七年级数学下册-第10章数据的收集、整理与描述复习教案-人教新课标版

合集下载

七年级数学下册第10章数据的收集、整理与描述说课稿(新版)新人教版

七年级数学下册第10章数据的收集、整理与描述说课稿(新版)新人教版

第十章一、说教材1、教学内容:本节课是人教七年级下册《数据的收集和整理》。

2、教材分析本单元是学生已经学习了比较、分类等知识的基础上学习统计的基本知识的。

为了让学生能了解学习统计的必要性,教材选择了与学生生活有密切联系的生活场景,通过参与有趣的调查活动,使学生经历收集信息、处理信息的过程,了解调查的方法,学习收集、整理、描述和分析数据,认识统计的意义和作用。

本单元学生学习的内容主要是调查、记录和整理结果,意在使学生体会抽样调查的合理性和记录方法的多样性。

学会用画“正字”法记录数据,使结果易于整理。

3、学情分析:学生已经学习了比较、分类等与统计相关的初步知识,为本单元进一步学习调查、记录和整理,简单分析数据奠定了基础。

在日常生活中有许多与统计相关的生活场景,只是学生没有发现,需要教师在课堂上引导学生研究和体会:“生活中处处有数学”“数学来源于生活“。

3、教学重点:在具体情境中体会抽样调查的合理性,能正确填写统计表。

教学难点:培养学生的实践能力,分析能力与合作意识。

4、教学目标:根据教学内容和教学重点特制定以下教学目标:(1)、初步理解统计的意义和作用,学会收集数据的方法,能填写简单的统计表。

(2)、能根据不同的要求对数据进行简单的整理。

(3)、培养学生的观察和实际应用能力。

二、说教法在教学上,本节课采用“引导探究”式教学。

从学生身边的问题出发,在教师引导下,学生自主探究问题,利用以前的知识解决问题。

三、说学法在教学活动中,我们关注的是教学过程,所以学生在讨论中悟,悟中获,获中学,学中创新。

自己主动获取知识,同时也感受到合作的必要性。

四、说教学过程(一)、创设情境本节课开始教师就创设情境,用学生已有的生活经验唤起他们学习新知识的欲望,激发学生的学习动机。

于是就选择了同学们熟悉的调查四种颜色,选哪种合适?做校服,这样的引入,调动了学生学习的积极性。

(二)探究新知1、在教学新知识时,我有意创设问题,举手调查。

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收集、整理与总结教案

人教版七年级数学(下册)第十章-数据的收
集、整理与总结教案
教学目标
1. 理解数据的概念和数据在日常生活中的作用。

2. 掌握数据的收集方法,包括观察法、实验法和调查法。

3. 学会整理数据的方法,包括制作频数表、制作条形统计图和
折线统计图。

4. 能够运用所学知识对数据进行分析和总结。

教学准备
1. 教材:人教版七年级数学(下册)第十章教材。

2. 教具:白板、黑板、多媒体课件、绘图工具。

教学过程
1. 导入:通过实例引入数据的概念和作用,激发学生的研究兴趣。

2. 授课:介绍数据的收集方法,包括观察法、实验法和调查法,并进行详细讲解和示范。

3. 练:分组进行实践操作,让学生亲自收集数据,并使用合适
的方法整理和表达数据。

4. 深化:引导学生分析和总结所收集的数据,提出问题并讨论。

5. 归纳:对本节课所学内容进行归纳总结,强化学生对数据收集、整理和总结方法的理解。

6. 作业:布置相应的练题和作业,巩固所学知识。

教学评价
1. 观察学生在课堂上的表现和参与程度。

2. 检查学生的作业完成情况和答案正确率。

3. 进行小组或个别评价,关注学生的理解深度和解决问题的能力。

教学活动设计合理,有助于学生对数据的收集、整理和总结方
法有更深入的认识。

沈阳市第二中学七年级数学下册第十章数据的收集整理与描述章末复习导学案新版新人教版

沈阳市第二中学七年级数学下册第十章数据的收集整理与描述章末复习导学案新版新人教版

章末复习一、复习导入1.导入课题:前面我们学习了在生产和生活中对数据的收集、整理与描述方法,为了使大家更全面、准确、熟练地掌握本章知识和技能,下面我们一起来进行本章的小结与复习.2.学习目标:(1)更进一步认识收集数据的方式和方法.(2)学会整理数据的方法.(3)领会描述数据的方法.3.学习重、难点:重点:制表整理数据、绘图描述数据.难点:合理设计统计图表及描述和分析数据的合理方式和方法.二、分层复习1.自学指导:(1)自学内容:本章全部内容.(2)自学时间:8分钟.(3)自学方法:阅读课本P157小结,对小结中不熟悉的问题查看课本内容及学习笔记,并记录新的疑点.(4)自学参考提纲:①收集数据有哪些方法?不同的方法各有什么优缺点?②对收集的数据如何进行整理?③对整理出的数据进行描述的目的是什么?①样调查的作用是什么?抽样时应注意什么?②种描述数据的图表在表示数据方面各有什么特点?⑥反映一天的气温随时间的变化情况适用折线图描述,反映某校近视的学生人数占全校学生人数的百分比适用扇形统计图描述,反映某村种植水稻、棉花、花生等农作物种植面积情况适用条形统计图描述.2.自学:学生可围绕自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师深入课堂了解自学进度和自学中存在的问题.②差异指导:对学有困难或方法不当的学生进行引导.(2)生助生:小组内学生之间相互交流,提供帮助.4.强化:(1)数据处理的一般过程.(2)收集数据的方法.(3)整理数据的方法.(4)描述数据的方法.1.自学指导:(1)自学内容:典例剖析.(2)自学时间:6分钟.(3)自学要求:在自学提纲的分析引领下,积极思考,逐个解答.(4)自学提纲:【例1】为了了解某市八年级学生的肺活量,从中抽样调查了500名学生的肺活量,这项调查中的样本是( B )A.某市八年级学生的肺活量B.从中抽取的500名学生的肺活量C.从中抽取的500名学生D.500【例2】某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开展A.乒乓球,B.篮球,C.跑步,D.跳绳四种运动项目,随机抽取了100名学生进行调查,并将调查结果(每名学生统计一个最喜欢的项目)绘制成如下统计图,请你结合图中信息解答下列问题:①本中最喜欢B项目的人数占所调查人数的百分比是 20% ,其所在扇形图中的圆心角的度数是 72° .②请把统计图补充完整.③已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少.1200×44100=528(人)提示:理解不同的统计图描述数据的侧重点及特征,用样本估计总体的统计思想.【例3】李老师为了了解班里学生的作息时间,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值,不含最大值),请根据该频数分布直方图,回答下列问题:①此项调查的总体是什么?(50名学生上学路上花费的时间)②补全频数分布直方图;③该班学生上学路上花费时间在30分钟及以上的人数占全班人数的百分比是多少?解:(4+1)÷50×100%=10%提示:利用数形结合,根据图形提供的信息,联系题意可解决问题.2.自学:同学们结合自学指导进行学习,尽量自己独立完成,若有困难可相互协作研讨解决.3.助学:(1)师助生①明了学情:教师深入课堂了解自学进度、遇到的困难和存在的问题等.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、研讨、纠错,互帮互学.4.强化:各小组展示学习成果,准确解释相关概念的含义,如何从图形中获取相关信息,进一步强化用样本估计总体的统计思想.三、评价1.学生的自我评价:各小组长汇报本组的学习收获和存在的困惑.2.教师对学生的评价:(1)表现性评价:对学生在学习中的态度、学法和成效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):这节课的内容主要是让学生学会收集数据,感受生活中处处有数学,会把数据分类、收集,掌握整理数据的方法.在教学中,注重让学生全程参与学习活动——课前参与、课中体会、课后反思,激发学生的学习积极性、主动性,使学生体会数学知识的产生、形成与发展的过程,获得积极的情感体验,感受数学的力量,同时,让学生掌握必要的基础知识与基本技能.(时间:12分钟满分:100分)一、基础巩固(60分)1.(10分)下列调查中,调查方式选择正确的是( C )A.了解1000只灯泡的使用寿命,选择全面调查B.了解某路段的日车流量,选择全面调查C.了解月球车仪表的性能状况,选择全面调查D.了解某水库中鱼的种类,选择全面调查2.(10分)某水果公司对1000箱苹果进行质量检验,从中抽取100箱检查,在这个问题中,总体是 1000箱苹果的质量,样本是 100箱苹果的质量,样本容量是100 .3.(20分)如图,是某班一次数学测验成绩的频数分布直方图,则数学成绩在69.5~89.5分范围内的学生占全班学生人数的百分比为 60% .(每组中数据含最小值,不含最大值)第3题图第4题图4.(10分)如图,用整圆表示一个普通家庭月收入为4500元,扇形D表示房屋租赁收入,则D表示的数据是(B)A.680元B.900元C.750元D.850元5.(10分)某校学生来自甲、乙、丙三个村,其人数比为4∶3∶5,如图所示的扇形表示三个村学生占全校学生人数情况的统计图,已知甲村有180人.(1)该校有学生 540 人;(2)丙村人数所在的扇形圆心角为 150 度.二、综合运用(20分)6.如图是某医院对3000名慢性支气管炎患者使用中草药治疗的效果统计图,观察统计图,并回答下列问题.(1)使用中草药治疗显著的有多少人?(2)你对这种中草药的疗效有何评价?(3)试将上图反映的信息用条形统计图来描述.解:(1)3000×(1-8%-20%-35%)=1110(人)答:使用中草药治疗显著的有1110人.(2)疗效显著的患者占总数的37%,属于人数最大人群,无效的患者所占比例最小,所以,总体而言,这种中草药的疗效还是很不错的.(3)条形统计图如图.三、拓展延伸(20分)7.某校九年级(1)班50名学生参加1分钟跳绳比赛,1分钟跳绳次数统计情况如下图表(表中60~70表示大于或等于60,并且小于70,其余同理).(1)求m,n的值.(2)求该班1分钟跳绳成绩在80分及以上的人数占全班人数的百分比.解:(1)由题意得,950m+×100%=54%,得m=18.12 50n+×100%=30%,得n=3.(2)12189350+++×100%=84%答:该班1分钟跳绳成绩在80分及以上的人数占全班人数的84%.章末复习一、复习导入1.导入课题:同学们,我们学完有理数这一章后,你对本章的知识结构、知识要点和知识的运用等有没有深刻、清晰的总体认知,还有哪些不够熟悉的知识点和它们之间内在联系不够清楚的地方,下面我们一起走进本章的知识圈再去仔细审视一遍!2.三维目标:(1)知识与技能①会记录统计相关数据.②会计算相关的数量.③会建立收支账目,并作为家庭理财的参考资料.(2)过程与方法通过建立家庭生活收支帐目,体会数学在生活中的应用价值.(3)情感态度感受数学和生活的紧密联系,激发学习数学的兴趣.3.学习重、难点:重点:有理数的有关概念、运算法则和运算顺序.难点:有理数的运算技巧和数学思想方法.二、分层复习1.复习指导:(1)复习内容:教材第50页到第51页的内容.(2)复习时间:5~8分钟.(3)复习要求:对照小结归纳的内容,运用边看书、边回忆、边交流总结的方式回顾和梳理本章的学习内容、知识要点.(4)复习参考提纲:为了运算简便灵活运用(交换)律、(结合)律和(分配)律进行有理数运算.②什么叫做数轴?它有什么用途?什么叫做绝对值?怎样化简绝对值?什么是相反数和倒数?≥③为了表示具有相反意义的量,引入了相反数.它在现实生产、生活中有什么用途?⑤有理数的减法法则:减去一个数,等于加这个数的相反数.有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数与0相乘,都得0.有理数的除法法则:除以一个不为0的数,等于乘这个数的倒数.⑥有理数的乘方意义是n个相同的因数相乘.一个数的乘方符号怎样确定?⑦有理数的混合运算顺序是先乘方,再乘除,后加减.⑧什么叫做科学记数法,它的表达形式是怎样的?如何按要求求一个数的近似数?以及由近似数怎么确定其精确度?将一个数表示成a×10n的形式(其中1≤a<10,n为正整数),这种记数方法叫做科学记数法.求一个数的近似数时,先明了要求的精确度,再根据精确度四舍五入.由近似数确定其精确度,则要看近似数的最末位数字在哪个数位上即为其精确度.2.自主复习:学生依据复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师巡视课堂了解学生对本章知识的熟知情况,发现学生的薄弱之处.②差异指导:通过深入了解学情后,适时让不同层次的学生展示复习成果,找准问题并强化本章知识学习中的易错点、易混点、易忘点.(2)生助生:学生相互交流,相互帮助解决疑难问题,相互补充完善知识结构.4.强化复习:(1)本章知识结构.(2)运算法则及运算的顺序.(3)相互交流并板演展示复习成果.1.复习指导:(1)复习内容:典例剖析.(2)复习时间:8分钟.(3)复习方法:按复习提纲的指引、提示,积极动脑,寻求解决问题中的所用知识和办法.(4)复习提纲:【例1】某股民在上星期五买进某种股票500股,每股60元,下表是本周每日该股票的涨跌情况(单位:元).①星期三收盘时,每股是多少元?②已知买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易费,如果在星期五收盘前将全部股票一次性地卖出,他的收益情况如何?分析:①实际上是求买股票时每股的价格与星期一、二、三几天的每股涨跌值的代数和,故列出算式:60+4+4.5-1=67.5.②收益=总收入-总支出总收入=卖出时每股价格×股数,所以总收入=59×500=29500总支出由购买成本、手续费,卖出时手续费、交易费四部分组成.其中购买成本=60×500=30000购买时手续费=30000×1.5‰=45卖出时手续费=29500×1.5‰=44.25卖出时交易费=29500×1‰=29.5按上面结果求得它的最终收益为:29500-30000-45-44.25-29.5=-618.75元【例2】计算:①-22×-12+8÷(-2)2=4②(-3)2÷214×(-23)2+4-22×(-13)=649③{1+[116-(-34)3]×(-2)4}÷(-116-34-12)=-203分析:在有理数的加、减、乘、除、乘方几种运算的运算法则及运算顺序烂熟于胸的情况下,仔细审题,细心求解,能适当使用运算律进行简便运算.2.自主复习:同学们结合“复习指导”进行学习,能自己单独解决的尽量独立完成,有困难的可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的自学进度,遇到的疑难和出现的问题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互纠错、改正答案.4.强化复习:(1)展示各小组的学习成果.(2)根据典型(代表性的错误或独到的解法)情况予以评讲.三、评价1.学生的自我评价:通过本节课的学习,让学生代表谈谈自己的收获或困惑.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、学习方法和收获进行点评.(2)纸笔评价:课堂评价检测.3.教师自我评价(教学反思):本课时教学时应抓住以下重点:(1)分类问题:教师让学生从实践入手,给定三角形三边,学生在薄纸上画,然后小组的同学看所画三角形是否重合,探索归纳、形成结论.(2)教师可用多媒体展示现实生活中的实际例子:如桥梁、铁塔、自行车的三角架等,从中体验三角形的稳定性,认识“边边边”可作为三角形全等的判定依据.(3)强调思路分析和书写规范.一、基础巩固。

人教版初中数学七年级下册第十章《数据的收集整理与描述》复习教案设计

人教版初中数学七年级下册第十章《数据的收集整理与描述》复习教案设计

数据的收集、整理与描述单元复习一、教学目标:复习重点:1、复习总体、样本、个体等基本概念,知道调查的几种方式及其特点;2、理解数据收集的一般步骤,频数、频率以及扇形统计图的特点;3、会画频数分布表和频数分布直方图,理解其意义和作用。

复习难点:1、了解几种统计图侧重表达的信息,学会选择合适的统计图表并会绘制统计图表,能准确而迅速地反映出要表达的信息;2、了解频数分布的意义和作用,会列频数分布表、会画频数分布直方图和频数折线图,并能解决简单的实际问题.二、教学过程:知识点一:1、统计调查的两种方式?全面调查、抽样调查2、统计调查的步骤?收集数据、整理数据、描述数据、分析数据、得出结论3、什么叫全面调查?考察全体对象的调查叫全面调查。

4、全面调查的优点和缺点?优点:所得的数据全面准确。

缺点:浪费人力、物力、财力、耗时长,部分调查具有破坏性。

5、什么是抽样调查?只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫做抽样调查。

6、抽样调查的优点和缺点?优点:节省人力、物力、财力、耗时短。

缺点:收集的资料与实际存在误差。

7、在什么时候用全面调查方式较好? 什么时候用抽样调查方式较好呢?当调查的对象个数较少,范围较小,调查容易进行时,或对调查的结果有特别要求时,如国家的人口普查,一般采用全面调查。

调查对象的个数较多,范围较广,调查不易进行时,或对调查对象具有破坏性时,我们常采用抽样调查。

8、在用抽样调查时要注意什么?抽样时,样本的容量要合理,样本的个体要有代表性、广泛性。

9、我们已学过几种抽样调查方法?简单随机抽样和分层抽样重点讲解:例1:下列调查属于全面调查有:()A、调查三中全体教师某一周内用电情况B、乘飞机时,机场对旅客的行李安全检查C、中央电视台2005年春节联欢晚会“您最喜欢的节目”网上调查D、调查我们班全体同学的体重情况E、了解全班同学所穿鞋码的情况F、为了调查一批灯泡的使用寿命练一练:要调查下面几个问题,你认为应该作全面调查还是抽样调查:(1)调查我们班所有同学的体重情况(2)调查市场上五色冰淇淋的色素含量是否符合国家标准;(3)检测某城市的空气质量;(4)调查某村所有家庭的年收入;(5)调查巫山县初一年级的作业量情况;(6)调查重庆市冬小麦亩产量;(7)调查一个班级中的学生对建立班级英语角的看法;知识点二:10、什么是总体,个体,样本,样本容量?要考察的全体对象称为总体。

人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课

人教版七年级下册数学教学设计(教案):第十章数据的收集、整理与描述单元备课

第十章“数据的收集、整理与描述”单元备课本章是统计部分的第一章,内容包括:1.利用全面调查与抽样调查(以抽样调查为重点)收集和整理数据;2.利用统计图表(以直方图为重点)描述数据;3.展现收集、整理、描述和分析数据得出结论的统计调查的基本过程.本章共安排三个小节和两个选学内容,教学(不包括选学内容)约需10课时,具体安排如下(仅供参考):10.1 统计调查约3课时10.2 直方图约2课时课题学习从数据谈节水约3课时数学活动小结约2课时一、教科书内容与本章学习目标(一)本章知识结构框图本章知识结构如下图所示:(二)教科书内容10.1节“统计调查”,主要介绍收集、整理与描述数据的一些常用方法.全面调查和抽样调查是统计调查的常用方法.教科书以调查人们对几种电视节目的喜爱情况为背景,设计了两个问题,通过统计调查问题1回顾了全面调查;通过统计调查问题2介绍了抽样调查.教科书首先设置问题1,要求学生考察全班同学喜爱五种电视节目的情况.解决这个问题需要统计调查,首先是收集数据,由此引出利用调查问卷收集数据的方法;对于收集到的数据需要进行整理才能看出数据分布的规律,这就涉及如何整理数据的问题,教科书介绍了利用频数分布表(没有给出频数分布的概念)整理数据的方法;为了更直观地看出全班同学喜爱五种电视节目的情况,教科书选用了学生在小学已经学过的条形图和扇形图展示了数据的分布规律;最后通过分析统计图表就可以看出全班同学五种电视节目的情况.对于扇形图,学生在小学只能从扇形图中读出信息,不会画出扇形图来描述数据,在本节中,教科书结合问题1介绍了如何画出扇形图,这是本学段的一个教学要求.问题1的统计调查过程实际上让学生经历了一个收集、整理、描述和分析数据得出结论,即数据处理的一般过程.数据的来源一般有两条渠道:一条是通过统计调查或科学试验直接得到第一手统计数据;另一条是通过查阅资料等间接获得第二手统计数据.统计调查是获得第一手数据的重要途径,它们常常通过访问、邮寄、电话、电脑辅助等形式来收集数据;科学试验是取得自然科学数据的主要手段;各种文献资料、报刊杂志、广播、电视媒体等提供了大量的统计数据,通过这些资料或媒体可以获得第二手数据.本章主要学习通过统计调查来收集数据,并对收集到的数据进行整理的方法.关于通过科学试验获得数据的方法,教科书通过一个选学栏目作了简单介绍;对于通过查阅资料等间接手段收集数据的方法,主要安排在课题学习和习题中.用样本估计总体是统计的基本思想,抽样调查是实际中经常采用的一种调查方式,也是本节重点介绍的统计调查方法.教科书沿用问题1的情景,设计了问题2,介绍利用抽样调查收集数据.在问题2中,调查全校学生对五种电视节目的喜爱情况,由于学生人数较多,采用全面调查的方式收集数据不太实际,抽样调查是一种经济、有效、省时省力的方法,这就使学生对抽样的必要性有所感受.结合着必要性的讨论,教科书给出了与抽样调查有关的概念和术语,如样本、总体、个体、样本容量等.为了使样本尽可能具有好的代表性,抽取样本时,要求每一个学生都有相等的机会被抽到,教科书介绍了一种利用学号随机抽取样本,实现简单随机抽样的方法.这个抽样方法简单有效,便于学生理解样本的代表性.有了样本数据,就可以整理、描述和分析样本数据,通过分析样本数据来估计总体的情况.通过问题2的学习,学生经历了一个利用抽样调查处理数据、解决问题的统计过程,对抽样调查的必要性、样本的代表性、单随机抽样,以及通过样本估计总体的思想等有所了解.在问题1,2的基础上,教科书设置了问题3.问题3是比较学生所在学校三个年级学生的平均体重,教科书没有给数据,也没有给分析和解决过程,需要学生自主合作完成.教科书这么做的目的是考虑到统计内容有较强的实践性,希望学生通过亲自参与统计活动这种有效方式学习统计内容.问题3中设置的三个小问题,事实上是给学生完成此问题适当的引导.其中调查方案的确定,需要根据学生自己所在学校的实际情况进行综合权衡,选取相对合适的调查方案.即使是调查同一所学校,也完全可以采用不同的调查方式收集数据,但要能解决所提问题为前提,其实这是辩证地认识两种调查方式特点的过程,更是正确认识统计方法特点的过程.通过问题3,让学生亲自参与在实际问题中收集、整理、描述和分析数据得出结论的统计过程,培养应用意识和解决问题的能力,初步建立数据分析观念,感受统计的思想.“捉-放-捉(capture-recapture)”是生产和科研中经常用到的方法,常常被用来根据部分的情况估计整体的情况,例如估计养鱼池中鱼的个数,森林中某种动物的个数等,这个方法体现了用样本估计总体的思想.教科书在选学栏目“实验与探究瓶子中有多少粒豆子”中,模拟这种方法设计了一个活动,通过学生动手活动体验这种方法,感受用样本估计总体的思想,并了解试验也是获得数据的有效方法.10.2节“直方图”,重点讨论利用直方图来描述数据.对于直方图,学生在前两个学段没有接触,这是本学段学习的一种新统计图.教科书从学生熟悉的问题情景入手:从63名学生中选出40名参加广播体操比赛.选择参赛队员的一个要求是队员的身高应尽可能整齐.我们可以用不同的方法选出符合这个要求的队员,教科书介绍了利用频数分布确定人选的方法.分析数据的频数分布,首先是将数据分组,根据一组数据的最大值、最小值可以确定这组数据的极差,极差反映了数据的变化范围.参照极差,可以确定组距,进而可以将数据进行分组,利用频数分布表给出了身高数据的分布情况,分析频数分布表可以看出大部分学生的身高分布在哪个范围,由此可以确定参赛选手的身高.对于取值比较少的数据(如前一节最喜爱的电视节目),可以用条形图描述频数分布,而对于取值比较多的数据(如身高),分组后可以用直方图来描述频数分布.教科书利用问题4介绍了根据频数分布表作出频数分布直方图的方法.教科书结合一个实际问题介绍直方图描述数据的方法,使得对于统计图表的认识具体化.10.3节“课题学习从数据谈节水”,要求学生综合利用学过的统计知识和方法从事统计活动,经历收集、整理、描述和分析数据的基本过程.教科书选择了一个具有实际意义和时代气息的问题——水资源问题为主题编写课题学习,这不仅有利于统计知识的深入学习,而且具有“节能减污,保护环境”的教育价值.这个课题学习由两部分组成,第一部分要求学生阅读背景材料,从中收集数据,通过数据处理回答问题.第二部分要求学生运用已学的统计调查知识,完成一个以“家庭人均月生活用水量”为题的统计调查活动,并结合第一部分的内容撰写一份报告.课题学习的设计目的,一方面是让学生感受对数据进行合适处理,可以挖掘其中蕴涵的信息,体会统计方法的意义;另一方面是让学生经历在实际问题中收集、整理、描述和分析数据得出结论的统计过程,在经历这个统计调查的过程中,发展学生的数据分析观念,感受统计的思想,逐步建立用数据说话的习惯.(三)本章学习目标1.经历收集数据、整理、描述和分析数据的活动,了解数据处理的过程.了解全面调查和抽样调查两种收集数据的方式,会设计简单的调查问卷.2.通过实例,体会抽样的必要性,了解简单随机抽样.通过简单随机抽样,体会样本估计总体的合理性,能根据统计结果作出简单的判断和预测.3.通过实例,了解频数及频数分布的意义,会用表格整理数据,体会表格在整理数据中的作用.5.能画扇形图和简单频数分布直方图(等距分组的情形),并能利用频数分布直方图解释数据中蕴涵的信息.会根据问题需要选择适当的统计图描述数据,进一步体会统计图在描述数据中的作用.6.通过表格、折线图、趋势图等,感受随即现象的变化趋势.7.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立数据分析观念,培养重视调查研究的良好习惯和科学态度.三、对教学的几个建议1.注意统计思想的渗透与体现2.在统计过程中学习统计,改进学生的学习方式3.挖掘现实生活中的素材进行教学4.准确把握教学要求5.关注信息技术的使用。

人教版七年级数学下册教案第10章数据的收集整理与描述教案

人教版七年级数学下册教案第10章数据的收集整理与描述教案

人教版七年级数学下册教案1 0.1 统计调查(一)1.学习目标:了解全面调查的意义,初步学会简单的数据的收集、整理以及会用条形统计图、扇形统计图直观地描述数据。

2.重点:对数据的收集、整理及描述3.难点:绘制扇形统计图和条形统计图4.教学内容一、问题:如果要了解全班同学对语文、数学、外语、政治、历史、地理、生物七个学科的喜爱情况,你会怎样做?(一)设计调查问题的问卷1、确定调查目的;2、选择调查对象;3、设计调查问题。

需要注意:(1)调查目的要明确;(2)选择调查对象要合理;(3)设计调查问题要科学。

调查问卷在下面七个学科中,你最喜欢的是()(只选一个)A.语文 B.数学 C.外语 D.政治E.历史 F.地理 G.生物(二)实施调查,收集数据收集全班同学在上面的问卷调查中的数据。

科目划记人数百分比A.语文(三)整理数据(用表格) 填完后交数学科代表,由科代表唱票,全班同学在表格中进行统计。

(四)描述数据(用统计图)常见的统计图有:条形统计图、扇形统计图、折线统计图。

1、条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按一定的顺序排列起来。

从条形统计图中很容易看出各种数量的多少。

制作条形统计图的步骤是:(1)根据图纸的大小,画出两条互相垂直的射线,作为纵轴和横轴 (2)在横轴上适当分配条形的位置,确定直条的宽度和间隔。

(3)在纵轴上确定单位长度,并标出数量的标记和计量单位。

(4)根据数据的大小,画出长短不同的直条。

并标上标题。

(5)若条形太小可适当在条形内画上颜色等区分。

作用:可以清楚的反应数量,便于比较做一做:请根据你所得到的数据,制作条形统计图。

2、扇形统计图:扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各B .数学C .外语D .政治E .历史F .地理G .生物部分数量占总数的百分数。

通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系。

初中数学 人教版七年级下册 第十章 数据的收集、整理与描述 复习与小结 教案

初中数学 人教版七年级下册    第十章 数据的收集、整理与描述 复习与小结   教案
6.设计调查问卷应注意的事项
7.画直方图的步骤
小组内个人展示先学成果,相互交流,明确答案。
对疑难问题,小组内共同讨论完成。
提出质疑,组长解答。




教师指导学生归纳总结,并适时点拨、评价。
数据处理的一般过程
得出结论
分析数据
描述数据
整理数据
全面调查
收集数据
各小组代表汇报小组合作学习成果,并讨论各小组提出的疑难问题。
各小组代表汇报小组合作学习成果,并讨论各小组提出的疑难问题。
师生共同解决疑难,记录要点。




练习:
P158复习题 3
小结:
本节课你有何收获?
学生独立完成练习,小组长批改,小组内纠正。
学生总结收获。




课后作业:P158复习题 6
前置性作业设计:
第十章 数据的收集与整理练习题
第一课时 奇数题
第二课时 偶数题
板书预设
分布表(投影仪) 课题 小结
分布图(挂图或投影仪)
习题
教导处(教研组)审阅意见
课时教案
课题
复习与小结(一)
第 1 课时
教学目标
知识与技能:通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实。
过程与方法:通过计调查问卷。
情感态度与价值观:积极创设情境,参与调查、整理数据,体会社会调查的艰辛与乐趣。
重点
正确绘制统计图表
教具
三角板
难点
不同统计图表的区别
学具
三角尺
教师活动
学生活动


数学-七年级下册-第10章数据的收集整理与描述(单元总复习第2课时)-人教课标版-

数学-七年级下册-第10章数据的收集整理与描述(单元总复习第2课时)-人教课标版-

典型例题 扇形图的认识
3、某班有图上表 示三好学生和优秀学生干部人数的圆 心角分别是 ( ) A.720, 360 B.1000,500
C.1200,600 D.800, 400
配套练习
扇形图的认识 4、如图,某校共有学生700人,图中 扇形A、B、C、D分别参加语、数、 英三个兴趣小组的人数的百分比,规定 每人只能参加一个兴趣小组且每人均参 加课外小组,则不参加数学小组的学生 有( ) A.441人 B.259人 C.451人 D.249人
知识结构 统 计 调 查
全 抽 面 样 调 调 查 查
收 集 数 据
整 理 数 据
描 述 数 据
分 析 数 据
得 出 结 论
条 扇 折 直 形 形 线 方 图 图 图 图
频率分布直方图
步骤: 1 计算最大值与最 小值的差 2 决定组距与组数 3 决定分点 4 列出频率分布表
注:(1)纵坐标有两种表示 方式,一是频数/组距,另 一种是频数 (2)频数的大小可通过 每个小长方形的面积确定 (3)频数折线图可直接 在直方图中画出,但要在 两端加上零点。
典型例题
分组方法
8、有若干个数据,最大值是124,最小 值是103.• 用频数分布表描述这组数据 时,若取组距为3,则应分为( ) A.6组 B.7组 C.8组 D.9组
配套练习
分组方法
9、已知一个样本: 27,23,25,27,29,31,27,30, 32,28,31,28,26,27,29,28, 24,26,27,30 那么频数为 8 的范围是( ) A .24.5 ~26.5 B.26.5~28.5 C.28.5~30.5 D.30.5~32.5
配套练习 条形图的认识 6、如图是某乡镇企业2002─2004年创 造的利润折线统计图 (1)回答下列问题: ①这3年平均每 年创造利润多少 万元? ②利润最高的一 年比最低的一年 多百分之几? (结果保留一位小数)

人教版七年级数学下册第十章数据的收集,整理与描述教学设计

人教版七年级数学下册第十章数据的收集,整理与描述教学设计
2.教学过程:
(1)教师将学生分成若干小组,每组根据调查问题,设计数据收集方案。
(2)小组内部分工合作,开展数据收集工作,确保数据的准确性和全面性。
(3)小组之间分享收集到的数据,进行数据整理和描述,讨论如何从数据中发现问题、总结规律。
(四)课堂练习
1.教学内容:针对午餐偏好调查数据,进行课堂练习,巩固所学知识。
人教版七年级数学下册第十章数据的收集,整理与描述教学设计
一、教学目标
(一)知识与技能
1.理解数据收集的意义,掌握数据收集的基本方法,如问卷调查、观察、访谈等,并能根据实际问题选择合适的方法。
2.学会整理和描述数据,掌握基本的整理和描述数据的方法,如制作表格、绘制统计图表(条形图、折线图、饼图等),并能从中提取有价值的信息。
3.能够运用所学知识,对实际问题进行数据的收集、整理和描述,从而解决实际问题。
4.培养学生的逻辑思维能力和数据分析能力,提高学生运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论等方式,让学生在数据收集、整理和描述的过程中,学会与他人合作、沟通,培养团队协作能力。
2.引导学生运用观察、分析、归纳等方法,从数据中发现规律和问题,培养学生的观察能力和逻辑思维能力。
(1)明确各小组成员的职责,确保每位学生都能参与其中,发挥各自的优势。
(2)定期组织小组讨论,让学生分享各自的心得和经验,互相学习,共同提高。
3.案例分析法,选择具有代表性的实际案例,引导学生运用所学知识进行分析,提高学生学以致用的能力。
4.重视过程评价,关注学生在数据收集、整理与描述过程中的表现,及时给予反馈和指导,帮助学生发现并解决问题。
3.结合生活实例,让学生在实践中掌握数据的收集、整理和描述方法,提高学生学以致用的能力。

七年级数学下册第10章数据的收集整理与描述章末复习教案

七年级数学下册第10章数据的收集整理与描述章末复习教案

第10章数据的收集、整理与描述章末复习一、复习目标1.了解全面调查和抽样调查的基本收集数据方法,并能根据调查的需要制作简单的问题调查表.2.学会利用表格、条形图、扇形图、直方图等方式整理数据.3.理解总体、样本、组距、频数等概念,并能够从整理的数据中提取有价值的信息.二、课时安排1课时三、复习重难点重点:利用表格、条形图、扇形图、直方图等多种方式整理和分析数据。

难点:条形图和直方图的区别与联系;对整理的数据进行科学的分析。

四、教学过程(一)知识梳理1、统计调查的一般过程:收集数据—整理数据-描述数据-分析数据。

2、统计调查的方式:全面调查和抽样调查。

考察全体对象....的调查叫做全面调查。

只抽取一部分对象....进行调查,然后根据调查数据推断全体对象的情况,这种方法是抽样调查。

注意:全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些具有破坏性的调查不宜用全面调查,因此,常常用抽样调查的方式来收集数据。

〔1〕下面的调查适合用全面调查方式的是 .①调查七年级十班学生的视力情况;②调查全国农民的年收入状况;③调查一批刚出厂的灯泡的寿命;④调查各省市感染禽流感的病例。

3、总体与个体、样本与样本容量要考察的全体对象称为总体;组成总体的每一个考察对象称为个体;被抽取的那些个体组成一个样本;样本中个体的数目叫做样本容量。

〔2〕为了了解某七年级2000名学生的身高,从中抽取500名学生进行测量,对这个问题,下面的说法正确的是〔〕A、2000名学生是总体B、每个学生是个体C、抽取的500名学生是样本D、样本容量是5004、抽样调查的特点和要求特点:花费少、时间短,破坏性小;结果往往不如全面调查准确。

要求:抽样时个体被抽到的机会均等,样本容量适当,即样本具有代表性和广泛性。

〔3〕请指出下列哪些抽查的样本缺少代表性:①在大学生中调查我国青年的上网情况;②从具有不同文化层次的市民中,调查市民的法治意识;③抽查电信部门的家属,了解市民对电信服务的满意程度。

七年级数学下册10数据的收集、整理与描述教案新人教版

七年级数学下册10数据的收集、整理与描述教案新人教版

第十章数据的收集、整理与描述1.了解数据收集的意义.2.知道用什么方法收集数据,会将收集到的数据进行分组整理.通过参与收集、整理数据和初步分析数据,发展数感,培养统计观念.3.会制作扇形统计图、频数分布表和频数分布直方图.4.会从各种统计图中获取信息解决问题.1.参与收集数据、整理数据、分析数据、从统计图中获取数据信息和用统计图表示数据的过程,理解统计在生活中重要的应用价值.2.学生在自主探究的基础上合作交流,寻求合理的答案,形成正确的结论.培养学生合作探究的意识,增强学生的体验和应用数学的意识.数据是对现实生活中被调查对象具体情况的反映,它是统计学中最基础的内容,对我们的实际行动有着重大的决策作用.本章内容不仅是以后学习数据分析和应用的基础,而且对培养和发展学生的数感和统计意识都有着重要的意义.本章我们学习两种收集数据的方法——全面调查和抽样调查.全面调查要考察全体调查对象,而抽样调查只考察部分调查对象.本章知识来源于生活,又直接指导生活,教材通过调查学生对电视节目的喜爱情况,经历了全面调查的过程,探索了抽样调查的方法,在理解条形图、扇形图、折线图的基础上,掌握用直方图描述数据的步骤,最后探究了从数据谈节水的课题,感受到数据的作用,增强了节水意识.利用统计图表等整理和描述数据,有利于我们发现和探索数据中蕴含的规律,获取数据中的信息,不同的统计图从不同侧面描述了数据不同的特点.因此,选用合适的统计图描述数据,对发现和探索数据的特点和规律是很重要的.【重点】数据的收集、整理、描述的过程和绘制频数分布表、频数分布直方图.【难点】根据统计的结果作出合理的判断和预测,体会统计对决策的作用,能够清晰地表达自己的观点.1.注重培养学生合作探究能力.教师在适当的时机提出问题,让学生思考后探究问题解决的办法.教师要及时地调控、组织学生对发现的问题进行研究、评判,对所得的结论、方法及时归纳、完善.2.注重生活中的统计问题.教师应引导学生有兴趣地观察、分析和讨论教材中提供的丰富的、鲜活的素材,并从生活中收集有关的实例,以增强学生的体验和应用数学的意识.教师还应让学生感受实例本身的政治意义和教育意义,对学生进行国情教育,使学生形成良好的人生观和价值观.3.注重抽样方案的设计.设计抽样方案时,要注意样本对总体的代表性.简单随机抽样是一种基本且实用的抽样方法,它要求总体中的每一个个体都有相等的机会被抽到,除了抽样方法要合理外,为了使样本能比较客观地反映总体,还要考虑样本容量的大小.10.1统计调查1.了解数据的收集、整理和描述的基本方法.2.了解数据的不同整理和描述方法的特点.3.能够收集、整理和用适当的方式描述简单的数据.1.通过生活实例领会统计在生活中的重要作用.2.通过搜集、整理、描述数据的统计过程,了解和掌握统计的基本方法.培养学生的交流合作意识和科学分析、研究问题的良好习惯.【重点】1.收集数据的两种基本方法.2.描述数据的不同方法和特点.【难点】1.抽样调查过程中样本数量的选择.2.对统计的结果进行正确分析.第课时了解全面调查的意义,初步学会简单的数据收集、整理以及会用条形统计图、扇形统计图直观地描述数据.经历统计的过程,初步感受统计的方法.在活动中感受学习的乐趣,培养学生学好数学的信心.【重点】了解数据的收集、整理、描述的过程,能用扇形图描述信息.【难点】用扇形图描述信息.【教师准备】课堂教学资料投影.【学生准备】复习小学学过的统计知识.导入一:如图所示的是某中学七、八、九各年级学生体育达标情况统计图,你从中能获得哪些方面的信息?你是否体会到统计图要比单纯的文字叙述给你的印象深刻.通过本课时的学习,你一定会对统计调查的方法产生兴趣.[设计意图]在小学学过的知识基础上重新对统计问题有个新的认识,为学习本章做好认知上的准备.导入二:从报纸、杂志、电视、互联网等媒体上,我们经常可以看到很多统计数据和统计图表.例如,某地义务教育的普及率达98%,某电视节目的收视率为9%,某地年人均生活用水量为36 m3,2010年我国国内生产总值为401202亿元,比上年增长10.4%等.这些数据可以帮助人们了解周围世界的现状和变化规律,从而为人们制定决策提供依据.你知道它们是怎样得到的吗?[设计意图]借助于教材章前的内容,直接回归到统计数据是怎么得到的问题,这就很自然地把问题引到本课时的调查方式问题.导入三:如下是六种国家一级保护动物及编号:1.大熊猫2.滇金丝猴3.藏羚羊4.丹顶鹤5.遗鸥6.亚洲象为了知道本班同学喜爱这些动物的情况,老师制作了一张调查问卷如下:根据上述调查表,:1122463451241 46212355613142 11321545414532 5问题:(1)通过上面的42个数据,你能直观看出该班同学喜爱动物的情况吗?(2)你能用下面表格整理上面的42个数据吗?整理完你会发现什么情况呢?[设计意图],使学生带着问题和兴趣进入学习状态.(教材P135问题1)如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?思路一步骤1确定调查对象师:要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,只调查男同学或女同学可以不?只调查部分同学可以不?生:不可以.不对全班每一个同学进行调查,会影响调查结果的准确性.[设计意图]考虑到学生马上要学习全面调查和抽样调查,这个问题帮助学生初步感受确定调查对象对调查结果的影响,也是帮助学生领会全面调查和抽样调查的含义.步骤2制作调查问卷师:出示教材第135页调查问卷样例,并提出问题:(1)调查问卷中用单选的方式有什么好处?(2)除了用选择的方式外,还可以用什么方式?生:(1)调查的结果能更准确地反映全班同学对五类电视节目的喜爱程度.(2)画线、打钩、画圈等方式.步骤3整理数据师:某同学经调查,得到如下50个数据:C C AD B C A D C DC E A BD D B C C CD B D C D D D C D CE B B D D C C E B DA B D D C B C B D D从上面的数据中,你能看出全班同学喜爱各类节目的情况吗?[设计意图]通过实际情境,帮助学生认识对调查数据进行整理的必要.师:(学生回答后)杂乱无章的数据不利于我们发现其中的规律.为了更清楚地了解数据所蕴含的规律,需要对数据进行整理.统计中经常用表格整理数据,对前面数据的整理如下表所示:划记正正正师:(学生观看1(1)“全班同学最喜爱节目的人数统计表”这个标题有什么作用?(2)表格中是用什么方法统计人数的?(3)算出不同人数的百分比有什么作用?(4)通过这个表格,你了解到了哪些信息?[设计意图]问题(1)意在提醒学生注意标题的作用,标题可以帮助我们直接了解统计表格的事项.问题(2)是帮助学生了解划记的方法,这也是统计中比较常用的一种方法.问题(3)的提出,除了让学生了解数据的不同描述方式外,也为介绍扇形图做了准备.第(4)问帮助学生了解统计表对分析问题的重要作用.[知识拓展]整理数据时可以用划记法记录数据,即通过画“正”字,让“正”字的每一划(笔画)代表一个数据,统计数据的个数应等于所画“正”字的个数乘5,再加上未画完的“正”字的笔画数.问题思考:(1)你能根据上面条形图和扇形图说出全班同学喜爱五类电视节目的情况吗?(2)扇形图是怎么制作出来的?(3)条形图和扇形图相比,在描述数据上各有什么特点?提示:条形图和扇形图比表格更能直观地反映数据的情况,条形图更能直观地反映出统计数据的数量关系,扇形图更能直观地反映数据的比例关系.[知识拓展]制作扇形统计图的一般步骤:①算出各个部分数量占总体数量的百分比;②算出表示各部分数量的扇形的圆心角度数;③取适当的半径画一个圆,再按上面算出的圆心角的度数在圆里画出各个扇形;④在每个扇形中标明所表示的各部分数量名称和所占的百分比,并最好用不同的颜色或条纹把各个扇形区别开来.总结:在上面的调查中,我们利用调查问卷得到全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图进行直观形象的描述.通过分析表和图,了解到了全班同学喜爱电视节目的情况.在这个调查中,全班同学是要考察的全体对象,我们对全体对象都进行了调查.像这样考察全体对象的调查叫做全面调查.思路二1.收集数据教师下发调查问卷,填完后交数学课代表,由课代表唱票,全班同学在表格中进行统计.2.数据整理全班同学在表格中进行统计,并完成表格中的项目.3.描述数据描述数据的方法通常用条形统计图或扇形统计图来直观地反映数据揭示的信息.条形图:如教材136页图10.1 - 1(1)所示.扇形图:如教材136页图10.1 - 1(2)所示.(如果条件允许,可以根据本班学生的实际调查结果制作条形图和扇形图)用一个圆代表总体,然后用各部分所占的百分比将圆分成若干个部分,再在各部分中标出相应的百分比和名称.制作扇形统计图的关键是确定各部分所占圆心角的大小,它的确定方法就是用该部分数据所占的百分比×360°,如“体育”所占的百分比是20%,则相对应的圆心角为360°×20%=72°.条形统计图与扇形统计图的优缺点各是什么?条形统计图能够显示每组中的具体数据,易于比较数据之间的差别;扇形统计图反映了各部分在总体中所占的百分比的大小,易于显示每组数据相对于总数的大小.4.全面调查的意义在上面的调查中,我们利用调查问卷得到了全班同学喜爱电视节目的数据,利用表格整理数据,并用统计图直观形象地描述了数据.利用表和图分析得到了全班同学喜爱电视节目的情况.在这个调查中,全班同学是要考察的对象.考察全体对象的调查就叫做全面调查(也叫做普查).[设计意图]由学生身边的问题入手,通过问卷调查,填写表格等一系列活动,感受数据的收集、整理、描述的过程.1.统计中经常用表格整理数据.表格通常是由行和列组成.运用表格进行数据统计的优点是简单、清楚、突出数据的分布规律.2.常见的统计图有条形统计图、折线统计图和扇形统计图三种.3.考察全体对象的调查叫做全面调查.1.(2014·舟山中考)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图所示),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况解析:利用扇形统计图的特点,结合各选项利用排除法确定答案即可.A.能够看出各项消费金额占消费总金额的百分比,故此选项正确;B.不能确定各项的消费金额,故此选项错误;C.不能看出消费的总金额,故此选项错误;D.不能看出各项消费金额的增减变化情况,故此选项错误.故选A.2.某中学八年级的同学就“每年过生日时是否会向母亲道一声谢谢”这个问题对本年级66名同学进行了调查,调查结果如下:否否否有时否否否是否有时有时否否有时有时否否有时否否有时有时否有时否否有时有时有时否否否有时有时是是有时有时否否是否否否是否否否否否否否否有时否是否否否否是是是否是否根据上述结果完成下面的统计表,并根据统计结果谈一谈你的感想.解析:解:填表如下.正正正正正正正正正正从统计结果看出现在的孩子感恩之情淡薄.(答案不唯一)第1课时例题步骤1,2,3,4全面调查一、教材作业【必做题】教材第137页练习的1题.【选做题】教材第137页练习的2题.二、课后作业【基础巩固】1.下列选项中,显示部分在总体中所占百分比的统计图是()A.扇形图B.条形图C.折线图D.以上都可以2.小明对九(1)班全班同学“你最喜欢的球类项目是什么?(只选一项)”的问题进行了调查,把所得数据绘制成如图所示的扇形统计图.由图可知,该班同学大多数人最喜欢的球类项目是()A.羽毛球B.乒乓球C.排球D.篮球3.数学课上老师布置了10道题作为课堂练习,课代表将全班同学的答题情况制成条形统计图,如图所示,则全班同学总数及做对10题的人数分别为()A.20,7B.50,9C.50,8D.49,94.(2015·凉山中考)小明同学根据全班同学的血型绘制了如图所示的扇形统计图,已知A 型血的有20人,则O型血的有人.【能力提升】5.如图所示的是某足球队全年比赛情况统计图.根据图中信息,该队全年胜了场.6.某市“有效学习儒家文化”活动中,甲、乙两校师生共150人进行了汇报演出.小林将甲、乙两校参加各项演出的人数绘制成如下不完整的统计图、表,根据提供的信息解答下列问题:(1)m=,n=;(2)计算乙校的扇形统计图中“话剧”的圆心角;(3)哪个学校参加“话剧”的师生人数较多?说明理由.甲、乙两校参加汇报演出的师生人数统计图【拓展探究】7.在义乌中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.结合图中信息,解答下列问题:(1)本次共调查了多少名学生?(2)被调查的学生中,最喜爱丁类图书的有多少人?最喜爱甲类图书的人数占本次被调查人数的百分之几?【答案与解析】1.A(解析:扇形图是根据扇形的大小来反映各部分所占的比例的大小.)2.D(解析:从扇形统计图可知,篮球占的百分比最大,所以大多数人最喜欢的球类项目是篮球.)3.C(解析:从图中可以看出全班学生人数是4+20+18+8=50(人),做对10题的人数为8人.故选C.)4.10(解析:全班人数为(20÷40%)人,既人数为50人.AB型血人数占10%,O型血人数占20%,50×20%=10(人).)5.22(解析:全年比赛场次=10÷25%=40,胜场:40×(1- 20%- 25%)=40×55%=22(场).故填22.)6.解:(1)2538%(2)360°×(1- 60%- 10%)=360°×30%=108°.答:乙校的扇形统计图中“话剧”的圆心角为108°. (3)乙校参加“话剧”的师生人数较多.因为甲校参加“话剧”的师生人数为25人,乙校参加话剧的师生人数为(150- 50)×30%=30(人),且25<30,所以乙校参加“话剧”的师生人数较多.7.解:(1)40÷20%=200(名). (2)200- 80- 65- 40=15(人),80÷200×100%=40%.所以被调查的学生中,最喜爱丁类图书的有15人,最喜爱甲类图书的人数占本次被调查人数的40%.本课时是在小学基础上继续深化统计知识学习的开始,在课前准备的过程中,让学生回忆了小学学过的简单统计知识,在知识上做到了衔接过渡.以整理、分析数据为线索,把探索统计活动的过程分成几个步骤来进行,使得课堂教学环节紧凑,知识引出清晰有条理,较好地实现了课堂教学的目标.在步骤3的教学环节中,可以让学生根据调查统计表独立完成对数据的整理,课堂教学过程中是老师直接把统计结果呈现给学生,忽略了学生实际操作的过程.借用教材中的调查问题,把调查统计表发给学生,学生以小组为单位,在课堂上汇报本小组的统计结果,最后老师汇总全班的调查结果,随后开始本课时的其他教学活动.练习(教材第137页)1.解:问题设计不合理,选项B,D内容重复,且除以上四项课余活动外,还会有其他的业余活动,可以把选项D改为“其他”.2.解:如图所示.3.解:本题答案不唯一,如调查某校七年级(一)班期末考试的数学成绩等.,结果如下表:.〔解析〕制作扇形统计图时,应先求出各部分占总体的百分比,再求出各扇形所对应的圆心角,当除不尽时,应合理地取近似值.解:全班有6+23+3+16=48(人).A型:6÷48×100%=12.5%,360°×12.5%=45°.B型:23÷48×100%≈47.9%,360°×47.9%≈172.4°.AB型:3÷48×100%≈6.3%,360°×6.3%≈22.7°.O型:16÷48×100%≈33.3%,360°×33.3%≈119.9°.根据上述结果绘制的统计图分别如图(1)(2)(3)所示.第课时通过具体的统计活动感受抽样调查数据收集、整理、描述、分析的过程.在具体的过程中感受抽样调查的必要性,进一步认识数据收集、整理、描述、分析的具体方法.培养学生热爱数学、合作、交流的意识和科学分析问题的习惯.【重点】对抽样调查概念的理解及对数据的收集和整理.【难点】对总体概念的理解和随机抽样的合理性的理解.【教师准备】课堂教学问题和资料的投影.【学生准备】复习全面调查的意义和方法.导入一:根据国务院办公厅《关于开展2015年全国1%人口抽样调查的通知》,2015年全国1%人口抽样调查将在我国境内抽取约6万个调查小区,覆盖人口约1400万人.主要调查人口和住户的基本情况,内容包括:姓名、性别、年龄、民族、受教育程度、行业、职业、迁移流动、社会保障、婚姻、生育、死亡、住房情况等.问题什么是抽样调查?抽样调查的结果有什么作用?[设计意图]通过生活中的重大统计活动,帮助学生感受统计在生活中的重要价值.同时也让学生了解了抽样调查也是一种重要的统计方式.导入二:观察漫画情境,思考问题:(1)漫画中的统计数据是怎么得到的?(2)你能制作适当的统计图来表示图中的数据吗?用什么统计图最合理?[设计意图]通过漫画情境唤起学生的学习兴趣,在思考数据是怎么得来的时候,会想到肯定不是“全面调查”得来的,这就为引入“抽样调查”创造了条件.[处理方式]学生交流、老师简评.问题提示:优点是调查结果比较准确;缺点是花费时间长,消耗人力、物力大.[设计意图]帮助学生初步感受生活中的一些调查活动无法进行全面调查,或没有必要进行全面调查,也为引出抽样调查做准备.思考2:什么是抽样调查?[处理方式]学生阅读教材理解.问题提示:抽样调查是这样一种方法,它只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.思考3:你能借助教材第138页的图示,说明什么是总体、个体和样本吗?[处理方式]学生阅读教材,老师指名让同学回答相关问题.问题提示:全校学生是要考察的全体对象,称为总体,组成总体的每一个学生称为个体,而被抽取调查的那部分学生构成总体的一个样本.思考4:抽取多少名学生进行调查比较合适?被调查的学生又如何抽取呢?思路一[处理方式]老师出示几种方案让学生交流.(1)抽取学生的数量:方案一:抽取20人;方案二:抽取200人;方案三:抽取1000人.(2)抽取被调查的学生的方式:方案一:只调查100名女生;方案二:只调查一个班级的所有同学;方案三:只调查200名男同学.[设计意图]通过对不同方案的比较和同学的激辩,主要帮助学生明确三个问题:第一,样本的数量要合适选取;第二,样本的抽样要有随机性;第三,样本的数据一定程度上可以反映总体的情况.问题提示:(1)如果抽取调查的学生很少,样本就不容易具有代表性,也就不能客观地反映总体的情况;如果抽取调查的学生很多,虽然样本容易具有代表性,但花费的时间、精力也很多,达不到省时省力的目的.因此抽取调查的学生数目要适当.(2)为了使样本尽可能具有代表性,除了抽取调查的学生数要合适外,抽取样本时,不能偏向某些学生,应使学校中的每一个学生都有相等的机会被抽到.思路二问题(1)样本的数量选取要注意什么?(2)怎样抽取样本比较合理?问题提示:①抽样调查要具有广泛性和代表性,即样本容量要恰当.②抽取的样本要有随机性.总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是科学、应用广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.思考5:分析调查统计图表.[处理方式]出示教材表10 - 2和图10.1 - 2.学生交流图表反映出来的信息.正正正正正正正正正正正正正正正正正问题提示:从表可以看出,样本中喜爱娱乐节目的学生最多,为38%.据此可以估计出,这个学校的学生中,喜爱娱乐节目的最多,约为38%左右.类似地,由上表可以估计这个学校喜爱其他节目的学生的百分比.[设计意图]通过具体的例子步步深入进行讲解,使学生明白抽样调查的必要性,理解总体、个体、样本、样本容量的含义,以及随机抽样调查的方法.[知识拓展]全面调查与抽样调查的优、缺点:(1)全面调查也叫普查,是指在统计中为了某一特定的目的而对所有考察对象作出的调查,一般来说,全面调查能够得到全面、准确的信息,但有时总体中个体的数目非常大,全面调查的工作量大,而且某些调查有时受条件的限制,或是具有破坏性,不宜采用全面调查.(2)抽样调查是统计中最常见的调查方式,其优点是既节省时间又比较经济.但由于抽样调查只考察了总体中的一部分个体,抽取的样本是否具有代表性,直接关系到对全体对象情况估计的准确程度,即调查结果与实际结果之间有一定的差距,所以不如全面调查结果精确.全面调查和抽样调查是收集数据的两种方式.全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查.抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性直接关系到对总体估计的准确程度.1.某地有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中正确的有()A.4个B.3个C.2个D.1个解析:总体是指考察的对象的全体,个体是总体中的每一个考察的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量这四个概念时,首先找出考察的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的数学中考成绩是总体的一个样本;样本容量是2000.故正确的是①④.故选C.2.下列调查中,①调查本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟十号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是()A.①②B.②C.②③D.③④。

七年级数学下册第十章数据的收集、整理与描述10.2直方图教案(新版)新人教版

七年级数学下册第十章数据的收集、整理与描述10.2直方图教案(新版)新人教版

例 1 (教材 P148 例题)
三、检测反馈
1.某学生某月有零花钱 a 元,其支出情况如图所示,那么下列说法不正确的是
()
A.该学生捐赠款为 0.6a 元
B.捐赠款所对应的圆心角为 240°
C.捐赠款是购书款的 2 倍
D.其他支出占 10%
2.一次数学测试后,某班 40 名学生的成绩被分为 5 组,第 1~4 组的频数分别为 12,10,6,8,则第 5 组
的频率是 ( )
A.0.1
B.0.2
C.0.3
D.0.4
3.有若干个数据,最大值是 124,最小值是 103.用频数分布表描述这组数据时,若取组距为 3,则应分为
()
A.6 组
B.7 组
C.8 组
D.9 组
4.某班将安全知识竞赛成绩整理后绘制成直方图,图中从左至右前四组的百分比分别是 4%,12%,40%,28%,
(3)经检测,这 20 名婴儿的血型的扇形统计图如图所示(不完整),求:
①这 20 名婴儿中是 A 型血的人数;
②表示 O 型血的扇形的圆心角度数.
10.随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区监测到的一组汽车的时速(单位:
千米)数据进行整理,得到其频数及频率如表:
数据段 30~40 40~50 50~60 60~70 70~80 总计
10.2 直方图
【教学目标】 知识技能目标 1.了解频数分布表及相关的概念. 2.根据实际问题,会选择合适组距对数据进行等距分组,用表格整理数据表示频数分布. 3.会画简单的频数分布直方图(等距分组),并利用频数分布直方图解释数据中蕴含的信息. 过程性目标 经历对数据的处理、加工的过程,学会根据数据信息作出自己的判断和决策,解决实际生活问题,发展统 计观念. 情感态度目标 通过研究解决问题的过程,进一步提高学生的数据意识,体会数学的应用价值,感受合作学习和运用所学 知识解决问题的成功经验. 【重点难点】 重点:合理分组并填写频数分布表. 难点:能根据需要合理分组并填写频数分布表、画出频数分布直方图. 【教学过程】 一、创设情境 收集数据、整理数据、描述数据是统计的一般过程.我们学习了条形图、折线图、扇形图等描述数据的方 法,今天我们学习另一种描述数据的统计图——直方图. 二、新知探究 探究点:应用直方图整理数据 阅读教材 P145 至 P147 内容,归纳整理绘制直方图的步骤. 要点归纳:对数据分组整理的步骤: 1.计算最大与最小值的差. 2.决定组距和组数. (1)把所有数据分成若干组,每个小组的两个端点之间的距离(组内数据的取值范围)称为组距. (2)组距和组数没有固定的标准,要根据具体问题来决定,原则上 100 个数以内分为 5~12 组较为恰当. 3.列频数分布表. (1)采用划记法统计每组内的数据个数. (2)频数:对落在各个小组内的数据进行累计,得到各个小组内的数据的个数叫做频数.

最新人教版七年级数学下册第十章《数据的收集整理与描述》复习教案

最新人教版七年级数学下册第十章《数据的收集整理与描述》复习教案

C. 所抽取的100名学生对“民族英雄范筑先”的知晓情况
D. 每一名学生对“民族英雄范筑先”的知晓情况
类型三、统计图表的分析
例3、某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮
球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取
了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部
分信息未给出).
(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜
爱足球的人数多多少?




为了解学生参加户外活动的情况,对部分学生参加户外活动的时间
进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,根
据图示,请回答下列问题:
(1)被抽查的学生数是__________,并补全图中的频数分布直方图;。

人教版数学七年级下册:(数据的收集、整理与描述)统计调查(教案)

人教版数学七年级下册:(数据的收集、整理与描述)统计调查(教案)

第十章数据的收集、整理与描述10.1统计调查第1课时统计调查(1)【知识与技能】1.了解统计调查、收集数据、整理数据的意义.2.掌握用统计表整理数据的方法.3.掌握用条形图和扇形图来描述数据的方法.4.理解全面调查的概念.5.能用全面调查的方法做一次简单的统计调查.【过程与方法】由问题引入统计调查,在此基础上学习有关概念和方法,然后布置学生用全面调查的方法做一次简单的统计调查.【情感态度】培养学生合作交流的意识和探究精神,体会数学在实际生活中的作用,激发学生爱数学的热情.【教学重点】用统计表整理数据,用条形图和扇形图描述数据.【教学难点】设计调查问卷,收集数据,扇形统计图的画法.一、情景导入,初步认识问题如果要了解全班同学对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,你会怎么做?为了解决这个问题,需要做________.首先设计问卷,用问卷调查法_____数据.为了使被调查的人易于答卷,也为了收集数据便于操作,所以最好将问卷的题目设计成______题,请设计问卷.二、思考探究,获取新知提前提出问题,出示设计、制出的调查问卷,然后下发调查问卷,3分钟后收集数据.用表格统计数据.用条形图和扇形图来描述数据.思考:1.条形图和扇形图各自的特点是怎样的?2.怎样画扇形统计图?【归纳结论】1.条形图能够显示每组中的具体数据,易于比较数据之间的差别;扇形图用扇形的大小表示部分在总体中所占百分比,易于显示每组数据相对于总数的大小,但不能直接判断出每组数的绝对大小.2.扇形图通过扇形的大小来反映各个部分占总体的百分比.画扇形图时,用圆代表总体,每一个扇形代表总体的一部分,画扇形时,先确定扇形圆心角的度数,如果某部分占20%,则它所在扇形的圆心角为360°×20%=72°.扇形图画好后,要标明各部分的名称及相应的百分比.3.全面调查:考察全体对象的调查叫做全面调查.三、运用新知,深化理解.1.对“天宫一号”空间站的零部件合格性的调查应采用的调查方式是_____.2.在暑假社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有套,B型玩具有套,C型玩具有套.(2)若每人组装A型玩具16套与组装C型玩具12套所花的时间相同,那么a的值为____,每人每小时组装C型玩具____套.3.“阳光体育”运动在我市轰轰烈烈开展,为了解同学们最喜爱的“阳光体育”运动项目,小王对本班50名同学进行了跳绳、羽毛球、篮球、乒乓球、踢毽子等运动项目最喜爱人数的调查,并根据调查结果绘制了如下的人数分布直方图,若将其转化为扇形统计图,那么最喜爱打篮球的人数所在扇形区域的圆心角的度数为()A.120°B.144°C.180°D.72°4.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5~1小时D.0.5小时以下如图是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图①中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【教学说明】题1可采用抢答方式练习,题2、3让学生分组讨论,然后给出正确答案,并说明理由,题4先让学生思考,然后教师给予提示,最后指派学生上台写出解题过程.【答案】1.全面调查2.(1)132 60 48 (2)4 6解析:(1)A型玩具有240×55%=132(套),C型玩具有240×25%=60(套),B型玩具有240-132-60=48(套);(2)由题意得:,解得a=4.故2a-2=6,即每人每小时组装C型玩具6套.3.B解析:喜爱打篮球的人数占总人数的百分比为20/50×100%=40%,因此所求的圆心角度数为360°×40%=144°.4.解:(1)60÷30%=200(名),即本次一共调查了200名学生;(2)选项B的学生有200-60-30-10=100(名),补图略;(3)3000×5%=150(名)四、师生互动,课堂小结统计调查,全面调查,条形图,扇形图1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.统计与现实生活的联系是非常紧密的,通过选择学生感兴趣的典型例题对教学课堂概念进行拓展.在教学过程中,充分体现学生是学习的主体,通过让学生亲自动手收集和整理数据,让学生体会到数学活动充满了乐趣,使学生更好地体会统计思想,建立统计概念,培养学生的创新精神与实践能力.第十章数据的收集、整理与描述10.1统计调查第2课时统计调查(2)【知识与技能】1.理解为什么要进行抽样调查.2.掌握总体、个体、样本、样本容量等概念.3.理解简单随机抽样、分层抽样的概念及它们在抽样调查中的合理性,并能设计出简单随机抽样或分层抽样的方法进行抽样调查.4.掌握折线的画法,并能从折线图中获取信息.【过程与方法】由问题入手,理解抽样调查的合理性与必要性.从而理解总体、个体、样本、样本容量等概念.为了使抽样调查能较好地反映总体,我们必须使抽取的样本具有代表性,这样就顺理成章地引出了简单随机抽样和分层抽样两种简单的抽样方法.最后学习折线图,知道折线图也是描述数据的一种方法.【情感态度】在了解统计思想方法的基础上,锻炼用样本估计总体的本领,提高数学兴趣.【教学重点】抽样调查,简单随机抽样,分层抽样,折线统计图.【教学难点】抽样方案的制订,折线图.一、情境导入,初步认识问题1 某校有2000名学生,要想了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?分析:如果采用全面调查,那么花费时间长,消耗人力、物力大.因此,需要寻找一种只要调查部分学生就能了解全体学生喜爱各类电视节目的情况的方法.达到省时省力又能解决问题的目的.这种调查方法就是________.这样,就必须引入总体、个体、样本及样本容量的概念.“总体”的定义:________.“个体”的定义:________.“样本”的定义:________.“样本容量”的定义:________.为了使样本能较好地反映总体的情况,除了有合适的________外,抽取时还要尽量使每一个个体都有________被抽到,这种抽样方法叫________.问题2 某地区有500万电视观众,要想了解他们对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,应怎样调查?分析:由于这500万人个体差异大(如年龄段),所以不适合________抽样,而应当分成青少年、成年人、老年人三个层次,在每个层次进行________抽样,然后汇总调查结果,这种抽样方法叫________________.【教学说明】全班同学先阅读教材,再完成以上自学提纲.二、思考探究,获取新知思考 1.为什么要进行抽样调查?2.什么叫总体、个体、样本、样本容量?3.什么叫简单随机抽样?什么叫分层抽样?4.什么情况下适宜简单随机抽样?什么情况下适宜分层抽样?5.折线图的特点是什么?【归纳结论】抽样调查:从全体对象中抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况,这种调查方法叫抽样调查.总体:要考察的全体对象称为总体.个体:组成总体的每一个考察对象称为个体.样本:从总体抽取的一部分个体组成一个样本.样本容量:样本中个体的数目叫样本容量.(注意:样本容量是一个数目,不能带单位,样本容量一定要适当,太少,则不能较好地反映总体的情况,太多,达不到省时省力的目的.)适合抽样调查的情况:(1)总体数目巨大;(2)调查具有破坏性.简单随机抽样:总体中的每一个个体都有相等的机会被抽到,这样的抽样方法叫简单随机抽样.分层抽样:先将总体按一定的要求分成若干层次,在每个层次都进行简单的随机抽样.然后汇总调查结果,这种抽样方法叫分层抽样.简单随机抽样适合的情况:个体的差异不大.分层抽样适合的情况:个体的差异大.折线图的特点:能较好反映数据的变化趋势.三、运用新知,深化理解1.下列调查中,适宜采用全面调查(普查)方式的是()A.调查一批新型节能灯泡的使用寿命B.调查长江流域的水污染情况C.调查重庆市初中生视力情况D.为保证“神舟8号”成功发射,对其零部件进行检查2.要了解我国八年级学生的视力情况,你认为合适的调查方式是.3.如图是我市城乡居民储蓄存款余额的统计图,请你根据图写出两条正确的信息:(1)________________________;(2)________________________.城乡居民储蓄存款余额(亿元)4.如图是根据我市2007年至2011年财政收入绘制的折线统计图,观察统计图可得:同上年相比,我市财政收入增长速度最快的年份是_______年,比它的前一年增加_______亿元.5.某专业户要出售100只羊,现在市场上羊的价格为每千克11元,为了估计这100只羊能卖多少钱,该专业户从中随机抽取5只羊,每只羊的重量如下(单位:千克):26 31 32 36 37(1)在这个问题中,样本是指什么?总体是指什么?(2)估计这100只羊能卖多少钱?6.某种电脑在七个月之内销售量增长变化情况如图所示,下列结论中不正确的是()A.2~6月销售量逐月减少B.7月份的销售量开始回升C.这7个月中,每月的销售量不断上涨D.这7个月中销售量有涨有跌【教学说明】题1、2、5考查的是全面调查、抽样调查、样本、总体、个体等概念;题3、4、6考查的是从折线统计图中获取信息.【答案】1.D2.抽样调查3.(1)2011年我市城乡居民储蓄存款余额达到239.6亿元(2)我市城乡居民储蓄存款余额逐年增长(答案不唯一,合理即可)4. 2011 505.解:(1)样本是5只羊的重量;总体是100只羊的重量.(2)5只羊的平均重量是:(26+31+32+36+37)÷5=32.4(千克),故100只羊的重量约为100×32.4=3240(千克),可卖3240×11=35640(元)6.C四、师生互动,课堂小结点学生口答,老师将小结内容放映在屏幕上.1.布置作业:从教材“习题10.1”中选取.2.完成练习册中本课时的练习.本课时主要讲解抽样调查问题,抽样调查要注意选取的样本应具有广泛性和代表性,由样本估计总体时,要搞清总体和样本的比例及样本容量的大小.通过这些问题,让学生学会用数据和事实说话,培养学生实事求是的科学态度,促进学生学习方式的转变,积极主动地参与活动.。

新人教版数学七年级数学下册第十章数据的收集、整理与描述10.1统计调查教案

新人教版数学七年级数学下册第十章数据的收集、整理与描述10.1统计调查教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“统计调查在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)熟练运用图表和统计量对数据进行描述和分析,如条形图、折线图、扇形图以及平均数、中位数、众数等;
(举例:如何根据调查数据绘制合适的图表,以及如何计算和应用平均数、中位数、众数等统计量。)
(3)培养学生的数据敏感性和逻辑思维能力,提高数据分析能力;
(举例:通过分析调查数据,发现数据间的规律和关联,进行合理的推断和评价。)
其次,在数据整理和描述方面,学生们在如何选择合适的图表和统计量上存在一定的困惑。针对这个问题,我通过举例和对比,让学生们明白了不同图表和统计量在描述数据时的优缺点,以便他们能够根据数据特点选择合适的方法。
此外,在小组讨论环节,我发现学生们在讨论统计调查在实际生活中的应用时,能够结合自己的生活经验提出很多有趣的例子。这表明他们已经初步掌握了统计调查的原理和方法,并能够将其应用到实际问题中。
-在团队协作中,提高沟通与协作能力,共同完成统计调查任务;
-敏锐地发现数据间的规律和关联,进行合理的数据评价与推断;
-树立正确的数据观念,形成科学、严谨的学习态度。
三、教学难点与重点
1.教学重点
(1)掌握统计调查的基本方法和步骤,包括调查问卷的设计、数据的收集、整理和描述;
(举例:如何设计一份合理的调查问卷,确保收集到的数据具有代表性和可靠性。)
然而,我也注意到,在讨论过程中,部分学生较为内向,不够积极主动。为了鼓励他们参与讨论,我尝试采用了提问和引导的方式,让每个人都能发表自己的观点。在今后的教学中,我将继续关注这部分学生,提高他们的课堂参与度。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章数据的收集、整理与描述
本章教学目标:
1.了解通过全面调查和抽样调查收集数据的方法;会设计简单的调查问卷收集数据;能根据问题查找有关资料,获得数据信息。

2.通过抽样调查,初步感受抽样的必要性,体会用样本估计总体的思想。

3.了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。

4.学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。

6.通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程,感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念,培养重视调查研究的良好习惯和科学态度。

具体内容和课时分配如下:
10.1 统计调查约3课时
10.2 直方图约2课时
10.3课题学习从数据谈节水约2课时
数学活动
小结约2课时
10.1统计调查(1)
教学目标:
1、了解通过全面调查收集数据的方法.
2、会设计简单的调查问卷,收集数据.
3、掌握划记法,会用表格整理数据;体会表格在整理数据中的作用.
4、体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.
教学重点:参与从收集数据到描述数据的全过程,利用统计图合理的描述数据,体会统计对决策的作用。

教学难点:组织有效的统计活动,使学生在活动中学会合作、学业全交流、学会描述。

解决重难点的方法:1、通过具体案例使学生认识有关统计知识(如样本、总体、个体、频数等)和统计方法(如抽样调查等)。

2、引导学生感受渗透与体现于统计知识和方法之中的统计思想。

教学过程设计:
一.问题引入
问题:2008年奥运会即将在北京召开。

问国际奥委会是如何决定的?
例:你最喜欢的季节是哪一个?在学校课程中你最喜欢的科目是什么?
二.授新
1.集数据,设计调查问卷。

2.整理数据。

三.描述数据
为了更直观地看出表中的信息,还可以画出条形图和扇形图来描述数据。

四.小结
在上面的活动中,全班同学是我们要考察的全体对象,对全体对象进行了调查。

像这样考察全体对象的调查属于全面调查。

(过程:收集数据、整理数据、描述数据)
①全面调查──考查全体对象的调查;②收集数据的方法──问卷调查;
③描述数据的方法──表格法、条形图、扇形图。

五.练习:王聪一家三口随旅游团去九寨沟旅游,王聪把这次
旅游的费用支出情况制成了如下的统计图:
①你能说出王聪一家这次旅游的费用支出情况吗?哪方面的费用支出最高?
②若他们共花费人民币8 600元,则在食宿上用去多少元?往返的路费又是多少元?
六.作业:
10.1统计调查(2)
教学目标:
1、通过具体的统计活动感受数据收集、整理、描述、分析的过程。

2、通过查阅资料获得数据,并能解决简单的问题。

教学重点:通过实例感受统计的必要性,进一步认识数据收集、整理、描述、分析的具体方法。

教学难点:合理运用全面调查法来解决实阿问题。

解决重难点的方法:
1、教学中要注意让所有学生都能参与到统计的活动中去,在活动的过程中建立统计观念。

2、鼓励学生积极合作、充分交流,促进学生学习方式的改变。

教学过程设计:
一、创设问题情境,激发学生学习的热情。

二、师生互动
1、学生代表收集到的数据向全班同学展示,说明数据的方法。

2、由其他组员补充说明还有没有另外整理数据的方法?哪种方法更好
三、描述数据
1、各组讨论由数据及统计图表所反馈的信息及获取信息的依据。

2、感受其他小组对数据描述的情况。

3、你对别人的发言有何补充?有何更好的设想或建议?
4、教师肯定和选择学生的展示成果,与学生共同分享成功喜悦
四、收获感想
1、分组讨论,学生畅想本节课的收获、感想。

2、代表发言。

五、布置作业:
10.1统计调查(3)
教学目标:
1、让学生经历数据的收集、整理和分析的模拟历程,从中了解抽样调查、样本与总体等统计概念.
2、通过课堂上学生的讨论,初步感受抽样调查的必要性和可行性,初步体会用样本来估计总体的思想.
3、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.
教学重点:抽样、样本、总体等概念以及用样本反映总体的思想。

教学难点:样本特征的观察与归纳
解决重难点的方法:
1、注意借助案例让学生感受统计结果对决策的意义和作用,建立统计观
2、让学生联亲身经历统计活动的基本过程,在收集、整理、描述和分析数据的统计活动中,逐步学会用数据说话,自觉地想到用统计的方法来解决一些问题。

教学过程:
一、引入
同学们,“近视”这种现象我们经常看到,也常发生在我们身边,近视会给我们生活、学习带来很多不便,我们能举例说说吗?
二、提出问题
为了了解情况某地区中小学生的视力情况,提出保护视力的建议,该地区准备对中小学生进行视力调查.那么如何调查呢?
1.学生思考、讨论开展调查的方式?
2.讨论(一):仅仅是从小学学校抽取部分同学作为调查的对象,妥当吗?初中学段、高中学段呢?
3.讨论(二):(1)导致学生们近视的因素有哪些?
(2)根据影响近视的因素,在设计调查问卷中应包括哪些问题?
(3)请设计出一份调查问卷.
三、解决问题
1.你能根据所制的统计表与统计图,估计一下该地区中小学的视力情况吗?
2.学习样本、总体、抽样、调查等概念.
3.小组活动:你能再举出抽样调查的实例吗?
四、课堂练习
利用调查问卷对本班同学进行调查,集中视力不良同学的问卷,并用表格整理相关数据,针对形成视力不良的原因,请提出一些保护视力的合理性建议。

五、小结
1.统计调查的两种常用方法. 2.具体调查的常用方法.
3.抽样调查的重要性、必要性. 4.学习中讨论的重要性.
5.表格与统计图在数据处理与分析中的作用.
六、作业:
10.2直方图(1)
教学目标:
1、了解频数及频数分布,掌握划记法,会用表格整理数据表示频数分布,体会表格在整理数据中的作用。

2、鼓励学生自主探索、合作交流,意识到与同伴交流合作的重要性.
教学重点:组距和组数、频数及频数分布表
教学难点:决定组距和组数
解决重难点的方法:
1、从解决实际问题的需要出发,根据频数分布直方图的特点和作用,学习制作这种统计图的方法。

2、结合具体问题,使学生在具体情境中感知频数、频数分布等概念。

教学过程:
一.问题引入
典型案例“选取广播操参赛者”来介绍直方图
二.授新
1、极差的概念:最大值与最小值的差
2.组距和组数。

3、列频数分布表。

4、画频数分布直方图。

三、课堂练习
四、小结
画频数分布直方图的一般步骤:
1、计算极差:最大值与最小值的差。

2.决定组距和组数。

3、列出频数分布表。

4、画频数分布直方图。

五、作业:
10.2直方图(2)
教学目标:
1、学会用简单频数分布直方图(等距分组)和折线图描述数据的方法,进一步体会统计图表在描述数据中的作用,会根据问题需要选择适当的统计图描述数据。

2、通过实际参与收集、整理、描述和分析数据的活动,经历统计的一般过程感受统计在生活和生产中的作用,增强学习统计的兴趣,初步建立统计的观念培养重视调查研究的良好习惯和科学态度。

教学重点:频数分布直方图、频数折线图
教学难点:频数分布直方图的绘制
解决重难点的方法:
1、在统计过程中学习统计,改进学生的学习方式。

2、突出数据处理的基本过程,注意统计思想的渗透与体现。

教学过程:
一.复习上节课知识
画频数分布直方图的一般步骤有哪些?
二.授新
讲解教材166页例题
三、课堂练习
四、小结
1、频数分布直方图和折线图是描述数据的主要内容,一般直方图是用矩形面积表示频数的,而对于等距分组的情形,为看图与画图方便可以改为用矩形的高表示频数。

2、怎样利用直方图来描述数据。

五、作业:
数据的收集、整理与描述(小结)
一、背景与意义分析
统计主要研究现实生活中的数据,它通过收集、整理、描述和分析数据来帮助人们对事物的发展作出合理的判断,能够利用数据信息和对数据进行处理已成为信息时代每一位公民必备的素质。

通过对本章全面调查和抽样调查的学习,学生可基本掌握收集和整理数据的方法。

二、学习与导学目标
1 知识积累与疏导:通过复习小结,进一步领悟到现实生活中通过数据处理,对未知的事情作出合理的推断的事实。

2 技能掌握与指导:通过复习,进一步明确数据处理的一般过程。

3 智能提高与训导:在与他人交流合作的过程中学会设计调查问卷。

4 情感修炼与提高:积极创设情境,参与调查、整理数据,体会社会调查的艰辛与乐趣。

5 观念确认与引导:体会从实践中来到实践中去的辨证思想。

三、障碍与生成关注
调查问卷的设计及根据调查总结的报告给出合理的预测。

四、学程与导程活动
活动一回顾本章内容,绘制知识结构图
数据处理的一般过程:。

相关文档
最新文档