的结果数,根据概率公式求解可得.【解答】解:画树状图如下:由树状图可知,共有16种等可能结果,其中满足|m﹣n|≤1的有10种结果,∴两人“心领神会”的概率是1016=58,故选:B.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.11.(4分)(2017?淄博)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位h与注水时间t之间的变化情况的是()A.B.C.D.【考点】E6:函数的图象.【分析】根据用一注水管沿大容器内壁匀速注水,即可分段求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢. 故选:D .【点评】此题主要考查了函数图象,关键是问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.12.(4分)(2017?淄博)如图,在Rt △ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC ,∠ACB 的平分线相交于点E ,过点E 作EF ∥BC 交AC 于点F ,则EF 的长为( )A .52B .83C .103D .154【考点】S9:相似三角形的判定与性质;KF :角平分线的性质;KJ :等腰三角形的判定与性质.【分析】延长FE 交AB 于点D ,作EG ⊥BC 、作EH ⊥AC ,由EF ∥BC 可证四边形BDEG 是矩形,由角平分线可得ED=EH=EG 、∠DAE=∠HAE ,从而知四边形BDEG 是正方形,再证△DAE ≌△HAE 、△CGE ≌△CHE 得AD=AH 、CG=CH ,设BD=BG=x ,则AD=AH=6﹣x 、CG=CH=8﹣x ,由AC=10可得x=2,即BD=DE=2、AD=4,再证△ADF ∽△ABC 可得DF=163,据此得出EF=DF ﹣DE=103. 【解答】解:如图,延长FE 交AB 于点D ,作EG ⊥BC 于点G ,作EH ⊥AC 于点H ,∵EF ∥BC 、∠ABC=90°,∴FD ⊥AB ,∵EG ⊥BC ,∴四边形BDEG 是矩形,∵AE 平分∠BAC 、CE 平分∠ACB ,∴ED=EH=EG ,∠DAE=∠HAE ,∴四边形BDEG 是正方形,在△DAE 和△HAE 中,∵{∠DAE =∠HAE AE =AE ∠ADE =∠AHE,∴△DAE ≌△HAE (SAS ),∴AD=AH ,同理△CGE ≌△CHE ,∴CG=CH ,设BD=BG=x ,则AD=AH=6﹣x 、CG=CH=8﹣x ,∵AC=√AB 2+AC 2=√62+82=10,∴6﹣x +8﹣x=10,解得:x=2,∴BD=DE=2,AD=4,∵DF ∥BC ,∴△ADF ∽△ABC ,∴AD AB =DF BC ,即46=DF 8, 解得:DF=163, 则EF=DF ﹣DE=163﹣2=103, 故选:C .【点评】本题主要考查相似三角形的判定与性质、全等三角形的判定与性质及正方形的判定与性质,熟练掌握角平分线的性质和正方形的判定与性质、相似三角形的判定与性质是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分)13.(4分)(2017?淄博)分解因式:2x 3﹣8x= 2x (x ﹣2)(x +2) .【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式2x,再对余下的项利用平方差公式分解因式.【解答】解:2x3﹣8x,=2x(x2﹣4),=2x(x+2)(x﹣2).【点评】本题考查因式分解,因式分解的步骤为:一提公因式;二看公式.运用平方差公式进行因式分解的多项式的特征:(1)二项式;(2)两项的符号相反;(3)每项都能化成平方的形式.14.(4分)(2017?淄博)已知α,β是方程x2﹣3x﹣4=0的两个实数根,则α2+αβ﹣3α的值为0.【考点】AB:根与系数的关系.【专题】11 :计算题.【分析】根据根与系数的关系得到得α+β=3,再把原式变形得到a(α+β)﹣3α,然后利用整体代入的方法计算即可.【解答】解:根据题意得α+β=3,αβ=﹣4,所以原式=a(α+β)﹣3α=3α﹣3α=0.故答案为0.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣ba,x1x2=ca.15.(4分)(2017?淄博)运用科学计算器(如图是其面板的部分截图)进行计算,按键顺序如下:则计算器显示的结果是﹣959.【考点】1M :计算器—基础知识.【分析】根据计算器的按键顺序,写出计算的式子.然后求值.【解答】解:根据题意得:(﹣)×312+√4=﹣959, 故答案为:﹣959. 【点评】本题目考查了计算器的应用,根据按键顺序正确写出计算式子是关键.16.(4分)(2017?淄博)在边长为4的等边三角形ABC 中,D 为BC 边上的任意一点,过点D 分别作DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F ,则DE +DF= 2√3 .【考点】KK :等边三角形的性质.【分析】作AG ⊥BC 于G ,根据等边三角形的性质得出∠B=60°,解直角三角形求得AG=2√3,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG=2√3.【解答】解:如图,作AG ⊥BC 于G ,∵△ABC 是等边三角形,∴∠B=60°,∴AG=√32AB=2√3, 连接AD ,则S △ABD +S △ACD =S △ABC ,∴12AB?DE +12AC?DF=12BC?AG , ∵AB=AC=BC=4,∴DE +DF=AG=2√3,故答案为:2√3.【点评】本题考查了等边三角形的性质,解直角三角函数以及三角形面积等,根据S △ABD +S △ACD =S △ABC 即可得出DE +DF=AG 是解题的关键.17.(4分)(2017?淄博)设△ABC 的面积为1.如图1,分别将AC ,BC 边2等分,D 1,E 1是其分点,连接AE 1,BD 1交于点F 1,得到四边形CD 1F 1E 1,其面积S 1=13. 如图2,分别将AC ,BC 边3等分,D 1,D 2,E 1,E 2是其分点,连接AE 2,BD 2交于点F 2,得到四边形CD 2F 2E 2,其面积S 2=16; 如图3,分别将AC ,BC 边4等分,D 1,D 2,D 3,E 1,E 2,E 3是其分点,连接AE 3,BD 3交于点F 3,得到四边形CD 3F 3E 3,其面积S 3=110; …按照这个规律进行下去,若分别将AC ,BC 边(n +1)等分,…,得到四边形CD n E n F n ,其面积S= 2(n+1)(n+2) .【考点】38:规律型:图形的变化类;K3:三角形的面积.【分析】先连接D 1E 1,D 2E 2,D 3E 3,依据D 1E 1∥AB ,D 1E 1=12AB ,可得△CD 1E 1∽△CBA ,且D 1E 1BF 1=D 1E 1AB =12,根据相似三角形的面积之比等于相似比的平方,即可得到S △CD1E1=14S △ABC =14,依据E 1是BC 的中点,即可得出S △D1E1F1=13S △BD1E1=13×14=112,据此可得S 1=13;运用相同的方法,依次可得S 2=16,S 2=16;根据所得规律,即可得出四边形CD n E n F n ,其面积S n =1(n+1)2+1(n+1)2×n ×11+n+1,最后化简即可. 【解答】解:如图所示,连接D 1E 1,D 2E 2,D 3E 3,∵图1中,D 1,E 1是△ABC 两边的中点,∴D 1E 1∥AB ,D 1E 1=12AB , ∴△CD 1E 1∽△CBA ,且D 1E 1BF 1=D 1E 1AB =12, ∴S △CD1E1=14S △ABC =14, ∵E 1是BC 的中点,∴S △BD1E1=S △CD1E1=14, ∴S △D1E1F1=13S △BD1E1=13×14=112, ∴S 1=S △CD1E1+S △D1E1F1=14+112=13, 同理可得:图2中,S 2=S △CD2E2+S △D2E2F2=19+118=16, 图3中,S 3=S △CD3E3+S △D3E3F3=116+380=110, 以此类推,将AC ,BC 边(n +1)等分,得到四边形CD n E n F n ,其面积S n =1(n+1)2+1(n+1)2×n ×11+n+1=2(n+1)(n+2), 故答案为:2(n+1)(n+2).【点评】本题主要考查了图形的变化类问题以及三角形面积的计算,解决问题的关键作辅助线构造相似三角形,依据相似三角形的性质进行计算求解.解题时注意:相似三角形的面积之比等于相似比的平方.三、解答题(本大题共7小题,共52分)18.(5分)(2017?淄博)解不等式:x−22≤7−x 3. 【考点】C6:解一元一次不等式.【专题】11 :计算题;524:一元一次不等式(组)及应用.【分析】不等式去分母,去括号,移项合并,把x 系数化为1,即可求出解集.【解答】解:去分母得:3(x ﹣2)≤2(7﹣x ),去括号得:3x ﹣6≤14﹣2x ,移项合并得:5x ≤20,解得:x ≤4.【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.19.(5分)(2017?淄博)已知:如图,E ,F 为?ABCD 对角线AC 上的两点,且AE=CF ,连接BE ,DF ,求证:BE=DF .【考点】L5:平行四边形的性质;KD :全等三角形的判定与性质.【分析】证明△AEB ≌△CFD ,即可得出结论.【解答】证明:∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=DC .∴∠BAE=∠DCF .在△AEB 和△CFD 中,{AB =CD∠BAE =∠DCF AE =CF,∴△AEB ≌△CFD (SAS ).∴BE=DF .【点评】本题考查平行四边形的性质和全等三角形的判定与性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(8分)(2017?淄博)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km 的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h ,求汽车原来的平均速度.【考点】B7:分式方程的应用.【分析】求的汽车原来的平均速度,路程为420km ,一定是根据时间来列等量关系,本题的关键描述语是:从甲地到乙地的时间缩短了2h .等量关系为:原来时间﹣现在时间=2.【解答】解:设汽车原来的平均速度是x km/h ,根据题意得:420x ﹣420(1+50%)x =2,解得:x=70经检验:x=70是原方程的解.答:汽车原来的平均速度70km/h.【点评】本题考查了分式方程的应用.应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.21.(8分)(2017?淄博)为了“天更蓝,水更绿”某市政府加大了对空气污染的治理力度,经过几年的努力,空气质量明显改善,现收集了该市连续30天的空气质量情况作为样本,整理并制作了如下表格和一幅不完整的条形统计图:空气污染指数(ω)3040708090110120140天数(t)12357642说明:环境空气质量指数(AQI)技术规定:ω≤50时,空气质量为优;51≤ω≤100时,空气质量为良;101≤ω≤150时,空气质量为轻度污染;151≤ω≤200时,空气质量为中度污染,…根据上述信息,解答下列问题:(1)直接写出空气污染指数这组数据的众数90,中位数90;(2)请补全空气质量天数条形统计图:(3)根据已完成的条形统计图,制作相应的扇形统计图;(4)健康专家温馨提示:空气污染指数在100以下适合做户外运动,请根据以上信息,估计该市居民一年(以365天计)中有多少天适合做户外运动?【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)根据众数的定义就可以得出这组数据的众数为90,由30各数据中排在第15和第16两个数的平均数就可以得出中位数为90;(2)根据统计表的数据分别计算出,优、良及轻度污染的时间即可;(3)由条形统计图分别计算出优、良及轻度污染的百分比及圆心角的度数即可;(4)先求出30天中空气污染指数在100以下的比值,再由这个比值乘以365天就可以求出结论.【解答】解:(1)在这组数据中90出现的次数最多7次,故这组数据的众数为90;在这组数据中排在最中间的两个数是90,90,这两个数的平均数是90,所以这组数据的中位数是90;故答案为:90,90.(2)由题意,得轻度污染的天数为:30﹣3﹣15=12天.(3)由题意,得优所占的圆心角的度数为:3÷30×360=36°,良所占的圆心角的度数为:15÷30×360=180°,轻度污染所占的圆心角的度数为:12÷30×360=144°(4)该市居民一年(以365天计)中有适合做户外运动的天数为:18÷30×365=219天.【点评】本题是一道数据分析试题,考查了中位数,众数的运用,条形统计,扇形统计图的运用,样本数据估计总体数据的运用,解答时根据图表数据求解是关键.22.(8分)(2017?淄博)如图,在直角坐标系中,Rt△ABC的直角边AC在x轴上,∠ACB=90°,AC=1,反比例函数y=kx(k>0)的图象经过BC边的中点D(3,1)(1)求这个反比例函数的表达式;(2)若△ABC与△EFG成中心对称,且△EFG的边FG在y轴的正半轴上,点E 在这个函数的图象上.①求OF的长;②连接AF,BE,证明四边形ABEF是正方形.【考点】GB:反比例函数综合题.【分析】(1)由D点坐标可求得k的值,可求得反比例函数的表达式;(2)①由中心对称的性质可知△ABC≌△EFG,由D点坐标可求得B点坐标,从而可求得BC和AC的长,由全等三角形的性质可求得GE和GF,则可求得E点坐标,从而可求得OF的长;②由条件可证得△AOF≌△FGE,则可证得AF=EF=AB,且∠EFA=∠FAB=90°,则可证得四边形ABEF为正方形.【解答】解:(1)∵反比例函数y=kx(k>0)的图象经过点D(3,1),∴k=3×1=3,∴反比例函数表达式为y=3 x ;(2)①∵D为BC的中点,∴BC=2,∵△ABC与△EFG成中心对称,∴△ABC≌△EFG,∴GF=BC=2,GE=AC=1,∵点E在反比例函数的图象上,∴E(1,3),即OG=3,∴OF=OG﹣GF=1;②如图,连接AF、BE,∵AC=1,OC=3,∴OA=GF=2,在△AOF和△FGE中{AO=FG∠AOF=∠FGE OF=GE∴△AOF≌△FGE(SAS),∴∠GFE=∠FAO=∠ABC,∴∠GFE+∠AFO=∠FAO+∠BAC=90°,∴EF∥AB,且EF=AB,∴四边形ABEF为平行四边形,∴AF=EF,∴四边形ABEF为菱形,∵AF⊥EF,∴四边形ABEF为正方形.【点评】本题为反比例函数的综合应用,涉及待定系数法、中心对称的性质、全等三角形的判定和性质、正方形的判定等知识.在(1)中注意待定系数法的应用,在(2)①中求得E点坐标是解题的关键,在(2)②中证得△AOF≌△FGE 是解题的关键.本题考查知识点较多,综合性较强,难度适中.23.(9分)(2017?淄博)如图,将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合(点P不与点C,D重合),折痕为MN,点M,N分别在边AD,BC上,连接MB,MP,BP,BP与MN相交于点F.(1)求证:△BFN∽△BCP;(2)①在图2中,作出经过M,D,P三点的⊙O(要求保留作图痕迹,不写做法);②设AB=4,随着点P在CD上的运动,若①中的⊙O恰好与BM,BC同时相切,求此时DP的长.【考点】MR:圆的综合题.【分析】(1)根据折叠的性质可知,MN垂直平分线段BP,即∠BFN=90°,由矩形的性质可得出∠C=90°=∠BFN,结合公共角∠FBN=∠CBP,即可证出△BFN∽△BCP;(2)①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可;②设⊙O与BC的交点为E,连接OB、OE,由△MDP为直角三角形,可得出AP 为⊙O的直径,根据BM与⊙O相切,可得出MP⊥BM,进而可得出△BMP为等腰直角三角形,根据同角的余角相等可得出∠PMD=∠MBA,结合∠A=∠PMD=90°、BM=MP,即可证出△ABM≌△DMP(AAS),根据全等三角形的性质可得出DM=AB=4、DP=AM,设DP=2a,根据勾股定理结合半径为直径的一半,即可得出关于a的方程,解之即可得出a值,再将a代入OP=2a中求出DP的长度.【解答】(1)证明:∵将矩形纸片ABCD沿直线MN折叠,顶点B恰好与CD边上的动点P重合,∴MN垂直平分线段BP,∴∠BFN=90°.∵四边形ABCD为矩形,∴∠C=90°.∵∠FBN=∠CBP,∴△BFN∽△BCP.(2)解:①在图2中,作MD、DP的垂直平分线,交于点O,以OD为半径作圆即可.如图所示.②设⊙O与BC的交点为E,连接OB、OE,如图3所示.∵△MDP为直角三角形,∴AP为⊙O的直径,∵BM与⊙O相切,∴MP⊥BM.∵MB=MP,∴△BMP为等腰直角三角形.∵∠AMB+∠PMD=180°﹣∠AMP=90°,∠MBA+∠AMB=90°,∴∠PMD=∠MBA.在△ABM和△DMP中,{∠MBA=∠PMD∠A=∠PMD=90°BM=MP,∴△ABM≌△DMP(AAS),∴DM=AB=4,DP=AM.设DP=2a,则AM=2a,OE=4﹣a,BM=√AB2+AM2=2√4+a2.∵BM=MP=2OE,∴2√4+a2=2×(4﹣a),解得:a=3 2,∴DP=2a=3.【点评】本题考查了相似三角形的判定、矩形的性质、角的计算、切线的性质、全等三角形的判定与性质以及勾股定理,解题的关键是:(1)根据矩形的性质结合翻折的性质,找出∠C=90°=∠BFN;(2)①利用尺规作图,画出⊙O;②根据全等三角形的判定定理AAS证出△ABM≌△DMP.24.(9分)(2017?淄博)如图1,经过原点O的抛物线y=ax2+bx(a≠0)与x轴交于另一点A(32,0),在第一象限内与直线y=x交于点B(2,t).(1)求这条抛物线的表达式;(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;(3)如图2,若点M在这条抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【分析】(1)由直线解析式可求得B 点坐标,由A 、B 坐标,利用待定系数法可求得抛物线的表达式;(2)过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,可设出C 点坐标,利用C 点坐标可表示出CD 的长,从而可表示出△BOC 的面积,由条件可得到关于C 点坐标的方程,可求得C 点坐标;(3)设MB 交y 轴于点N ,则可证得△ABO ≌△NBO ,可求得N 点坐标,可求得直线BN 的解析式,联立直线BM 与抛物线解析式可求得M 点坐标,过M 作MG ⊥y 轴于点G ,由B 、C 的坐标可求得OB 和OC 的长,由相似三角形的性质可求得OM OP的值,当点P 在第一象限内时,过P 作PH ⊥x 轴于点H ,由条件可证得△MOG ∽△POH ,由OM OP =MG PH =OG OH的值,可求得PH 和OH ,可求得P 点坐标;当P 点在第三象限时,同理可求得P 点坐标.【解答】解:(1)∵B (2,t )在直线y=x 上,∴t=2,∴B (2,2),把A 、B 两点坐标代入抛物线解析式可得{4a +2b =294a +32b =0,解得{a =2b =−3, ∴抛物线解析式为y=2x 2﹣3x ;(2)如图1,过C 作CD ∥y 轴,交x 轴于点E ,交OB 于点D ,过B 作BF ⊥CD 于点F ,∵点C是抛物线上第四象限的点,∴可设C(t,2t2﹣3t),则E(t,0),D(t,t),∴OE=t,BF=2﹣t,CD=t﹣(2t2﹣3t)=﹣2t2+4t,∴S△OBC =S△CDO+S△CDB=12CD?OE+12CD?BF=12(﹣2t2+4t)(t+2﹣t)=﹣2t2+4t,∵△OBC的面积为2,∴﹣2t2+4t=2,解得t1=t2=1,∴C(1,﹣1);(3)存在.设MB交y轴于点N,如图1,∵B(2,2),∴∠AOB=∠NOB=45°,在△AOB和△NOB中{∠AOB=∠NOB OB=OB∠ABO=∠NBO∴△AOB ≌△NOB (ASA ),∴ON=OA=32, ∴N (0,32), ∴可设直线BN 解析式为y=kx +32, 把B 点坐标代入可得2=2k +32,解得k=14, ∴直线BN 的解析式为y=14x +32, 联立直线BN 和抛物线解析式可得{y =14x +32y =2x 2−3x ,解得{x =2y =2或{x =−38y =4532, ∴M (﹣38,4532), ∵C (1,﹣1),∴∠COA=∠AOB=45°,且B (2,2),∴OB=2√2,OC=√2,∵△POC ∽△MOB ,∴OM OP =OB OC=2,∠POC=∠BOM , 当点P 在第一象限时,如图3,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥x 轴于点H ,∵∠COA=∠BOG=45°,∴∠MOG=∠POH ,且∠PHO=∠MGO ,∴△MOG ∽△POH ,∴OM OP =MG PH =OG OH=2,∵M (﹣38,4532), ∴MG=38,OG=4532, ∴PH=12MG=316,OH=12OG=4564, ∴P (4564,316); 当点P 在第三象限时,如图4,过M 作MG ⊥y 轴于点G ,过P 作PH ⊥y 轴于点H ,同理可求得PH=12MG=316,OH=12OG=4564, ∴P (﹣316,4564); 综上可知存在满足条件的点P ,其坐标为(4564,316)或(﹣316,4564). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、全等三角形的判定和性质、相似三角形的判定和性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中用C 点坐标表示出△BOC 的面积是解题的关键,在(3)中确定出点P 的位置,构造相似三角形是解题的关键,注意分两种情况.本题考查知识点较多,综合性较强,难度较大.。
山东省淄博市中考数学试题(含答案)
2022年中考往年真题练习: 中考数学试题(山东淄博)(本试卷满分120分, 考试时间120分钟)第Ⅰ卷(挑选题 共45分)一、 挑选题: 本题共12小题, 在每小题所给出的 四个选项中, 只有一个是 正确的 , 请把正确的 选项涂在答题卡的 相应位置上.第1~3小题每题3分, 第4~12小题每题4分, 错选、 不选或选出的 答案超过一个, 均记零分.1.和数轴上的 点一一对应的 是 【 】(A) 整数(B) 有理数 (C) 无理数(D) 实数【答案解析】D 。
2.要调查下面的 问题, 适合做全面调查的 是 【 】 (A) 某班同学“立定跳远”的 成绩 (B) 某水库中鱼的 种类(C) 某鞋厂制作的 鞋底承受的 弯折次数 (D) 某型号节能灯的 使用寿命【答案解析】A 。
3.下列命题为假命题的 是 【 】(A) 三角形三个内角的 和等于180° (B) 三角形两边之和大于第三边(C) 三角形两边的 平方和等于第三边的 平方(D) 三角形的 面积等于一条边的 长与该边上的 高的 乘积的 一半【答案解析】C 。
4.若a b >, 则下列不等式不一定成立的 是 【 】(A) a m b m +>+ (B) 22a(m 1)b(m 1)+>+ (C) a b22-<-(D) 22a b >【答案解析】D 。
5.已知一等腰三角形的 腰长为5, 底边长为4, 底角为β.满足下列条件的 三角形不一定与已知三角形全等的 是 【 】(A) 两条边长分别为4, 5, 它们的 夹角为β (B) 两个角是 β, 它们的 夹边为4(C) 三条边长分别为4, 5, 5(D) 两条边长是 5, 一个角是 β【答案解析】D 。
6.九张同样的 卡片分别写有数字-4, -3, -2, -1, 0, 1, 2, 3, 4, 任意抽取一张, 所抽卡片上数字的 绝对值小于2的 概率是 【 】(A)19(B)13(C)59(D)23【答案解析】B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前 试卷类型:A淄博市二○一○年中等学校招生考试数 学 试 题注意事项:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写(涂)准确.2.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷(1—4页)为选择题,42分;第Ⅱ卷(5—12页)为非选择题,78分;共120分.考试时间为120分钟.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD )涂黑.如需改动,须先用橡皮擦干净,再改涂其它答案.第Ⅱ卷须用蓝黑钢笔或圆珠笔直接答在试卷上.考试时,不允许使用计算器.4.考试结束后,由监考教师把第Ⅰ卷和第Ⅱ卷及答题卡一并收回.第Ⅰ卷(选择题 共42分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.第1~6小题每题3分,第7~12小题每题4分,错选、不选或选出的答案超过一个,均记零分.1.(2010山东淄博,1,3分)下列四个数中最小的是 (A )-10 (B )-1 (C )0 (D )0.1 【答案】A2.(2010山东淄博,2,3分)计算b a ab 2253 的结果是 (A )228b a (B )338b a (C )3315b a (D )2215b a 【答案】C3.(2010山东淄博,3,3分)八年级一班要组织暑假旅游,班长把全班48名同学对旅游地点的意向绘制成了扇形统计图,其中“想去上海世博会参观的学生数”的扇形圆心角为60°,则下列说法正确的是(A )想去上海世博会参观的学生占全班学生的60% (B )想去上海世博会参观的学生有12人(C )想去上海世博会参观的学生肯定最多 (D )想去上海世博会参观的学生占全班学生的61 【答案】D4.(2010山东淄博,4,3分)下列结论中不能由0=+b a 得到的是 (A )ab a -=2(B )b a = (C )0=a ,0=b (D )22b a =【答案】C 5.(2010山东淄博,5,3分)如图,△A ′B ′C ′是由△ABC 经过变换得到的,则这个变换过程是 (A )平移 (B )轴对称 (C )旋转 (D )平移后再轴对称【答案】D 6.(2010山东淄博,6,3分)下列运算正确的是(A )1=---a b bb a a (B )b a n m b n a m --=-(C )a a b a b 11=+-(D )ba b a b a b a -=-+--1222 【答案】D 7.(2010山东淄博,7,4分)已知两圆的半径分别为R 和r (R >r ),圆心距为d .如图,若数轴上的点A 表示R -r ,点B 表示R +r ,当两圆外离时,表示圆心距d 的点D 所在的位置是(A )在点B 右侧CBAB ′A ′C ′(第5题)B(第7题)(B )与点B 重合(C )在点A 和点B 之间 (D )在点A 左侧 【答案】A 8.(2010山东淄博,8,4分)图中的八边形是一个正八棱柱的俯视图,如果要想恰好看到这个 正八棱柱的三个侧面,在图中标注的4个区域中,应该选择站在(A )①(B )② (C )③(D )④ 【答案】B9.(2010山东淄博,9,4分)有长度分别为3cm ,5cm ,7cm ,9cm 的四条线段,从中任取三条线段能够组成三角形的概率是 (A )43(B )32(C )21(D )41【答案】A10.(2010山东淄博,10,4分)如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠NFD ′等于(A )144°(B )126° (C )108°(第10题)(D )72° 【答案】B11.(2010山东淄博,11,4分)如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2010次输出的结果为(A )6 (B )3 (C )200623 (D )10033231003⨯+【答案】B12.(2010山东淄博,12,4分)如图,D 是半径为R 的⊙O 上一点,过点D 作⊙O 的切线交直径AB 的延长线于点C ,下列四个条件:①AD =CD ;②∠A =30°;③∠ADC =120°;④DC =3R .其中,使得BC =R 的有(A )①②(B )①③④ (C )②③④ (D )①②③④【答案】DCA(第12题)(第11题)绝密★启用前 试卷类型:A淄博市二○一○年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共78分)二、填空题:本题共5小题,满分20分.只要求填写最后结果,每小题填对得4分.13.(2010山东淄博,13,4分)三个连续整数中,n 是最小的一个,这三个数的和为 . 【答案】33+n14.(2010山东淄博,14,4分)分解因式:3222b ab b a +-= . 【答案】2)(b a b -15.(2010山东淄博,15,4分)如图是由4个边长为1的正方形构成的“田字格”.只__________条.【答案】816.(2010山东淄博,16,4分)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是 .【答案】2 17.(2010山东淄博,17,4分)如图,在直角坐标系中,以坐标原点为圆心、半径为1的⊙O 与x 轴交于A ,B 两点,与y 轴交于C ,D 两点.E 为⊙O 上在第一象限的某一点,直线BF 交⊙O 于点F ,且∠ABF(第15题)=∠AEC ,则直线BF 对应的函数表达式为 .【答案】1-=x y ,1+-=x y三、解答题:本大题共7小题,共58分.解答要写出必要的文字说明、证明过程或演算步骤.18.(2010山东淄博,18,7分)解方程24)5(6-=-x .【答案】解:方程两边同时除以6得x -5=-4,移项得x =5-4, x =1.19.(2010山东淄博,19,7分)已知:如图,E 为正方形ABCD 的边BC 延长线上的点,F 是CD 边上一点,且CE =CF ,连接DE ,BF .求证:DE =BF .【答案】证明:∵四边形ABCD 是正方形,∴BC =DC ,∠BCD =90º ∵E 为BC 延长线上的点,∴∠DCE =90º,∴∠BCD =∠DCE .∵CE =CF ,∴△BCF ≌△DCE ,∴DE =BF .20.(2010山东淄博,20,8分)七年级一班和二班各推选10名同学进行投篮比赛,按照比赛规则,每人各投了10个球,两个班选手的进球数统计如下表,请根据表中数据回答问题.BA(第19题)(1)分别求一班和二班选手进球数的平均数、众数、中位数;(2)如果要从这两个班中选出一个班代表级部参加学校的投篮比赛,争取夺得总进球数团体第一名,你认为应该选择哪个班?如果要争取个人进球数进入学校前三名,你认为应该选择哪个班?【答案】解:(1)一班:7,7,7.二班:7,7,7;(2)一班的方差21S =2.6,二班的方差22S =1.4,二班选手水平发挥更稳定,应该选择二班;一班前三名选手的成绩更突出,应该选择一班.21.(2010山东淄博,21,8分)已知关于x 的方程014)3(222=--+--k k x k x . (1)若这个方程有实数根,求k 的取值范围; (2)若这个方程有一个根为1,求k 的值;(3)若以方程014)3(222=--+--k k x k x 的两个根为横坐标、纵坐标的点恰在反比例函数xmy =的图象上,求满足条件的m 的最小值. 【答案】解: (1)由题意得△=()[]()1443222--⨯---k k k ≥0 化简得 102+-k ≥0,解得k ≤5.(2)将1代入方程,整理得2660k k -+=,解这个方程得 13k =23k =(3)设方程014)3(222=--+--k k x k x 的两个根为1x ,2x ,根据题意得12m x x =.又由一元二次方程根与系数的关系得21241x x k k =--, 那么()521422--=--=k k k m ,所以,当k =2时m 取得最小值-522.(2010山东淄博,22,8分)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.【答案】解:设小明从家走到商店的平均速度为x 米/分,则他从商店到学校的平均速度为(x +25)米/分,根据题意列方程得500303025xx x +=+ 解这个方程得x =50经检验x =50是所列方程的根.50+25=75(米/分),所以小明从商店到学校的平均速度为75米/分. 23.(2010山东淄博,23,10分)将一副三角尺如图拼接:含30°角的三角尺(△ABC )的长直角边与含45°角的三角尺(△ACD )的斜边恰好重合.已知AB =23,P 是AC 上的一个动点.(1)当点P 运动到∠ABC 的平分线上时,连接DP ,求DP 的长; (2)当点P 在运动过程中出现PD =BC 时,求此时∠PDA 的度数;(3)当点P 运动到什么位置时,以D ,P ,B ,Q 为顶点的平行四边形的顶点Q 恰好在边BC 上?求出此时□DPBQ 的面积.【答案】解:在Rt △ABC 中,AB =23,∠BAC =30°,∴BC =3,AC =3.(1)如图(1),作DF ⊥AC ,∵Rt △ACD 中,AD =CD ,∴DF =AF =CF =23. ∵BP 平分∠ABC ,∴∠PBC =30°,∴CP =BC ·tan30°=1,∴PF =21,∴DP =22DF PF =210.(2)当P 点位置如图(2)所示时,根据(1)中结论,DF =23,∠ADF =45°,又PD =BC =3,∴cos∠PDF =PD DF =23,∴∠PDF =30°. DACB(第23题)(第23题)B(2)B (1)∴∠PDA =∠ADF -∠PDF =15°.当P 点位置如图(3)所示时,同(2)可得∠PDF =30°. ∴∠PDA =∠ADF +∠PDF =75°.(3)CP =23. 在□DPBQ 中,BC ∥DP ,∵∠ACB =90°,∴DP ⊥AC .根据(1)中结论可知,DP =CP =23,∴S □DPBQ =CP DP ⋅=49. 24.(2010山东淄博,24,10分)已知直角坐标系中有一点A (—4,3),点B 在x 轴上,△AOB 是等腰三角形.(1)求满足条件的所有点B 的坐标;(2)求过O ,A ,B 三点且开口向下的抛物线的函数表达式(只需求出满足条件的一条即可);(3)在(2)中求出的抛物线上存在点P ,使得以O ,A ,B ,P 四点为顶点的四边形是梯形,求满足条件的所有点P 的坐标及相应梯形的面积.【答案】解:作AC ⊥x 轴,由已知得OC =4,AC =3,OA =22AC OC +=5. (1)当OA =OB =5时,如果点B 在x 轴的负半轴上,如图(1),点B 的坐标为(-5,0). 如果点B 在x 轴的正半轴上,如图(2),点B 的坐标为(5,0).B (3)B(4)(第23题)当OA =AB 时,点B 在x 轴的负半轴上,如图(3),BC =OC ,则OB =8,点B 的坐标为(-8,0).当AB =OB 时,点B 在x 轴的负半轴上,如图(4),在x 轴上取点D ,使AD =OA ,可知OD =8.由∠AOB =∠OAB =∠ODA ,可知△AOB ∽△ODA ,则OD OA OA OB =,解得OB =825,点B 的坐标为(-825,0)(2)当AB =OA 时,抛物线过O (0,0),A (-4,3),B (-8,0)三点,设抛物线的函数表达式为bx ax y += 2,可得方程组⎩⎨⎧=-=-34160864b a b a ,解得a =163-,23-=b ,x x y 231632--=. (当OA =OB 时,同理得x x y 415432--=. (3)当OA =AB 时,若BP ∥OA ,如图(5),作PE ⊥x 轴,则∠AOC =∠PBE ,∠ACO =∠PEB=90°,△AOC ∽△PBE ,43==OC AC BE PE .设BE =4m ,PE =3m ,则点P 的坐标为(4m -8,-3m ),代入x x y 231632--=,解得m =3. 则点P 的坐标为(4,-9),S 梯形ABPO =S △ABO +S △BPO =48. 若OP ∥AB (图略),根据抛物线的对称性可得点P 的坐标为(-12,-9), S 梯形AOPB =S △ABO +S △BPO =48.题11(当OA =OB 时,若BP ∥OA ,如图(6),作PF ⊥x 轴,则∠AOC =∠PBF ,∠ACO =∠PFB=90°,△AOC ∽△PBF ,43==OC AC BF PF .设BF =4m ,PF =3m ,则点P 的坐标为(4m -5,-3m ),代入x x y 415432--=,解得m =23. 则点P 的坐标为(1,-29), S 梯形ABPO =S △ABO +S △BPO =475. 若OP ∥AB (图略),作PF ⊥x 轴,则∠ABC =∠POF ,∠ACB =∠PFO =90°,△ABC ∽△POF ,3==BC AC OF PF .设点P 的坐标为(-n ,-3n ),代入x x y 415432--=,解得n =9.则点P 的坐标为(-9,-27),S 梯形AOPB =S △ABO +S △BPO =75.(第24题)。