最新-初三毕业考试数学试卷 精品

合集下载

初三毕业数学试卷含答案

初三毕业数学试卷含答案

一、选择题(每题5分,共25分)1. 若a,b是方程x²-2x+1=0的两个根,则a+b的值为()A. 0B. 1C. 2D. -12. 下列各组数中,能构成等差数列的是()A. 2, 4, 6, 8, 10B. 1, 3, 5, 7, 9C. 1, 4, 9, 16, 25D. 1, 2, 4, 8, 163. 在直角坐标系中,点A(2,3),点B(4,5)关于直线y=x对称的点的坐标是()A.(2,5)B.(3,4)C.(4,2)D.(5,3)4. 若sinα=1/2,则α的取值范围是()A. 0°<α<90°B. 90°<α<180°C. 180°<α<270°D. 270°<α<360°5. 下列函数中,y随x的增大而减小的函数是()A. y=x²B. y=-x²C. y=x³D. y=-x³二、填空题(每题5分,共25分)6. 若x=2是方程2x²-3x+1=0的一个根,则另一个根为______。

7. 在△ABC中,∠A=45°,∠B=60°,则∠C的度数为______。

8. 若sinα=3/5,则cosα的值为______。

9. 分数1/3,1/4,1/5的最小公倍数是______。

10. 下列等式正确的是______。

A. (a+b)²=a²+b²B. (a-b)²=a²-b²C. (a+b)²=a²+2ab+b²D. (a-b)²=a²-2ab+b²三、解答题(共50分)11. (15分)解下列方程组:(1)$$ \begin{cases} 2x+3y=8 \\ x-y=1 \end{cases} $$(2)$$ \begin{cases} 3x-2y=5 \\ 4x+5y=11 \end{cases} $$12. (15分)已知函数y=2x-3,求:(1)当x=2时,y的值;(2)当y=5时,x的值。

初三数学毕业试卷及答案

初三数学毕业试卷及答案

一、选择题(每题4分,共40分)1. 若m > 0,则下列不等式中正确的是()A. m + 1 > mB. m - 1 > mC. -m + 1 > mD. -m - 1 > m2. 下列函数中,在定义域内单调递增的是()A. y = -2x + 3B. y = 2x - 5C. y = x^2D. y = -x^23. 若a、b、c是等差数列,且a + b + c = 12,a + c = 8,则b的值为()A. 4B. 6C. 8D. 104. 在直角坐标系中,点P(2, -3)关于原点的对称点为()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等边三角形C. 平行四边形D. 圆6. 已知等腰三角形ABC中,AB = AC,若∠B = 40°,则∠A的度数为()A. 40°B. 50°C. 60°D. 70°7. 下列方程中,解集不为空集的是()A. x^2 + 1 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 08. 下列函数中,是奇函数的是()A. y = x^2B. y = 2xC. y = |x|D. y = x^39. 下列等式中,正确的是()A. (a + b)^2 = a^2 + 2ab + b^2B. (a - b)^2 = a^2 - 2ab + b^2C. (a + b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^210. 在等腰三角形ABC中,AB = AC,若BC = 6,则AB + AC的值为()A. 12B. 8C. 10D. 14二、填空题(每题4分,共40分)11. 若x^2 - 5x + 6 = 0,则x的值为______。

初三中考北师大版数学试卷

初三中考北师大版数学试卷

考试时间:120分钟满分:120分一、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 下列数中,是负数的是()A. -2/3B. 3/4C. -√4D. 02. 如果a > b,那么下列不等式中正确的是()A. a - b < 0B. a + b > 0C. a - b > 0D. a + b < 03. 已知方程2x - 3 = 7,则x的值是()A. 2B. 5/2C. 4D. 34. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 3/xC. y = x^2D. y = 46. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形7. 下列各式中,正确的是()A. 3a - 2b = 5a - 2bB. 3a + 2b = 5a + 2bC. 3a - 2b = 5a - 2bD. 3a + 2b = 5a - 2b8. 下列各数中,是实数的是()A. √-1B. 2/3C. iD. √49. 下列各式中,正确的是()A. a^2 = aB. a^2 = -aC. a^2 = |a|D. a^2 = -|a|10. 下列图形中,是中心对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形二、填空题(本大题共10小题,每小题3分,共30分。

把答案填写在题后的横线上。

)11. -3的倒数是__________。

12. 2的平方根是__________。

13. 下列方程中,x=3是方程的解的是__________。

14. 在直角坐标系中,点B(-2,1)关于原点的对称点坐标是__________。

15. 函数y=2x+1的图象是一条__________。

初三考试数学试卷及答案

初三考试数学试卷及答案

一、选择题(每题5分,共30分)1. 下列选项中,不是有理数的是:A. -3B. 0.5C. √2D. -π2. 如果a > b,那么下列不等式中正确的是:A. a + 2 > b + 2B. a - 2 < b - 2C. 2a > 2bD. 2a < 2b3. 一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的周长是:A. 16cmB. 24cmC. 32cmD. 40cm4. 下列函数中,是反比例函数的是:A. y = x + 2B. y = 2xC. y = 3/xD. y = x² + 15. 在直角坐标系中,点A(-2,3)关于y轴的对称点是:A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)二、填空题(每题5分,共20分)6. 计算:-3 × (-4) + 5 ÷ (-1) = _______7. 如果x² - 4x + 4 = 0,那么x的值是 _______8. 一个数加上它的倒数等于3,这个数是 _______9. 在等差数列中,首项为2,公差为3,那么第10项是 _______10. 若∠ABC是等腰三角形ABC的底角,且∠ABC = 40°,则∠BAC的度数是_______三、解答题(每题20分,共80分)11. (1)已知一元二次方程x² - 5x + 6 = 0,求该方程的解。

(2)如果上述方程的解为x₁和x₂,那么x₁ + x₂和x₁x₂的值分别是多少?12. (1)已知等腰三角形ABC的底边AB=8cm,腰AC=BC=10cm,求三角形ABC的面积。

(2)如果将等腰三角形ABC沿高AD剪开,得到两个直角三角形,求这两个直角三角形的面积。

13. (1)画出函数y = -2x + 3的图像,并找出该直线与x轴和y轴的交点坐标。

(2)如果直线y = -2x + 3与抛物线y = x² - 4x + 3相交,求交点的坐标。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、压轴题1.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示);(2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.2.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.3.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.4.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果) (2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.5.点A 在数轴上对应的数为﹣3,点B 对应的数为2.(1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值6.如图①,点C 在线段AB 上,图中共有三条线段AB 、AC 和BC ,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C 是段AB 的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)7.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.8.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)9.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角尺(∠M=30°)的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方.(1)若将图1中的三角尺绕点O以每秒5°的速度,沿顺时针方向旋转t秒,当OM恰好平分∠BOC时,如图2.②试说明此时ON平分∠AOC;(2)将图1中的三角尺绕点O顺时针旋转,设∠AON=α,∠COM=β,当ON在∠AOC内部时,试求α与β的数量关系;(3)若将图1中的三角尺绕点O以每秒5°的速度沿顺时针方向旋转的同时,射线OC也绕点O以每秒8°的速度沿顺时针方向旋转,如图3,那么经过多长时间,射线OC第一次平分∠MON?请说明理由.10.如图1,O为直线AB上一点,过点O作射线OC,∠AOC=30°,将一直角三角板(其中∠P=30°)的直角顶点放在点O处,一边OQ在射线OA上,另一边OP与OC都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).11.如图,已知数轴上点A表示的数为10,B是数轴上位于点A左侧一点,且AB=30,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B表示的数是________,点P表示的数是________(用含的代数式表示);(2)若M为线段AP的中点,N为线段BP的中点,在点P运动的过程中,线段MN的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q从点B处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时与点Q相距4个单位长度?12.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P 到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.13.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.14.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由. ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.15.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯.()1观察发现 ()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______. ()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示);②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.16.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.17.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a -称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.18.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒. 19.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()225350a b ++-=.点P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数;(3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)20.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点(1)若AP=2时,PM=____;(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)103或4(4)线段MN 的长度不发生变化,都等于11【解析】【分析】(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;(3)分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=22,∴点B表示的数是8-22=-14,∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8-4t.故答案为-14,8-4t;(2)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC-BC=AB,∴4x-2x=22,解得:x=11,∴点P运动11秒时追上点Q;(3) ①点P、Q相遇之前,4t+2+2t =22,t=103,②点P、Q相遇之后,4t+2t -2=22,t=4,故答案为103或4(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.2.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MN AB =412=13; ②当点N 在线段AB 的延长线上时,如图2.∵AN ﹣BN=MN .又∵AN ﹣BN=AB ,∴MN=AB=12,∴MN AB =1212=1. 综上所述:MN AB =13或1. 【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.3.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.4.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运动方向找出运动t 秒时点A 、B 、C 、D 所表示的数,(2)根据3BD PA PC -=列出关于t 的含绝对值符号的一元一次方程.5.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB 的长,然后求得方程的解,得到C 表示的点,由此求得12BC +AB =8设点P 在数轴上对应的数是a ,分①当点P 在点a 的左侧时(a <﹣3)、②当点P 在线段AB 上时(﹣3≤a ≤2)和③当点P 在点B 的右侧时(a >2)三种情况求点P 所表示的数即可;(2)设P 点所表示的数为n ,就有PA =n +3,PB =n ﹣2,根据已知条件表示出PM 、BN 的长,再分别代入①PM ﹣34BN 和②12PM +34BN 求出其值即可解答.(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.6.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.7.(1)20;(2)t =15s 或17s (3)43s. 【解析】【分析】(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P运动到B再到原点时,所用的时间,再算出Q从B到A所需的时间,比较即可得出结论.【详解】(1)设P、Q速度分别为3m、2m,根据题意得:12×3m=36,解得:m=1,∴P、Q速度分别为3、2,∴BC=12×2=24,∴OC=OB-BC=44-24=20.(2)当A、B在相遇前且相距5个单位长度时:3t+2t+5=44+36,5t=75,∴t=15(s);当A、B在相遇后且相距5个单位长度时:3t+2t-5=44+36,5t=85,∴t=17(s).综上所述:t=15s或17s.(3)P运动到原点时,t=3644443++=1243s,此时QB=2×1243=2483>44+38=80,∴Q点已到达A点,∴Q点已到达A点的时间为:3644804022+==(s),故提前的时间为:1243-40=43(s).【点睛】本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.8.(1)60°;(2)射线OP是∠AOC的平分线;(3)30°.【解析】整体分析:(1)根据角平分线的定义与角的和差关系计算;(2)计算出∠AOP的度数,再根据角平分线的定义判断;(3)根据∠AOC,∠AON,∠NOC,∠MON,∠AOM的和差关系即可得到∠NOC 与∠AOM之间的数量关系.解:(1)如图②,∠AOC=120°,∴∠BOC=180°﹣120°=60°,又∵OM平分∠BOC,∴∠BOM=30°,又∵∠NOM=90°,∴∠BOM=90°﹣30°=60°,故答案为60°;(2)如图③,∵∠AOP=∠BOM=60°,∠AOC=120°,∴∠AOP=12∠AOC,∴射线OP是∠AOC的平分线;(3)如图④,∵∠AOC=120°,∴∠AON=120°﹣∠NOC,∵∠MON=90°,∴∠AON=90°﹣∠AOM,∴120°﹣∠NOC=90°﹣∠AOM,即∠NOC﹣∠AOM=30°.9.(1)①t=3;②见解析;(2)β=α+60°;(3)t=5时,射线OC第一次平分∠MON.【解析】【分析】(1)根据角平分线的性质以及余角补角的性质即可得出结论;(2)根据∠NOC=∠AOC-∠AON=90°-∠MOC即可得到结论;(3)分别根据转动速度关系和OC平分∠MON列方程求解即可.【详解】(1)①∵∠AOC=30°,OM平分∠BOC,∴∠BOC=2∠COM=2∠BOM=150°,∴∠COM=∠BOM=75°.∵∠MON=90°,∴∠CON=15°,∠AON+∠BOM=90°,∴∠AON=∠AOC﹣∠CON=30°﹣15°=15°,∴∠AON=∠CON,∴t=15°÷3°=5秒;②∵∠CON=15°,∠AON=15°,∴ON平分∠AOC.(2)∵∠AOC=30°,∴∠NOC=∠AOC-∠AON=90°-∠MOC,∴30°-α=90°-β,∴β=α+60°;(3)设旋转时间为t秒,∠AON=5t,∠AOC=30°+8t,∠CON=45°,∴30°+8t=5t+45°,∴t=5.即t=5时,射线OC第一次平分∠MON.【点睛】本题考查了一元一次方程的应用以及角的计算,关键是应该认真审题并仔细观察图形,找到各个量之间的关系求出角的度数是解题的关键.10.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 11.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.12.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d 追随值的定义,分点N 在点M 左侧和点N 在点M 右侧两种情况,直接写出答案即可;(2)①分点A 在点B 左侧和点A 在点B 右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N 在点M 右侧时,点N 表示的数是1+a ;点N 在点M 左侧时,点N 表示的数是1-a ;(2)①b=4时,AB 相距3个单位,当点A 在点B 左侧时,t=(3-2)÷(3-1)=12, 当点A 在点B 右侧时,t=(3+2)÷(3-1)=52; ②当点B 在点A 左侧或重合时,即d ≤1时,随着时间的增大,d 追随值会越来越大, ∵0<t≤3,点A 到点B 的d 追随值d[AB]≤6,∴1-d+3×(3-1)≤6,解得d ≥1,∴d=1,当点B 在点A 右侧时,即d>1时,在AB 重合之前,随着时间的增大,d 追随值会越来越小,∵点A 到点B 的d 追随值d[AB]≤6,∴d ≤7∴1<d ≤7,综合两种情况,d 的取值范围是1≤d ≤7.故答案为(1)1+a 或1-a ;(2)①12或52;②1≤b≤7. 【点睛】本题考查了数轴上两点之间的距离和动点问题.13.(1)41°;(2)见解析.【解析】【分析】(1)根据角平分线的定义可得12AOC AOB ∠∠=,12AOE AOD ∠∠=,进而可得∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.【详解】(1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠, ∴12AOC AOB ∠∠=,12AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-=1122AOB AOD ∠∠- =()12AOB AOD ∠∠- =12BOD ∠ =01822⨯ =41°(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,∴11O ,22AOC A B AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12α如图,当OA 在BOD ∠外部,∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,∴11,22AOC AOB AOE AOD ∠∠∠∠==, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=+ =()12AOB AOD ∠∠+=()013602BOD ∠- =()013602α- =011802α-∴α与β之间的数量关系发生变化.【点睛】本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.14.(1)1,-3,-5(2)i )存在常数m ,m=6这个不变化的值为26,ii )11.5s【解析】【分析】(1)根据非负数的性质求得a 、b 、c 的值即可;(2)i )根据3BC-k•AB 求得k 的值即可;ii )当AC=13AB 时,满足条件. 【详解】(1)∵a 、b 满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a ,b ,c 的值分别为1,-3,-5.(2)i )假设存在常数k ,使得3BC-k•AB 不随运动时间t 的改变而改变.则依题意得:AB=5+t ,2BC=4+6t .所以m•AB -2BC=m (5+t )-(4+6t )=5m+mt-4-6t 与t 的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6,t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.15.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=, 故答案为()()n 1n 2m.3++ ()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 16.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12.【解析】【分析】(1)根据“n 节点”的概念解答;(2)设点D 表示的数为x ,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E 在BA 延长线上时,②当点E 在线段AB 上时,③当点E 在AB 延长线上时,根据BE=12AE ,先求点E 表示的数,再根据AC+BC=n ,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、选择题1.在实数:3.14159,35-,π,25,﹣17,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个2.已知关于x ,y 的方程组35225x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( )A .1个B .2个C .3个D .4个3.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM的长( ) A .7cm B .3cm C .3cm 或 7cm D .7cm 或 9cm 4.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)5.如图是由下列哪个立体图形展开得到的?( )A .圆柱B .三棱锥C .三棱柱D .四棱柱 6.下列各数中,绝对值最大的是( )A .2B .﹣1C .0D .﹣3 7.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2 B .(3a ﹣b )2 C .3a ﹣b 2 D .(a ﹣3b )2 8.若代数式3x ﹣9的值与﹣3互为相反数,则x 的值为( ) A .2B .4C .﹣2D .﹣49.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-10.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题11.9的算术平方根是________ 12.因式分解:32x xy -= ▲ .13.如果向东走60m 记为60m +,那么向西走80m 应记为______m.14.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.15.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.16.若a-b=-7,c+d=2013,则(b+c)-(a-d)的值是______.17.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.18.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.19.观察“田”字中各数之间的关系:则c 的值为____________________.20.已知|x |=3,y 2=4,且x <y ,那么x +y 的值是_____.三、解答题21.足球比赛的规则为:胜场得3分,平场得1分,负一场得0分,一支球队在某个赛季共需比赛14场,现已经赛了8场,输了一场,得17分,请问: (1)前8场比赛中胜了几场?(2)这支球队打满14场后最高得多少分?(3)若打14场得分不低于29分,则在后6场比赛中这个球队至少胜几场? 22.如图,把△ABC 先向上平移3个单位长度,再向右平移2个单位长度,得到△A 1B 1C 1.(1)在图中画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标; (2)连接A 1A 、C 1C ,则四边形A 1ACC 1的面积为______. 23.解方程:(1)()43203x x --= (2)23211510x x -+-= 24.数学问题:计算231111nm m mm ++++(其中m ,n 都是正整数,且m ≥2,n ≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算2311112222n++++. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为12; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为12+212; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为12+212+312+…+12n ,最后空白部分的面积是12n . 根据第n 次分割图可得等式:12 +212+312+…+12n =1﹣12n .探究二:计算13+213+313+…+13n.第1次分割,把正方形的面积三等分,其中阴影部分的面积为23;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为2 3+223;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为2 3+223+323+…+23n,最后空白部分的面积是13n.根据第n次分割图可得等式:23+223+323+…+23n=1﹣13n,两边同除以2,得13+213+313+…+13n=12﹣123n.探究三:计算14+214+314+…+14n.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算1m +21m +31m +…+1n m. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式:_________, 所以,1m +21m +31m +…+1n m=________. 拓广应用:计算515- +22515-+33515-+…+515n n -. 25.计算: (1)17+(﹣1.5)﹣(﹣67) (2)32÷(﹣34)+(﹣27)2×2126.周末,小明和父母以每分钟40米的速度步行从家出发去景蓝小区看望外婆,走了5分钟后,忽然发现自己给外婆带的礼物落在家里,父母继续保持原速度行进,小明则立刻以每分钟60米的速度折返,取到礼物后立刻出发追赶父母,恰好在景蓝小区门口追上父母.求小明家到景蓝小区门口的距离. 27.计算: (1)(﹣0.5)+(﹣32)﹣(+1) (2)2+(﹣3)2×(﹣112) (33825﹣2|﹣(﹣1)201828.化简求值:()()2222533x y xy xy x y --+,其中1x =,12y. 29.如图,已知数轴上点A 表示的数为6,点B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为11,动点P 从点A 出发,以每秒3个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)数轴上点B 表示的数是 ,当点P 运动到AB 中点时,它所表示的数是 ; (2)动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若P ,Q 两点同时出发,求点P 与Q 运动多少秒时重合?(3)动点Q 从点B 出发,以每秒2个单拉长度的速度沿数轴向左匀速运动,若P ,Q 两点同时出发,求:①当点P 运动多少秒时,点P 追上点Q ?②当点P 与点Q 之间的距离为8个单位长度时,求此时点P 在数轴上所表示的数.30.先化简,再求值:2(x 2y+xy 2)﹣2(x 2y ﹣x )﹣2xy 2﹣2y ,其中x=﹣2,y=2.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】无理数就是无限不循环小数,依据定义即可判断. 【详解】解:在3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)35-π、0.1313313331…(每2个1之间依次多一个3)这3个, 故选:C . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.D解析:D 【解析】 【分析】①把a=10代入方程组求出解,即可做出判断;②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断; ③假如x=y,得到a 无解,本选项正确;④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断 【详解】①把a=10代入方程组得352025x y x y -=⎧⎨-=⎩解得155x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x代入方程组得3+52 +25 x x a x x a=⎧⎨=-⎩解得:a=20,本选项正确③若x=y,则有-225x ax a=⎧⎨-=-⎩,可得a=a-5,矛盾,故不存在一个实数a使得x=y,本选项正确④方程组解得25-15x a y a=⎧⎨=-⎩由题意得:x-3a=5把25-15x ay a=⎧⎨=-⎩代入得25-a-3a=5解得a=5本选项正确则正确的选项有四个故选D【点睛】此题考查二元一次方程组的解,掌握运算法则是解题关键3.C解析:C【解析】【分析】应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点A与B之间或点C在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=12AC=3cm,②如图2,当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm . 故选C . 【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.4.A解析:A 【解析】 【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可. 【详解】解:﹣(﹣1)=1, ∴﹣1<0<﹣(﹣1)<2, 故选:A . 【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.5.C解析:C 【解析】 【分析】三棱柱的侧面展开图是长方形,底面是三角形. 【详解】解:由图可得,该展开图是由三棱柱得到的, 故选:C . 【点睛】此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.6.D解析:D 【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D . 考点:D .7.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b .故选B.8.B解析:B 【解析】 【分析】利用相反数的性质列出方程,求出方程的解即可得到x 的值. 【详解】解:根据题意得:3x ﹣9﹣3=0, 解得:x =4, 故选:B . 【点睛】此题考查了相反数的性质及解一元一次方程,熟练掌握运算法则是解本题的关键.9.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.10.D解析:D 【解析】 【分析】根据非负数的性质可求得a ,b 的值,然后代入即可得出答案. 【详解】解:因为2|2|(1)0a b ++-=, 所以a +2=0,b -1=0, 所以a =-2,b =1, 所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D. 【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a,b的值是解决此题的关键.二、填空题11.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】解:∵,∴的算术平方根是;故答案为:.【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.【解析】【分析】根据算术平方根的定义,即可得到答案.【详解】,3【点睛】本题考查了算术平方根的定义,解题的关键是掌握定义进行解题.12.x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因解析:x(x﹣y)(x+y).【解析】【分析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y),故答案为x (x ﹣y )(x+y ).13.-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为,那么向西走80m 应记为.故答案为.【点睛】本题考查正数和负数解析:-80【解析】【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】解:如果向东走60m 记为60m +,那么向西走80m 应记为80m -.故答案为80-.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.14.5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x 袋,根据题意,得:2(x ﹣1)﹣1﹣1=x +1解得:x =5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.16.2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知解析:2020【解析】【分析】把所求代数式变换得b+c-a+d=(b-a)+(c+d),把已知数值代入计算即可.【详解】代数式变换,可得(b+c)-(a-d) =(b-a)+(c+d),由已知,a-b=-7,c+d=2013,∴原式=7+2013=2020,故答案为:2020.【点睛】本题考查了整式加法交换律和结合律的运算,整体代换思想的应用,掌握整式加法运算律的应用是解题的关键.17.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.18.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.19.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。

初三数学试卷_可打印

初三数学试卷_可打印

考试时间:120分钟满分:100分一、选择题(每题3分,共30分)1. 下列各数中,不是有理数的是()A. 3.14B. -2/3C. √9D. π2. 若a,b是方程x²-5x+6=0的两根,则a+b的值为()A. 2B. 5C. 6D. 83. 已知函数y=2x+1,若x的取值范围是[1, 3],则y的取值范围是()A. [3, 7]B. [2, 7]C. [2, 8]D. [3, 8]4. 在直角坐标系中,点A(2, 3)关于原点的对称点是()A. (-2, -3)B. (2, -3)C. (-2, 3)D. (3, -2)5. 如果等腰三角形的底边长为10,腰长为8,那么这个三角形的周长是()A. 26B. 24C. 22D. 286. 下列函数中,在定义域内是单调递减的是()A. y=x²B. y=2x+1C. y=-3x+2D. y=3x²-4x+17. 若sinα=0.6,则cosα的值为()A. 0.8B. 0.5C. 0.4D. 0.38. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 等边三角形D. 平行四边形9. 已知等差数列{an}的第一项a1=3,公差d=2,则第10项a10的值为()A. 19B. 21C. 23D. 2510. 若a,b是方程x²-4x+4=0的两根,则ab的值为()A. 4B. 2C. 1D. 0二、填空题(每题5分,共50分)11. 已知sinθ=0.5,cosθ=0.8,则tanθ的值为______。

12. 在直角三角形ABC中,∠C=90°,AC=3,BC=4,则AB的长度为______。

13. 若函数y=3x²-12x+9在x=2时的函数值为0,则该函数的对称轴方程为______。

14. 已知等比数列{an}的第一项a1=2,公比q=3,则第5项a5的值为______。

数学初三毕业考试卷及答案

数学初三毕业考试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a 2 > b 2D. a / 2 < b / 23. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2, x = 3B. x = 3, x = 2C. x = 1, x = 4D. x = 4, x = 14. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = 3x6. 在梯形ABCD中,AD || BC,若AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形ABCD的面积是()A. 12cm^2B. 15cm^2C. 18cm^2D. 20cm^27. 若等差数列的前三项分别是a,b,c,且a + b + c = 9,a + c = 6,则该数列的公差是()A. 1B. 2C. 3D. 48. 下列命题中,正确的是()A. 所有的实数都是有理数B. 所有的有理数都是整数C. 所有的整数都是自然数D. 所有的自然数都是整数9. 若等比数列的首项为a,公比为q,则第n项an =()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 8,c = 10,则角A的余弦值cosA =()A. 1/2B. 1/3C. 2/3D. 3/4二、填空题(每题3分,共30分)11. 若x + y = 5,xy = 6,则x^2 + y^2 = _______。

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.下列说法:①三角形的一个外角等于它的任意两个内角和;②内角和等于外角和的多边形只有四边形;③角是轴对称图形,角的对称轴是角平分线.其中正确的有()个.A.0 B.1 C.2 D.32.若关于x的分式方程1233m xx x-=---有增根,则实数m的值是()A.2B.2-C.1D.03.若分式21xx--的值为零,则x的值为()A.2-B.2±C.2 D.24.分式方程3111xx x=-+-的解是()A.4 B.2 C.1 D.-25.钝角三角形三条高所在的直线交于()A.三角形内B.三角形外C.三角形的边上D.不能确定6.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,F是CB延长线上一点,AF⊥CF,垂足为F.下列结论:①∠ACF=45°;②四边形ABCD的面积等于12AC2;③CE=2AF;④S△BCD=S△ABF+S△ADE;其中正确的是()A.①②B.②③C.①②③D.①②③④7.给出下列4个命题:①四边形的内角和等于外角和;②有两个角互余的三角形是直角三角形;③若|x|=2,则x=2;④同旁内角的平分线互相垂直.其中真命题的个数为()A.1个B.2个C.3个D.4个8.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是()A.五边形B.六边形C.七边形D.八边形9.下列计算正确的是( )A.a2+a3=a5B.a6÷a2=a3 C.(a2)3=a6D.2a×3a=6a10.在平面直角坐标系中,若干个等腰直角三角形按如图所示的规律摆放.点P从原点O出发,沿着“1234O A A A A →→→→…”的路线运动(每秒一条直角边),已知1A 坐标为()()()231,12,0,,1,3A A ()44,0A ···,设第n 秒运动到点(n P n 为正整数),则点2020P 的坐标是)( )A .()2020,0B .()2019,1C .()1010,0D .()2020,1-二、填空题11.如图,∠AOB=60°,OC 平分∠AOB ,如果射线OA 上的点E 满足△OCE 是等腰三角形,那么∠OEC 的度数为________12.若3m =2,9n =10,则3m﹣2n=_____.13.已知多项式x 2+mx+25是完全平方式,且m <0,则m 的值为_____. 14.已知32×9m ÷27=321,则m=______.15.如图,在ABC 中,A β∠=度,ABC ∠与ACD ∠的平分线交于点1A ,则1A ∠=______度;1A BC ∠与1ACD ∠的平分线交于点2A ,得2A ∠;…2018∠A BC 与2018A CD ∠的平分线交于点2019A ,得2019A ∠.则2019A ∠=______度.16.如图,已知:∠BAC 的平分线与BC 的垂直平分线相交于点D ,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,AB =6,AC =3,则BE =_______.17.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.18.如图,是一块缺角的四边形钢板,根据图中所标出的结果,可得所缺损的∠A 的度数是_____.19.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.20.如图,在△ABC 中,BC 的垂直平分线ED 交AB 于点E ,交BC 于点D ,连接CE .如果△AEC 的周长为12,AC =5,那么AB 的长为__________.三、解答题21.如图,在ABC 中,110ABC ∠=,40A ∠=.(1)作ABC 的角平分线BE (点E 在AC 上;用尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求BEC ∠的度数.22.如图,在△ABC 中,AC 的垂直平分线交AC 于点D ,交BC 延长线交于点E ,连接AE ,如果∠B =50°,∠BAC =21°,求∠CAE 的度数.23.把下列各式分解因式: (1)226x y x -; (2)3222x x y xy -+;24.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 25.已知分式:222222()1211x x x x xx x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?26.如图,在ABC 中,4654,B C AD ∠=︒∠=︒,平分BAC ∠交BC 于点D ,点E 是边AC 上一点,连接DE ,若40ADE ∠=︒,求证://DE AB .27.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-. 28.如图,在ABC 中,点D 为BC 上一点,过点D 作DE AB ⊥于点,E DF AC ⊥于点F .连接EF .(1)若,3,5BAD DAC DE AC ∠=∠==,求ADC 的面积; (2)若DF AF =,求证:2AE DE EF +=.29.先化简,再求值:2221a ab a b--+,其中6a =,02b =. 30.已知:如图,ABC 中,∠ABC=45°,CD AB ⊥于D ,BE 平分∠ABC ,且BE AC ⊥于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G(1)求证:BF=AC ;(2)判断CE 与BF 的数量关系,并说明理由【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义知识点逐个判断即可. 【详解】解: ①应为三角形的一个外角等于与它不相邻的两个内角的和,故本选项错误; ②内角和等于外角和的多边形只有四边形,故正确;③角是轴对称图形,角的对称轴是角的平分线所在的直线,③错误; 综上所述, ②正确,故选B . 【点睛】本题考查了三角形的外角和定理、三角形的内角和定理、角的性质、对称轴的定义相关知识点,能熟记知识点的内容是解此题的关键.2.A解析:A 【解析】 【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值. 【详解】去分母得:m=x-1-2x+6,由分式方程有增根,得到x-3=0,即x=3, 把x=3代入整式方程得:m=2, 故选:A . 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.3.B解析:B 【解析】 【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案. 【详解】 解:∵分式21x x --的值为0,∴|x|-2=0,且x-1≠0, 解得:x=2±. 故选:B . 【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.4.B解析:B 【解析】 【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解. 【详解】解:去分母得:22331x x x x -=+-+, 移项、合并得:24=x , 解得:2x =,经检验2x =是分式方程的解, 故选:B . 【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.5.B解析:B 【解析】 【分析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC 三边的高交于三角形外部一点D , 即钝角三角形三条高所在的直线交于三角形外, 故选:B .【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.6.C解析:C 【解析】 【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABCACDABCD S SS=+四边形,得出212ADEACDACEABCD S SSSAC =+==四边形,②正确;证出AF AG =,2CE AF =,③正确;由ABFADEABFABCACFS SSSS+=+=,不能确定ACFBCD SS=,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC , ∴∠E =∠ACE =45°, ∵∠BAD =∠CAE =90°, ∴∠BAC +∠CAD =∠EAD +∠CAD ∴∠BAC =∠EAD , 在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ), ∴∠ACF =∠E =45°,①正确; ∵S 四边形ABCD =S △ABC +S △ACD ,∴S四边形ABCD=S△ADE+S△ACD=S△ACE=12AC2,②正确;∵△ABC≌△ADE,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.7.B解析:B【解析】【分析】根据四边形内角和、直角三角形性质和绝对值性质判断即可;【详解】解:①四边形的内角和和外角和都是360°,∴四边形的内角和等于外角和,是真命题;②有两个角互余的三角形是直角三角形,是真命题;③若|x|=2,则x=±2,本说法是假命题;④两直线平行时,同旁内角的平分线互相垂直,本说法是假命题;故选:B.【点睛】本题主要考查了四边形的内角和、直角三角形两锐角互余、绝对值的性质和平行线的知识点,准确分析是解题的关键.8.D解析:D【解析】【分析】设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设多边形的边数为n,多加的外角度数为x,根据题意列方程得,(n-2)•180°+x=1160°,∵0°<x<180°,∴1160°-180°<(n-2)×180°<1160°,∴549<n−2<649,∵n是整数,∴n=8.故选:D.【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.9.C解析:C【解析】试题分析: A、a2与a3是相加,不是相乘,不能运用同底数幂的乘法计算,故本选项错误;B、根据同底数幂相除,底数不变,指数相减,可得a6÷a2=a4,故本选项错误;C、根据幂的乘方,底数不变,指数相乘,可得(a2)3=a6,故正确;D、单项式乘单项式:把系数和相同字母分别相乘,只在一个单项式里含有的字母,则连同它的指数,作为积的一个因式.因此可得2a×3a=6a2,故本选项错误.故选C.考点:同底数幂的除法;幂的乘方与积的乘方10.A解析:A【解析】【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6个点的坐标,从中得出规律,再按规律写出结果便可. 【详解】 解:由题意知, A 1(1,1), A 2(2,0), A 3(3,1), A 4(4,0), A 5(5,-1), A 6(6,0), A 7(7,1), …由上可知,每个点的横坐标等于序号,纵坐标每6个点依次为:1,0,1,0,-1,0这样循环,∴A 2020(2020,0), 故选:A . 【点睛】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在.二、填空题11.120°或75°或30° 【解析】∵∠AOB=60°,OC 平分∠AOB,点E 在射线OA 上, ∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况: (1)当OE=CE 时,∠OC解析:120°或75°或30° 【解析】∵∠AOB=60°,OC 平分∠AOB ,点E 在射线OA 上, ∴∠COE=30°.如下图,当△OCE 是等腰三角形时,存在以下三种情况:(1)当OE=CE 时,∠OCE=∠COE=30°,此时∠OEC=180°-30°-30°=120°;(2)当OC=OE 时,∠OEC=∠OCE=180302=75°; (3)当CO=CE 时,∠OEC=∠COE=30°.综上所述,当△OCE 是等腰三角形时,∠OEC 的度数为:120°或75°或30°.点睛:在本题中,由于题中没有指明等腰△OCE的腰和底边,因此要分:(1)OE=CE;(2)OC=OE;(3)CO=CE;三种情况分别讨论,解题时不能忽略了其中任何一种情况.12.【解析】【分析】直接利用同底数幂的除法运算法则、幂的乘方运算法则将原式变形得出答案即可.【详解】解:∵3m=2,9n=(32)n=32n,∴3m﹣2n=3m÷32n=2÷10=.故解析:1 5【解析】【分析】直接利用同底数幂的除法运算法则、幂的乘方运算法则将原式变形得出答案即可.【详解】解:∵3m=2,9n=(32)n=32n,∴3m﹣2n=3m÷32n=2÷10=15.故答案为:15.【点睛】本题考查了同底数幂相除,幂的乘方等知识,理解好两个公式,灵活运用是解题关键.13.-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx解析:-10【解析】【分析】根据完全平方公式得到x2+mx+25=(x+5)2或x2+mx+25=(k-5)2,然后展开即可得到m的值.【详解】∵x2+mx+25是一个完全平方式,∴x2+mx+25=(x+5)2或x2+mx+25=(k﹣5)2,∴m=±10.∵m<0,∴m的值为﹣10.故答案是:﹣10.【点睛】本题考查了完全平方公式,掌握(a±b)2=a2±2ab+b2是解答此题的关键.14.【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=解析:【解析】【分析】根据32×9m÷27=321,可得:32+2m-3=321,据此求出m的值是多少即可.【详解】解:∵32×9m÷27=321,∴32+2m-3=321,∴2+2m-3=21,解得:m=11.故答案为:11.【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,以及同底数幂的乘法的运算方法,要熟练掌握.15.β,β【解析】【分析】已知∠A,求∠A1,利用外角定理可得∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,把∠ACD 利用角平分线转成2∠A1CD,∠ABC 转成2∠A1 解析:12β, 201912β 【解析】【分析】已知∠A ,求∠A 1,利用外角定理可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,把∠ACD 利用角平分线转成2∠A 1CD ,∠ABC 转成2∠A 1BC ,消去∠A 1BC ,∠A 1CD 即可,再用类似的办法求∠A 2,以此类推即可【详解】∵BA 1平分∠ABC ,CA 1平分∠A 1CD ,∴∠AB A 1=∠A 1BC=12∠ABC ,∠AC A 1=∠A 1CD=12∠ACD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 1CD=∠A 1+∠A 1BC ①∴2∠A 1CD=∠A+2∠A 1BC ②把①代入②得∠A 1=12∠A=12β CA 2平分∠A 2CD ,∠A 2C A 1=∠A 2CD=12∠A 1CD , 由三角形的外角得∴∠A 1CD=∠A 1+∠A 1BC ,∴∠A 2CD=∠A 2+∠A 2BC ③∴2∠A 2CD=∠A 1+2∠A 2BC ④解得∠A 2=12∠A 1, ∠A 2=12∠A 114∠A=14β=212β 同理∠A 3=12∠A 2=18∠A=18β=312β …∠A 2019= 201912β故答案为:①12β,②201912β【点睛】本题考查(第二内角的)外角平分线与(第一)内角平分线所夹的角问题,找到两平分线的夹角与第三个角的关系是解决问题关键16.【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE⊥AB,DF⊥AC,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE解析:32【解析】【分析】连接CD 、BD ,由∠BAC 的平分线与BC 的垂直平分线相较于点D ,DE ⊥AB ,DF ⊥AC ,根据角平分线的性质与线段垂直平分线的性质,易得CD=BD ,DF=DE ,从而得到AF=AE ,可证的Rt △CDF ≌Rt △BDE ,则可得BE=CF ,即可得到结果.【详解】解:如图所示,连接CD 、BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF=DE ,∠F=∠DEB=90°,∠ADF=∠ADE ,∴AE=AF ,∵DG 是BC 的垂直平分线,∴CD=BD ,在Rt △CDF 和Rt △BDE 中CD BD DF DE =⎧⎨=⎩∴Rt △CDF ≌Rt △BDE∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=6,AC=3,∴BE=32.故答案为:3 2【点睛】本题主要考查的是线段垂直平分线的性质、角平分线的性质以及全等三角形的判定与性质,掌握以上知识点是解题的关键.17.15°【解析】【分析】根据三角形的内角和等于180°求出∠B AC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【解析:15°【解析】【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD,然后根据∠DAE=∠BAE-∠BAD计算即可得解.【详解】解:∵∠ABC=30°,∠ACB=60°,∴∠BAC=180°-∠B-∠C=180°-30°-60°=90°,∵AE是三角形的平分线,∴∠BAE=12∠BAC=12×90°=45°,∵AD是三角形的高,∴∠BAD=90°-∠B=90°-30°=60°,∴∠DAE=∠BAD-∠BAE=60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.18.73°【解析】【分析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+解析:73°【解析】【分析】先求出∠ABC度数,再求出四边形的内角和,再代入求出即可.【详解】如图;∵∠EBC=62°,∴∠ABC=180°-∠EBC=118°,∵∠A+∠ABC+∠C+∠D=(4-2)×180°=360°,∠C=80°,∠D=89°,∴∠A=360°-∠ABC-∠C-∠D=73°,故答案为73°.【点睛】本题考查了多边形的内角和外角,能求出四边形的内角和是即此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°.19.①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD 和DN所在的三角形解析:①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS证△EAB≌△FAC,即可判断②;推出AC=AB,根据ASA即可证出③;不能推出CD和DN所在的三角形全等,也不能用其它方法证出CD=DN.【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB ,即∠1=∠2,∴①正确;在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确;在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACN ≌△ABM ,∴③正确;∵根据已知不能推出CD=DN ,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断. 20.7【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等,得BE=CE ,所以△AEC 的周长等于边长AB 与AC 的和.【详解】∵DE 垂直平分BC ,∴BE=CE ,∴△AEC 的周长=A解析:7【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等,得BE=CE ,所以△AEC 的周长等于边长AB 与AC 的和.【详解】∵DE 垂直平分BC ,∴BE=CE ,∴△AEC 的周长=AC+CE+AE=AC+AB=12.∵AC=5,∴AB=12-5=7.故答案是:7.【点睛】本题主要考查线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握性质是解题的关键.三、解答题21.(1)见解析;(2)95°【解析】【分析】(1)依据角平分线的作法,即可得到△ABC 的角平分线BE ;(2)依据三角形内角和定理,即可得到∠AEB 的度数,再根据邻补角的定义,即可得到∠BEC 的度数.【详解】(1)如图(满足“三弧一线”可得)线段BE 即为所求(2)由(1)得,BE 平分ABC ∠∵110ABC ∠=︒ ∴1552ABE ABC ∠=∠=︒ ∵40A ∠=︒∴180554085AEB ∠=︒-︒-︒=︒∵180AEB BEC ∠+∠=︒∴1808595BEC ∠=︒-︒=︒【点睛】本题主要考查了三角形内角和定理以及基本作图,解决问题的关键是掌握角平分线的作法.22.∠EAC =71°【解析】【分析】根据三角形外角的性质得出∠ACE=71°,再根据线段垂直平分线的性质得AE=CE ,从而得出∠EAC=∠ECA=71°.【详解】∵AC 的垂直平分线交AC 于点D∴EA =EC∴∠EAC =∠ECA∵∠B =50°,∠BAC =21°∴∠ECA =∠B +∠BAC =71°∴∠EAC =71°【点睛】本题考查了线段垂直平分线性质,等腰三角形性质,三角形的外角性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.23.(1)2(3)x xy -;(2)2()x x y -【解析】【分析】(1)直接了利用提公因式法分解因式即可;(2)先提公因式,再利用完全平方公式进行分解因式即可.【详解】解:(1)226x y x -2(3)x xy =-;(2)3222x x y xy -+22(2)x x xy y =-+2()x x y =-;【点睛】本题考查了分解因式的方法,解题的关键是掌握提公因式法和公式法进行分解因式.24.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.25.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x +=-⋅-- 11x x x x +=⋅- 11x x +=-; (2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.26.证明见解析【解析】【分析】先求出∠BAC 的度数,进而得出∠BAD ,因为∠BAD=40°=∠ADE ,由“内错角相等,两直线平行”即可判断.【详解】证明:在ABC ∆中,46,54,B C ︒︒∠=∠=180465480BAC ︒︒︒︒∴∠=--=, AD 平分,BAC ∠ 1402BAD BAC ︒∴∠=∠=, 40,ADE ︒∠=.ADE BAD ∴∠=∠//.DE AB ∴【点睛】本题考查角的运算,角平分线的性质定理以及平行线的判定,掌握角平分线的性质是解题的关键.27.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+,2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭. 【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.28.(1)152;(2)证明见解析. 【解析】【分析】 (1)由题意易得AD 为BAC ∠的角平分线,DEDF =,然后根据三角形面积计算公式可求解;(2)延长EA 到点G ,使AG DE =,连接FG ,则有360AED EDF DFA FAE ∠+∠+∠+∠=︒,进而得到EDF GAF ∠=∠,故EDF GAF ∆∆≌,然后根据全等三角形的性质及等腰三角形可进行求解.【详解】(1)解:BAD DAC ∠=∠∴AD 为BAC ∠的角平分线,DE AB DF AC ⊥⊥∴DE DF =∴11115532222ADCS AC DF AC DE ∆=⨯=⨯=⨯⨯=; (2)证明:延长EA 到点G ,使AG DE =,连接FG ,在四边形AEDF 中,360AED EDF DFA FAE ∠+∠+∠+∠=︒,90AED ∠=︒,90DAF ∠=︒,∴180EDF FAE ∠+∠=︒,180GAF FAE ∠+∠=︒,∴EDF GAF ∠=∠,在EDF ∆和GAF ∆中,DE AG DF AFEDF GAF =⎧⎪=⎨⎪∠=∠⎩, ∴EDF GAF ∆∆≌,∴,13EF GF =∠=∠,1290∠+∠=︒,∴3290∠+∠=︒,∴90EFG ∠=︒,∴GAF ∆是等腰三角形,∴2EG EF =,,EG EA AG AG DE =+=,∴EG AE DE =+,∴AE DE +=.【点睛】本题主要考查等腰三角形的性质与判定及全等三角形的判定与性质,关键是根据全等三角形的判定与性质及直角三角形的性质得到角、线段的等量关系,然后利用等腰三角形的性质求解即可.29.1a b -,15【解析】【分析】对原式分母平方差公式变形后通分、约分化简原式,再代值求解即可.【详解】 解:原式2()()()()a ab a b a b a b a b -=-+-+-, 1()()a b a b a b a b+==+--, 当6a =,021b ==时,原式11615==-. 【点睛】 本题考查了分式的化简求值、异分母的分式加减法,借助平方差公式变形找最简公分母是解答的关键.30.(1)证明见解析;(2)12CE BF =,理由见解析 【解析】【分析】(1)由题意可以得到Rt ⊿DFB ≅Rt ⊿DAC ,从而得到BF=AC ;(2)由题意可以得到Rt ⊿BEA ≅Rt ⊿BEC ,所以1122CE AE AC BF ===. 【详解】证明:∵CD ⊥AB ,∠ABC=45°, ∴BCD 是等腰直角三角形,∠DBF=90°-∠BFD ,∠A=90°-∠DCA ,又BE AC ⊥,∴∠EFC =90°-∠DCA ,∴∠A=∠EFC∵∠BFD=∠EFC ,∴∠A=∠DFB ,∴在Rt ⊿DFB 和Rt ⊿DAC 中,∠BDF=∠CDA ,∠A=∠DFB ,BD=DC ,∴Rt ⊿DFB ≅Rt ⊿DAC ,∴BF=AC ; (2) 12CE BF = 理由是:∵BE 平分ABC ,∴∠ABE=∠CBE ,在Rt ⊿BEA 和Rt ⊿BEC 中,∠AEB=∠CEB ,BE=BE ,∠ABE=∠CBE ,∴Rt⊿BEA≅Rt⊿BEC,∴12 CE AE AC ==由(1)得:12CE BF=.【点睛】本题考查三角形的综合问题,熟练掌握三角形全等的判定和性质是解题关键.。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、压轴题1.对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PA QA ≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标________;(2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan BAO 2∠=,求点B 的纵坐标t 的取值范围;(3)直线3y x b =+与x 轴交于点M ,与y 轴交于点N ,若线段MN 上存在点A 关于⊙O 的“生长点”,直接写出b 的取值范围是_____________________________.2.已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且:3:5ACE CEB SS =,求直线CE 的解析式 (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,求点P 的坐标;(4)已知点450,,(2,0)8H G ⎛⎫ ⎪⎝⎭,在抛物线对称轴上找一点F ,使HF AF +的值最小此时,在抛物线上是否存在一点K ,使KF KG +的值最小,若存在,求出点K 的坐标;若不存在,请说明理由.3.已知函数1221,(21)1y x m y m x =+-=++均为一次函数,m 为常数.(1)如图1,将直线AO 绕点()1,0A -逆时针旋转45°得到直线l ,直线l 交y 轴于点B .若直线l 恰好是1221,(21)1y x m y m x =+-=++中某个函数的图象,请直接写出点B 坐标以及m 可能的值;(2)若存在实数b ,使得||(1)10m b b ---=成立,求函数1221,(21)1y x m y m x =+-=++图象间的距离;(3)当1m 时,函数121y x m =+-图象分别交x 轴,y 轴于C ,E 两点,(21)1y m x =++图象交x 轴于D 点,将函数11y y y =的图象最低点F 向上平移5621m +个单位后刚好落在一次函数121y x m =+-图象上,设12y y y =的图象,线段OD ,线段OE 围成的图形面积为S ,试利用初中知识,探究S 的一个近似取值范围.(要求:说出一种得到S 的更精确的近似值的探究办法,写出探究过程,得出探究结果,结果的取值范围两端的数值差不超过0.01.)4.如图,抛物线214y x bx c =-++经过点()6,0C ,顶点为B ,对称轴2x =与x 轴相交于点A ,D 为线段BC 的中点.(1)求抛物线的解析式;(2)P 为线段BC 上任意一点,M 为x 轴上一动点,连接MP ,以点M 为中心,将MPC 逆时针旋转90︒,记点P 的对应点为E ,点C 的对应点为F .当直线EF 与抛物线214y x bx c =-++只有一个交点时,求点M 的坐标. (3)MPC 在(2)的旋转变换下,若2PC =(如图).①求证:EA ED =.②当点E 在(1)所求的抛物线上时,求线段CM 的长. 5.已知:如图,抛物线2134y x x =--交x 正半轴交于点A ,交y 轴于点B ,点()4,C n -在抛物线上,直线l :34y x m =-+过点B ,点E 是直线l 上的一个动点,ACE △的外心是P .(1)求m ,n 的值.(2)当点E 移动到点B 时,求ACE △的面积.(3)①是否存在点E ,使得点P 落在ACE △的边上,若存在,求出点E 的坐标,若不存在,请说明理由.②过点A 作直线AD x ⊥轴交直线l 于点D ,当点E 从点D 移动到点B 时,圆心P 移动的路线长为_____.(直接写出答案)6.如图,A 是以BC 为直径的圆O 上一点,AD ⊥BC 于点D ,过点B 作圆O 的切线,与CA 的延长线相交于点E ,G 是AD 的中点,连接并延长CG 与BE 相交于点F ,连接并延长AF 与CB 的延长线相交于点P .(1)求证:BF =EF ;(2)求证:PA 是圆O 的切线;(3)若FG =EF =3,求圆O 的半径和BD 的长度.7.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A ,B 两点,A 点坐标为(2,0)-,与y 轴交于点(0,4)C ,直线12y x m =-+与抛物线交于B ,D 两点.(1)求抛物线的函数表达式;(2)求m 的值和D 点坐标;(3)点P 是直线BD 上方抛物线上的动点,过点P 作x 轴的垂线,垂足为H ,交直线BD 于点F ,过点D 作x 轴的平行线,交PH 于点N ,当N 是线段PF 的三等分点时,求P 点坐标;(4)如图2,Q 是x 轴上一点,其坐标为4,05⎛⎫- ⎪⎝⎭,动点M 从A 出发,沿x 轴正方向以每秒5个单位的速度运动,设M 的运动时间为t (0t >),连接AD ,过M 作MG AD ⊥于点G ,以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',点M 在运动过程中,线段A Q ''的位置也随之变化,请直接写出运动过程中线段A Q ''与抛物线有公共点时t 的取值范围.8.公司经销某种商品,经研究发现,这种商品在未来40天的销售单价1y (元/千克)关于时间t 的函数关系式分别为11602y t =-+(040t <≤,且t 为整数); ()()21030,3033040,20t t t y t t ⎧<≤-+⎪=⎨<≤⎪⎩且为整数且为整数,他们的图像如图1所示,未来40天的销售量m (千克)关于时间t 的函数关系如图2的点列所示.(1)求m 关于t 的函数关系式;(2)那一天的销售利润最大,最大利润是多少?(3)若在最后10天,公司决定每销售1千克产品就捐赠a 元给“环保公益项目”,且希望扣除捐赠后每日的利润不低于3600元以维持各种开支,求a 的最大值(精确到0.01元).9.如图1,平面直角坐标系xOy 中,等腰ABC ∆的底边BC 在x 轴上,8BC =,顶点A 在y 的正半轴上,2OA =,一动点E 从(3,0)出发,以每秒1个单位的速度沿CB 向左运动,到达OB 的中点停止.另一动点F 从点C 出发,以相同的速度沿CB 向左运动,到达点O 停止.已知点E 、F 同时出发,以EF 为边作正方形EFGH ,使正方形EFGH 和ABC ∆在BC 的同侧.设运动的时间为t 秒(0t ≥).(1)当点H 落在AC 边上时,求t 的值;(2)设正方形EFGH 与ABC ∆重叠面积为S ,请问是存在t 值,使得9136S =?若存在,求出t 值;若不存在,请说明理由;(3)如图2,取AC 的中点D ,连结OD ,当点E 、F 开始运动时,点M 从点O 出发,以每秒25OD DC CD DO ---运动,到达点O 停止运动.请问在点E 的整个运动过程中,点M 可能在正方形EFGH 内(含边界)吗?如果可能,求出点M 在正方形EFGH 内(含边界)的时长;若不可能,请说明理由.10.在锐角△ABC 中,AB=AC ,AD 为BC 边上的高,E 为AC 中点.(1)如图1,过点C 作CF ⊥AB 于F 点,连接EF .若∠BAD =20°,求∠AFE 的度数;(2)若M 为线段BD 上的动点(点M 与点D 不重合),过点C 作CN ⊥AM 于N 点,射线EN ,AB 交于P 点.①依题意将图2补全;②小宇通过观察、实验,提出猜想:在点M 运动的过程中,始终有∠APE =2∠MAD . 小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:想法1:连接DE ,要证∠APE =2∠MAD ,只需证∠PED =2∠MAD .想法2:设∠MAD =α,∠DAC =β,只需用α,β表示出∠PEC ,通过角度计算得∠APE =2α.想法3:在NE 上取点Q ,使∠NAQ =2∠MAD ,要证∠APE =2∠MAD ,只需证△NAQ ∽△APQ .……请你参考上面的想法,帮助小宇证明∠APE =2∠MAD .(一种方法即可)11.新定义:在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做“和谐点”.例如,如图①,过点P 分别作x 轴、y 轴的垂线,与坐标轴围成长方形OAPB 的周长与面积相等,则点P 是“和谐点”.(1)点M (1,2)_____“和谐点”(填“是”或“不是”);若点P (a ,3)是第一象限内的一个“和谐点”,3x a y =⎧⎨=⎩是关于x ,y 的二元一次方程y x b =-+的解,求a ,b 的值. (2)如图②,点E 是线段PB 上一点,连接OE 并延长交AP 的延长线于点Q ,若点P (2,3),2OBE EPQ S S ∆∆-=,求点Q 的坐标;(3)如图③,连接OP ,将线段OP 向右平移3个单位长度,再向下平移1个单位长度,得到线段11O P .若M 是直线11O P 上的一动点,连接PM 、OM ,请画出图形并写出OMP ∠与1MPP ∠,1MOO ∠的数量关系.12.如图1,抛物线M 1:y =﹣x 2+4x 交x 正半轴于点A ,将抛物线M 1先向右平移3个单位,再向上平移3个单位得到抛物线M 2,M 1与M 2交于点B ,直线OB 交M 2于点C . (1)求抛物线M 2的解析式;(2)点P 是抛物线M 1上AB 间的一点,作PQ ⊥x 轴交抛物线M 2于点Q ,连接CP ,CQ .设点P 的横坐标为m ,当m 为何值时,使△CPQ 的面积最大,并求出最大值; (3)如图2,将直线OB 向下平移,交抛物线M 1于点E ,F ,交抛物线M 2于点G ,H ,则EG HF的值是否为定值,证明你的结论.13.如图,在平面直角坐标系xOy 中,过⊙T 外一点P 引它的两条切线,切点分别为M ,N ,若60180MPN ︒︒≤∠<,则称P 为⊙T 的环绕点.(1)当⊙O 半径为1时,①在123(1,0),(1,1),(0,2)P P P 中,⊙O 的环绕点是___________;②直线y =2x +b 与x 轴交于点A ,y 轴交于点B ,若线段AB 上存在⊙O 的环绕点,求b 的取值范围;(2)⊙T 的半径为1,圆心为(0,t ),以3,(0)3m m m ⎛⎫> ⎪ ⎪⎝⎭为圆心,33m 为半径的所有圆构成图形H ,若在图形H 上存在⊙T 的环绕点,直接写出t 的取值范围. 14.如图,在平面直角坐标系xOy 中,直线y =12x+2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx+c 的对称轴是x =32-且经过A 、C 两点,与x 轴的另一交点为点B .(1)求抛物线解析式.(2)若点P 为直线AC 上方的抛物线上的一点,连接PA ,PC .求△PAC 的面积的最大值,并求出此时点P 的坐标.(3)抛物线上是否存在点M ,过点M 作MN 垂直x 轴于点N ,使得以点A 、M 、N 为顶点的三角形与△ABC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.15.如图1,已知Rt ABC ∆中,90ACB ∠=,2AC =,23BC =,它在平面直角坐标系中位置如图所示,点,A C 在x 轴的负半轴上(点C 在点A 的右侧),顶点B 在第二象限,将ABC ∆沿AB 所在的直线翻折,点C 落在点D 位置(1)若点C 坐标为()1,0-时,求点D 的坐标; (2)若点B 和点D 在同一个反比例函数的图象上,求点C 坐标;(3)如图2,将四边形BCAD 向左平移,平移后的四边形记作四边形1111B C A D ,过点1D 的反比例函数(0)k y k x=≠的图象与CB 的延长线交于点E ,则在平移过程中,是否存在这样的k ,使得以点1,,E B D 为顶点的三角形是直角三角形且点11,,D B E 在同一条直线上?若存在,求出k 的值;若不存在,请说明理由16.已知,在平面直角坐标系中,二次函数212y x bx c =++的图象与x 轴交于点A B ,,与y 轴交于点C ,点A 的坐标为()3,0-,点B 的坐标为()1,0.(1)如图1,分别求b c 、的值;(2)如图2,点D 为第一象限的抛物线上一点,连接DO 并延长交抛物线于点E ,3OD OE =,求点E 的坐标;(3)在(2)的条件下,点P 为第一象限的抛物线上一点,过点P 作PH x ⊥轴于点H ,连接EP 、EH ,点Q 为第二象限的抛物线上一点,且点Q 与点P 关于抛物线的对称轴对称,连接PQ ,设2AHE EPH α∠+∠=,tan PH PQ α=⋅,点M 为线段PQ 上一点,点N 为第三象限的抛物线上一点,分别连接MH NH 、,满足60MHN ∠=︒,MH NH =,过点N 作PE 的平行线,交y 轴于点F ,求直线FN 的解析式.17.我们规定:有一组邻边相等,且这组邻边的夹角为60︒的凸四边形叫做“准筝形”.(1)如图1,在四边形ABCD 中,270A C ∠+∠=︒,30D ∠=︒,AB BC =,求证:四边形ABCD 是“准筝形”;(2)如图2,在“准筝形”ABCD 中,AB AD =,60BAC BCD ∠=∠=︒,4BC =,3CD =,求AC 的长;(3)如图3,在ABC 中,45A ∠=︒,120ABC ∠=︒,33AB =-D 是ABC 所在平面内一点,当四边形ABCD 是“准筝形”时,请直接写出四边形ABCD 的面积.18.在平面直角坐标系中,经过点()0,2A 且与33y x =-平行的直线,交x 轴于点B ,如图1所示.(1)试求B 点坐标,并直接写出ABO ∠的度数;(2)过()1,0M 的直线与AB 成45︒夹角,试求该直线与AB 交点的横坐标; (3)如图2,现有点(,)C m n 在线段AB 上运动,点,(320)D m -+在x 轴上,N 为线段CD 的中点.①试求点N 的纵坐标y 关于横坐标x 的函数关系式; ②直接写出N 点的运动轨迹长度为 . 19.已知四边形ABCD 是矩形.(1)如图1,E F 、分别是AB CD 、上的点,CE 垂直平分BF ,垂足为G ,连接DG .①求证:DG CG =;②若2BC AB =,求DGC ∠的大小;(2)如图2,6AB BC ==,M N P 、、分别是AB CD AD 、、上的点,MN 垂直平分BP ,点Q 是CD 的中点,连接,MP PQ ,若PQ MP ⊥,直接写出CN 的长.20.如图,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l .(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式; (2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与△EAD 相似时,求出BF 的长.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)(2,0)(答案不唯一);(2)8455t -≤≤-或4855t ≤≤;(3)431b -≤≤-或143b ≤≤ 【解析】 试题分析:(1)由题意可知,在x 轴上找点P 是比较简单的,这样的P 点不是唯一的,如点(2,0)、(1,0)等;(2)如图1,在x 轴上方作射线AM 交⊙O 于点M ,使tan ∠MAO=12,并在射线AM 是取点N ,使MN=AM ,则由题意可知,线段MN 上的点都是符合条件的B 点,过点M 作MH ⊥x 轴于点H ,连接MC ,结合已知条件求出点M 和点N 的纵坐标即可得到所求B 点的纵坐标t 的取值范围;根据对称性,在x 轴的下方得到线段M′N′,同理可求得满足条件的B 点的纵坐标t 的另一取值范围;(3)如图2,3,由3y x b =+与x 轴交于点M ,与y 轴交于点N ,可得点M 的坐标为(?0)3,点N 的坐标为(0)b ,,由此结合∠OMN 的正切函数可求得∠OMN=60°; 以点D (1,0)为圆心,2为半径作圆⊙D ,则⊙D 和⊙O 相切于点A ,由题意可知,点A 关于⊙O 的“生长点”都在⊙O 到⊙D 之间的平面内,包括两个圆(但点A 除外). 然后结合题意和∠OMN=60°分b>0和b<0两种情况在图2和图3中求出ON 1和ON 2的长即可得到b 的取值范围了. 试题解析:(1)由题意可知,在x 轴上找点P 是比较简单的,这样的P 点不是唯一的,如点(2,0)、(1,0)等;(2)如图1,在x 轴上方作射线AM ,与⊙O 交于M ,且使得1tan OAM 2∠=,并在AM 上取点N ,使AM=MN ,并由对称性,将MN 关于x 轴对称,得M N '',则由题意,线段MN 和M N ''上的点是满足条件的点B.作MH ⊥x 轴于H ,连接MC , ∴ ∠MHA=90°,即∠OAM+∠AMH=90°. ∵ AC 是⊙O 的直径,∴ ∠AMC=90°,即∠AMH+∠HMC=90°. ∴ ∠OAM=∠HMC.∴ 1tan HMC tan OAM 2∠∠==. ∴MH HC 1HA MH 2==. 设MH y =,则AH 2y =,1CH y 2=, ∴ 5AC AH CH y 22=+==,解得4y 5=,即点M 的纵坐标为45. 又由AN 2AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:48t 55≤≤. 由对称性,在线段M N ''上,点B 的纵坐标t 满足:84t 55-≤≤-. ∴ 点B 的纵坐标t 的取值范围是84t 55-≤≤-或48t 55≤≤. (3)如图2,以点D (1,0)为圆心,2为半径作圆⊙D ,则⊙D 和⊙O 相切于点A ,由题意可知,点A 关于⊙O 的“生长点”都在⊙O 到⊙D 之间的平面内,包括两个圆(但点A 除外).∵直线3y x b +与x 轴交于点M ,与y 轴交于点N ,∴点M 的坐标为(?0)3b -,,点N 的坐标为(0)b ,, ∴tan ∠OMN=3ONOM=, ∴∠OMN=60°,要在线段MN 上找点A 关于⊙O 的“生长点”,现分“b>0”和“b<0”两种情况讨论: I 、①当直线3y x b =+过点N 1(0,1)时,线段MN 上有点A 关于⊙O 的唯一“生长点”N 1,此时b=1;②当直线3y x b =+与⊙D 相切于点B 时,线段MN 上有点A 关于⊙O 的唯一“生长点”B ,此时直线3y x b =+与y 轴相交于点N 2,与x 轴相交于点M 2,连接DB ,则DB=2, ∴DM 2=243sin 603=, ∴OM 2=4313-, ∴ON 2=tan60°·OM 2=43(31)433-=-,此时b=43-. 综合①②可得,当b>0时,若线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:143b ≤≤-;II 、当b<0时,如图3,同理可得若线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:431b -≤≤-;综上所述,若在线段MN 上存在点A 关于⊙O 的“生长点”,则b 的取值范围为:43b 1-≤≤-或1b 43≤≤2.(1)2y x 2x 3=-++;(2)63y x =-+;(3)点P 的坐标为(15,1),(13,1)-;(4)存在,点K 的坐标为(2,3)【解析】 【分析】(1)由于点A 、B 为抛物线与x 轴的交点,可设两点式求解;也可将A 、B 、C 的坐标直接代入解析式中利用待定系数法求解即可;(2)根据两个三角形的高相等,则由面积比得出:3:5AE EB =,求出AE,根据点A 坐标可解得点E 坐标,进而求得直线CE 的解析式;(3)分两种情况讨论①当四边形DCPQ 为平行四边形时;②当四边形DCQP 为平行四边形时,根据平行四边形的性质和点的坐标位置关系得出纵坐标的关系式,分别代入坐标数值,解方程即可解答;(4)根据抛物线的对称性,AF=BF ,则HF+AF=HF+BF ,当H 、F 、B 共线时,HF+AF 值最小,求出此时点F 的坐标,设()00,K x y ,由勾股定理和抛物线方程得0174KF y =-,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174,则点S 的坐标为017,4x ⎛⎫⎪⎝⎭,此时,0174KS y =-,∴KF+KG=KS+KG,当S 、K 、G 共线且平行y 轴时,KF+KG 值最小,由点G 坐标解得0x ,代入抛物线方程中解得0y ,即为所求K 的坐标. 【详解】解:(1)方法1:设抛物线的解析式为(3)(1)ya x x将点(0,3)C 代入解析式中,则有1(03)31a a ⨯-=∴=-.∴抛物线的解析式为()222323y x x x x =---=-++.方法二:∵经过,,A B C 三点抛物线的解析式为2y ax bx c =++, 将(1,0),(3,0),(0,3)A B C -代入解析式中,则有30930c a b c a b c =⎧⎪∴-+=⎨⎪++=⎩,解得:123a b c =-⎧⎪=⎨⎪=⎩, ∴抛物线的解析式为2y x 2x 3=-++. (2):3:5ACE CEB S S ∆∆=,132152AE COEB CO ⋅∴=⋅.:3:5AE EB ∴=.3334882AE AB ∴==⨯=.31122E x ∴=-+=. E ∴的坐标为1,02⎛⎫ ⎪⎝⎭.又C 点的坐标为(0,3).∴直线CE 的解析式为63y x =-+.(3)2223(1)4y x x x =-++=--+.∴顶点D 的坐标为(1,4).①当四边形DCPQ 为平行四边形时,由DQ ∥CP ,DQ=CP 得:D Q C P y y y y -=-,即403P y -=-.1p y ∴=-.令1y =-,则2231x x -++=-.1x ∴=∴点P的坐标为(11)-.②当四边形DCQP 为平行四边形时,由CQ ∥DP ,CQ=DP 得:c Q D p y y y y -=-,即304P y -=-1p y ∴=.令1y =,则2231x x -++=.1x ∴=∴点P的坐标为(1.∴综合得:点P的坐标为(11),(1)-(4)∵点A 或点B 关于对称轴1x =对称 ∴连接BH 与直线1x =交点即为F 点. ∵点H 的坐标为450,8⎛⎫⎪⎝⎭,点B 的坐标为(3,0), ∴直线BH 的解析式为:154588y x =-+. 令1x =,则154y =. 当点F 的坐标为151,4⎛⎫⎪⎝⎭时,HF AF +的值最小.11分 设抛物线上存在一点()00,K x y ,使得FK FG +的值最小.则由勾股定理可得:()222001514KF x y ⎛⎫=-+- ⎪⎝⎭. 又∵点K 在抛物线上,()20014y x ∴=--+()20014x y ∴-=-代入上式中,()2220001517444KF y y y ⎛⎫⎛⎫∴=-+-=- ⎪ ⎪⎝⎭⎝⎭0174KF y ∴=-. 如图,过点K 作直线SK ,使//SK y 轴,且点S 的纵坐标为174. ∴点S 的坐标为017,4x ⎛⎫ ⎪⎝⎭. 则0174SK y =-. 000171717,444y y y ⎛⎫<∴-=- ⎪⎝⎭(两处绝对值化简或者不化简者正确.)KF SK ∴=.KF KG SK KG ∴+=+当且仅当,,S K G 三点在一条直线上,且该直线干行于y 轴,FK FG +的值最小. 又∵点G 的坐标为(2,0),02x ∴=,将其代入抛物线解析式中可得:03y =.∴当点K 的坐标为(2,3)时,KF KG +最小.【点睛】本题主要考查了二次函数与几何图形的综合,涉及待定系数法、平行四边形的性质、、三角形面积、求线段和的最小值(即将军饮马模型)等知识,解答的关键是认真审题,找出相关条件,运用待定系数法、数形结合法等解题方法确定解题思路,对相关信息进行推理、探究、发现和计算.3.(1)(0,1);1或0 (22(3)348131200010S << 【解析】 【分析】(1)由题意,可得点B 坐标,进而求得直线l 的解析式,再分情况讨论即可解的m 值; (2)由非负性解得m 和b 的值,进而得到两个函数解析式,设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH ,证得四边形GPTH 是正方形,求出GP 即为距离;(3)先根据解析式,用m 表示出点C 、E 、D 的坐标以及y 关于x 的表达式为()221221421y y y m x m x m =⋅+++-=,得知y 是关于x 的二次函数且开口向上、最低点为其顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭,根据坐标平移规则,得到关于m 的方程,解出m 值,即可得知点D 、E 的坐标且抛物线过D 、E 点,观察图象,即可得出S 的大体范围,如:ODES S <,较小的可为平行于DE 且与抛物线相切时围成的图形面积.【详解】解:(1)由题意可得点B 坐标为(0,1),设直线l 的表达式为y=kx+1,将点A (-1,0)代入得:k=1, 所以直线l 的表达式为:y=x+1,若直线l 恰好是121y x m =+-的图象,则2m-1=1,解得:m=1, 若直线l 恰好是2(21)1y m x =++的图象,则2m+1=1,解得:m=0, 综上,()0,1B ,1m =或者0m = (2)如图,(110m b b ---=()110m b b ∴+--=0m ≥,10b -≥ 0m ∴=,10b -=0m ∴=11y x ∴=-,21y x =+设1y 与x 轴、y 轴交于T ,P ,2y 分别与x 轴、y 轴交于G ,H ,连接GP ,TH1OG OH OP OT ====,PH GT ⊥ ∴四边形GPTH 是正方形//GH PT ∴,90HGP ∠=︒,即HG GP ⊥2HP =2GP ∴=(3)121y x m =+-,()2211y m x =++121y x m =+-分别交x 轴,y 轴于C ,E 两点()12,0C m ∴-,()0,21E m -()2211y m x =++图象交x 轴于D 点1,021D m -∴+⎛⎫⎪⎝⎭()()()22122121121421y y y x m m x m x m x m =⋅=+-++=+++-⎡⎤⎣⎦1m >210m ∴+>∴二次函数()2221421y m x m x m =+++-开口向上,它的图象最低点在顶点∴顶点()222212,2121m m F m m ⎛⎫- ⎪-- ⎪++⎝⎭抛物线顶点F 向上平移5621m +,刚好在一次函数121y x m =+-图象上 ()()2222156*********m m m m m m -∴-+=-+-+++且1m2m ∴=2125163(3)(51)y y y x x x x =⋅=+=∴+++,∴13y x =+,251y x =+∴由13y x =+,251y x =+得到1,05D ⎛⎫- ⎪⎝⎭,()0,3E ,由25163y x x =++得到与x 轴,y 轴交点是()3,0-,1,05⎛⎫- ⎪⎝⎭,()0,3,∴抛物线经过1,05D ⎛⎫- ⎪⎝⎭,()0,3E 两点12y y y ∴=⋅的图象,线段OD ,线段OE 围成的图形是封闭图形,则S 即为该封闭图形的面积探究办法:利用规则图形面积来估算不规则图形的面积. 探究过程:①观察大于S 的情况. 很容易发现ODES S<1,05D ⎛⎫- ⎪⎝⎭,()0,3E 11332510ODES=⨯⨯=,310S ∴< (若有S 小于其他值情况,只要合理,参照赋分.) ②观察小于S 的情况.选取小于S 的几个特殊值来估计更精确的S 的近似值,取值会因人而不同,下面推荐一种方法,选取以下三种特殊位置: 位置一:如图当直线MN 与DE 平行且与抛物线有唯一交点时,设直线MN 与x ,y 轴分别交于M ,N1,05D ⎛⎫- ⎪⎝⎭,()0,3E ∴直线:153DE y x =+设直线1:15MN y x b =+25163y x x =++ 21530x x b ∴++-=()1430b ∴∆=-⨯-=,15920b = ∴直线59:1520MN y x =+ ∴点59,0300M ⎛⎫- ⎪⎝⎭15959348122030012000OMN S =⨯⨯=∴,348112000S ∴> 位置二:如图当直线DR 与抛物线有唯一交点时,直线DR 与y 轴交于点R设直线2:DR y kx b =+,1,05D ⎛⎫- ⎪⎝⎭∴直线1:5DR y kx k =+ 25163y x x =++()21516305x k x k +-∴+-= ()211645305k k ⎛⎫∴∆=--⨯⨯-= ⎪⎝⎭,14k = ∴直线14:145DR y x =+ ∴点140,5R ⎛⎫ ⎪⎝⎭1141725525ODR S ∴=⨯⨯=,725S ∴> 位置三:如图当直线EQ 与抛物线有唯一交点时,直线EQ 与x 轴交于点Q设直线:3EQ y tx =+25163y x x =++()25160x t x +∴-=()2160t ∴∆=-=,16t = ∴直线:163EQ y x =+∴点3,016Q ⎛⎫- ⎪⎝⎭ 139321632OEQ S =⨯⨯=∴,932S ∴> 348197120003225>> 我们发现:在曲线DE 两端位置时的三角形的面积远离S 的值,由此估计在曲线DE 靠近中间部分时取值越接近S 的值探究的结论:按上述方法可得一个取值范围348131200010S << (备注:不同的探究方法会有不同的结论,因而会有不同的答案.只要来龙去脉清晰、合理,即可参照赋分,但若直接写出一个范围或者范围两端数值的差不在0.01之间不得分.)【点睛】本题是一道综合性很强的代数与几何相结合的压轴题,知识面广,涉及有旋转的性质、坐标平移规则、非负数的性质、一次函数的图象与性质、二次函数的图象与性质、一元二次方程、不规则图形面积的估计等知识,解答的关键是认真审题,找出相关信息,利用待定系数法、数形结合法等解题方法确定解题思路,利用相关信息进行推理、探究、发现和计算.4.(1)2134y x x =-++;(2)(32,0);(3)①见解析;②CM =1或CM =1+【解析】【分析】(1)根据点C 在抛物线上和已知对称轴的条件可求出解析式;(2)根据抛物线的解析式求出点B 及已知点C 的坐标,证明△ABC 是等腰直角三角形,根据旋转的性质推出直线EF 与x 轴的夹角为45°,因此设直线EF 的解析式为y=x+b ,设点M 的坐标为(m ,0),推出点F (m ,6-m ),直线EF 与抛物线2134y x x =-++只有一个交点,联立两个解析式,得到关于x 的一元二次方程,根据根的判别式为0得到关于m 的方程,解方程得点M 的坐标.注意有两种情况,均需讨论.(3)①过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,设点M 的坐标为(m ,0),由PC =EHM ≌△MGP ,得到点E 的坐标为(m-1,5-m ),再根据两点距离公式证明EA ED =,注意分两种情况,均需讨论;②把E (m-1,5-m )代入抛物线解析式,解出m 的值,进而求出CM 的长.【详解】(1)∵点()6,0C 在抛物线上, ∴103664b c =-⨯++, 得到6=9b c +,又∵对称轴2x =,∴2122()4b b x a =-=-=⨯-, 解得1b =, ∴3c =,∴二次函数的解析式为2134y x x =-++; (2)当点M 在点C 的左侧时,如下图:∵抛物线的解析式为2134y x x =-++,对称轴为2x =,()6,0C∴点A (2,0),顶点B (2,4),∴AB=AC=4,∴△ABC 是等腰直角三角形,∴∠1=45°;∵将MPC 逆时针旋转90︒得到△MEF ,∴FM=CM ,∠2=∠1=45°,设点M 的坐标为(m ,0),∴点F (m ,6-m ),又∵∠2=45°,∴直线EF 与x 轴的夹角为45°,∴设直线EF 的解析式为y=x+b ,把点F (m ,6-m )代入得:6-m=m+b ,解得:b=6-2m ,直线EF 的解析式为y=x+6-2m ,∵直线EF 与抛物线2134y x x =-++只有一个交点, ∴262134y x m y x x =+-⎧⎪⎨=-++⎪⎩, 整理得:213204x m +-=, ∴Δ=b 2-4ac=0,解得m=32, 点M 的坐标为(32,0). 当点M 在点C 的右侧时,如下图:由图可知,直线EF 与x 轴的夹角仍是45°,因此直线EF 与抛物线2134y x x =-++不可能只有一个交点.综上,点M 的坐标为(32,0). (3)①当点M 在点C 的左侧时,如下图,过点P 作PG ⊥x 轴于点G ,过点E 作EH ⊥x 轴于点H ,∵2PC 2)知∠BCA=45°,∴PG=GC=1,∴点G (5,0),设点M 的坐标为(m ,0),∵将MPC 逆时针旋转90︒得到△MEF ,∴EM=PM ,∵∠HEM+∠EMH=∠GMP+∠EMH =90°,∴∠HEM=∠GMP ,在△EHM 和△MGP 中,EHM MGP HEM GMP EM MP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EHM ≌△MGP (AAS ),∴EH=MG=5-m ,HM=PG=1,∴点H (m-1,0),∴点E 的坐标为(m-1,5-m );∴EA=22(12)(50)m m --+--=221634m m -+,又∵D 为线段BC 的中点,B (2,4),C (6,0),∴点D (4,2),∴ED=22(14)(52)m m --+--=221634m m -+,∴EA= ED .当点M 在点C 的右侧时,如下图:同理,点E 的坐标仍为(m-1,5-m ),因此EA= ED .②当点E 在(1)所求的抛物线2134y x x =-++上时, 把E (m-1,5-m )代入,整理得:m 2-10m+13=0,解得:m=523+m=523-,∴CM =231或CM =123+.【点睛】本题是二次函数综合题,熟练掌握二次函数的图象和性质、旋转的性质、分类讨论的思想是解题的关键.5.(1)3,5m n =-=;(2)30ACE S =;(3)①点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②圆心P 移动的路线长 【解析】【分析】(1)令2130,4y x x =--=求出点A (6,0),把点C (-4,n )代入在抛物线方程,解得:n=5,把点B (0,-3)代入34y x m =-+,从而可得答案; (2)记AC 与y 轴的交点为H ,利用()1.2ACE A C S BH x x =••-即可求解; (3)①分当点P 落在CA 上时,点P 落在AE 上时,点P 落在CE 上时三种情况讨论即可; ②分E 在D 和B 点两种情况,求出圆心12,P P 点的坐标,则圆心P 移动的路线长=12PP ,即可求解.【详解】解:(1)令2130,4y x x =--= 24120,x x ∴--=()()260,x x ∴+-=122,6,x x ∴=-=∴ 点A (6,0),把点C (-4,n )代入在抛物线方程, 解得:()()214435,4n =⨯----= ()4,5C ∴-,把点B (0,-3)代入34y x m =-+, 解得:3m =-,则:直线l :334y x =--,…① 3,5,m n ∴=-=(2)由(1)知:A (6,0)、B (0,-3)、C (-4,5)、AC 中点为51,,2⎛⎫ ⎪⎝⎭设AC 为:,y kx b =+6045k b k b +=⎧∴⎨-+=⎩解得:123k b ⎧=-⎪⎨⎪=⎩ AC ∴所在的直线方程为:132y x =-+, 如图,AC 与y 轴交点H 坐标为:(0,3),()1161030.22ACE A C S BH x x ∴=••-=⨯⨯=(3)如下图: ①当点P 落在CA 上时, 圆心P 为AC 的中点51,,2⎛⎫ ⎪⎝⎭其所在的直线与AC 垂直, 1,2AC k =- AC ∴的垂直平分线即圆心P 所在的直线方程为:2,y x a =+把51,2⎛⎫⎪⎝⎭代入得:52,2a =+ 1,2a ∴= 122y x ∴=+…②, 334122y x y x ⎧=--⎪⎪∴⎨⎪=+⎪⎩①②解得:11,5322y ⎪⎪⎨⎪=-⎪⎩E 的坐标为1653,1122⎛⎫-- ⎪⎝⎭; 当点P 落在AE 上时, 设点3,3,4E m m ⎛⎫-- ⎪⎝⎭ 则点P 的坐标633,282m m +⎛⎫--⎪⎝⎭, 则PA=PC , 2222633633645282282m m m m ++⎛⎫⎛⎫⎛⎫⎛⎫∴-++=++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 解得:64,11m =-故点6415,.1111E ⎛⎫- ⎪⎝⎭ 当点P 落在CE 上时, 则PC=PA ,同理可得:36,11m =故点3660,1111E ⎛⎫- ⎪⎝⎭ 综上,点E 的坐标为:1653,1122⎛⎫-- ⎪⎝⎭或6415,1111E ⎛⎫- ⎪⎝⎭或3660,1111E ⎛⎫- ⎪⎝⎭; ②当E 在D 点时,作AD 的垂直平分线交AC 的垂直平分线于1P 点,则156,2D ⎛⎫- ⎪⎝⎭,1P 的纵坐标为15,4- 代入②式,解得:11715,,84P ⎛⎫-- ⎪⎝⎭ 同理当当E 在B 点时, 作AB 的垂直平分线交AC 的垂直平分线于2P 点,()()6,0,0,3,A B -AB ∴的中点为:33,2⎛⎫- ⎪⎝⎭,设AB 为:y ex f =+, 603e f f +=⎧∴⎨=-⎩解得:23f ⎨⎪=-⎩ ∴ AB 直线方程为:132y x =-, 设AB 的垂直平分线方程为:12,y x b =-+1323,2b ∴-⨯+=- 192b ∴=, ∴ AB 的垂直平分线方程为:92,2y x =-+ 122922y x y x ⎧=+⎪⎪∴⎨⎪=-+⎪⎩解得:152x y =⎧⎪⎨=⎪⎩251,,2P ⎛⎫∴ ⎪⎝⎭则圆心P 移动的路线长=221217515251 5.8248PP ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭故答案为:255. 8【点评】本题是二次函数的综合题,考查了二次函数与x轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目.6.(1)详见解析;(2)详见解析;(3)BD=22,r=32.【解析】【分析】(1)根据已知条件得到∠EBC=∠ADC=90°,根据平行线分线段成比例定理得出AG CG GD==EF CF BF,等量代换即可得到结论;(2)证明∠PAO=90°,连接AO,AB,根根据直角三角形斜边中线的性质,切线的性质和等量代换,就可得出结论;(3)连接AB,根据圆周角定理得到∠BAC=∠BAE=90°,推出FA=FB=FE=FG=3,过点F作FH⊥AG交AG于点H,推出四边形FBDH是矩形,得到FB=DH=3,根据勾股定理得到FH=22,设半径为r,根据勾股定理列方程即可得到结论.【详解】解:(1)∵EB是切线,AD⊥BC,∴∠EBC=∠ADC=90°,∴AD∥EB,(同位角相等,两直线平行)∴AG CG GD==EF CF BF,(平行线分线段成比例)∵G是AD的中点,∴AG=GD,∴EF=FB;(2)证明:连接AO,AB,∵BC是⊙O的直径,∴∠BAC=90°,(直径所对圆周角为直角)在Rt△BAE中,由(1)知,F是斜边BE的中点,直角三角形斜边中线为斜边一半,∴AF=FB=EF,且等边对等角,∴∠FBA=∠FAB,又∵OA=OB,∴∠ABO =∠BAO ,∵BE 是⊙O 的切线,∴∠EBO =90°,∵∠EBO =∠FBA+∠ABO =∠FAB+∠BAO =∠FAO =90°,∴PA 是⊙O 的切线;(3)如图2,连接AB ,AO ,∵BC 是直径,∴∠BAC =∠BAE =90°,∵EF =FB ,∴FA =FB =FE =FG =3,过点F 作FH ⊥AG 交AG 于点H ,∵FA =FG ,FH ⊥AG ,∴AH =HG ,∵∠FBD =∠BDH =∠FHD =90°,∴四边形FBDH 是矩形,∴FB =DH =3,∵AG =GD ,∴AH =HG =1,GD =2,FH 2222AF AH =31=22--,∴BD =22设半径为r ,在Rt ADO 中,∵222AO =AD +OD , ∴222r =4+(r-22),解得:r =32综上所示:BD =22r =32【点睛】本题主要考察了平行线的性质及定理、平行线分线段成比例定理、等边对等角、直角三角形斜边中线的性质、圆周角定理、勾股定理及圆的切线及其性质,该题较为综合,解题的关键是在于掌握以上这些定理,并熟练地将其结合应用.7.(1)21y=x +x+42﹣;(2)m=2,D(﹣1,52);(3)P (52,278 )或P(1,92); (4)0<t≤261200. 【解析】【分析】(1)根据A ,C 两点坐标,代入抛物线解析式,利用待定系数法即可求解.(2)通过(1)中的二次函数解析式求出B 点坐标,代入一次函数12y x m =-+,即可求出m 的值,联立二次函数与一次函数可求出D 点坐标.(3)设出P 点坐标,通过P 点坐标表示出N ,F 坐标,再分类讨论PN=2NF ,NF=2PN ,即可求出P 点(4)由A ,D 两点坐标求出AD 的函数关系式,因为以MG 所在直线为对称轴,线段AQ 经轴对称变换后的图形为A Q '',所以QQ '∥AD ,即可求出QQ '的函数关系式,设直线QQ '与抛物线交于第一象限P 点,所以当Q '与P 重合时,t 有最大值,利用中点坐标公式求出PQ 中点H 点坐标,进而求出MH 的函数关系式,令y=0求出函数与x 轴交点坐标,从而可求出t 的值,求出t 的取值范围.【详解】解:(1)∵A (2,0)-,(0,4)C把A,C 代入抛物线212y x bx c =-++, 得:142b+c=02c=4⎧⨯⎪⎨⎪⎩﹣- 解得b=1c=4⎧⎨⎩∴21y=x +x+42﹣. (2)令y=0即21x +x+4=02﹣, 解得1x =2﹣,2x =4 ∴B (4,0)把B (4,0)代入12y x m =-+ 得1042m =-⨯+m=2 122y x =-+, ∴21y=x +x+42122y x ⎧⎪⎪⎨⎪=-+⎪⎩﹣ 得11x =15y =2⎧⎪⎨⎪⎩﹣ 或22x =4y =0⎧⎨⎩。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、选择题1.分式方程3111x x x =-+-的解是( ) A .4B .2C .1D .-2 2.若代数式1x +有意义,则x 的取值范围是( ) A .x >﹣1且x≠1 B .x≥﹣1 C .x≠1 D .x≥﹣1且x≠1 3.下列因式分解正确的是( )A .221(21)1x x x x --=--B .2244(2)x x x -+=-C .256(6)(1)x x x x -+=-+D .()321x x x x -=- 4.下列计算正确的是( )A .(﹣1)0=﹣1B .(﹣1)-1=1C .33122a a -= D .(﹣a )7÷(﹣a )3=a 4 5.钝角三角形三条高所在的直线交于( )A .三角形内B .三角形外C .三角形的边上D .不能确定 6.若分式211x x -+的值等于0,则x 的值为( ) A .2 B .0 C .1- D .127.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,F 是CB 延长线上一点,AF ⊥CF ,垂足为F .下列结论:①∠ACF =45°;②四边形ABCD 的面积等于12AC 2;③CE =2AF ;④S △BCD =S △ABF +S △ADE ;其中正确的是( )A .①②B .②③C .①②③D .①②③④8.如图,ABC ∆是等边三角形,BD 是中线,延长BC 到点E ,使CE CD =,连结DE ,下面给出的四个结论:①BD AC ⊥,②BD 平分ABC ∠,③BD DE =,④120BDE ∠=,其中正确的个数是( )A .1个B .2个C .3个D .4个9.如图将一张长方形纸的一角折叠过去,使顶点A 落在'A 处,BC 为折痕,若AB AC =且BD 为CBE ∠的平分线,则A BD '∠=( )A .45B .67.5C .22.5D .89.510.下列图形具有稳定性的是( )A .B .C .D .二、填空题11.如图,在△ABC 中,点D 是AC 的中点,分别以AB , BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中∠ABM=∠NBC =90°,连接MN ,则BD 与MN 的数量关系是_____.12.如图,在△ABC 中,AB =10,AC =8,∠ABC 、∠ACB 的平分线相交于点O ,MN 过点O ,且MN ∥BC ,分别交AB 、AC 于点M 、N .则△AMN 的周长为_______.13.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.14.()()()243232121211++⋯++计算结果的个位数字是______________. 15.如图是我国古代数学家杨辉最早发现的,称为“杨辉三角”,他的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.“杨辉三角”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数,例如:()2222a b a ab b +=++展开式中的系数1,2,1恰好对应图中第三行的数字;()3322333a b a a b ab b +=+++展开式中的系数1,3,3,1恰好对应图中第四行的数字…….请认真观察此图,根据前面各式的规律,写出()5a b +的展开式:()5a b +=______.16.求220191222++++的值,可令22019S 1222=++++,则23202022222S =++++,因此2020221S S -=-.仿照以上推理,计算出23201911112222++++的值为______.17.小敏设计了一种衣架,如图,在使用时能轻易收拢,然后套进衣服后松开即可,衣架杆18OA OB cm ==,若衣架收拢时,60AOB ∠=,则A 、B 的距离为_____cm .18.如图,90E F ∠=∠=︒,B C ∠=∠,AE AF =.给出下列结论:①12∠=∠;②BE CF =;③ACN ABM ∆≅∆;④CD DN =.其中正确结论的序号是__________.19.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).20.空气的密度是30.001293/cm g ,这个数据用科学记数法表示为__________3/cm g .三、解答题21.如图,在四边形ABCD 中,//AD BC ,ABC ∠的平分线交CD 于点E ,交AD 的延长线于点F ,DEF F ∠=∠.(1)写出3对由条件//AD BC 直接推出的相等或互补的角;___________、_____________、_______________.(2)3∠与F ∠相等吗?为什么?(3)证明://DC AB .请在下面括号内,填上推理的根据,完成下面的证明://AD BC ,2F ∴∠=∠.(①_________);3F∠=∠(已证), 23∴∠=∠,(②__________); 又12∠=∠(③___________),13∠∠∴=,//DC AB ∴(④_____________).22.在图中,利用网格点和三角板画图或计算:(1)在给定方格纸中画出平移后的A B C ''';(2)画出AB 边上的中线CD ;(3)画出BC 边上的高线AE ;(4)记网格的边长为1,则A B C '''的面积为___________.23.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.24.如图,∠ADB =∠ADC ,∠B =∠C .(1)求证:AB =AC ;(2)连接BC ,求证:AD ⊥BC .25.如图,点D 是等边三角形ABC 的边AC 上一点,//DE BC 交AB 于E ,延长CB 至F ,使BF AD =,连结DF 交BE 于G .(1)请先判断ADE 的形状,并说明理由.(2)请先判断BG 和EG 是否相等,并说明理由.26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.如图,如果AD ∥BC ,∠B =∠C ,那么AD 是∠EAC 的平分线吗?请说明你判别的理由.28.如图,在平面直角坐标系中,点 A ,B 的坐标分别为(0,3),(1,0),△ABC 是等腰直角三角形,∠ABC =90°.(1)图1中,点C 的坐标为 ;(2)如图2,点D 的坐标为(0,1),点E 在射线CD 上,过点B 作BF ⊥BE 交y 轴于点F . ①当点E 为线段CD 的中点时,求点F 的坐标;②当点E 在第二象限时,请直接写出F 点纵坐标y 的取值范围.29.观察下列等式:第1个等式:1111(1)1323a ==⨯-⨯; 第2个等式:21111()35235a ==⨯-⨯; 第3个等式:31111()57257a ==⨯-⨯; 第4个等式:41111()79279a ==⨯-⨯;…… 请回答下列问题:(1)按以上规律,用含n 的式子表示第n 个等式:n a = = (n 为正整数) (2)求1234100•••a a a a a +++++ 的值.30.观察下列各式(x -1)(x +1)=x 2-1(x -1)(x 2+x +1)=x 3-1(x -1)(x 3+x 2+x +1)=x 4-1(1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x +1)(2)你能否由此归纳出一般规律(x -1)(x n +x n-1+…+x +1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解.【详解】解:去分母得:22331x x x x -=+-+,移项、合并得:24=x ,解得:2x =,经检验2x =是分式方程的解,故选:B .【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.2.D解析:D【解析】【分析】此题需要注意分式的分母不等于零,二次根式的被开方数是非负数.【详解】依题意,得x+1≥0且x-1≠0,解得 x≥-1且x≠1.故选A .【点睛】本题考查了二次根式有意义的条件和分式有意义的条件.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.B解析:B【解析】【分析】根据因式分解的定义进行选择即可.【详解】A. 221(21)1x x x x --=--,不是因式分解,故本选项不符合题意;B. 2244(2)x x x -+=-,故本选项符合题意,C. 256(2)(-3)-+=-x x x x ,故本选项不符合题意;D. ()321=x x+1x-1()()-=-x x x x ,故本选项不符合题意; 故选B【点睛】此题考查提公因式法与公式法的综合运用,因式分解-十字相乘法,掌握运算法则是解题关键解析:D【解析】【分析】分别根据0指数幂、负整数指数幂及同底数幂的除法法则进行逐一计算即可.【详解】解:A 、错误,(﹣1)0=1;B 、错误,(﹣1)﹣1=﹣1;C 、错误,3322aa -=; D 、正确.故选:D .【点睛】本题考查的知识点为:(1)0指数幂:任何非0数的0次幂等于1;(2)负整数指数幂:负整数指数幂等于对应的正整数指数幂的倒数;(3)同底数幂的除法法则:底数不变,指数相减. 5.B解析:B【解析】【分析】由图形可知:钝角三角形三条高所在的直线交于三角形外.【详解】解:如图可知:钝角△ABC 三边的高交于三角形外部一点D ,即钝角三角形三条高所在的直线交于三角形外,故选:B .【点睛】本题考查三角形的高线的交点问题,解答的关键是会画三角形的高线,并能根据三角形的形状得出三条高线所在的直线的交点与三角形的关系.6.D解析:D【解析】根据分式值为零的条件是分子等于零且分母不等于零列式计算;【详解】由题意得, 2x-1=0,x+1≠0,解得,x=12,x≠-1, 所以当x=12时,此分式的值为零. 故选:D【点睛】本题考查分式值为0的条件,解题关键是熟练掌握分式值为零的条件是分子等于零且分母不等于零. 7.C解析:C【解析】【分析】证明ABC ≌()ADE SAS ,得出45ACF E ∠=∠=︒,①正确;由ABC ACD ABCD S SS =+四边形,得出212ADE ACD ACE ABCD S S S S AC =+==四边形,②正确; 证出AF AG =,2CE AF =,③正确;由ABF ADE ABF ABC ACF SS S S S +=+=,不能确定ACF BCD S S =,④不正确;即可得出答案.【详解】解:∵∠CAE =90°,AE =AC ,∴∠E =∠ACE =45°,∵∠BAD =∠CAE =90°,∴∠BAC +∠CAD =∠EAD +∠CAD∴∠BAC =∠EAD ,在△ABC 和△ADE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (SAS ),∴∠ACF =∠E =45°,①正确;∵S 四边形ABCD =S △ABC +S △ACD ,∴S 四边形ABCD =S △ADE +S △ACD =S △ACE =12AC 2,②正确; ∵△ABC ≌△ADE ,∠ACB=∠AEC=45°,∵∠ACE=∠AEC=45°,∴∠ACB=∠ACE,∴AC平分∠ECF,过点A作AG⊥CG,垂足为点G,如图所示:∵AC平分∠ECF,AF⊥CB,∴AF=AG,又∵AC=AE,∴∠CAG=∠EAG=45°,∴∠CAG=∠EAG=∠ACE=∠AEC=45°,∴CG=AG=GE,∴CE=2AG,∴CE=2AF,③正确;∵S△ABF+S△ADE=S△ABF+S△ABC=S△ACF,不能确定S△ACF=S△BCD,④不正确;故选:C.【点睛】本题考查了全等三角形的判定与性质、等腰直角三角形的判定与性质等知识;证明三角形全等是解题的关键.8.D解析:D【解析】【分析】因为△ABC是等边三角形,又BD是AC上的中线,所以有:AD=CD,∠ADB=∠CDB=90°(①正确),且∠ABD=∠CBD=30°(②正确),∠ACB=∠CDE+∠DEC=60°,又CD=CE,可得∠CDE=∠DEC=30°,所以就有,∠CBD=∠DEC,即DB=DE(③正确),∠BDE=∠CDB+∠CDE=120°(④正确);由此得出答案解决问题.【详解】∵△ABC是等边三角形,BD是AC上的中线,∴∠ADB=∠CDB=90°,BD平分∠ABC;∴BD⊥AC;∵∠ACB=∠CDE+∠DEC=60°,又CD=CE,∴∠CDE=∠DEC=30°,∴∠CBD=∠DEC,∴DB=DE.∠BDE=∠CDB+∠CDE=120°所以这四项都是正确的.故选:D.【点睛】此题考查等边三角形的性质,等腰三角形的性质等知识,注意三线合一这一性质的理解与运用.9.C解析:C【解析】【分析】利用等腰直角三角形的性质可求∠ABC=45°,利用折叠的性质可得∠A’BC=∠ABC =45°,再利用角平分线的性质和平角的定义可求∠CBD=67.5°,由此得到∠A’BD=∠CBD-∠A’BC即可求解.【详解】解:∵∠A=90°,AC=AB,∴∠ABC=45°,∵将顶点A折叠落在A’处,∴∠ABC=∠A’BC=45°,∵BD为∠CBE的平分线,∴∠CBD=∠DBE=12×(180°- 45°)=67.5°,∴∠A’BD=67.5°- 45°=22.5°.故选:C.【点睛】考查了图形的折叠问题,解题的关键是熟练掌握折叠的性质、等腰三角形的性质、角平分线定义及平角的定义等.10.A解析:A【解析】【分析】根据三角形具有稳定性,四边形具有不稳定性进行判断.【详解】解:三角形具有稳定性.故选:A.【点睛】本题考查了三角形的稳定性和四边形的不稳定性.二、填空题11.2BD=MN【解析】【分析】延长BD 到E ,使DE=BD ,连接CE ,证明△ABD≌△CED,得到∠ABD=∠E,AB=CE ,证出∠BCE=∠MBN,再证明△BCE≌△NBM 得到BE=MN ,即可得 解析:2BD=MN【解析】【分析】延长BD 到E ,使DE=BD ,连接CE ,证明△ABD ≌△CED ,得到∠ABD=∠E ,AB=CE ,证出∠BCE=∠MBN ,再证明△BCE ≌△NBM 得到BE=MN ,即可得出结论.【详解】解:2BD=MN ,理由是:如图,延长BD 到E ,使DE=BD ,连接CE ,∵点D 是BC 中点,∴AD=CD ,又DE=BD ,∠ADB=∠CDE ,∴△ABD ≌△CED ,∴∠ABD=∠E ,AB=CE ,∵∠ABM=∠NBC=90°,∴∠ABC+∠MBN=180°,即∠ABD+∠CBD+∠MBN=180°,∵∠E+∠CBD+∠BCE=180°,∴∠BCE=∠MBN ,∵△ABM 和△BCN 是等腰直角三角形,∴AB=MB ,BC=BN ,∴CE=MB ,在△BCE 和△NBM 中,CE BM BCE MBN BC NB =⎧⎪∠=∠⎨⎪=⎩, ∴△BCE ≌△NBM (SAS ),∴BE=MN ,∴2BD=MN .故答案为:2BD=MN .【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,有一定难度,解题的关键是适当添加辅助线,找出一些较为隐蔽的全等三角形.12.18【解析】【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△AB解析:18【解析】【分析】由在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,易证得△BOM 与△CON是等腰三角形,继而可得△AMN的周长等于AB+AC.【详解】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.【点睛】本题考查等腰三角形的判定与性质,角平分线的性质,平行线的判定,三角形周长的求法,等量代换等知识点.13.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=12BC=3,故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.14.6【解析】【分析】根据平方差公式化简所求,再根据2的n次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++=323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.15.a5+5a4b+10a3b2+10a2b3+5ab4+b5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b )4=a4+4a3b+6a2b2+4ab3+b4;解析:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5【解析】【分析】利用已知各项系数变化规律进而得出答案.【详解】解:可得:(a+b )4=a 4+4a 3b+6a 2b 2+4ab 3+b 4;则(a+b )5=a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.故答案为:a 5+5a 4b+10a 3b 2+10a 2b 3+5ab 4+b 5.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.16.【解析】【分析】根据题目所给计算方法,令,再两边同时乘以,求出,用,求出的值,进而求出的值.【详解】解:令,则,∴,∴,则.故答案为:【点睛】本题考查了同底数幂的乘法,利用错 解析:2019112-【解析】【分析】 根据题目所给计算方法,令23201911112222S,再两边同时乘以12,求出12S ,用12S S ,求出12S 的值,进而求出S 的值. 【详解】 解:令23201911112222S , 则22023401111122222S , ∴2020111222S S , ∴2020111222S , 则2019112S .故答案为:2019112-【点睛】 本题考查了同底数幂的乘法,利用错位相减法,消掉相关值,是解题的关键.17.18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接,如图所示:∵,,∴是等边三角形,∴,故答案为:18.【点睛】本题考查了等边三角形解析:18【解析】【分析】证明△AOB 是等边三角形,得出AB=OA=18cm 即可.【详解】解:连接AB ,如图所示:∵OA OB =,60AOB ∠=,∴AOB ∆是等边三角形,∴18AB OA cm ==,故答案为:18.【点睛】本题考查了等边三角形的判定与性质;熟练掌握等边三角形的判定方法是解题的关键.18.①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC,即可判断①;根据AAS 证△EAB≌△FAC,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形解析:①②③【解析】【分析】根据三角形的内角和定理求出∠EAB=∠FAC ,即可判断①;根据AAS 证△EAB ≌△FAC ,即可判断②;推出AC=AB ,根据ASA 即可证出③;不能推出CD 和DN 所在的三角形全等,也不能用其它方法证出CD=DN .【详解】∵∠E=∠F=90∘,∠B=∠C ,∵∠E+∠B+∠EAB=180∘,∠F+∠C+∠FAC=180∘,∴∠EAB=∠FAC ,∴∠EAB−CAB=∠FAC−∠CAB ,即∠1=∠2,∴①正确;在△EAB 和△FAC 中AF AE B C E F =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△EAB ≌△FAC ,∴BE=CF ,AC=AB ,∴②正确;在△ACN 和△ABM 中C B CAN BAM AC AB =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△ACN ≌△ABM ,∴③正确;∵根据已知不能推出CD=DN ,∴④错误;【点睛】本题考查全等三角形的判定和性质,解题关键在于根据全等的性质对选项进行判断.19.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面;∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.20.293×10-3.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的解析:293×10-3.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:空气的密度是0.001293g/cm 3,把这个数据用科学记数法表示是 1.293×10-3g/cm 2, 故答案为:1.293×10-3.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题21.(1)2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒ (2)相等,理由见解析(3)见解析【解析】【分析】(1)根据平行线的性质解答;(2)根据对顶角的性质解答;(3)根据平行线的性质及等量代换,平行线的判定定理解答.【详解】(1)∵//AD BC ,∴2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒;故答案为:2F ∠=∠,C CDF ∠=∠,180A ABC ∠+∠=︒或180C ADC ∠+∠=︒; (2)3∠与F ∠相等.理由如下:DEF F ∠=∠,3DEF ∠=∠,3F ∴∠=∠.(3)//AD BC ,2F ∴∠=∠.(①两直线平行,内错角相等);3F∠=∠(已证), 23∴∠=∠,(②等量代换); 又12∠=∠(③角平分线的定义),13∠∠∴=,//DC AB ∴(④内错角相等,两直线平行).故答案为:①两直线平行,内错角相等;②等量代换;③角平分线的定义;④内错角相等,两直线平行.【点睛】此题考查平行线的性质定理及判定定理,角平分线的性质定理,等量代换的推理依据,熟练掌握平行线的判定及性质定理是解题的关键.22.(1)见解析;(2)见解析;(3)见解析;(4)8【解析】【分析】(1)连接BB ′,过A 、C 分别做BB ′的平行线,并且在平行线上截取AA ′=CC ′=BB ′,顺次连接平移后各点,得到的三角形即为平移后的三角形;(2)作AB 的垂直平分线找到中点D ,连接CD ,CD 就是所求的中线.(3)从A 点向BC 的延长线作垂线,垂足为点E ,AE 即为BC 边上的高;(4)根据三角形面积公式即可求出△A ′B ′C ′的面积.【详解】解:(1)如图所示:A B C '''∆即为所求;(2)如图所示:CD 就是所求的中线;(3)如图所示:AE 即为BC 边上的高;(4)4421628A B C S '''∆=⨯÷=÷=.故A B C '''∆的面积为8.【点睛】本题主要考查了根据平移变换作图,以及三角形的中线,高的一些基本画图方法.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.23.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.24.(1)见解析;(2)见解析【解析】【分析】(1)根据题意证明△ADB ≌△ADC 即可证明AB =AC ;(2)连接BC ,由中垂线的逆定理证明即可.【详解】证明:(1)∵在△ADB 和△ADC 中,==ADB ADC B CAD AD ∠⎧⎪∠∠⎨⎪=⎩, ∴△ADB ≌△ADC (AAS ),∴AB =AC ;(2)连接BC ,∵△ADB ≌△ADC ,∴AB =AC ,BD =CD ,∴A 和D 都在线段BC 的垂直平分线上,∴AD 是线段BC 的垂直平分线,即AD ⊥BC .【点睛】本题主要考查全等三角形的判定与性质以及中垂线的逆定理,熟记相关定理是解题关键.25.(1)ADE 等边三角形,证明见解析;(2)BG EG =,证明见解析.【解析】【分析】(1)根据等边三角形和平行线的性质,即可完成证明;(2)根据(1)的结论,结合BF AD =,可得BFDE =;再根据平行线性质,得EDG F ∠=∠,DEG FBG ∠=∠,从而得到DEG FBG ≅△△,即可得到答案.【详解】(1)∵ABC 是等边三角形∴60A ABC ACB ∠=∠=∠=∵//DE BC∴60AED ABC ∠=∠=︒,60ADE C ∠=∠=︒∴∠=∠=∠A AED ADE∴ADE 是等边三角形;(2)∵ADE 是等边三角形∴AD DE BF ==∵BF AD =∴BF DE =∵//DE BC∴EDG F ∠=∠,DEG FBG ∠=∠在DEG △和FBG △中 EDG F BF DEDEG FBG ∠=∠⎧⎪=⎨⎪∠=∠⎩∴DEG FBG ≅△△∴BG EG =.【点睛】本题考查了等边三角形、平行线、全等三角形的知识;解题的关键是熟练掌握等边三角形、平行线、全等三角形的性质,从而完成求解.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC ,∠ACD=∠D ,再由∠ACD=∠B 可得∠D=∠B ,然后可利用AAS 证明△ABC ≌△CDE ,进而得到CB=DE ;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC ∥DE ,∴∠ACB=∠DEC ,∠ACD=∠D ,∵∠ACD=∠B .∴∠D=∠B ,在△ABC和△DEC中,===ACB EB DAC CE∠∠⎧⎪∠∠⎨⎪⎩,∴△ABC≌△CDE(AAS),∴BC=DE;(2)∵△ABC≌△CDE,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.AD是∠EAC的平分线,理由见解析【解析】【分析】根据平行线和等腰三角形的性质可证得∠EAD=∠DAC,可得出结论.【详解】AD是∠EAC的平分线,∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,又∵∠B=∠C,∴∠EAD=∠DAC,∴AD是∠EAC的平分线.【点睛】本题主要考查了等腰三角形的性质和平行线的性质,掌握等边对等角和平行线的性质是解题的关键.28.(1 ) C(4,1);(2)①F( 0 , 1 ),②1y<-【解析】试题分析:()1过点C向x轴作垂线,通过三角形全等,即可求出点C坐标.()2过点E作EM⊥x轴于点M,根据,C D的坐标求出点E的坐标,OM=2,得到1OB BM EM===,BE BF⊥,得到△OBF为等腰直角三角形,即可求出点F的坐标. ()3直接写出F点纵坐标y的取值范围.试题解析:(1 ) C(4,1),(2)法一:过点E作EM⊥x轴于点M,∵C(4,1),D(0,1),E为CD中点,∴CD∥x轴,EM=OD=1,()21E∴,,∴OM=2,()10.B,1OB BM EM ∴===,45EBM ∴∠=︒,BE BF ⊥,∴∠OBF =45°,∴ △OBF 为等腰直角三角形,∴OF =OB =1.()0,1.F ∴法二:在OB 的延长线上取一点M.∵∠ABC =∠AOB =90°.∴∠ABO +∠CBM =90° .∠ABO +∠BAO =90°.∴∠BAO =∠CBM .∵C (4,1).D (0,1).又∵CD ∥OM ,CD =4.∴∠DCB =∠CBM.∴∠BAO =∠ECB.∵∠ABC =∠FBE =90°.∴∠ABF =∠CBE.∵AB =BC.∴△ABF ≌△CBE (ASA).∴AF =CE =12CD =2, ∵A (0,3),OA =3,∴OF =1.∴F (0,1) ,(3) 1y <-.29.(1)1(21)(21)n n -+;111()22121n n --+;(2)100201【解析】【分析】(1)观察等式数字变化规律即可得出第n 个等式;(2)利用积化和差计算出a 1+a 2+a 3+…+a 100的值.【详解】解:(1) 解: 1111(1)1323a ==⨯-⨯; 21111()35235a ==⨯-⨯; 31111()57257a ==⨯-⨯; 41111()79279a ==⨯-⨯;…… 1111()(21)(21)22121n a n n n n ==--+-+ 故答案为:1(21)(21)n n -+; 111()22121n n --+ (2)1234100a a a a a +++++ =11111111111(1)()()...()232352572199201-+-+-++- =11111111(1...)233557199201-+-+-++- =11(1)2201- =12002201⨯ =100201【点睛】此题考查数字的变化规律,从简单情形入手,找出一般规律,利用规律解决问题.30.(1)x 7﹣1;(2)x n+1﹣1;(3)2019312-. 【解析】【分析】 (1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、压轴题1.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在ABC ∆中,90︒∠=C ,若点D 为AB 的中点,则12CD AB =. 请结合上述结论解决如下问题:已知,点P 是射线BA 上一动点(不与A,B 重合)分别过点A,B 向直线CP 作垂线,垂足分别为E,F,其中Q 为AB 的中点(1)如图2,当点P 与点Q 重合时,AE 与BF 的位置关系____________;QE 与QF 的数量关系是__________(2)如图3,当点P 在线段AB 上不与点Q 重合时,试判断QE 与QF 的数量关系,并给予证明.(3)如图4,当点P 在线段BA 的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.2.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线1l ,2l ,3l 上,90BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B 、C 向1l 作垂线,就能利用全等三角形的知识求出AB 的长. (2)小林说:“我们可以改变ABC 的形状.如图2,AB AC =,120BAC ∠=︒,且每两条平行线之间的距离为1,求AB 的长.”(3)小谢说:“我们除了改变ABC 的形状,还能改变平行线之间的距离.如图3,等边三角形ABC 三个顶点分别落在三条平行线1l ,2l ,3l 上,且1l 与2l 之间的距离为1,2l 与3l 之间的距离为2,求AB 的长、”请你根据3位同学的提示,分别求出三种情况下AB 的长度.3.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.4.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.5.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.6.如图,△ABC 是等边三角形,△ADC 与△ABC 关于直线AC 对称,AE 与CD 垂直交BC 的延长线于点E ,∠EAF =45°,且AF 与AB 在AE 的两侧,EF ⊥AF .(1)依题意补全图形.(2)①在AE 上找一点P ,使点P 到点B ,点C 的距离和最短;②求证:点D 到AF ,EF 的距离相等.7.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.8.如图1.在△ABC 中,∠ACB =90°,AC =BC =10,直线DE 经过点C ,过点A ,B 分别作AD ⊥DE ,BE ⊥DE ,垂足分别为点D 和E ,AD =8,BE =6.(1)①求证:△ADC ≌△CEB ;②求DE 的长;(2)如图2,点M 以3个单位长度/秒的速度从点C 出发沿着边CA 运动,到终点A ,点N 以8个单位长度/秒的速度从点B 出发沿着线BC —CA 运动,到终点A .M ,N 两点同时出发,运动时间为t 秒(t >0),当点N 到达终点时,两点同时停止运动,过点M 作PM ⊥DE 于点P ,过点N 作QN ⊥DE 于点Q ;①当点N 在线段CA 上时,用含有t 的代数式表示线段CN 的长度;②当t 为何值时,点M 与点N 重合;③当△PCM 与△QCN 全等时,则t = .9.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .(1)求OAB ∠的度数;(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.10.如图,在ABC ∆中,AC BC =,90ACB ∠=︒,点D 为ABC ∆内一点,且BD AD =.(1)求证:CD AB ⊥;(2)若15CAD ∠=︒,E 为AD 延长线上的一点,且CE CA =.①求BDC ∠的度数.②若点M 在DE 上,且DC DM =,请判断ME 、BD 的数量关系,并说明理由. ③若点N 为直线AE 上一点,且CEN ∆为等腰∆,直接写出CNE ∠的度数.11.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0a 6b 80--=.(1)a = ;b = ;直角三角形AOC 的面积为 .(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).12.如图,在ABC 中,3AB AC ==,50B C ∠=∠=,点D 在边BC 上运动(点D 不与点,B C 重合),连接AD ,作50ADE ∠=,DE 交边AC 于点E .(1)当100BDA ∠=时,EDC ∠= ,DEC ∠=(2)当DC 等于多少时,ABD DCE ≌△△,请说明理由;(3)在点D 的运动过程中,ADE 的形状可以是等腰三角形吗?若可以,请求出BDA ∠的度数;若不可以,请说明理由.13.在△ABC 中,已知∠A =α.(1)如图1,∠ABC 、∠ACB 的平分线相交于点D .求∠BDC 的大小(用含α的代数式表示);(2)如图2,若∠ABC 的平分线与∠ACE 的平分线交于点F ,求∠BFC 的大小(用含α的代数式表示);(3)在(2)的条件下,将△FBC 以直线BC 为对称轴翻折得到△GBC ,∠GBC 的平分线与∠GCB 的平分线交于点M (如图3),求∠BMC 的度数(用含α的代数式表示).14.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的. 例:已知:2114x x =+,求代数式x 2+21x的值. 解:∵2114x x =+,∴21x x+=4 即21x x x+=4∴x +1x =4∴x 2+21x =(x +1x )2﹣2=16﹣2=14 材料二:在解决某些连等式问题时,通常可以引入参数“k ”,将连等式变成几个值为k 的等式,这样就可以通过适当变形解决问题.例:若2x =3y =4z ,且xyz ≠0,求x y z+的值. 解:令2x =3y =4z =k (k ≠0) 则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.15.如图,在ABC 中,D 为AB 的中点,10AB AC cm ==,8BC cm =.动点P 从点B 出发,沿BC 方向以3/cm s 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以3/cm s 的速度向点A 运动,运动时间是ts .(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值; (2)在运动过程中,当BPD CQP ≌时,求出t 的值;(3)是否存在某一时刻t ,使BPD CPQ ≌?若存在,求出t 的值;若不存在,请说明理由.16.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.17.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.18.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.19.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.20.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)AE//BF;QE=QF ;(2)QE=QF ,证明见解析;(3)结论成立,证明见解析.【解析】【分析】(1)根据AAS 得到AEQ BFQ ∆≅∆,得到AEQ BFQ ∠=∠、QE=QF ,根据内错角相等两直线平行,得到AE//BF ;(2)延长EQ 交BF 于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明;(3)延长EQ 交FB 的延长于D ,根据AAS 判断得出AEQ BDQ ∆≅∆,因此EQ DQ =,根据直角三角形斜边的中线等于斜边的一半即可证明.【详解】(1)AE//BF ;QE=QF(2)QE=QF证明:延长EQ 交BF 于D ,,AE CP BF CP ⊥⊥//AE BF ∴AEQ BDQ ∴∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, AEQ BDQ ∴∆≅∆EQ DQ ∴=90BFE ︒∠=QE QF ∴=(3)当点P 在线段BA 延长线上时,此时(2)中结论成立证明:延长EQ 交FB 的延长于D因为AE//BF所以AEQ BDQ ∠=∠AQE BQD AEQ BDQ AQ BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩AEQ BDQ ∴∆≅∆EQ=QF90BFE ︒∠=QE QF ∴=【点睛】本题考查了三角形全等的判定方法:AAS ,平行线的性质,根据P 点位置不同,画出正确的图形,找到AAS 的条件是解决本题的关键.2.(1)5;(2)2213;(3)2213【解析】【分析】 (1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,===AMB CNA MAB NCA AB AC ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22251=+;(2)分别过点B ,C 向l 1作垂线,交l 1于P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC ,在△AMB 和△CNA 中,===AMB CNA ABM NAC AB AC ∠∠⎧⎪∠∠⎨⎪⎩,∴△AMB ≌△CNA (AAS ),∴CN=AM ,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=12BM ,NQ=12NC , ∵PB=1,CQ=2,设PM=a ,NQ=b ,∴2221=4a a +,2222=4b b +,解得:3=3a ,23=3b , ∴CN=AM=222323⎛⎫+ ⎪ ⎪⎝⎭=433, ∴AB=22AP BP +=()22AM PM BP ++=2213;(3)如图,在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交于点P ,过A 作l 3的垂线,交于点Q ,∵△ABC 是等边三角形,∴BC=AC ,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM ,在△BCN 和△CAM 中,BNC CMA NBC MAC BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BCN ≌△CAM (AAS ),∴CN=AM ,BN=CM ,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP ,在△BPN 中,222BP NP BN +=,即22224NP NP +=,解得:NP=233, ∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM ,在△AQM 中,222AQ QM AM +=,即22234QM QM +=,解得:QM=3,∴AM=23=CN ,∴PC=CN-NP=AM-NP=433, 在△BPC 中,BP 2+CP 2=BC 2,即BC=222243221233BP CP ⎛⎫+=+= ⎪ ⎪⎝⎭, ∴AB=BC=2213.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.3.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ;(2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC , ∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.4.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.5.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠, DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆, CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.6.(1)详见解析;(2)①详见解析;②详见解析.【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD,AE⊥CD∴PC=PD,PC+PB最短等价于PB+PD最短故B,D之间直线最短,点P即为所求.②证明:连接DE,DF.如图3所示∵△ABC,△ADC是等边三角形∴AC=AD,∠ACB=∠CAD=60°∵AE⊥CD∴∠CAE=12∠CAD=30°∴∠CEA=∠ACB﹣∠CAE=30°∴∠CAE=∠CEA∴CA=CE∴CD垂直平分AE∴DA=DE∴∠DAE=∠DEA∵EF ⊥AF ,∠EAF =45°∴∠FEA =45°∴∠FEA =∠EAF∴FA =FE ,∠FAD =∠FED∴△FAD ≌△FED (SAS )∴∠AFD =∠EFD∴点D 到AF ,EF 的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.7.(1)∠OAD=∠ODA=45°;(2)证明见解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性质可求解;(2)通过“ASA ”可证得△ODB ≌△OAP ,进而可得BO=OP ;(3)过点P 作PF ⊥x 轴于点F ,延长FP 交BC 于N ,过点A 作AQ ⊥BC 于Q ,由“AAS ”可证△OBM ≌△OPF ,可得PF=BM=2,OF=OM=4,由面积和差关系可求四边形BOPC 的面积.【详解】(1)∵点A 的坐为(2,0),点D 的坐标为(0,-2),∴OA=OD ,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP ,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC ,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP ,在△ODB 和△OAP 中,BOD AOP OD OAODB OAP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ODB ≌△OAP (ASA ),∴BO=OP ;(3)如图,过点P 作PF ⊥x 轴于点F ,延长FP 交BC 于N ,过点A 作AQ ⊥BC 于Q ,∵BC ∥x 轴,AQ ⊥BC ,PF ⊥x 轴,∴AQ ⊥x 轴,PN ⊥BC ,∠AOM=∠BMO=90°,∴点Q 横坐标为2,∵∠BAC=90°,AB=AC ,AQ ⊥BC ,∴BQ=QC ,∵点B 的标为(-2,-4),∴BM=2,OM=4,BQ=4=QC ,∵PF ⊥x 轴,∴∠OFP=∠OMB=90°,在△OBM 和△OPF 中,BOM POF BMO OFP BO PO ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△OBM ≌△OPF (AAS ),∴PF=BM=2,OF=OM=4,∵BC ∥x 轴,AQ ⊥x 轴,NF ⊥x 轴,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四边形BOPC 的面积=S △OBM +S 梯形OMNP +S △PNC ,∴四边形BOPC 的面积=12×2×4+12×4×(2+4)+12×2×2=18. 【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积公式等知识,难度较大,添加恰当的辅助线构造全等三角形是解本题的关键.8.(1)①证明见解析;②DE =14;(2)①8t -10;②t =2;③t =10,211【解析】【分析】(1)①先证明∠DAC=∠ECB,由AAS即可得出△ADC≌△CEB;②由全等三角形的性质得出AD=CE=8,CD=BE=6,即可得出DE=CD+CE=14;(2)①当点N在线段CA上时,根据CN=CN−BC即可得出答案;②点M与点N重合时,CM=CN,即3t=8t−10,解得t=2即可;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,则CM=CN,得3t=10−8t,解得t=1011;当点N在线段CA上时,△PCM≌△QCN,则3t=8t−10,解得t=2;即可得出答案.【详解】(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中ADC CEBDAC ECB AC CB∠∠∠∠⎧⎪⎨⎪⎩===,∴△ADC≌△CEB(AAS);②由①得:△ADC≌△CEB,∴AD=CE=8,CD=BE=6,∴DE=CD+CE=6+8=14;(2)解:①当点N在线段CA上时,如图3所示:CN=CN−BC=8t−10;②点M与点N重合时,CM=CN,即3t=8t−10,解得:t=2,∴当t为2秒时,点M与点N重合;③分两种情况:当点N在线段BC上时,△PCM≌△QNC,∴CM=CN,∴3t=10−8t,解得:t=10 11;当点N在线段CA上时,△PCM≌△QCN,点M与N重合,CM=CN,则3t=8t−10,解得:t=2;综上所述,当△PCM与△QCN全等时,则t等于1011s或2s,故答案为:1011s或2s.【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的性质、直角三角形的性质、分类讨论等知识;本题综合性强,熟练掌握全等三角形的判定与性质是解题的关键.9.(1)45°;(2)PE的值不变,PE=4,理由见详解;(3)D(8,0).【解析】【分析】(1)根据A,B,得△AOB为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB的度数;(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC⊥AB,再证明△POC≌△DPE,根据全等三角形的性质得到OC=PE,即可得到答案;(3)证明△POB≌△DPA,得到PA=OB=DA=PB,进而得OD的值,即可求出点D的坐标.【详解】(1)A,B,∴OA=OB=∵∠AOB=90°,∴△AOB为等腰直角三角形,∴∠OAB=45°;(2)PE的值不变,理由如下:∵△AOB为等腰直角三角形,C为AB的中点,∴∠AOC=∠BOC=45°,OC⊥AB,∵PO=PD,∴∠POD=∠PDO,∵D是线段OA上一点,∴点P在线段BC上,∵∠POD=45°+∠POC,∠PDO=45°+∠DPE,∴∠POC=∠DPE,在△POC和△DPE中,90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△POC ≅△DPE(AAS),∴OC=PE ,∵OC=12AB=12×, ∴PE=4;(3)∵OP=PD ,∴∠POD=∠PDO=(180°−45°)÷2=67.5°,∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,∴∠APD=∠BOP ,在△POB 和△DPA 中,OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△POB ≌△DPA(AAS),∴PA=OB=DA=PB ,∴DA=PB=∴OD=OA−DA=8,∴点D 的坐标为(8-,0).【点睛】本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.10.(1)证明见解析;(2)①120BDC ∠=︒;②ME BD =,理由见解析;③ 7.5°或15°或82.5°或150°【解析】【分析】(1)利用线段的垂直平分线的性质即可证明;(2)①利用SSS 证得△ADC ≌△BDC ,可求得∠ACD=∠BCD=45°,∠CAD=∠CBD=15°,即可解题;②连接MC ,易证△MCD 为等边三角形,即可证明△BDC ≌△EMC 即可解题;③分EN=EC 、EN=CN 、CE=CN 三种情形讨论,画出图形,利用等腰三角形的性质即可求解.【详解】(1)∵CB=CA ,DB=DA ,∴CD 垂直平分线段AB ,∴CD ⊥AB ;(2)①在△ADC 和△BDC 中,BC AC CD CD BD AD =⎧⎪=⎨⎪=⎩,∴△ADC ≌△BDC (SSS ),∴∠ACD=∠BCD=12∠BCA=45°,∠CAD=∠CBD=15°, ∴∠BDC=180︒-45°-15°=120°;②结论:ME=BD ,理由:连接MC ,∵AC BC =,90ACB ∠=︒,∴∠CAB=∠CBA=45°,∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,由①得∠BDC=120°,∴∠CDE=60°,∵DC=DM ,∠CDE=60°,∴△MCD 为等边三角形,∴CM=CD ,∵EC=CA=CB ,∠DMC=60°,∴∠E=∠CAD=∠CBD=15°,∠EMC=120°,在△BDC 和△EMC 中,15120CBD E BDC EMC CD CM ∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,∴△BDC ≌△EMC (AAS ),∴ME=BD ;③当EN=EC 时,∠1152EN C ︒==7.5°或∠2EN C =180152︒-︒=82.5°; 当EN=CN 时,∠3EN C =180215︒-⨯︒=150°;当CE=CN 时,点N 与点A 重合,∠CNE=15°,所以∠CNE 的度数为7.5°或15°或82.5°或150°.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、等腰三角形的性质和判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考压轴题.11.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析【解析】【分析】(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.【详解】解:(1) 解:(1)∵a 6b 80--=, ∴a-6=0,b-8=0,∴a=6,b=8,∴A (0,6),C (8,0);∴S △ABC=6×8÷2=24,故答案为(0,6),(8,0); 6;8;24(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:∵x 轴⊥y 轴,∴∠AOC=∠DOC+∠AOD=90°∴∠OAC+∠ACO=90°又∵∠DOC=∠DCO∴∠OAC=∠AOD∵y 轴平分∠GOD∴∠GOA=∠AOD∴∠GOA=∠OAC∴OG ∥AC ,如图,过点H 作HF ∥OG 交x 轴于F ,∴HF ∥AC∴∠FHC=∠ACE同理∠FHO=∠GOD ,∵OG ∥FH ,∴∠GOD=∠FHO ,∴∠GOD+∠ACE=∠FHO+∠FHC即∠GOD+∠ACE=∠OHC ,∴2∠GOA+∠ACE=∠OHC .∴∠GOD+∠ACE=∠OHC .【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.12.(1)30,100;(2)3DC =,见解析;(3)可以,115或100【解析】【分析】(1)根据平角的定义,可求出 ∠EDC 的度数,根据三角形内和定理,即可求出 ∠DEC ;(2)当 AB=DC 时,利用 AAS 可证明 ΔABD ≅ΔDCE ,即可得出 AB=DC=3 ; (3)假设 ΔADE 是等腰三角形,分为三种情况讨论:①当 DA=DE 时,求出∠DAE=∠DEA=70° ,求出 ∠BAC ,根据三角形的内角和定理求出 ∠BAD ,根据三角形的内角和定理求出 ∠BDA 即可;②当 AD=AE 时, ∠ADE=∠AED=40° ,根据 ∠AED>∠C ,得出此时不符合;③当 EA=ED 时,求出 ∠DAC ,求出 ∠BAD ,根据三角形的内角和定理求出 ∠ADB .【详解】(1)在 △BAD 中,∵∠B=50°,∠BDA=100° ,∴1801805010030EDC ADE ADB ∠=︒-∠-∠=︒-︒-︒=︒,1801803050100DEC EDC C ∠=︒-∠-∠=︒-︒-︒=︒.故答案为30EDC ∠=︒,100DEC ∠=︒.(2)当3DC =时,ABD DCE ∆≅∆,理由如下:∵3AB =,3DC =∴AB DC =∵50B ∠=,50ADE ∠=∴B ADE ∠=∠∵180ADB ADE EDC ∠+∠+∠=180DEC C EDC ∠+∠+∠=∴ADB DEC ∠=∠在ABD ∆和DCE ∆中AB DC B CADB DEC =⎧⎪∠=∠⎨⎪∠=∠⎩∴ABD ∆≅DCE ∆(3)可以,理由如下:∵50B C ︒∠=∠=,180B C BAC ︒∠+∠+∠=∴180180505080BAC B C ︒︒︒︒︒∠=-∠-∠=--=分三种情况讨论:①当DA DE =时,DAE DEA ∠=∠∵50ADE ︒∠=,180ADE DAE DEA ︒∠+∠+∠=∴()18050265DAE ︒︒︒∠=-÷= ∴BAD BAC DAE ∠=∠-∠8065︒︒=-15︒=∵180B BAD BDA ︒∠+∠+∠=∴180BDA B BAD ︒∠=-∠-∠1805015︒︒︒=--115︒=②当AD AE =时,50AED ADE ︒∠=∠=∵180ADE AED DAE ︒∠+∠+∠=∴180DAE AED ADE ︒∠=-∠-∠1805050︒︒︒=--80︒=又∵80BAC ︒∠=∴DAE BAE ∠=∠∴点D 与点B 重合,不合题意.③当EA ED =时,50DAE ADE ︒∠=∠=∴BAD BAC DAE ∠=∠-∠8050︒︒=-30︒=∵180B BAD BDA ︒∠+∠+∠=∴180BDA B BAD ︒∠=-∠-∠1805030100︒︒︒︒=--=综上所述,当BDA ∠的度数为115或100时,ADE ∆是等腰三角形.【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.13.(1)∠BDC =90°+2α;(2)∠BFC =2α;(3)∠BMC =90°+4α. 【解析】【分析】(1)由三角形内角和可求∠ABC +∠ACB =180°﹣α,由角平分线的性质可求∠DBC +∠BCD =12(∠ABC +∠ACB )=90°﹣2α,由三角形的内角和定理可求解; (2)由角平分线的性质可得∠FBC =12∠ABC ,∠FCE =12∠ACE ,由三角形的外角性质可求解;(3)由折叠的性质可得∠G =∠BFC =2α,方法同(1)可求∠BMC =90°+2G ∠,即可求解.【详解】解:(1)∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵BD 平分∠ABC ,CD 平分∠ACB ,∴∠DBC =12∠ABC ,∠BCD =12∠ACB , ∴∠DBC +∠BCD =12(∠ABC +∠ACB )=90°﹣2α, ∴∠BDC =180°﹣(∠DBC +∠BCD )=90°+2α; (2)∵∠ABC 的平分线与∠ACE 的平分线交于点F ,∴∠FBC =12∠ABC ,∠FCE =12∠ACE , ∵∠ACE =∠A +∠ABC ,∠FCE =∠BFC +∠FBC ,∴∠BFC =12∠A =2α; (3)∵∠GBC 的平分线与∠GCB 的平分线交于点M ,∴方法同(1)可得∠BMC =90°+2G ∠, ∵将△FBC 以直线BC 为对称轴翻折得到△GBC ,∴∠G =∠BFC =2α, ∴∠BMC =90°+4α. 【点睛】此题考查三角形的内角和定理,三角形的外角等于与它不相邻的两个内角的和,角平分线的性质定理,折叠的性质.14.(1)5;(2)95; (3)78【解析】【分析】(1)仿照材料一,取倒数,再约分,利用等式的性质求解即可;(2)仿照材料二,设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k ,代入所求式子即可;(3)本题介绍两种解法:解法一:(3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0),化简得:b c k y z +=①,c a k z x +=②,a b k x y +=③,相加变形可得x 、y 、z 的代入222222x y z a b c ++++=1k中,可得k 的值,从而得结论; 解法二:取倒数得:bz cy yz +=cx az zx+=ay bx xy +,拆项得b c c a a b y z z x x y +=+=+,从而得x =ay b ,z =cy b,代入已知可得结论. 【详解】解:(1)∵21x x x -+=14, ∴21x x x-+=4, ∴x ﹣1+1x=4,∴x +1x=5; (2)∵设5a =2b =3c =k (k ≠0),则a =5k ,b =2k ,c =3k , ∴342b c a +=61210k k k +=1810=95; (3)解法一:设yz bz cy +=zx cx az +=xy ay bx +=1k(k ≠0), ∴b c k y z +=①,c a k z x+=②,a b k x y +=③, ①+②+③得:2(b c a y z x ++)=3k , b c a y z x ++=32k ④, ④﹣①得:a x =12k , ④﹣②得:12b k y =, ④﹣③得:12c z =k , ∴x =2a k ,y =2b k ,z =2c k 代入222222x y z a b c ++++=1k 中,得: ()22222224a b c k a b c ++++=1k , 241k k =, k =4,∴x =24a ,y =24b ,z =24c , ∴xyz =864abc =8764⨯=78; 解法二:∵yz zx xy bz cy cx az ay bx==+++, ∴bz cy cx az ay bx yz zx xy+++==, ∴b c c a a b y z z x x y+=+=+,∴,b a c b y x z y==, ∴,ay cy x z b b ==, 将其代入222222zx x y z cx az a b c ++=+++中得: cy ay b b acy acy b b⋅+=2222222222a y c y yb b a bc ++++ 2y b =22y b ,y =2b , ∴x =22ab a b =,z =cy 2y =2c , ∴xyz =222a b c ⋅⋅=78. 【点睛】本题考查了以新运算的方式求一个式子的值,题目中涉及了求一个数的倒数,约分,等式的基本性质,求代数式的值,解决本题的关键是正确理解新运算的内涵,确定一个数的倒数并能够根据等式的基本性质将原式变为能够进一步运算的式子.15.(1)43t =时,点C 位于线段PQ 的垂直平分线上;(2)1t =;(3)不存在,理由见解析.【解析】【分析】(1)根据题意求出BP ,CQ ,结合图形用含t 的代数式表示CP 的长度,根据线段垂直平分线的性质得到CP =CQ ,列式计算即可;(2)根据全等三角形的对应边相等列式计算;(3)根据全等三角形的对应边相等列式计算,判断即可.【详解】解:(1)由题意得3BP CQ t ==,则83CP t -=,当点C 位于线段PQ 的垂直平分线上时,CP CQ =,∴833t t -=, 解得,43t =, 则当43t =时,点C 位于线段PQ 的垂直平分线上; (2)∵D 为AB 的中点,10AB AC ==, ∴5BD =,∵BPD CQP ≌,。

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.分式方程3111x x x =-+-的解是( ) A .4 B .2 C .1 D .-22.如图,将长方形ABCD 沿线段EF 折叠到''EB C F 的位置,若'105EFC ∠=︒,'DFC ∠的度数为( )A .20︒B .30C .40︒D .50︒3.下面是投影屏上出示的抢答题,需要回答符号代表的内容.如图,已知AB =AD ,CB =CD ,∠B =30°,∠BAC =25°,求∠BCD 的度数.解:在ABC 和△ADC 中,AB AD CB CDAC AC =⎧⎪=⎨⎪=⎩(已知)(已知) , 所以△ABC ≌△ADC ,(@)所以∠BCA =◎.(全等三角形的★相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =※.则回答正确的是( )A .★代表对应边B .※代表110°C .@代表ASAD .◎代表∠DAC 4.化简211m m m m --÷的结果是 ( ) A .m B .1m C .1m - D .1m m- 5.我国古代许多关于数学的发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了()n a b +(n 为正整数)的展开式(按a 的次数由大到小的顺序排列)的系数规律,例如,第四行的四个数1,3,3,1恰好对应着+=+++33223()33a b a a b ab b 展开式中的系数,请你猜想5()a b +的展开式中含32a b 项的系数是( )A .10B .12C .9D .86.如图,ABD ∆与AEC ∆都是等边三角形,AB AC ≠,下列结论中,正确的个数是( )①BE CD =;②60BOD ︒∠=;③BDO CEO ∠=∠;④若90BAC ︒∠=,且DA BC ,则BC CE ⊥.A .1B .2C .3D .47.如图,在△ABC 中,∠BAC =80°,AB 边的垂直平分线交AB 于点D ,交BC 于点E ,AC 边的垂直平分线交AC 于点F ,交BC 于点G ,连接AE ,AG .则∠EAG 的度数为( )A .15°B .20°C .25°D .30° 8.已知:如图,AB ⊥CD 于O ,EF 为经过点O 的一条直线,那么∠1与∠2的关系是( )A .互为对顶角B .互补C .互余D .相等 9.下列因式分解正确的是( ) A .x 2-y 2=(x -y )2B .-a +a 2=-a (1-a )C .4x 2-4x +1=4x (x -1)+1D .a 2-4b 2=(a +4b )(a -4b )10.下列图案中,是轴对称图形的有( )A .1个B .2个C .3个D .4个二、填空题11.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b 、的等式为________.12.如图,已知:AB ∥CD ,DB ⊥BC ,∠1=40°,求∠2的度数.完成下面的证明过程: 证明:∵AB ∥CD ( ),∴∠1=∠BCD =40°( ).∵BD ⊥BC ,∴∠CBD = .∵∠2+∠CBD+∠BCD = ( ),∴∠2= .13.如图,ABC ∆中,BC 边的垂直平分线交AC 于点D ,若100,50A ABC ︒︒∠=∠=,则ADB ∠的度数为_________________14.若4,3a b ab +==,则 22a b +的值为________.15.如图,点P 在∠AOB 的平分线上,∠AOB=60°,PD ⊥OA 于D ,点M 在OP 上,且DM=MP=6,若C 是OB 上的动点,则PC 的最小值是__________.16.如图,在矩形ABCD 中,6,8AB AD ==,以A 为圆心,任意长为半径画弧交,AB AC 于,M N ,再分别以,M N 为圆心,大于12MN 为半径画弧,两弧交于点G ,连接,AG 交边BC 于,E 则AEC 的周长为_________.17.如果实数m ,n 满足方程组212m n m n -=⎧⎨+=⎩,那么2021(2)m n -=______. 18.现有①正三角形、②正方形、③正五边形三种形状的地砖,只选取其中一种地砖镶嵌地面,不能进行地面镶嵌的有___________(填序号).19.计算:201(1)3π-⎛⎫+-= ⎪⎝⎭____________. 20.当 x_____ 时,分2x x+式有意义. 三、解答题21.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______________;(请选择正确的一个)A 、2222()a ab b a b -+=-,B 、22()()a b a b a b -=+-,C 、2()a ab a a b +=+.(2)应用你从(1)选出的等式,完成下列各题:①已知22412x y -=,24x y +=,求2x y -的值.②计算:2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. 22.先化简:2222421121m m m m m m m ---÷+--+,其中m 从0,1,2中选一个恰当的数求值.23.化简求值:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2,其中a =﹣12,b =2. 24.已知分式:222222()1211x x x x x x x x x +--÷--++,解答下列问题: (1)化简分式;(2)当x =3时,求分式的值;(3)原分式的值能等于-1吗?为什么?25.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD 是∠BAC 的平分线.26.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC=CE ,∠ACD=∠B .(1)求证:BC=DE(2)若∠A=40°,求∠BCD 的度数.27.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 28.如图,ABC ∆中,30A ∠=︒,70B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥,求CDF ∠的度数.29.先化简,再求值:22(4)(4)516ab ab a b ab ⎡⎤+--+÷⎣⎦,其中10a =,34b =. 30.如图,直角坐标系中,点A 的坐标为(3,0),以线段OA 为边在第四象限内作等边△AOB ,点C 为x 轴正半轴上一动点(OC >3),连结BC ,以线段BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E .(1)证明∠ACB=∠ADB ;(2)若以A ,E ,C 为顶点的三角形是等腰三角形,求此时C 点的坐标;(3)随着点C 位置的变化,OA AE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】各项乘以(1)(1)x x +-去分母,然后移项合并,即可求出方程的解.【详解】解:去分母得:22331x x x x -=+-+,移项、合并得:24=x ,解得:2x =,经检验2x =是分式方程的解,故选:B .【点睛】本题考查了解分式方程,解题的关键是掌握解分式方程的方法,注意需要检验.2.B解析:B【解析】【分析】由轴对称的性质可求出∠EFC 的度数,可由式子∠EFC+∠EFC'-180°直接求出∠DFC'的度数.【详解】解:由翻折知∠EFC=∠EFC'=105°,∴∠EFC+∠EFC'=210°,∴∠DFC'=∠EFC+∠EFC'-180°=210°-180°=30°.故选:B .【点睛】本题考查了翻折变化(轴对称)的性质及角的计算,解题关键是熟练掌握并能够灵活运用轴对称变换的性质等.3.B解析:B【解析】【分析】证△ABC ≌△ADC ,得出∠B =∠D =30°,∠BAC =∠DAC =12∠BAD =25°,根据三角形内角和定理求出即可.【详解】 解:在ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩(已知)(已知), 所以△ABC ≌△ADC ,(SSS )所以∠BCA =∠DCA .(全等三角形的对应角相等)因为∠B =30°,∠BAC =25°,所以∠BCA =180°﹣∠B ﹣∠BAC =125°,所以∠BCD =360°﹣2∠BCA =110°.故可得:@代表SSS ;◎代表∠DCA ;★代表对应角;※代表110°,故选:B .【点睛】此题考查三角形全等的判定及性质,证明过程的填写,正确掌握全等三角形的判定定理是解题的关键.4.A解析:A【解析】【分析】先化除为乘,然后按照分式乘法法则进行计算即可.【详解】 解:211m m m m--÷ =211m m m m -⨯- =m .故答案为A .【点睛】本题考查了分式的的乘除运算,掌握分式乘除运算法则是解答本题的关键.5.A【解析】【分析】根据“杨辉三角”的构造法则即可得.【详解】由“杨辉三角”的构造法则得:5()a b +的展开式的系数依次为1,5,10,10,5,1,因为系数是按a 的次数由大到小的顺序排列,所以含32a b 项的系数是第3个,即为10,故选:A .【点睛】本题考查了多项式乘法中的规律性问题,理解“杨辉三角”的构造法则是解题关键.6.C解析:C【解析】【分析】利用全等三角形的判定和性质一一判断即可.【详解】解:∵ABD ∆与AEC ∆都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°∴∠DAB+∠BAC=∠EAC +∠BAC即∠DAC=∠EAB∴DAC BAE ≅∴BE CD =,①正确;∵DAC BAE ≅∴∠ADO=∠ABO∴∠BOD=∠DAB=60°,②正确∵∠BDA=∠CEA=60°,∠ADC≠∠AEB∴∠BDA -∠ADC≠∠CEA -∠AEB∴BDO CEO ∠≠∠,③错误∵DA BC∴∠DAC+∠BCA=180°∵∠DAB=60°,90BAC ︒∠=∴∠BCA=180°-∠DAB -∠BAC=30°∵∠ACE=60°∴∠BCE=∠ACE+∠BCA=60°+30°=90°∴BC CE ⊥④正确故由①②④三个正确,故选C本题考查全等三角形的判定和性质、等边三角形的性质、角平分线的判定定理等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.B解析:B【解析】【分析】根据线段垂直平分线的性质和等腰三角形的性质即可得到结论.【详解】解:∵AB边的垂直平分线交AB于点D,AC边的垂直平分线交AC于点F,∴AG=CG,AE=BE,∴∠C=∠CAG,∠B=∠BAE,∴∠BAE+∠CAG=∠B+∠C=180°﹣∠BAC=100°,∴∠EAG=∠BAE+∠CAG﹣∠BAC=100°﹣80°=20°,故选:B.【点睛】此题考查线段垂直平分线的性质和等腰三角形的性质,熟练掌握各性质定理并运用解题是关键.8.C解析:C【解析】【分析】根据垂线的定义得出∠BOD=90°;然后由平角的定义来求∠1与∠2的关系.【详解】解:∵AB⊥CD,∴∠BOD=90°.又∵EF为过点O的一条直线,∴∠1+∠2=180°﹣∠BOD=90°,即:∠1与∠2互余,故选:C.【点睛】本题考查了垂线的定义、平角的定义、角的互余关系;熟练掌握垂线的定义和平角的定义是解题的关键.9.B解析:B【解析】A. x2-y2=(x-y)(x+y),故A选项错误;B. -a+a2=-a(1-a),正确;C. 4x2-4x+1=(2x-1)2,故C 选项错误;D. a2-4b2=(a+2b)(a -2b),故D选项错误,故选B.解析:B【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】第一个图形不是轴对称图形,第二个图形不是轴对称图形,第三个图形是轴对称图形,第四个图形是轴对称图形,综上所述,是轴对称图形的有2个.故选:B.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.二、填空题11.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b解析:(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.12.已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD=40°,∠C BD =90°,由三角形内角和定理可求∠2的度数解析:已知;两直线平行,同位角相等;90°;180°;三角形内角和定理;50°【解析】【分析】由平行线的性质和垂线的定义可得∠1=∠BCD =40°,∠CBD =90°,由三角形内角和定理可求∠2的度数.【详解】∵AB ∥CD (已知),∴∠1=∠BCD =40°(两直线平行,同位角相等).∵BD ⊥BC ,∴∠CBD =90°.∵∠2+∠CBD+∠BCD =180°(三角形内角和定理),∴∠2=50°.故答案为:已知,两直线平行,同位角相等,90°,180°,三角形内角和定理,50°.【点睛】本题考查了平行线的性质,垂线的定义,三角形内角和定理,熟练运用三角形内角和定理是本题的关键.13.60°【解析】【分析】先根据三角形内角和计算出,再由垂直平分线的性质得出,最后再利用三角形外角的性质即可得出的度数.【详解】解:的垂直平分线交于点,,,故答案为:.【点睛】解析:60°【解析】【分析】先根据三角形内角和计算出C ∠,再由垂直平分线的性质得出∠=∠DBC C ,最后再利用三角形外角的性质即可得出ADB ∠的度数.【详解】解:100,50A ABC ︒︒∠=∠=30︒∴∠=C BC 的垂直平分线交AC 于点D ,DC BD ∴=,30DBC C ∴∠=∠=︒,60ADB C DBC ∴∠=∠+∠=︒故答案为:60︒.【点睛】本题考查了线段垂直平分线的性质、三角形内角和以及三角形外角的性质.根据垂直平分线得出∠=∠DBC C 是解题的关键.14.10【解析】【分析】【详解】因为,所以,故答案为:10.解析:10【解析】【分析】【详解】因为()2222a b a ab b +=+=, 所以()2222242316610a b a b ab +=+-=-⨯=-=, 故答案为:10.15.6【解析】【分析】根据角平分线的定义及垂直可得到∠DPO=60°,从而证明是等边三角形,得到DP 的长,再根据角平分线的性质即可求出点P 到OB 的距离,即PC 的最小值.【详解】∵点P 在∠AOB解析:6【解析】【分析】根据角平分线的定义及垂直可得到∠DPO=60°,从而证明PDM△是等边三角形,得到DP 的长,再根据角平分线的性质即可求出点P到OB的距离,即PC的最小值.【详解】∵点P在∠AOB的平分线上,∠AOB=60°,∴∠AOP=12∠AOB=30°,又∵PD⊥OA于点D,即∠PDO=90°,∴∠DPO=60°,又∵DM=MP=6,∴PDM△是等边三角形,∴PD=DM=6,∵C是OB上一个动点,∴PC的最小值为点P到OB的距离,∵点P在∠AOB的平分线上,PD⊥OA于点D,PD=6,∴PC的最小值=点P到OB的距离=PD=6.故答案为:6.【点睛】本题考查了角平分线的定义及性质,等边三角形的判定与性质,熟练掌握应用各性质及判定定理是解题关键.16.15+3【解析】【分析】作,根据角平分线的性质得到BE=EP,利用勾股定理求解即可;【详解】作,根据题意可知AE是的角平分线,∴BE=EP,在△ABE和△APE中,,∴,∴AB解析:【解析】【分析】作EP⊥AC,根据角平分线的性质得到BE=EP,利用勾股定理求解即可;【详解】作EP⊥AC,根据题意可知AE是BAC∠的角平分线,∴BE=EP ,在△ABE 和△APE 中,BAE PAE B APE BE PE ⎧∠=∠⎪∠=∠⎨⎪=⎩,∴△△ABE APE ≅,∴AB=AP ,设BE=x ,则PE=x ,∵6,8AB AD ==,∴10AC =,∴1064PC =-=,8EC x =-,在Rt △PEC 中,222PE PC EC +=,∴()22248x x +=-, 解得3x =,∴5EC =,∴222226345AE AP PE =+=+=, ∴35AE = ∴△1535AEC C AE AC PE =++=+ 故答案是15+35【点睛】本题主要考查了角平分线的性质应用,准确分析是解题的关键.17.1【解析】【分析】方程组中的两个方程相减可得,然后整体代入所求式子计算即可.【详解】解:对方程组,①-②,得,故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求解析:-1【解析】【分析】方程组中的两个方程相减可得21m n -=-,然后整体代入所求式子计算即可.【详解】解:对方程组21{2m n m n -=+=①②,①-②,得21m n -=-, 所以()()20212021211m n -=-=-.故答案为:﹣1.【点睛】本题考查了二元一次方程组的解法和代数式求值,灵活应用整体的思想是解题的关键.18.③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其解析:③【解析】【分析】根据正多边形的内角度数解答即可.【详解】∵正三角形的每个内角都是60度,能将360度整除,故可以用其镶嵌地面; ∵正方形的每个内角都是90度,能将360度整除,故可以用其镶嵌地面;∵正五边形的每个内角都是108度,不能将360度整除,故不可以用其镶嵌地面, 故答案为:③.【点睛】此题考查正多边形的性质,镶嵌地面问题,正确计算正多边形的每个内角的度数与360度的整除关系是解题的关键.19.10【解析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.解析:10【解析】【分析】直接利用零指数幂的性质以及负整数指数幂的性质分别化简得出答案.【详解】解:原式=9+1=10【点睛】本题主要考查了实数运算,正确化简各数是解题的关键.20.【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握解析:2≠-【解析】【分析】直接利用分式有意义的条件分析得出即可.【详解】解:根据分式有意义得:2+x≠0,解得:x≠-2.故答案为:≠-2.【点睛】本题考查了分式有意义的条件,关键是熟练掌握知识点:分式有意义,分母不为0.三、解答题21.(1)B;(2)①3;②51 100【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【详解】(1)根据图形得:22()()a b a b a b -=+-,上述操作能验证的等式是B ,故答案为:B ;(2)①∵224(2)(2)12x y x y x y -=+-=,24x y +=,∴23x y -=; ②2222211111111112344950⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫----- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111111223⎛⎫⎛⎫⎛⎫=-+- ⎪⎪⎪⎝⎭⎝⎭⎝⎭1111111111349495050⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+-+-+ ⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 1324354850495122334449495050=⨯⨯⨯⨯⨯⨯⋯⨯⨯⨯⨯ 515120=⨯ 51100=. 【点睛】本题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.22.21m +,2 【解析】 【分析】原式利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把0m =代入计算即可求出值.【详解】解:2222421121m m m m m m m ---÷+--+ 222(2)(1)1(1)(1)2m m m m m m m --=-⋅++-- 21m =+因为m+10≠ ,m-10≠,m-20≠所以m 1≠- ,m 1≠,m 2≠当0m =时,原式2=.【点睛】此题考查了解分式方程,以及分式的化简求值,熟练掌握运算法则是解本题的关键.23.2ab ,-2【解析】【分析】先算乘法,再合并同类项,最后代入求出即可.【详解】解:(2a +b )(2a ﹣b )+b (2a +b )﹣4a 2=4a 2﹣b 2+2ab +b 2﹣4a 2=2ab ,当a =﹣12,b =2时,原式=2×(﹣12)×2=﹣2. 【点睛】本题考查了整式的混合运算和求值的应用以及学生的计算和化简能力,题目比较好,难度适中.24.(1)11x x +-;(2)当3x =时,分式的值为2;(3)原分式的值不能等于-1.理由见解析.【解析】【分析】(1)先做括号内的减法,注意把各分子、分母先因式分解,约分后再做减法运算;做除法时要注意先把除法运算转化为乘法运算,然后约分化为最简形式;(2)将x=3代入计算即可;(3)令111x x +=--,求解即可判断. 【详解】(1)222222()1211x x x x x x x x x +--÷--++ 22(1)(1)1()(1)(1)(1)x x x x x x x x x ⎡⎤+-+=-⋅⎢⎥+--⎣⎦ 21()11x x x x x x +=-⋅-- 11x x x x +=⋅- 11x x +=-;(2)当3x =时,原式31231+==-; (2)如果111x x +=--, 那么()11x x +=--,解得0x =,又因为0x =时,原分式无意义.故原分式的值不能等于1-.【点睛】本题考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式,熟练掌握运算顺序与运算法则是解题的关键.25.证明见解析.【解析】【分析】根据等腰三角形的性质得∠DBC =∠DCB ,结合条件,得∠ABC =∠ACB ,进而得AB =AC ,易证△ABD ≌△ACD ,进而即可得到结论.【详解】∵BD =DC ,∴∠DBC =∠DCB .∵∠1=∠2,∴∠ABC =∠ACB ,∴AB =AC ,在△ABD 与△ACD 中∵12AB AC BD DC =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACD (SAS),∴∠BAD =∠CAD ,∴AD 是∠BAC 的平分线.【点睛】本题主要考查等腰三角形的判定和性质定理以及三角形全等的判定和性质定理,掌握等腰三角形的判定和性质定理以及三角形全等的判定和性质定理是解题的关键.26.(1)证明见解析;(2)140°;【解析】【分析】(1)根据平行线的性质可得∠ACB=∠DEC ,∠ACD=∠D ,再由∠ACD=∠B 可得∠D=∠B ,然后可利用AAS 证明△ABC ≌△CDE ,进而得到CB=DE ;(2)根据全等三角形的性质可得∠A=∠DCE=40°,然后根据邻补角的性质进行计算即可.【详解】(1)∵AC ∥DE ,∴∠ACB=∠DEC ,∠ACD=∠D ,∵∠ACD=∠B .∴∠D=∠B ,在△ABC 和△DEC 中,===ACB E B D AC CE ∠∠⎧⎪∠∠⎨⎪⎩, ∴△ABC ≌△CDE (AAS ),∴BC=DE ;(2)∵△ABC ≌△CDE ,∴∠A=∠DCE=40°∴∠BCD=180°–40°=140°.【点睛】本题考查的是全等三角形,熟练掌握全等三角形的性质是解题的关键.27.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭ =a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键. 28.70CDF ∠=︒【解析】【分析】首先根据三角形的内角和定理求得∠ACB 的度数,以及∠BCD 的度数,根据角的平分线的定义求得∠BCE 的度数,则∠ECD 可以求解,然后在△CDF 中,利用内角和定理即可求得∠CDF 的度数.【详解】解:∵30A ∠=︒,70B ∠=︒,∴18080ACB A B ∠=︒-∠-∠=︒.∵CE 平分ACB ∠,∴1402ACE ACB ∠=∠=︒. ∵CD AB ⊥于D ,∴90CDA ∠=︒,18060ACD A CDA ∠=︒-∠-∠=︒.∴20ECD ACD ACE ∠=∠-∠=︒.∵DF CE ⊥,∴90CFD ∠=︒,∴18070CDF CFD ECD ∠=︒-∠-∠=︒.【点睛】本题考查了三角形的内角和等于180°以及角平分线的定义,是基础题,准确识别图形是解题的关键.29.4ab -;﹣30【解析】【分析】原式括号内先根据平方差公式计算,再合并同类项,然后计算除法,最后把a 、b 的值代入化简后的式子计算即可.【详解】解:原式=222216516a b a b ab ⎡⎤--+÷⎣⎦=224a b ab -÷=4ab -;当10a =,34b =时,原式=3410304-⨯⨯=-. 【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握整式的混合运算法则是解题的关键.30.(1)见解析;(2)C 点的坐标为(9,0);(3)OA AE 的值不变,12OA AE = 【解析】【分析】(1)由△AOB 和△CBD 是等边三角形得到条件,判断△OBC ≌△ABD ,即可证得∠ACB=∠ADB ;(2)先判断△AEC 的腰和底边的位置,利用角的和差关系可证得∠OEA=30,AE 和AC 是等腰三角形的腰,利用直角三角形中,30所对的边是斜边的一半可求得AE 的长度,因此OC=OA+AC ,即可求得点C 的坐标;(3)利用角的和差关系可求出∠OEA=30,再根据直角三角形中,30所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB 和△CBD 是等边三角形∴OB=AB ,BC=BD ,∠OBA=∠CBD=60︒,∴∠OBA+∠ABC=∠CBD+∠ABC ,即∠OBC=∠ABD∴在△OBC 与△ABD 中,OB=AB ,∠OBC=∠ABD ,BC=BD∴△OBC ≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=60︒又∵∠OAB=60︒∴∠OAE=1806060︒-︒-︒=60︒,∴∠EAC=120︒,∠OEA=30,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=30∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)OAAE的值不变.理由:由(2)得∠OAE=180︒-∠OAB-∠BAD=60︒∴∠OEA=30∴在Rt△AOE中,EA=2OA∴OAAE=12.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含30角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.。

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题 1.若分式21x x --的值为零,则x 的值为( ) A .2-B .2±C .2D .2 2.下列正多边形中,能够铺满地面的是( ) A .正方形B .正五边形C .正七边形D .正八边形 3.下列各式由左到右的变形中,属于分解因式的是( ) A .()a m n am an +=+B .21055(21)x x x x -=-C .2322623a b a b b =⋅D .2166(4)(4)6x x x x x -+=+-+4.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE⊥AC 于点E ,Q 为BC 延长线上一点,当PA=CQ 时,连结PQ 交AC 边于D ,则DE 的长为 ( )A .12B .13C .23D .255.如图,ΔA 'B 'C ≌ΔABC ,点B '在AB 边上,线段A 'B ',AC 交于点D .若∠A =40°,∠B =60°,则∠A 'CB 的度数为( )A .100°B .120°C .135°D .140° 6.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形 7.如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处 8.如图,BP 平分∠ABC ,∠ABC =∠BAP =60°,若△ABC 的面积为2cm 2,则△PBC 的面积为( )A .0.8cm 2B .1cm 2C .1.2cm 2D .无法确定9.如图,点A,B,C 在一条直线上,△ABD,△BCE 均为等边三角形,连接AE 和CD,AE 分别交CD,BD 于点M,P ,CD 交BE 于点Q,连接PQ,BM,下面的结论:①△ABE ≌△DBC;②∠DMA=60°;③△BPQ 为等边三角形;④MB 平分∠AMC,其中结论正确的有( )A .1个B .2个C .3个D .4个 10.若ABC 的三边a ,b ,c 满足()()0)(a b b c c a ---=那么ABC 的形状一定是( ).A .等腰三角形B .直角三角形C .等边三角形D .锐角三角形 二、填空题11.如果一个正多边形的中心角为72°,那么这个正多边形的边数是 .12.如图,在△ABC 中,AD 、AE 分别是边BC 上的中线与高,AE =4,△ABC 的面积为12,则CD 的长为_____.13.分解因式:(a+b )2﹣4ab= .14.若关于x 的分式方程221a a x +=+无解,则a 的值为_____. 15.若关于x 的方程355x m x x=+--有增根,则m =_____. 16.()()()243232121211++⋯++计算结果的个位数字是______________. 17.三角形的两条边长分别是2cm ,8cm ,第三边为奇数,则其周长为________.18.如图,点D 是△ABC 的边BC 的延长线上的一点,∠ABC 的平分线与∠ACD 的平分线交于点A 1,∠A 1BC 的平分线与∠A 1CD 的平分线交于点A 2,依此类推…,已知∠A =α,则∠A 2020的度数为_____.(用含α的代数式表示).19.如图,△ABC 中,点D 在边BC 上,DE ⊥AB 于E ,DH ⊥AC 于H ,且满足DE=DH ,F 为AE 的中点,G 为直线AC 上一动点,满足DG =DF ,若AE=4cm ,则AG= _____cm .20.已知等腰三角形的两边长是5和12,则它的周长是______________;三、解答题21.如图所示,△ABC 中,AB =AC ,E 在AC 上,D 在BA 的延长线上,且AD =AE ,连接DE .求证:DE ⊥BC .22.已知如图,点A 、点B 在直线l 异侧,以点A 为圆心,AB 长为半径作弧交直线l 于C 、D 两点.分别以C 、D 为圆心,AB 长为半径作弧,两弧在l 下方交于点E,连结AE. (1)根据题意,利用直尺和圆规补全图形;(2)证明:l 垂直平分AE.23.(1)因式分解;()()22a x y b x y ---;(2)解方程:213211x y x y +=⎧⎨-=⎩. 24.如图,在△ABC 中,A ABC ∠=∠,直线EF 分别交AB 、AC 点D 、E ,CB 的延长线于点F ,过点B 作//BP AC 交EF 于点P ,(1)若70A ∠=︒,25F ∠=︒,求BPD ∠的度数.(2)求证:2F FEC ABP ∠+∠=∠.25.已知:230m mn +=,210mn n -=-,求下列代数式的值:(1)222m mn n +-;(2)227m n +-.26.先化简,再求值:2112(1)3(2)23b a b ---+-,其中a =-1,b =1. 27.先化简,再求值:2()()(2)()x y x y y x y x y +-++--,其中3x =,13y =-.28.如图1,四边形MNBD 为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(BAE AEC ECD ∠∠∠、、),则BAE AEC ECD ∠+∠+∠=__________°.(2)如图3,将长方形纸片剪三刀,剪出四个角(BAE AEF EFC FCD ∠∠∠∠、、、),则BAE AEF EFC FCD ∠+∠+∠+∠=__________°.(3)如图4,将长方形纸片剪四刀,剪出五个角(BAE AEF EFG FGC GCD ∠∠∠∠∠、、、、),则BAE AEF EFG FGC GCD ∠+∠+∠+∠+∠=___________°.(4)根据前面探索出的规律,将本题按照上述剪法剪n 刀,剪出()1n +个角,那么这()1n +个角的和是____________°.29.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E, ∠A=35°, ∠D=50°,求∠ACD 的度数.30.观察下列各式(x-1)(x+1)=x2-1(x-1)(x2+x+1)=x3-1(x-1)(x3+x2+x+1)=x4-1(1)根据以上规律,则(x-1)(x6+x5+x4+x3+x2+x+1)(2)你能否由此归纳出一般规律(x-1)(x n+x n-1+…+x+1)(3)根据以上规律求32018+32017+32016+32+3+1的值【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案.【详解】解:∵分式21xx--的值为0,∴|x|-2=0,且x-1≠0,解得:x=2±.故选:B.【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.2.A解析:A【解析】【分析】分别求出各个正多边形的每个内角的度数,结合镶嵌的条件即可作出判断.【详解】A、正方形的每个内角是90°,4个能密铺,符合题意;B、正五边形每个内角是180°-360°÷5=108°,不能整除360°,不能密铺,不符合题意;C、正七边形每个内角是180°-360°÷7=9007,不能整除360°,不能密铺,不符合题意;D、正八边形每个内角是180°-360°÷8=135°,不能整除360°,不能密铺,不符合题意.故选:A.【点睛】本题考查了一种多边形的镶嵌问题,考查的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.任意多边形能进行镶嵌,说明它的内角和应能整除360°.3.B解析:B【解析】【分析】根据因式分解的概念,即把一个多项式化成几个整式的积的形式,进行逐一分析判断.【详解】解:A、该变形是整式乘法,不是因式分解,故本选项不符合题意;B、符合因式分解的概念,故本选项符合题意;C、该变形不是多项式分解因式,故本选项不符合题意;D、该变形没有分解成几个整式的积的形式,故本选项不符合题意.故选:B.【点睛】本题考查因式分解的意义,熟练掌握因式分解的定义是解题关键.4.A解析:A【解析】【分析】过P作PF∥BC交AC于F,可得△ABC是等边三角形,然后证明△PFD≌△QCD,推出DE=12AC,即可得出结果.【详解】过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ .∵在△PFD 和△QCD 中,PFD QCD PDF QDC PF CQ ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△PFD ≌△QCD (AAS ),∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC , ∵AC=1,∴DE=12. 故选A .【点睛】本题考查全等三角形的判定与性质,作辅助线构造等边三角形是关键.5.D解析:D【解析】【分析】利用全等三角形的性质即可解答.【详解】解:已知ΔA 'B 'C ≌ΔABC ,则∠A 'C B '=∠ACB=180°-∠A-∠B=80°,又因为CB=C B ',且∠B=60°,故三角形C B 'B 是等边三角形,∠B 'CB=60°,故∠A 'CB=60°+80°=140°,答案选D.【点睛】本题考查全等三角形的性质,熟悉掌握是解题关键.6.D解析:D【解析】【分析】设多边形的边数为n ,多加的外角度数为x ,根据内角和与外角度数的和列出方程,由多边形的边数n 为整数求解可得.【详解】设多边形的边数为n ,多加的外角度数为x ,根据题意列方程得,(n -2)•180°+x =1160°,∵0°<x <180°,∴1160°-180°<(n -2)×180°<1160°,∴549<n−2<649, ∵n 是整数,∴n =8.故选:D .【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.7.D 解析:D【解析】【分析】根据角平分线上的点到角两边的距离相等作图即可得到结果.【详解】解:如图所示,可供选择的地址有4个,故选:D【点睛】本题主要考查的是角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.B解析:B【解析】【分析】延长AP 交BC 于点D ,构造出()ABP DBP ASA ≅,得AP DP =,再根据三角形等底同高面积相等,得到12BPC ABC S S =.【详解】 解:如图,延长AP 交BC 于点D ,∵BP 是ABC ∠的角平分线,∴1302ABP DBP ABC ∠=∠=∠=︒, ∵60BAP ∠=︒,∴18090BPA BAP ABP ∠=︒-∠-∠=︒,∴18090BPD BPA ∠=︒-∠=︒, 在ABP △和DBP 中,ABP DBP BP BP BPA BPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ABP DBP ASA ≅,∴AP DP =,根据三角形等底同高,12ABP DBP ABD SS S ==,12ACP DCP ACD S S S ==, ∴()211122BPC DBP DCP ABD ACD ABC S S S S S S cm =+=+==.故选:B .【点睛】本题考查全等三角形的性质和判定,角平分线的性质,解题的关键是作辅助线构造全等三角形.9.D解析:D【解析】试题分析:∵△ABD 、△BCE 为等边三角形,∴AB=DB ,∠ABD=∠CBE=60°,BE=BC ,∴∠ABE=∠DBC ,∠PBQ=60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠BDC+∠BCD=180°﹣60°﹣60°=60°,∴∠DMA=∠BAE+∠BCD=∠BDC+∠BCD=60°,∴②正确;在△ABP和△DBQ中,,∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形,∴③正确;∵∠DMA=60°,∴∠AMC=120°,∴∠AMC+∠PBQ=180°,∴P、B、Q、M四点共圆,∵BP=BQ,∴BP BQ=,∴∠BMP=∠BMQ,即MB平分∠AMC;∴④正确;综上所述:正确的结论有4个;故选D.考点:等边三角形的性质与判定、全等三角形的判定与性质、四点共圆、圆周角定理.10.A解析:A【解析】试题解析:∵(a-b)(b-c)(c-a)=0,∴(a-b)=0或(b-c)=0或(c-a)=0,即a=b或b=c或c=a,因而三角形一定是等腰三角形.故选A.二、填空题11.5【解析】试题分析:中心角的度数=,考点:正多边形中心角的概念.解析:5【解析】试题分析:中心角的度数=360n︒36072n︒︒=,5n=考点:正多边形中心角的概念.12.3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.∵AE⊥BC,AE=4,△ABC的面积为12,∴×BC×AE=12,∴×BC×4=12,∴BC=6,∵AD是△A解析:3【解析】【分析】利用三角形的面积公式求出BC即可解决问题.【详解】∵AE⊥BC,AE=4,△ABC的面积为12,∴12×BC×AE=12,∴12×BC×4=12,∴BC=6,∵AD是△ABC的中线,∴CD=12BC=3,故答案为3.【点睛】本题考查三角形的面积,三角形的中线与高等知识,解题的关键是熟练掌握基本知识,属于中基础题.13.(a﹣b)2.【解析】试题分析:首先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=a2+b2﹣2ab=(a﹣b解析:(a﹣b)2.【解析】试题分析:首先利用完全平方公式去括号合并同类项,进而利用完全平方公式分解因式即可.解:(a+b)2﹣4ab=a2+2ab+b2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.考点:因式分解-运用公式法.14.﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得a解析:﹣1或0【解析】【分析】分式方程无解有两种情况:(1)原方程存在增根;(2)原方程约去分母化为整式方程后,整式方程无解,据此解答即可.【详解】解:去分母,得ax+a=2a+2,整理,得ax=a+2,当a=0时,方程无解;当a≠0时,x=2aa+.∵当x=﹣1时,分式方程无解,∴2aa+=﹣1,解得:a=﹣1.故答案为:﹣1或0.【点睛】本题考查了分式方程无解的情况,解题的关键是既要考虑分式方程有增根的情形,又要考虑整式方程无解的情形.15.-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x﹣5=0,求出x的值,代入整式方程即可求出m的值.【详解】分式方程去分母得:x=3x﹣15﹣m,由分式方程有增根解析:-5【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x ﹣5=0,求出x 的值,代入整式方程即可求出m 的值.【详解】分式方程去分母得:x =3x ﹣15﹣m ,由分式方程有增根,得到x ﹣5=0,即x =5,把x =5代入整式方程得:m =﹣5,故答案为:﹣5.【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 16.6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】=====∵21=2,22=4,23=8,24=16,25=32,26=64,27=128解析:6【解析】【分析】根据平方差公式化简所求,再根据2的n 次幂的变化规律即可求解.【详解】()()24323212121(1++⋯++)=()()()()22432212121211-++⋯++ =()()()44322121211-+⋯++=323221)2((1)1-++=64211-+=642∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…∴64÷4=16∴个位数为6故答案为:6.【点睛】本题考查了平方差公式的应用,解此题的关键是熟知平方差公式的特点,题型较好,难度适中,是一道不错的题目,通过此题能培养学生的观察能力.17.17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长解析:17cm 或19cm【解析】【分析】三角形的三边不等关系为:任意两边之差<第三边<任意两边之和.【详解】解:8-2<第三边<8+2⇒6<第三边<10,这个范围的奇数是7和9,所以三角形的周长是2+8+7=17(cm )或2+8+9=19(cm )故答案为:17cm 或19cm .【点睛】本题考查了三角形的三边关系,首先根据题意求出第三边,然后再求出周长,难度较小.18.【解析】【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A1=,∠A2=,∠A3=,据此找规律可求解.【详解】解:在△ABC 中,∠A=∠ACD﹣∠ABC=α,∵∠ABC 的平 解析:202012【解析】【分析】根据角平分线的定义及三角形的内角和的及外角的性质可得∠A 1=12α,∠A 2=212α,∠A 3=312α,据此找规律可求解. 【详解】 解:在△ABC 中,∠A =∠ACD ﹣∠ABC =α,∵∠ABC 的平分线与∠ACD 的平分线交于点A 1,∴∠A 1=∠A 1CD ﹣∠A 1BC =12(∠ACD ﹣∠ABC )=12∠A =12α, 同理可得∠A 2=12∠A 1=212α, ∠A 3=12∠A 2=312α, …以此类推,∠A 2020=202012α, 故答案为:202012α.【点睛】考查三角形内角和定理以及三角形外角的性质,熟练掌握和运用三角形外角的性质是解题的关键. 19.2或6.【解析】【分析】【详解】∵DE⊥AB,DH⊥AC,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE≌△ADH(HL),∴AH=A解析:2或6.【解析】【分析】【详解】∵DE ⊥AB ,DH ⊥AC ,∴∠AED=∠AHE=90°.在△ADE 和△ADH 中,∵AD=AD,DE=DH, ∴△ADE ≌△ADH(HL),∴AH=AE=4cm.∵F为AE的中点,∴AF=EF=2cm.在△FDE和△GDH中,∵DF=DG,DE=DH, ∴△FDE≌△GDH(HL),∴GH=EF=2cm.当点G在线段AH上时,AG=AH-GH=4-2=2cm;当点G在线段HC上时,AG=AH+GH=4+2=6cm;故AG的长为2或6.20.29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边解析:29【解析】【分析】没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当5为腰长时,∵5+5<12,故不能组成三角形,当12为腰长时,边长分别为:5,12,12,∵5+12>12,故能组成三角形,故周长为:5+12+12=29;故答案为:29.【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,同时需要验证各种情况是否能构成三角形进行解答.三、解答题21.见解析.【解析】【分析】过A作AM⊥BC于M,根据等腰三角形三线合一的性质得出∠BAC=2∠BAM,由三角形外角的性质及等边对等角的性质得出∠BAC=2∠D,则∠BAM=∠D,根据平行线的判定得出DE∥AM,进而得到DE⊥BC.【详解】证明:如图,过A作AM⊥BC于M,∵AB=AC,∴∠BAC=2∠BAM,∵AD=AE,∴∠D=∠AED,∴∠BAC=∠D+∠AED=2∠D,∴∠BAC=2∠BAM=2∠D,∴∠BAM=∠D,∴DE∥AM,∵AM⊥BC,∴DE⊥BC.【点睛】考查了等腰三角形的性质,三角形外角的性质,平行线的判定等知识,难度适中.准确作出辅助线是解题的关键.22.(1)见解析;(2)证明见解析.【解析】【分析】(1)根据题意进行作图即可;(2)根据题意可证明△ACD≌△ECD,再利用全等的性质及等腰三角形“三线合一”的性质即可证明结论.【详解】解:(1)如图所示;(2)证明:由题意可知,AC=AD=AB ,CE=ED=AB ,∴AC=CE ,AD=DE ,又∵CD=CD ,∴△ACD ≌△ECD ,∴∠ACD=∠ECD ,又∵AC=CE ,∴CO 垂直平分AE ,∴l 垂直平分AE.【点睛】本题考查了作图及线段的垂直平分线,需熟练掌握全等三角形的判定及性质,等腰三角形的性质,学会应用“三线合一”证明线段的垂直平分线.23.(1)()()()x y a b a b -+-;(2)31x y =⎧⎨=-⎩【解析】【分析】(1)先提取公因式,再采用平方差公式继续分解.(2)根据加减法解方程即可求解.【详解】(1)()()22a x y b x y ---22()()x y a b =--()()()x y a b a b =-+-;(2)213211x y x y ①②+=⎧⎨-=⎩①+②,得412x =,解得:3x =,将3x =代入①,得321y +=,解得1y =-,所以方程组的解是31x y =⎧⎨=-⎩. 【点睛】本题考查了解二元一次方程组,提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.24.(1)65°;(2)见解析【解析】【分析】(1)运用三角形内角和定理先求出∠C 的度数,再应用平行线性质求出∠PBF 的度数,最后应用三角形外角与内角的关系求出∠BPD .(2)先证明∠F+∠FEC=∠PBC ,再证∠PBC=2∠ABP .【详解】解:(1)在ABC ∆中,∵∠A=70°,∠A=∠ABC∴由内角和定理可得40C ∠=又∵//BP AC∴65BPD AEF C F ∠=∠=∠+∠=(2) 在ABC ∆中,∵∠A =∠ABC∴ 由内角和定理可得2180A C ∠+∠=同理, 在CEF ∆中由三角形内角和定理得180F FEC C ∠+∠+∠=∴2F FEC A ∠+∠=∠又∵//BP AC∴ABP A ∠=∠即2F FEC ABP ∠+∠=∠.【点睛】本题考查三角形内角和定理和三角形的外角等于和它不相邻的两个内角之和的综合题.用已知条件结合图形运用相关定理找角的关系是基本技能,是解本题的关键.25.(1)20;(2)33.【解析】【分析】(1)将已知两等式左右两边相加,即可求出所求代数式的值;(2)将已知两等式左右两边相减,即可求出所求代数式的值.【详解】(1)∵230m mn +=,210mn n -=-,∴222m mn n +-=(2m mn +)+(2mn n -)=30-10=20;(2)∵230m mn +=,210mn n -=-,∴227m n +-=(2m mn +)-(2mn n -)-7=30-(-10)-7=30+10-7=33.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.26.a 2-2b +4;3.【解析】【分析】首先根据整式的运算法则对算式进行化简,再把字母的值代入计算即可得到结果.【详解】解:原式=()2211221333223623b a b b a b ⎛⎫⨯-⨯-⨯--⨯-⨯-=-+-+ ⎪⎝⎭=a 2-2b +4,当a=-1,b=1时,原式=1-2+4=3.【点睛】本题考查整式的化简求值,熟练应用乘法对加法的分配律计算是解答本题的关键.27.3xy ,3-.【解析】【分析】先计算平方差公式、完全平方公式、整式的乘法,再计算整式的加减法,然后将x 、y 的值代入即可得.【详解】原式222222(2)x y xy y x xy y =-++--+, 2222222x y xy y x xy y =-++-+-,3xy =,将3x =,13y =-代入得:原式133333xy ⎛⎫==⨯⨯-=- ⎪⎝⎭.【点睛】本题考查了平方差公式、完全平方公式、整式的加减法与乘法,熟记公式和整式的运算法则是解题关键.28.(1)360;(2)540;(3)720;(4)180n .【解析】【分析】(1)过点E 作EH ∥AB ,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E 、F 分别作AB 的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E 、F 、G 分别作AB 的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n 刀,剪出n+1个角,那么这n+1个角的和是180n 度.【详解】(1)过E 作EH ∥AB (如图②).∵原四边形是长方形,∴AB ∥CD ,又∵EH ∥AB ,∴CD∥EH(平行于同一条直线的两条直线互相平行).∵EH∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EH,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.【点睛】本题主要考查了多边形的内角和,作平行线并利用两直线平行,同旁内角互补是解本题的关键,总结规律求解是本题的难点.29.83°.【解析】试题分析:由DF⊥AB,在Rt△BDF中可求得∠B;再由∠ACD=∠A+∠B可求得.试题解析:∵DF⊥AB,∴∠B+∠D=90°,∴∠B=90°-∠D=90°-42°=48°,∴∠ACD=∠A+∠B=35°+48°=83°.30.(1)x7﹣1;(2)x n+1﹣1;(3)2019312-.【解析】【分析】(1)仿照已知等式求出所求原式的值即可;(2)归纳总结得到一般性规律,写出即可;(3)原式变形后,利用得出的规律变形,计算即可求出值.【详解】(1)根据题中规律得:(x﹣1)(x6+x5+x4+x3+x2+x+1)=x7﹣1;(2)总结题中规律得:(x﹣1)(x n+x n﹣1+…+x+1)=x n+1﹣1;(3)原式=12×(3﹣1)×(32018+32017+…+32+3+1)=2019312-.【点睛】此题考查了平方差公式,规律型:数字的变化类,以及多项式乘多项式,熟练掌握公式及法则是解本题的关键.。

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是()A.B.C.D.2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是()A.B.C.D.3.把一根木条固定在墙面上,至少需要两枚钉子,这样做的数学依据是()A.两点之间线段最短 B.两点确定一条直线C.垂线段最短 D.两点之间直线最短4.观察下列图形,第一个图2条直线相交最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交最多有6个交点,…,像这样,则20条直线相交最多交点的个数是()A.171 B.190 C.210 D.3805.以下调查方式比较合理的是()A.为了解一沓钞票中有没有假钞,采用抽样调查的方式B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式C.为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式6.已知一个多项式是三次二项式,则这个多项式可以是()A .221x x -+B .321x +C .22x x -D .3221x x -+7.下列调查中,最适合采用全面调查(普查)的是( )A .对广州市某校七(1)班同学的视力情况的调查B .对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查8.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >09.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( )A .3.31×105B .33.1×105C .3.31×106D .3.31×107 10.如图为一无盖长方体盒子的展开图(重叠部分不计),可知该无盖长方体的容积为( )A .8B .12C .18D .20二、填空题11.已知关于x 的一元一次方程320202020x x n +=+①与关于y 的一元一次方程3232020(32)2020y y n --=--②,若方程①的解为x =2020,那么方程②的解为_____. 12.化简:2xy xy +=__________.13.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.14.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.15.将520000用科学记数法表示为_____.16.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.17.8点30分时刻,钟表上时针与分针所组成的角为_____度.18.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.19.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .20.若4a +9与3a +5互为相反数,则a 的值为_____.三、解答题21.当x 取何值时,式子13x -的值比x+12的值大﹣1? 22.如图,已知∠1=∠2,∠BAC=∠DEC ,试判断AD 与FG 的位置关系,并说明理由.23.解方程3142125x x -+=-. 24.解方程:(1)3524x x -=- (2)4132y y -+= 25.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由.(2)当,140A C ︒∠=∠∠=时,求D ∠的度数.26.计算:(1)()()3684-++-+;(2)()()231239-⨯+-÷.27.知图①,在数轴上有一条线段AB ,点,A B 表示的数分别是2-和11-.(1)线段AB =____________;(2)若M 是线段AB 的中点,则点M 在数轴上对应的数为________;(3)若C 为线段AB 上一点.如图②,以点C 为折点,将此数轴向右对折;如图③,点B 落在点A 的右边点B '处,若15AB B C ''=,求点C 在数轴上对应的数是多少? 28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种5 8 乙种 9 13(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?29.用尺规作图按下列语句画图:(1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.C解析:C【解析】【分析】根据余角与补角的性质进行一一判断可得答案..【详解】解:A,根据角的和差关系可得∠α=∠β=45o;B,根据同角的余角相等可得∠α=∠β;C,由图可得∠α不一定与∠β相等;D,根据等角的补角相等可得∠α=∠β.故选C.【点睛】本题主要考查角度的计算及余角、补角的性质,其中等角的余角相等,等角的补角相等. 3.B解析:B【解析】因为两点确定一条直线,所以把一根木条固定在墙面上,至少需要两枚钉子故选B. 4.B解析:B【解析】分析:由于第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,由此得到3=1+2,6=1+2+3,那么第四个图5条直线相交,最多有1+2+3+4=10个,以此类推即可求解.详解:∵第一个图2条直线相交,最多有1个交点,第二个图3条直线相交最多有3个交点,第三个图4条直线相交,最多有6个,而3=1+2,6=1+2+3,∴第四个图5条直线相交,最多有1+2+3+4=10个,∴20条直线相交,最多交点的个数是1+2+3+…+19=(1+19)×19÷2=190.故选B.点睛:此题主要考查了平面内直线相交时交点个数的规律,解题时首先找出已知条件中隐含的规律,然后根据规律计算即可解决问题.5.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6.B解析:B【解析】A. 2x2x1-+是二次三项式,故此选项错误;B. 3+是三次二项式,故此选项正确;2x1C. 2x2x-是二次二项式,故此选项错误;D. 32-+是三次三项式,故此选项错误;x2x1故选B.7.A解析:A【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.8.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.9.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.A解析:A【分析】根据观察、计算可得长方体的长、宽、高,根据长方体的体积公式,可得答案.【详解】解:由图可知长方体的高是1,宽是3-1=2,长是6-2=4,长方体的容积是4×2×1=8,故选:A .【点睛】本题考查了几何体的展开图.能判断出该几何体为长方体的展开图,并能根据展开图求得长方体的长、宽、高是解题关键.二、填空题11.y =﹣.【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程①的解为x =2020,∴关于y 的一元一次方程②中﹣(3y ﹣2)=2020,解解析:y =﹣20183. 【解析】【分析】根据题意得出x=﹣(3y ﹣2)的值,进而得出答案.【详解】解:∵关于x 的一元一次方程320202020x x n +=+①的解为x =2020, ∴关于y 的一元一次方程3232020(32)2020y y r --=--②中﹣(3y ﹣2)=2020, 解得:y =﹣20183. 故答案为:y =﹣20183. 【点睛】此题主要考查了一元一次方程的解,正确得出−(3y−2)的值是解题关键.12..【解析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:故填.【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .【解析】【分析】由题意根据合并同类项法则对题干整式进行化简即可.【详解】解:23.xy xy xy +=故填3xy .【点睛】本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.13.三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.14.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE=5÷2=2.5,∴ED=AD﹣AE=4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.15.2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数解析:2×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原解析:18×105【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:118000=1.18×105,故答案为1.18×105.17.75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.解析:75【解析】钟表8时30分时,时针与分针所成的角的角的度数为30×8-(6-0.5)×30=240-165=75度,故答案为75.18.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.19.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.20.-2【解析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解解析:-2【解析】【分析】利用相反数的性质求出a的值即可.【详解】解:根据题意得:4a+9+3a+5=0,移项合并得:7a=﹣14,解得:a=﹣2,故答案为:﹣2.【点睛】本题考查了解一元一次方程,以及相反数,熟练掌握运算法则是解本题的关键.三、解答题21.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得:x11x132-⎛⎫-+=-⎪⎝⎭,即x11x132---=-,去分母得到:2(x﹣1)﹣6x﹣3=﹣6,去括号得:2x﹣2﹣6x﹣3=﹣6,移项合并得:﹣4x=﹣1,解得:x=0.25,则x=0.25时,13x-的值比12x+的值大﹣1.【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.22.AD//FG,理由见解析.【分析】由∠BAC=∠DEC ,根据同位角相等,两直线平行可得AB//DE ,继而可得∠BAD=∠2,由等量代换可得∠1=∠BAD ,再根据同位角相等,两直线平行即可求得答案.【详解】AD//FG ,理由如下:∵∠BAC=∠DEC ,∴AB//DE ,∴∠BAD=∠2,∵∠1=∠2,∴∠1=∠BAD ,∴AD//FG.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定方法与性质定理是解题的关键. 23.x =﹣17. 【解析】【分析】解一元一次方程,先去分母,然后去括号,移项,合并同类项,最后系数化1.【详解】解:去分母得:5(3x ﹣1)=2(4x +2)﹣10去括号得:15x ﹣5=8x +4﹣10移项得:15x ﹣8x =4﹣10+5合并同类项得:7x =﹣1系数化为得:x =﹣17. 【点睛】本题考查解一元一次方程,掌握计算步骤,正确计算是解题关键.24.(1)1x =;(2)1y =.【解析】【分析】(1)先移项,再合并同类项,最后化系数为1即可;(2)先去分母,再去括号并移项与合并同类项,最后化系数为1即可.【详解】解:(1)3524x x -=-移项得:3425x x +=+合并同类项得:77x =化系数为1得:1x =.(2)4132y y -+= 去分母得:2(4)3(1)y y -=+去括号得:8233y y -=+移项得:2338y y --=-合并同类项得:55y -=-化系数为1得:1y =.【点睛】本题考查解一元一次方程,熟练掌握解一元一次方程的解题步骤是解题关键.25.(1)AD//BC ,理由见解析;(2)80︒【解析】【分析】(1)根据BE 平分∠ABC 可得∠2=∠CBE ,再根据∠1=∠2,可得∠1=∠CBE ,可判断AD 与BC 平行;(2)根据∠1=40°,可得∠EBC =∠2=∠1=40°,由此可以求出∠C =∠A =100°,再根据四边形的内角和求得∠D =80°.【详解】解:(1)AD//BC ,理由:∵BE 平分∠ABC∴∠2=∠CBE∵∠1=∠2∴∠1=∠CBE∴AD//BC (内错角相等,两直线平行) ;(2)∵∠1=40°,∴∠EBC =∠2=40°,∴∠A =180°−∠1−∠2=100°,∵∠A =∠C ,∴∠C =∠A =100°,∴∠D =360°−∠A−∠2−∠EBC−∠C =360°−100°−40°−40°−100°=80°.【点睛】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.26.(1)-1;(2)-1.【解析】【分析】(1)根据有理数的运算法则进行运算求解即可;(2)根据乘方的运算法则,将每一项进行化简,然后根据有理数的运算法则进行计算求解即可.【详解】(1)(-3)+6+(-8)+4;=-11+10=-1;(2)(-1)2×2+(-3)3÷9.=1×2+(-27)÷9=-1.【点睛】本题考查了有理数的运算法则,解决本题的关键正确理解题意,掌握有理数的运算法则. 27.(1)9;(2)-6.5;(3)-6.【解析】【分析】(1)根据数轴上两点间的距离公式解决即可;(2)根据中点的性质,计算即可;(3)设AB'为x,根据题AB'与B'C的关系,将B'C用x表示出来,然后根据AC、AB、BC的关系,将AB用x表示出来,计算出x的值,即可求出AC的值,然后根据点A的坐标求出点C在数轴上的对应的数即可.【详解】(1)AB的长度为2(11)9---=.(2)M是线段AB的中点,所以M点在数轴上对应的点为2(11)6.52-+-=-.(3)设AB'=x,∵AB'=15B'C,则B'C=5x.∴由题意BC=B'C=5x,∴AC=B'C-AB'=4x,∴AB=AC+BC=AC+B'C=9x,即99x=,∴1x=,∴AC=4,又∵点A表示的数为-2,∴-2-4=-6,∴点C表示的数为-6.【点睛】本题考查了数轴上两点间的距离,中点的性质,线段折叠问题,解决本题的关键是正确理解题意,熟练掌握中点的性质,能够根据线段折叠找到线段之间的内在关系.28.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x千克,则乙种水果(140-x)千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.29.(1)见详解;(2)见详解.【解析】【分析】(1)根据尺规作图过程画射线BC ,连接AC ,AB 即可;(2)根据尺规作图过程反向延长线段AB 至点D ,使得DA =AB 即可.【详解】解:如图所示:(1)(1)射线BC ,连接AC ,AB 即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .【解析】【分析】(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;(3)根据余角的性质,即可判定.【详解】(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522COD AOD AOC ∠=∠=∠=⨯︒=︒, ∵90DOE ∠=︒.∴902565COE DOE COD ∠=∠-∠=︒-︒=︒, 180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;(2)平分∵OD 平分AOC ∠, ∴12COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒∴∠DOC+∠COE=∠AOD+∠BOE=90° ∴∠COE=∠BOE∴OE 平分BOC ∠;(3)由题意,得∠DOE=∠DOC+∠COE=90° ∠AOD+∠BOE=90°,∠AOD=∠DOC ∴与COD ∠互余的角有:COE ∠、∠BOE【点睛】此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、压轴题1.如图1,在平面直角坐标系中,点A 的坐为()2,0,点D 的坐标为()0,2-,在ABC ∆中45ABC ACB ∠=∠=,//BC x 轴交y 轴于点M .(1)求OAD ∠和ODA ∠的度数;(2)如图2,在图1的基础上,以点B 为一锐角顶点作Rt BOE ∆,90BOE =∠,OE 交AC 于点P ,求证:OB OP =;(3)在第(2)问的条件下,若点B 的标为()2,4--,求四边形BOPC 的面积.2.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.3.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE的度数;(2)过点A作AH⊥CE于H,求证:2FH+FD=CE;(3)如图2,延长CE至点P,连接BP,∠BPC=30°,且CF=29CP,求PFAF的值.(提示:可以过点A作∠KAF=60°,AK交PC于点K,连接KB)4.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.5.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______. (2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.6.阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =7.如图,在等边ABC ∆中,线段AM 为BC 边上的中线.动点D 在直线AM 上时,以CD 为一边在CD 的下方作等边CDE ∆,连结BE .(1)求CAM ∠的度数;(2)若点D 在线段AM 上时,求证:ADC BEC ∆≅∆;(3)当动点D 在直线AM 上时,设直线BE 与直线AM 的交点为O ,试判断AOB ∠是否为定值?并说明理由.8.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE 于点M ,若=3AC MC ,请直接写出DB BC的值.9.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG =______.(直接写出结果) 10.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC 上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?11.已知AB //CD ,点E 是平面内一点,∠CDE 的角平分线与∠ABE 的角平分线交于点F . (1)若点E 的位置如图1所示.①若∠ABE =60°,∠CDE =80°,则∠F = °;②探究∠F 与∠BED 的数量关系并证明你的结论;(2)若点E 的位置如图2所示,∠F 与∠BED 满足的数量关系式是 .(3)若点E 的位置如图3所示,∠CDE 为锐角,且1452E F ∠≥∠+︒,设∠F =α,则α的取值范围为 .12.已知ABC ,P 是平面内任意一点(A 、B 、C 、P 中任意三点都不在同一直线上).连接 PB 、PC ,设∠PBA =s°,∠PCA =t°,∠BPC =x°,∠BAC =y°.(1)如图,当点 P 在ABC 内时,①若 y =70,s =10,t =20,则 x = ;②探究 s 、t 、x 、y 之间的数量关系,并证明你得到的结论.(2)当点 P 在ABC 外时,直接写出 s 、t 、x 、y 之间所有可能的数量关系,并画出相应的图形.13.已知:如图1,直线//AB CD ,EF 分别交AB ,CD 于E ,F 两点,BEF ∠,DFE ∠的平分线相交于点K .(1)求K ∠的度数;(2)如图2,BEK ∠,DFK ∠的平分线相交于点1K ,问1K ∠与K ∠的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作1BEK ∠,1DFK ∠的平分线相交于点2K ,作2BEK ∠,2DFK ∠的平分线相交于点3K ,依此类推,作n BEK ∠,n DFK ∠的平分线相交于点1n K +,请用含的n 式子表示1n K ∠+的度数.(直接写出答案,不必写解答过程)14.已知,如图1,直线l 2⊥l 1,垂足为A ,点B 在A 点下方,点C 在射线AM 上,点B 、C 不与点A 重合,点D 在直线11上,点A 的右侧,过D 作l 3⊥l 1,点E 在直线l 3上,点D 的下方.(1)l 2与l 3的位置关系是 ;(2)如图1,若CE 平分∠BCD ,且∠BCD =70°,则∠CED = °,∠ADC = °; (3)如图2,若CD ⊥BD 于D ,作∠BCD 的角平分线,交BD 于F ,交AD 于G .试说明:∠DGF =∠DFG ;(4)如图3,若∠DBE =∠DEB ,点C 在射线AM 上运动,∠BDC 的角平分线交EB 的延长线于点N ,在点C 的运动过程中,探索∠N :∠BCD 的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.15.小敏与同桌小颖在课下学习中遇到这样一道数学题:“如图(1),在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED EC =,试确定线段AE 与DB 的大小关系,并说明理由”.小敏与小颖讨论后,进行了如下解答:(1)取特殊情况,探索讨论:当点E 为AB 的中点时,如图(2),确定线段AE 与DB 的大小关系,请你写出结论:AE _____DB (填“>”,“<”或“=”),并说明理由.(2)特例启发,解答题目:解:题目中,AE 与DB 的大小关系是:AE _____DB (填“>”,“<”或“=”).理由如下:如图(3),过点E 作EF ∥BC ,交AC 于点F .(请你将剩余的解答过程完成) (3)拓展结论,设计新题:在等边三角形ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED EC =,若△ABC 的边长为1,2AE =,求CD 的长(请你画出图形,并直接写出结果).16.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.17.探究发现:如图①,在ABC 中,内角ACB ∠的平分线与外角ABD ∠的平分线相交于点E .(1)若80A ∠=︒,则E ∠= ;若50A ∠=︒,则E ∠= ;(2)由此猜想:A ∠与E ∠的关系为 (不必说明理由).拓展延伸:如图②,四边形ABCD 的内角DCB ∠与外角ABE ∠的平分线相交于点F ,//BF CD .(3)若125A ∠=︒,95D ∠=︒,求F ∠的度数,由此猜想F ∠与A ∠,D ∠之间的关系,并说明理由.18.已知//,MN GH 在Rt ABC 中,90,30ACB BAC ∠=︒∠=︒,点A 在MN 上,边BC 在GH 上,在Rt DEF △中,90,DFE ∠=︒边DE 在直线AB 上,45EDF ∠=︒; (1)如图1,求BAN ∠的度数;(2)如图2,将Rt DEF △沿射线BA 的方向平移,当点F 在M 上时,求AFE ∠度数; (3)将Rt DEF △在直线AB 上平移,当以A D F 、、为顶点的三角形是直角三角形时,直接写出FAN ∠度数.19.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.20.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)∠OAD=∠ODA=45°;(2)证明见解析;(3)18.【解析】【分析】(1)由等腰直角三角形的性质可求解;(2)通过“ASA ”可证得△ODB ≌△OAP ,进而可得BO=OP ;(3)过点P 作PF ⊥x 轴于点F ,延长FP 交BC 于N ,过点A 作AQ ⊥BC 于Q ,由“AAS ”可证△OBM ≌△OPF ,可得PF=BM=2,OF=OM=4,由面积和差关系可求四边形BOPC 的面积.【详解】(1)∵点A 的坐为(2,0),点D 的坐标为(0,-2),∴OA=OD ,∵∠AOD=90°,∴∠OAD=∠ODA=45°;(2)∵∠BOE=∠AOD=90°,∴∠BOD=∠AOP ,∵∠ABC=∠ACB=45°,∴∠BAC=90°,AB=AC ,∵∠OAD=∠ODA=45°,∴∠ODB=135°=∠OAP ,在△ODB 和△OAP 中,BOD AOP OD OAODB OAP ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ODB ≌△OAP (ASA ),∴BO=OP ;(3)如图,过点P 作PF ⊥x 轴于点F ,延长FP 交BC 于N ,过点A 作AQ ⊥BC 于Q ,∵BC ∥x 轴,AQ ⊥BC ,PF ⊥x 轴,∴AQ ⊥x 轴,PN ⊥BC ,∠AOM=∠BMO=90°,∴点Q 横坐标为2,∵∠BAC=90°,AB=AC ,AQ ⊥BC ,∴BQ=QC ,∵点B 的标为(-2,-4),∴BM=2,OM=4,BQ=4=QC ,∵PF ⊥x 轴,∴∠OFP=∠OMB=90°,在△OBM 和△OPF 中,BOM POF BMO OFP BO PO ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△OBM ≌△OPF (AAS ),∴PF=BM=2,OF=OM=4,∵BC ∥x 轴,AQ ⊥x 轴,NF ⊥x 轴,∴OM=AQ=FN=4,∴PN=2,∵∠PNC=90°,∠ACB=45°,∴∠ACB=∠CPN=45°,∴CN=PN=2,∵四边形BOPC 的面积=S △OBM +S 梯形OMNP +S △PNC ,∴四边形BOPC 的面积=12×2×4+12×4×(2+4)+12×2×2=18. 【点睛】本题考查了全等三角形的判定和性质、等腰直角三角形的性质、三角形的面积公式等知识,难度较大,添加恰当的辅助线构造全等三角形是解本题的关键.2.(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析 【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线,112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒; (2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩, ∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩, ∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°, ∴29BK CF PK CP ===, ∴79PF CP CF CP =-=, ∵45()99AF KF CP CF PK CP CP CP ==-+=-=∴779559CP PF AF CP == . 【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.4.(1)证明见解析;(2)①②③;(3)∠A +∠C =180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE ,即可得出结论;(2)同(1)的方法判断出△ABD ≌△ACE ,得出BD=CE ,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF ≌△ACO ,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF <CF ,进而判断出∠OBC >30°,即可得出结论;(3)先判断出△BDP 是等边三角形,得出BD=BP ,∠DBP=60°,进而判断出△ABD ≌△CBP (SAS ),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE ,∴∠BAC+∠CAD=∠DAE+∠CAD ,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ;(2)如图2,∵△ABC 和△ADE 是等边三角形,∴AB=AC ,AD=AE ,∠BAC=∠DAE=60°,∴∠BAD=∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩=== , ∴△ABD ≌△ACE ,∴BD=CE ,①正确,∠ADB=∠AEC ,记AD 与CE 的交点为G ,∵∠AGE=∠DGO ,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE ,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB 上取一点F ,使OF=OC ,∴△OCF 是等边三角形,∴CF=OC ,∠OFC=∠OCF=60°=∠ACB ,∴∠BCF=∠ACO ,∵AB=AC ,∴△BCF ≌△ACO (SAS ),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF ,要使OC=OE ,则有OC=12CE , ∵BD=CE ,∴CF=OF=12BD , ∴OF=BF+OD ,∴BF <CF ,∴∠OBC >∠BCF ,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC >30°,而没办法判断∠OBC 大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC 至P ,使DP=DB ,∵∠BDC=60°,∴△BDP 是等边三角形,∴BD=BP ,∠DBP=60°,∵∠BAC=60°=∠DBP ,∴∠ABD=∠CBP ,∵AB=CB ,∴△ABD ≌△CBP (SAS ),∴∠BCP=∠A ,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.5.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒.②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知, 11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=, 112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=; (3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.6.见解析【解析】【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.7.(1)30°;(2)证明见解析;(3)AOB ∠是定值,60AOB ∠=︒.【解析】【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出AC AC =,DC EC =,,60ACB DCE ∠=∠=︒,由等式的性质就可以BCE ACD ∠=∠,根据SAS 就可以得出ADC BEC ∆≅∆;(3)分情况讨论:当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,就可以求出结论;当点D 在线段AM 的延长线上时,如图2,可以得出ACD BCE ≅∆∆而有30CBE CAD ∠=∠=︒而得出结论;当点D 在线段MA 的延长线上时,如图3,通过得出ACD BCE ≅∆∆同样可以得出结论.【详解】(1)ABC ∆是等边三角形,60BAC ∴∠=︒.线段AM 为BC 边上的中线,12CAM BAC ∴∠=∠, 30CAM ∴∠=︒.(2)ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACD DCB DCB BCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=.在ADC ∆和BEC ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆;(3)AOB ∠是定值,60AOB ∠=︒,理由如下:①当点D 在线段AM 上时,如图1,由(2)可知ACD BCE ≅∆∆,则30CBE CAD ∠=∠=︒,又60ABC ∠=︒,603090CBE ABC ∴∠+∠=︒+︒=︒,ABC ∆是等边三角形,线段AM 为BC 边上的中线AM ∴平分BAC ∠,即11603022BAM BAC ∠=∠=⨯︒=︒ 903060BOA ∴∠=︒-︒=︒.②当点D 在线段AM 的延长线上时,如图2,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,ACB DCB DCB DCE ∴∠+∠=∠+∠,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,30CBE CAD ∴∠=∠=︒,同理可得:30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.③当点D 在线段MA 的延长线上时,ABC ∆与DEC ∆都是等边三角形,AC BC ∴=,CD CE =,60ACB DCE ∠=∠=︒,60ACD ACE BCE ACE ∴∠+∠=∠+∠=︒,ACD BCE ∠∠∴=,在ACD ∆和BCE ∆中AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ()ACD BCE SAS ∴∆≅∆,CBE CAD ∴∠=∠,同理可得:30CAM ∠=︒150CBE CAD ∴∠=∠=︒30CBO ∴∠=︒,∵30BAM ∠=︒,903060BOA ∴∠=︒-︒=︒.综上,当动点D 在直线AM 上时,AOB ∠是定值,60AOB ∠=︒.【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.8.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】【分析】 (1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题; (3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠, DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆, CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H .90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =,BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =,EHM BCM ∴∆≅∆,MH MC ∴=,2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =, ∴2233DB a BC a ==.【点睛】 本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法. 9.(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF≌△ECA,△GDF≌△GCB,∴CG=GD,AD=CE=7,∴CG=DG=1.5,∴4 1.5111.53 AGCG+==,同理,当点E在线段BC上时,4 1.551.53 AGCG-==,故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.10.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.11.(1)①70;②∠F =12∠BED ,证明见解析;(2)2∠F+∠BED =360°;(3)3045α︒≤<︒ 【解析】【分析】(1)①过F 作FG//AB ,利用平行线的判定和性质定理得到∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,利用角平分线的定义得到∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF ),求得∠ABF+∠CDF=70︒,即可求解; ②分别过E 、F 作EN//AB ,FM//AB ,利用平行线的判定和性质得到∠BED=∠ABE+∠CDE ,利用角平分线的定义得到∠BED=2(∠ABF+∠CDF ),同理得到∠F=∠ABF+∠CDF ,即可求解;(2)根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG+∠CDE=180°,再结合①的结论即可说明∠BED 与∠BFD 之间的数量关系;(3)通过对1452E F ∠≥∠+︒的计算求得30α≥︒,利用角平分线的定义以及三角形外角的性质求得45α<︒,即可求得3045α︒≤<︒.【详解】(1)①过F 作FG//AB ,如图:∵AB ∥CD ,FG ∥AB ,∴CD ∥FG ,∴∠ABF=∠BFG ,∠CDF=∠DFG ,∴∠DFB=∠DFG+∠BFG=∠CDF+∠ABF ,∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∴∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF )=60︒+80︒=140︒,∴∠ABF+∠CDF=70︒,∴∠DFB=∠ABF+∠CDF=70︒,故答案为:70;②∠F=12∠BED , 理由是:分别过E 、F 作EN//AB ,FM//AB ,∵EN//AB ,∴∠BEN=∠ABE ,∠DEN=∠CDE ,∴∠BED=∠ABE+∠CDE ,∵DF 、BF 分别是∠CDE 的角平分线与∠ABE 的角平分线,∴∠ABE=2∠ABF ,∠CDE=2∠CDF ,即∠BED=2(∠ABF+∠CDF );同理,由FM//AB ,可得∠F=∠ABF+∠CDF ,∴∠F=12∠BED ; (3)2∠F+∠BED=360°.如图,过点E 作EG ∥AB ,则∠BEG+∠ABE=180°,∵AB ∥CD ,EG ∥AB ,∴CD ∥EG ,∴∠DEG+∠CDE=180°,∴∠BEG+∠DEG=360°-(∠ABE+∠CDE ),即∠BED=360°-(∠ABE+∠CDE ),∵BF 平分∠ABE ,∴∠ABE=2∠ABF ,∵DF 平分∠CDE ,∴∠CDE=2∠CDF ,∠BED=360°-2(∠ABF+∠CDF ),由①得:∠BFD=∠ABF+∠CDF ,∴∠BED=360°-2∠BFD ,即2∠F+∠BED=360°;(3)∵1452E F ∠≥∠+︒,∠F =α, ∴2452αα≥+︒,解得:30α≥︒,如图,∵∠CDE 为锐角,DF 是∠CDE 的角平分线,∴∠CDH=∠DHB 190452<⨯︒=︒,∴∠F <∠DHB 45<︒,即45α<︒,∴3045α︒≤<︒,故答案为:3045α︒≤<︒.【点睛】本题考查了平行线的性质、角平分线的定义以及三角形外角性质的应用,在解答此题时要注意作出辅助线,构造出平行线求解.12.(1)①100;②x=y+s+t ;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t .利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t .理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC ,∴x=y+s+t .(2)s 、t 、x 、y 之间所有可能的数量关系:如图1:s+x=t+y ;如图2:s+y=t+x ;如图3:y=x+s+t ;如图4:x+y+s+t=360°;如图5:t=s+x+y ;如图6:s=t+x+y ;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)90︒;(2)12K K ∠∠=,证明见解析;(3)111902n n K ∠++=⨯︒ 【解析】【分析】(1) 过 K 作KG ∥AB ,交 EF 于 G ,证出//AB CD ∥KG ,得到BEK EKG ∠∠=,GKF KFD ∠∠=,根据角平分线的性质及平行线的性质得到()2180BEK DFK ∠∠+=,即可得到答案;(2)根据角平分线的性质得到1112BEK KEK KEB ∠∠∠==,1112KFK DFK DFK ∠∠∠==,根据90BEK KFD ∠∠+=求出1145KEK KFK ∠∠+=,根据()()111180K KEF EFK KEK KFK ∠∠∠∠∠=-+-+求出答案;(3)根据(2)得到规律解答即可.【详解】(1) 过 K 作KG ∥AB ,交 EF 于 G ,∵//AB CD ,∴//AB CD ∥KG ,BEK EKG ∠∠∴=,GKF KFD ∠∠=,EK ,FK 分别为BEF ∠与EFD ∠的平分线, BEK FEK ∠∠∴=,EFK DFK ∠∠=,∵//AB CD ,180BEK FEK EFK DFK ∠∠∠∠∴+++=,()2180BEK DFK ∠∠∴+=,90BEK DFK ∠∠∴+=,则 90EKF EKG GKF ∠∠∠=+=;(2) 12K K ∠∠=,理由为:BEK ∠,DFK ∠的平分线相交于点1K ,1112BEK KEK KEB ∠∠∠∴==,1112KFK DFK DFK ∠∠∠==, 180BEK FEK EFK DFK ∠∠∠∠+++=,即 ()2180BEK KFD ∠∠+=, 90BEK KFD ∠∠∴+=,1145KEK KFK ∠∠∴+=,()()11118045K KEF EFK KEK KFK ∠∠∠∠∠∴=-+-+=,12K K ∠∠∴=;(3)由(2)知90K ∠=;1119022K K ∠∠==⨯ 同理可得2112K K ∠∠==14K ∠1904=⨯, ∴111902n n K ∠++=⨯. 【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.14.(1)互相平行;(2)35,20;(3)见解析;(4)不变,12 【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l 2⊥l 1,l 3⊥l 1,∴l 2∥l 3,即l 2与l 3的位置关系是互相平行,故答案为:互相平行;(2)∵CE 平分∠BCD ,∴∠BCE =∠DCE =12∠BCD , ∵∠BCD =70°,∴∠DCE =35°,∵l 2∥l 3,∴∠CED =∠DCE =35°,∵l 2⊥l 1,∴∠CAD =90°,∴∠ADC =90°﹣70°=20°;故答案为:35,20;(3)∵CF 平分∠BCD ,∴∠BCF =∠DCF ,∵l 2⊥l 1,∴∠CAD =90°,∴∠BCF+∠AGC =90°,∵CD ⊥BD ,∴∠DCF+∠CFD =90°,∴∠AGC =∠CFD ,∵∠AGC =∠DGF ,∴∠DGF =∠DFG ;(4)∠N :∠BCD 的值不会变化,等于12;理由如下: ∵l 2∥l 3,∴∠BED =∠EBH ,∵∠DBE =∠DEB ,∴∠DBE =∠EBH ,∴∠DBH =2∠DBE ,∵∠BCD+∠BDC =∠DBH ,∴∠BCD+∠BDC =2∠DBE ,∵∠N+∠BDN =∠DBE ,∴∠BCD+∠BDC =2∠N+2∠BDN ,∵DN 平分∠BDC ,∴∠BDC =2∠BDN ,∴∠BCD =2∠N ,∴∠N :∠BCD =12. 【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.15.(1)AE DB =,理由详见解析;(2)AE DB =,理由详见解析;(3)3或1【解析】【分析】(1)根据等边三角形的性质、三线合一的性质证明即可;(2)根据等边三角形的性质,证明△EFC ≌△DBE 即可;(3)注意区分当点E 在AB 的延长线上时和当点E 在BA 的延长线上时两种情况,不要遗漏.【详解】解:(1)AE DB =,理由如下: ED EC =,EDC ECD ∴∠=∠∵△ABC 是等边三角形,60ACB ABC ∠=∠=︒∴,点E 为AB 的中点,1302ECD ACB ∴︒∠=∠=,30EDC ∠=︒∴,30D DEB ∠=∠=︒∴, DB BE ∴=,AE BE =,AE DB ∴=;故答案为:=;(2)AE DB =,理由如下:如图3:∵△ABC 为等边三角形,且EF ∥BC ,60AEF ABC ∠=∠=︒∴,60AFE ACB ∠=∠=︒,FEC ECB ∠=∠;120EFC DBE ∠=∠=︒∴;ED EC =,D ECB ∴∠=∠,D FEC ∠=∠,在△EFC 与△DBE 中,FEC D EFC DBE EC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△EFC ≌△DBE (AAS ),EF DB ∴=60AEF AFE ∠=∠=︒,∴△AEF 为等边三角形,AE EF ∴=,AE BD ∴=.(3)①如图4,当点E 在AB 的延长线上时,过点E 作EF ∥BC ,交AC 的延长线于点F :则DCE CEF ∠=∠,DBE AEF ∠=∠;ABC AEF ∠=∠,ACB AFE ∠=∠;∵△ACB 为等边三角形,60ABC ACB ∴∠=∠=︒,60AEF AFE ∴∠=∠=︒,60DBE ABC ∠=∠=︒,DBE EFC ∴∠=∠;而ED EC =,D DCE ∴∠=∠,D CEF ∠=∠;在△FEC 和△BDE 中,FEC D EFC DBE EC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FEC ≌△BDE (AAS ),EF BD ∴=;∵△AEF 为等边三角形,2AE EF ∴==,2BD EF ==,123CD ∴=+=;②如图5,当点E 在BA 的延长线上时,过点E 作EF ∥BC ,交CA 的延长线于点F :类似上述解法,同理可证:2DB EF ==,1BC =,211CD =-=∴.【点睛】本题考查等边三角形的性质、全等三角形的判定和性质.熟练掌握等边三角形的性质,构造合适的全等三角形是解题的关键.16.(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC ,CE=CD ,∠ACB=∠DCE=60°,进而得出∠BCE=∠ACD ,判断出BCE ACD ≌(SAS ),即可得出结论;(2)①同(1)的方法判断出≌ACD BCE (SAS ),ABD CBF ≌(SAS ),即可得出结论; ②先判断出∠APB=60°,∠APC=60°,在PE 上取一点M ,使PM=PC ,证明CPM △是等边三角形, 进而判断出PCD MCE ≌(SAS ),即可得出结论.【详解】(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD,即∠ACD=∠BCE,ACD BCE(SAS),∴≌∴AD=BE,≌(SAS),同理:ABD CBF∴AD=CF,即AD=BE=CF;②解:结论:PB+PC+PD=BE,理由:如图2,AD与BC的交点记作点Q,则∠AQC=∠BQP,ACD BCE,由①知,≌∴∠CAD=∠CBE,在ACQ中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在BPQ中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∴∠=︒∠CPD=120°,60,CPE在PE上取一点M,使PM=PC,△是等边三角形,∴CPM==,∠PCM=∠CMP=60°,∴CP CM PM∴∠CME=120°=∠CPD,△是等边三角形,∵CDE∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,≌(SAS),∴PCD MCE∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【点睛】此题是三角形综合题,主要考查了三角形的内角和定理,等边三角形的性质和判定,全等三角形的判定和性质,构造出全等三角形是解本题的关键.17.(1)40°25°;(2)12∠=∠E A (或2E ∠=∠A)(3)F ∠=()1902A D ∠+∠-︒ 【解析】【分析】 (1)先根据两角平分线写出对应的等式关系,再分别写出两个三角形内角和的等式关系,最后联立两等式化解,将A ∠的角度带入即可求解;(2)由(1)可得,即可求解;(3)在DCB ∠与ABE ∠的平分线相交于点F ,可知1==2BCF DCF BCD ∠∠∠12EBF ABE ∠=∠,又因为//BF CD ,两直线平行内错角相等,得出F DCF ∠=∠,再根据三角形一外角等于不相邻的两个内角的和,得出+EBF F BCF ∠=∠∠,再由四边形的内角和定理得出++360ABC BCD A D ∠+∠∠∠=,最后在FBC 中:++180F FBC BCF ∠∠∠=,代入整理即可得出结论.【详解】解:(1)由题可知:BE 为DBA ∠的角平分线,CE 为BCA ∠的角平分线,∴DBA ∠=2EBA ∠=2EBD ∠,BCA ∠=2BCE ∠,∴1802ABC EBA ∠=-∠,三角形内角和等于180,∴在ABC 中:+180A ABC BCA ∠∠+∠=,即:+(1802)2180A EBA BCE ∠-∠+∠=,220A EBA BCE ∠-∠+∠=①,在EBC 中:+180E EBC BCE ∠∠+∠=,即:+180-180E EBA BCE ∠∠+∠=(),-0E EBA BCE ∠∠+∠=②,综上所述联立①②,由①-②×2可得 :22-2-0A EBA BCE E EBA BCE ∠-∠+∠∠∠+∠=(),22-2+2-20A EBA BCE E EBA BCE ∠-∠+∠∠∠∠=,-20A E ∠∠=,1=2E A ∠∠, 当80A =∠,则E ∠=40;当50A ∠=,则E ∠=25;故答案为40,25;(2)由(1)知:12∠=∠E A (或2A E ∠=∠); (3)∵DCB ∠与ABE ∠的平分线相交于点F ,。

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案

初三数学毕业考试数学试卷含详细答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .33.如图,已知,,A O B 在一条直线上,1∠是锐角,则1∠的余角是( )A .1212∠-∠B .132122∠-∠C .12()12∠-∠D .21∠-∠4.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠5.下列方程是一元一次方程的是( ) A .213+x =5x B .x 2+1=3x C .32y=y+2 D .2x ﹣3y =16.某个数值转换器的原理如图所示:若开始输入x 的值是1,第1次输出的结果是4,第2次输出的结果是2,依次继续下去,则第2020次输出的结果是( )A .1010B .4C .2D .1 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1B .m=2,n=0C .m=4,n=1D .m=4,n=08.下列调查中,最适合采用全面调查(普查)的是( ) A .对广州市某校七(1)班同学的视力情况的调查 B .对广州市市民知晓“礼让行人”交通新规情况的调查 C .对广州市中学生观看电影《厉害了,我的国》情况的调查 D .对广州市中学生每周课外阅读时间情况的调查 9.下列等式的变形中,正确的有( ) ①由5 x =3,得x =53;②由a =b ,得﹣a =﹣b ;③由﹣x ﹣3=0,得﹣x =3;④由m =n ,得mn=1. A .1个B .2个C .3个D .4个10.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题11.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 12.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.13.定义一种对正整数n 的“C 运算”:①当n 为奇数时,结果为3n +1;②当n 为偶数时,结果为2k n (其中k 是使2kn为奇数的正整数)并且运算重复进行,例如,n =66时,其“C运算”如下:若n =26,则第2019次“C 运算”的结果是_____.14.单项式22ab 的系数是________.15.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y -++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).16.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______. 17.若α与β互为补角,且α=50°,则β的度数是_____.18.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.19.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.20.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题21.计算(1(2)22.某学校七年级举行“每天锻炼一小时,健康生活一辈子”为主题的一分钟跳绳大赛,校团委组织了全级1000名学生参加为了解本次大赛的成绩,校团委随机抽取了其中100名学生的成绩作为样本进行统计,制成如下不完整的统计图表根据所给信息,解答下列问题;(1)m=______,n=______. (2)补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优”,请你估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有多少人.80≤x <90 m 35% 90≤x≤10025n23.如图,已知180AOB ∠=︒,射线ON .()1请画出BON ∠的平分线OC ;()2如果70AON ∠=︒,射线OA OB 、分别表示从点O 出发东、西两个方向,那么射线ON 方向,射线OC 表示 方向.()3在()1的条件下,当60AON ∠=︒时,在图中找出所有与AON ∠互补的角,这些角是_ .24.滴滴快车是一种便捷的出行工具,其计价规则如图:(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费 元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费 元;(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?25.计算(1)()547-- (2) 213(2)()24-⨯-26.已知:∠AOD=150°,OB ,OM ,ON 是∠AOD 内的射线.(1)如图1,若OM 平分∠AOB ,ON 平分∠BOD .当射线OB 绕点O 在∠AOD 内旋转时, ∠MON= °;(2)OC 也是∠AOD 内的射线,如图2,若∠BOC=m°,OM 平分∠AOC ,ON 平分∠BOD , 求∠MON 的大小(用含m 的式子表示);(3)在(2)的条件下,若m=20,∠AOB=10°,当∠BOC 在∠AOD 内部绕O 点以每秒2°的速度逆时针旋转t 秒,如图3,若3∠AOM=2∠DON 时,求t 的值.27.化简:3(a 2﹣2ab )﹣2(﹣3ab+b 2) 28.解方程: (1)2235x x -=+ (2)2432142x x +-=- 29.陈老师打算购买装扮学校“六一”儿童节活动会场,气球种类有笑脸和爱心两种.两种气球的价格不同,但同一种类的气球价格相同.由于会场布置需要,购买了三束气球(每束4个气球),每束价格如图所示,()1若笑脸气球的单价是x 元,请用含x 的整式表示第②束、第③束气球的总价格; (要求结果化简后,填在方框内的相应位置上)()2若第②束气球的总价钱比第③束气球的总价钱少2元,求这两种气球的单价.30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】【详解】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点P与N之间,∴这四个数中绝对值最小的数对应的点是点N.故选B.2.C解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.3.C解析:C【解析】【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即12(∠1+∠2)=90°①;而∠1的余角为90°-∠1②,可将①中的90°所表示的12(∠1+∠2)代入②中,即可求得结果.【详解】解:由图知:∠1+∠2=180°,∴12(∠1+∠2)=90°,∴90°-∠1=12(∠1+∠2)-∠1=12(∠2-∠1).故选:C.【点睛】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.A解析:A【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.5.A解析:A 【解析】 【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案. 【详解】 解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程; C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程; 故选:A . 【点睛】解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.6.B解析:B 【解析】 【分析】根据题意和题目中的数值转换器可以写出前几次输出的结果,从而可以发现数字的变化规律,进而求得第2020次输出的结果. 【详解】 解:由题意可得, 当x =1时,第一次输出的结果是4,第二次输出的结果是2,第三次输出的结果是1,第四次输出的结果是4,第五次输出的结果是2,第六次输出的结果是1,第七次输出的结果是4,第八次输出的结果是2,第九次输出的结果是1,第十次输出的结果是4,……,∵2020÷3=673…1,则第2020次输出的结果是4,故选:B.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化特点,求出相应的数字.7.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.B解析:B【解析】①若5x=3,则x=35,故本选项错误;②若a=b,则-a=-b,故本选项正确;③-x-3=0,则-x=3,故本选项正确;④若m=n≠0时,则nm=1,故本选项错误.故选B.10.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题11.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.12.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.13.【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13解析:【解析】【分析】根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.【详解】解:由题意可得,当n=26时,第一次输出的结果为:13,第二次输出的结果为:40,第三次输出的结果为:5,第四次输出的结果为:16,第五次输出的结果为:1,第六次输出的结果为:4,第七次输出的结果为:1第八次输出的结果为:4…,∵(2019﹣4)÷2=2015÷2=1007…1,∴第2019次“C运算”的结果是1,故答案为:1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.14.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.15.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy-=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入16.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 17.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.18.5.【解析】【分析】利用有理数的减法运算即可求得答案.解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.19.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 20.-7【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题21.(1)2;(2)【解析】【分析】(1)根据算术平方根和立方根的定义化简各数,然后再进行减法运算即可;(2)先去括号,然后再进行加减运算即可.【详解】=5-3=2;(2)==【点睛】本题考查了实数的运算,熟练掌握相关的运算法则是解题的关键.22.(1)35,25%;(2)见解析;(3)600人【分析】(1)根据“频数=样本容量×频率”,直接求解即可;(2)求出m 的值,再补全频数分布直方图,即可;(3)由成绩在80分以上(包括80分)的百分比,即可求解.【详解】(1)∵被调查的总人数为100人,∴m=100×35%=35,n=25100×100%=25%, 故答案为:35,25%;(2)补全图形如下:(3)估计该校七年级参加本次比赛的1000名学生中成绩是“优”的有:1000×(35%+25%)=600(人).【点睛】本题主要考查频数分布直方图表,掌握“频数=样本容量×频率”,是解题的关键.23.(1)详见解析;(2)北偏东20°,北偏西35°;(3),BON AOC ∠∠【解析】【分析】(1)以点O 为圆心,以任意长为半径画弧,与OB 、ON 相交于两点,再分别以这两点为圆心,以大于它们12长度为半径画弧,两弧相交于一点,然后过点O 与这点作射线OC 即为所求;(2)过点O 作OE ⊥AB ,根据垂直的定义以及角平分线的定义求出∠EON 与∠COE ,然后根据方位角的定义解答即可;(3)根据∠AON=60°,利用平角的定义可得∠BON ,利用角平分线的定义求出∠CON=60°,然后求出∠AOC=120°从而得解.【详解】解:(1)如图所示,OC 即为∠BON 的平分线;(2)过点O作OE⊥AB,∵∠AON=70°,∴∠EON=90°-70°=20°,∴ON是北偏东20°,∵OC平分∠BON,∴∠CON=12(180°-70°)=55°,∴∠COE=∠CON-∠EON=55°-20°=35°,∴OC是北偏西35°;故答案为:北偏东20°;北偏西35°.(3)∵∠AON=60°,OC平分∠BON,∴∠CON=12(180°-60°)=60°,∴∠AOC=∠CON+∠AON=60°+60°=120°,∴∠AOC+∠AON=180°,又根据平角的定义得,∠BON+∠AON=180°,∴与∠AON互补的角有∠AOC,∠BON;故答案为:∠AOC,∠BON.【点睛】本题考查了复杂作图,角平分线的定义,方位角,以及余角与补角,比较简单,作角平分线是基本作图,一定要熟练掌握.24.(1)10,20.5,(2)需付车费65元;(3)行驶的里程为13公里【解析】【分析】(1)根据计价规则,列式计算,即可得到答案,(2)根据计价规则,列式计算,即可得到答案,(3)若行驶的里程为10公里,计算所需要付的车费,得出行驶的里程大于10公里,设行驶的里程为x公里,根据计价规则,列出关于x的一元一次方程,解之即可.【详解】解:(1)根据题意得:2.5×2+0.45×8=7.6<10,即小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费10元,2.3×5+0.3×20+0.3×(20﹣10)=11.5+6+3=20.5(元),即傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费20.5元,故答案为:10,20.5,(2)20×2.4+40×0.35+(20﹣10)×0.3=48+14+3=65(元),答:需付车费65元,(3)若行驶的里程为10公里,需要付车费:2.3×10+0.3×30=29<39.8,即行驶的里程大于10公里,设行驶的里程为x 公里,根据题意得:2.3x+0.3×30+0.3(x ﹣10)=39.8,解得:x =13,答:行驶的里程为13公里.【点睛】本题考查了一元一次方程的应用和有理数的混合运算,解题的关键:(1)正确掌握有理数的混合运算法则,(2)正确掌握有理数的混合运算法则,(3)正确找出等量关系,列出一元一次方程.25.(1)8;(2)-1.【解析】【分析】(1)先计算括号内的减法,再进一步计算减法可得;(2)先计算乘方和括号内的减法,再计算乘法可得.【详解】解:()1原式()53538=--=+=;()2原式1414⎛⎫=⨯-=- ⎪⎝⎭. 【点睛】本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.26.(1)75;(2)(75-12m)°;(3)t 为19秒. 【解析】【分析】(1)根据角平分线的定义,以及角度和的关系,可得∠MON=12∠AOD 即可得出;(2)根据角平分线的定义,得出∠MOC=12∠AOC,∠BON=12∠BOD,利用角度和与差的关系,得出∠MON=∠MOC+∠BON﹣∠BOC,角度代换即可得出结果;(3)由题意知,∠AOM=12(10+2t+20°),∠DON=12(150﹣10﹣2t)°,根据3∠AOM=2∠DON,列出方程求解即可.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠MOB=12∠AOB,∠BON=12∠BOD,∴∠MON=∠MOB+∠BON,=12∠AOB+12∠BOD,=12∠AOD,=12×150°,=75°,故答案为:75;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∠MON=∠MOC+∠BON﹣∠BOC=12∠AOC+12∠BOD﹣∠BOC=12(∠AOC+∠BOD)﹣∠BOC=12(∠AOB+∠BOC+∠BOD)﹣∠BOC=12(∠AOD+∠BOC)﹣∠BOC=12×(150°+m°)﹣m°=(75-12 m)°,故答案为:(75-12 m)°;(3)∵∠AOM=12∠AOC=12(10+2t+20°)=(15+t)°,∠DON=12∠BOD=12(150﹣10﹣2t )°=(70-t )°, 又∵3∠AOM=2∠DON ,∴3(15+t )=2(70﹣t ),得t=19.答:t 为19秒,故答案为:19秒.【点睛】本题考查了角平分线的定义,角度的和差关系式,一元一次方程的列式求解,掌握角平分线的定义是解题的关键.27.3a 2﹣2b 2.【解析】【分析】原式去括号合并即可得到结果.【详解】原式=()()223a -6ab --6ab+2b 22=3a 6ab 6ab 2b -+-223a -2b =【点睛】本题考查了整式的加减运算,熟练掌握整式加减运算法则是解题的关键.28.(1)x=-7;(2)x=1【解析】【分析】(1)直接移项合并同类项进而解方程得出答案;(2)直接去分母,再移项合并同类项进而解方程得出答案.【详解】(1) 解:2352x x -=+7x -=7x =-(2) 解:242(32)4x x +--=24644x x +-+=44x -=-1x =【点睛】本题主要考查解一元一次方程,正确掌握解一元一次方程的方法是解题关键.29.()1(42-8x )元,(28-4x )元;()2笑脸气球的单价是4元,爱心气球的单价是2元【解析】【分析】(1)若笑脸气球的单价是x 元,由第①束气球的总价钱为14元得出爱心气球的单价是(14-3x )元,根据每束气球的总价钱=笑脸气球的价钱+爱心气球的价钱即可求出第②束、第③束气球的总价格;(2)根据第②束气球的总价钱比第③束气球的总价钱少2元列出方程,解方程即可.【详解】解:(1)若笑脸气球的单价是x 元,则爱心气球的单价是(14-3x )元,根据题意得 第②束气球的总价格是:x+3(14-3x )=x+42-9x=42-8x (元);第③束气球的总价格是:2x+2(14-3x )=2x+28-6x=28-4x (元);(2)由题意得42-8x=28-4x-2,解得x=4,14-3x=2.答:笑脸气球的单价是4元,爱心气球的单价是2元.【点睛】本题考查了学生的观察能力和识图能力,列一元一次方程解实际问题的运用和数学整体思想的运用,解答本题时根据单价×数量=总价的数量关系建立方程是关键.30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇,由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.。

初三年级毕业考试数学试卷

初三年级毕业考试数学试卷

一、选择题(每题5分,共30分)1. 下列选项中,不是实数的是()A. √9B. -3C. 0.25D. π2. 已知 a = 2, b = -3,则 a + b 的值是()A. -1B. 1C. 0D. 53. 若x² - 5x + 6 = 0,则 x 的值为()A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -44. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 等边三角形C. 平行四边形D. 梯形5. 已知函数 y = 2x - 3,当 x = 4 时,y 的值为()A. 5B. 7C. 9D. 11二、填空题(每题5分,共25分)6. 已知 a = -2,b = 5,则 a - b 的值为 ________。

7. 若一个数的平方是 25,则这个数可能是 ________ 或 ________。

8. 在直角坐标系中,点 P(-3,2)关于 x 轴的对称点坐标为 ________。

9. 若一个等腰三角形的底边长为 6,腰长为 8,则这个三角形的周长为 ________。

10. 函数y = 3x² + 2x - 1 的图像开口方向为 ________,顶点坐标为 ________。

三、解答题(共45分)11. (10分)解下列方程:(1)2x - 5 = 3x + 1(2)5(x - 2) = 2(x + 3) - 412. (10分)已知 a, b 是实数,且 a + b = 5,ab = 6,求a² + b² 的值。

13. (15分)如图,等腰三角形 ABC 中,AB = AC,点 D 是 BC 边上的一个动点,AD = 4,AB = 6,求 AD 和 BC 的交点 E 到 BC 的距离 DE。

14. (10分)已知函数 y = -2x + 3,当 x = -1 时,求 y 的值。

15. (10分)已知二次函数y = ax² + bx + c(a ≠ 0)的图像开口向上,且顶点坐标为(1,-4),求该函数的表达式。

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案

初三数学毕业考试试卷含详细答案一、压轴题1.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式. 解析:(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC ≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C 作CM⊥AB,垂足为M∵AC=BC,CM⊥AB ∴AM=118422AB =⨯=(cm ) ∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm )∴118t 416222BCQ S BQ CM t ==⨯-⨯=- 因此,S 与t 之间的关系式为S=16-2t .【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.2.直线MN 与PQ 相互垂直,垂足为点O ,点A 在射线OQ 上运动,点B 在射线OM 上运动,点A 、点B 均不与点O 重合.(1)如图1,AI 平分BAO ∠,BI 平分ABO ∠,若40BAO ∠=︒,求AIB ∠的度数; (2)如图2,AI 平分BAO ∠,BC 平分ABM ∠,BC 的反向延长线交AI 于点D . ①若40BAO ∠=︒,则ADB =∠______度(直接写出结果,不需说理);②点A 、B 在运动的过程中,ADB ∠是否发生变化,若不变,试求ADB ∠的度数:若变化,请说明变化规律.(3)如图3,已知点E 在BA 的延长线上,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F ,在ADF 中,如果有一个角的度数是另一个角的4倍,请直接写出ABO ∠的度数.解析:(1)135°;(2)①45°;②不变;45°;(3)45°或36°【解析】【分析】灵活运用三角形的一个外角等于与其不相邻的两个内角和;(1)求出IBA ∠,IAB ∠,根据180()AIB IBA IAB ∠=-∠+∠,即可解决问题; (2)①求出CBA ∠,BAI ∠,根据CBA ADB BAD ∠=∠+∠,即可求出ADB ∠的值; ②根据D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠12AOB =∠即可得出结论; (3)首先证明90DAF ∠=,2ABO D ∠=∠,再分四种情况讨论①当4DAF D ∠=∠时,②4DAF F ∠=∠时, ③4F D ∠=∠时,④4D F ∠=∠时, 分别计算,符合题意得保留即可.【详解】解:(1)如图1中,MN PQ ⊥,90AOB ∴∠=,40BAO ∠=︒,∴905040ABO ∠=-=︒, 又AI 平分BAO ∠,BI 平分ABO ∠,∴1252IBA ABO ∠==,1202IAB OAB ∠==, ∴180()135AIB IBA IAB ∠=-∠+∠=,(2)如图2中:①MBA AOB BAD ∠=∠+∠(三角形的一个外角等于与其不相邻的两个内角和), 9040=+130=AI 平分BAO ∠,BC 平分ABM ∠,∴1652CBA MBA ∠=∠=,1202BAI BAO ∠=∠=, CBA ADB BAD ∠=∠+∠,∴45ADB ∠=;②结论:点A 、B 在运动过程中,45ADB ∠=, 理由:D CBA BAD ∠=∠-∠1122MBA BAO =∠-∠ 1()2MBA BAO =∠-∠12AOB =∠ 1902=⨯ 45=∴点A 、B 在运动过程中,ADB ∠的角度不变,45ADB ∠=;(3)如图3中,BAO ∠的角平分线AI 、OAE ∠的角平分线AF 与BOP ∠的角平分线所在的直线分别相交于的点D 、F , ∴12DAO BAO ∠=∠,12FAO EAP ∠=∠, 又BAO EAP ∠+∠为平角,∴11118090222DAF BAO EAP ∠=∠+∠=⨯=, ∴111222D POD DAO POB BAO ABO ∠=∠-∠=∠-∠=∠, ∴2ABO D ∠=∠, 又在AOB 中:AOB 90∠=,∴ABO ∠﹤90,在ADF 中,如果有一个角的度数是另一个角的4倍,则:①当4DAF D ∠=∠时,22.5D ∠=,此时245ABO D ∠=∠=,②4DAF F ∠=∠时,22.5F ∠=,67.5D ∠=,此时2135ABO D ∠=∠=(不符合题意舍去),③4F D ∠=∠时,18D ∠=,此时236ABO D ∠=∠=,④4D F ∠=∠时,72D ∠=,此时2144ABO D ∠=∠=(不符合题意舍去),综上所述,当45ABO ∠=或36时,在ADF 中,有一个角的度数是另一个角的4倍.【点睛】本题主要考查角平分线的定义,三角形内角和定理,以及分类讨论的数学思想的理解及应用,分类讨论时,没有讨论完全是本题的易错点.3.(1)如图1,ABC 和DCE 都是等边三角形,且B ,C ,D 三点在一条直线上,连接AD ,BE 相交于点P ,求证:BE AD =.(2)如图2,在BCD 中,若120BCD ∠<︒,分别以BC ,CD 和BD 为边在BCD 外部作等边ABC ,等边CDE △,等边BDF ,连接AD 、BE 、CF 恰交于点P . ①求证:AD BE CF ==;②如图2,在(2)的条件下,试猜想PB ,PC ,PD 与BE 存在怎样的数量关系,并说明理由.解析:(1)详见解析;(2)①详见解析;②PB PC PD BE ++=,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC ,CE=CD ,∠ACB=∠DCE=60°,进而得出∠BCE=∠ACD ,判断出BCE ACD ≌(SAS ),即可得出结论;(2)①同(1)的方法判断出≌ACD BCE (SAS ),ABD CBF ≌(SAS ),即可得出结论; ②先判断出∠APB=60°,∠APC=60°,在PE 上取一点M ,使PM=PC ,证明CPM △是等边三角形, 进而判断出PCD MCE ≌(SAS ),即可得出结论.【详解】(1)证明:∵ABC 和DCE 都是等边三角形,∴BC=AC ,CE=CD ,∠ACB=∠DCE=60°,∴∠ABC+∠ACE=∠DCE+∠ACE ,即∠BCE=∠ACD ,∴BCE ACD ≌(SAS ),∴BE=AD ;(2)①证明:∵ABC 和DCE 是等边三角形,∴AC=BC ,CD=CE ,∠ACB=∠DCE=60°,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠BCE ,∴≌ACD BCE (SAS ),∴AD=BE ,同理:ABD CBF ≌(SAS ),∴AD=CF ,即AD=BE=CF ;②解:结论:PB+PC+PD=BE ,理由:如图2,AD 与BC 的交点记作点Q ,则∠AQC=∠BQP ,由①知,≌ACD BCE ,∴∠CAD=∠CBE ,在ACQ 中,∠CAD+∠AQC=180°-∠ACB=120°,∴∠CBE+∠BQP=120°,在BPQ中,∠APB=180°-(∠CBE+∠BQP)=60°,∴∠DPE=60°,同理:∠APC=60°,∴∠=︒∠CPD=120°,CPE60,在PE上取一点M,使PM=PC,△是等边三角形,∴CPM==,∠PCM=∠CMP=60°,∴CP CM PM∴∠CME=120°=∠CPD,△是等边三角形,∵CDE∴CD=CE,∠DCE=60°=∠PCM,∴∠PCD=∠MCE,≌(SAS),∴PCD MCE∴PD=ME,∴BE=PB+PM+ME=PB+PC+PD.【点睛】此题是三角形综合题,主要考查了三角形的内角和定理,等边三角形的性质和判定,全等三角形的判定和性质,构造出全等三角形是解本题的关键.⊥于F,点A、C分别在4.数学活动课上,老师出了这样一个题目:“已知:MF NF∠-∠=︒.求证:FAB MCDNF和MF上,作线段AB和CD(如图1),使90AB CD”.//(1)聪聪同学给出一种证明问题的辅助线:如图2,过A 作//AG FM ,交CD 于G .请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明. (2)若点E 在直线CD 下方,且知30BED ∠=︒,直接写出ABE ∠和CDE ∠之间的数量关系.解析:(1)见解析;(2)30ABE CDE ∠-∠=︒【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:AGC MCD ∠=∠,90F GAF ∠+∠=︒,再证明MCD BAG ∠=∠,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A 作//AG FM ,交CD 于G ,AGC MCD ∴∠=∠,90F GAF ∠+∠=︒,FN FM ⊥,90F ∴∠=︒,90GAF ∴∠=︒,90FAB MCD ∠-∠=︒,FAB GAF MCD BAG ∴∠-∠=∠=∠,//AB CD ∴;(2)解:30ABE CDE ∠-∠=︒,理由如下:如图3,//AB CD ,BPD ABE ∴∠=∠,BPD CDE BED ∠=∠+∠,30BED ∠=︒,30BPD CDE ∴∠-∠=︒,∴30ABE CDE ∠-∠=︒.【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线的性质和判定是解决问题的关键.5.探索发现:111111111;;12223233434=-=-=-⨯⨯⨯…… 根据你发现的规律,回答下列问题:(1)145⨯= ,1(1)n n ⨯+= ; (2)利用你发现的规律计算:1111122334(1)n n ⋅++++⨯⨯⨯⨯+ (3)利用规律解方程:1111121(1)(1)(2)(2)(3)(3)(4)(4)(5)(5)x x x x x x x x x x x x x -++++=++++++++++ 解析:(1)1111,451n n --+;(2)n n 1+;(3)见解析. 【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到145⨯和1(1)n n ⨯+ (2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1)1114545=-⨯,111(1)1n n n n=-++;故答案为1111,451n n--+(2)原式=111111111+122334111nn n n n--+-++-=-=+++;(3)已知等式整理得:11111121 11245(5)xx x x x x x x x--+-++-=++++++所以,原方程即:11215(5)xx x x x--=++,方程的两边同乘x(x+5),得:x+5﹣x=2x﹣1,解得:x=3,检验:把x=3代入x(x+5)=24≠0,∴原方程的解为:x=3.【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点. 6.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,1 2【解析】【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=12BCD,∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;(4)∠N:∠BCD的值不会变化,等于12;理由如下:∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN =∠DBE ,∴∠BCD+∠BDC =2∠N+2∠BDN ,∵DN 平分∠BDC ,∴∠BDC =2∠BDN ,∴∠BCD =2∠N ,∴∠N :∠BCD =12. 【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.7.(概念认识)如图①,在∠ABC 中,若∠ABD =∠DBE =∠EBC ,则BD ,BE 叫做∠ABC 的“三分线”.其中,BD 是“邻AB 三分线”,BE 是“邻BC 三分线”.(问题解决)(1)如图②,在△ABC 中,∠A =70°,∠B =45°,若∠B 的三分线BD 交AC 于点D ,则∠BDC = °;(2)如图③,在△ABC 中,BP 、CP 分别是∠ABC 邻AB 三分线和∠ACB 邻AC 三分线,且BP ⊥CP ,求∠A 的度数;(延伸推广)(3)在△ABC 中,∠ACD 是△ABC 的外角,∠B 的三分线所在的直线与∠ACD 的三分线所在的直线交于点P .若∠A =m°,∠B =n°,直接写出∠BPC 的度数.(用含 m 、n 的代数式表示)解析:(1)85或100;(2)45°;(3)23m 或13m 或23m +13n 或13m -13n 或13n -13m 【解析】【分析】(1)根据题意可得B 的三分线BD 有两种情况,画图根据三角形的外角性质即可得BDC ∠的度数;(2)根据BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线,且BP CP ⊥可得135ABC ACB ,进而可求A ∠的度数;(3)根据B 的三分线所在的直线与ACD ∠的三分线所在的直线交于点P .分四种情况画图:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时;情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时;情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时;情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,再根据A m ∠=︒,B n ∠=︒,即可求出BPC ∠的度数.【详解】解:(1)如图,当BD 是“邻AB 三分线”时,701585BD C; 当BD 是“邻BC 三分线”时,7030100BD C; 故答案为:85或100;(2)BP CP , 90BPC ∴∠=︒,90PBC PCB , 又BP 、CP 分别是ABC ∠邻AB 三分线和ACB ∠邻AC 三分线, 23PBC ABC ,23PCB ACB ∠=∠, ∴229033ABC ACB , 135ABC ACB ,在ABC ∆中,180A ABC ACB ∠+∠+∠=︒ 180()45A ABCACB . (3)分4种情况进行画图计算:情况一:如图①,当BP 和CP 分别是“邻AB 三分线”、“邻AC 三分线”时,2233BPC A m ; 情况二:如图②,当BP 和CP 分别是“邻BC 三分线”、“邻CD 三分线”时,1133BPC A m ; 情况三:如图③,当BP 和CP 分别是“邻BC 三分线”、“邻AC 三分线”时,21213333BPC A ABC m n ; 情况四:如图④,当BP 和CP 分别是“邻AB 三分线”、“邻CD 三分线”时,①当m n >时,11113333BPC A ABC m n ∠=∠-∠=-; ②当m n <时,11113333P ABC A n m ∠=∠-∠=-. 【点睛】 本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质.注意要分情况讨论.8.(1)问题发现:如图1,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .①请直接写出∠AEB 的度数为_____;②试猜想线段AD 与线段BE 有怎样的数量关系,并证明;(2)拓展探究:图2, △ACB 和△DCE 均为等腰三角形,∠ACB =∠DCE =90°,点A 、D 、E 在同-直线上, CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数线段CM 、AE 、BE 之间的数量关系,并说明理由.解析:(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB和△DCE均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC, CD = CE,∠ACB =∠DCB =∠DCE-∠DCB,即∠ACD = ∠BCE,∴△ACD≌△BCE,∴AD = BE,∠BEC = ∠ADC=135°.∴∠AEB =∠BEC-∠CED =135°- 45°= 90°.在等腰直角△DCE中,CM为斜边DE上的高,∴CM =DM= ME,∴DE = 2CM.∴AE = DE+AD=2CM+BE.【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题.9.如图,△ABC是等边三角形,△ADC与△ABC关于直线AC对称,AE与CD垂直交BC的延长线于点E,∠EAF=45°,且AF与AB在AE的两侧,EF⊥AF.(1)依题意补全图形.(2)①在AE上找一点P,使点P到点B,点C的距离和最短;②求证:点D到AF,EF的距离相等.解析:(1)详见解析;(2)①详见解析;②详见解析.【解析】【分析】(1)本题考查理解题意能力,按照题目所述依次作图即可.(2)①本题考查线段和最短问题,需要通过垂直平分线的性质将所求线段转化为其他等量线段之和,以达到求解目的.②本题考查垂直平分线的判定以及全等三角形的证明,继而利用角的平分线性质即可得出结论.【详解】(1)补全图形,如图1所示(2)①如图2,连接BD,P为BD与AE的交点∵等边△ACD ,AE ⊥CD∴PC=PD,PC+PB 最短等价于PB+PD 最短故B,D 之间直线最短,点P 即为所求.②证明:连接DE ,DF .如图3所示∵△ABC ,△ADC 是等边三角形∴AC =AD ,∠ACB =∠CAD =60°∵AE ⊥CD∴∠CAE =12∠CAD =30° ∴∠CEA =∠ACB ﹣∠CAE =30°∴∠CAE =∠CEA∴CA =CE∴CD 垂直平分AE∴DA =DE∴∠DAE =∠DEA∵EF ⊥AF ,∠EAF =45°∴∠FEA =45°∴∠FEA =∠EAF∴FA =FE ,∠FAD =∠FED∴△FAD ≌△FED (SAS )∴∠AFD =∠EFD∴点D 到AF ,EF 的距离相等.【点睛】本题第一问作图极为重要,要求对题意有较深的理解,同时对于垂直平分线以及角平分线的定义要清楚,能通过题目文字所述转化为考点,信息转化能力需要多做题目加以提升.10.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由. 解析:(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解.【详解】(1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB ==(2,3)D ∴(2)设(,0)P a ,(2,)Q b①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q - ②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q - 综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.11.如图,若要判定纸带两条边线a ,b 是否互相平行,我们可以采用将纸条沿AB 折叠的方式来进行探究.(1)如图1,展开后,测得12∠=∠,则可判定a//b ,请写出判定的依据_________; (2)如图2,若要使a//b ,则1∠与2∠应该满足的关系是_________;(3)如图3,纸带两条边线a ,b 互相平行,折叠后的边线b 与a 交于点C ,若将纸带沿11A B (1A ,1B 分别在边线a ,b 上)再次折叠,折叠后的边线b 与a 交于点1C ,AB//11A B ,137BB AC ==,,求出1AC 的长.解析:(1)内错角相等,两直线平行;(2)∠1+2∠2=180°;(3)4或10【解析】【分析】(1)根据平行线的判定定理,即可得到答案;(2)由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,结合三角形内角和定理,即可得到答案;(3)分两种情况:①当B 1在B 的左侧时,如图2,当B 1在B 的右侧时,如图3,分别求出1AC 的长,即可得到答案.【详解】(1)∵12∠=∠,∴a ∥b (内错角相等,两直线平行),故答案是:内错角相等,两直线平行;(2)如图1,由折叠的性质得:∠3=∠4,若a ∥b ,则∠3=∠2,∴∠4=∠2,∵∠2+∠4+∠1=180°,∴∠1+2∠2=180°,∴要使a ∥b ,则1∠与2∠应该满足的关系是:∠1+2∠2=180°.故答案是:∠1+2∠2=180°;(3)①当B 1在B 的左侧时,如图2,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC- AA 1=7-3=4;②当B 1在B 的右侧时,如图3,∵AB//11A B ,a ∥b ,∴AA 1=BB 1=3,∴1AC =AC+AA 1=7+3=10.综上所述:1AC =4或10.【点睛】本题主要考查平行线的判定和性质定理,折叠的性质以及三角形的内角和定理,掌握“平行线间的平行线段长度相等”是解题的关键.12.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.解析:(1)HL;(2)见解析;(3)如图②,见解析;△DEF就是所求作的三角形,△DEF 和△ABC不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL”证明;(2)过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG和△FEH全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG和Rt△DFH全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC和△DEF全等;(3)以点C为圆心,以AC长为半径画弧,与AB相交于点D,E与B重合,F与C重合,得到△DEF与△ABC不全等;(4)根据三种情况结论,∠B不小于∠A即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL.(2)证明:如图①,分别过点C 、F 作对边AB 、DE 上的高CG 、FH ,其中G 、H 为垂足. ∵∠ABC 、∠DEF 都是钝角∴G 、H 分别在AB 、DE 的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG =∠FEH .在△BCG 和△EFH 中,∵∠CGB =∠FHE ,∠CBG =∠FEH ,BC =EF ,∴△BCG ≌△EFH .∴CG =FH .又∵AC =DF .∴Rt △ACG ≌△DFH .∴∠A =∠D .在△ABC 和△DEF 中,∵∠ABC =∠DEF ,∠A =∠D ,AC =DF ,∴△ABC ≌△DEF .(3)如图②,△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.13.在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 是ABC 的角平分线,DE AB ⊥于点E .(1)如图1,连接EC ,求证:EBC 是等边三角形;(2)如图2,点M 是线段CD 上的一点(不与点,C D 重合),以BM 为一边,在BM 下方作60BMG ∠=︒,MG 交DE 延长线于点G .求证:AD DG MD =+;(3)如图3,点N 是线段AD 上的点,以BN 为一边,在BN 的下方作60BNG ∠=︒,NG 交DE 延长线于点G .直接写出ND ,DG 与AD 数量之间的关系.解析:(1)证明见解析;(2)证明见解析;(3)结论:AD DG ND =-,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出60ABC ∠=︒,再根据角平分线的性质可得CD ED =,然后根据三角形的判定定理与性质可得BC BE =,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF MD =,连接MF ,先根据直角三角形的性质、等边三角形的判定得出MDF ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,F MDB MF MD FMG DMB ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证HDN ∆是等边三角形,再根据等边三角形的性质、角的和差得出,,H NDG NH ND HNB DNG ∠=∠=∠=∠,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)3,090A ACB ∠=︒∠=︒9060ABC A ∴∠=︒-∠=︒ BD 是ABC ∠的角平分线,DE AB ⊥CD ED ∴=在BCD ∆和BED ∆中,CD ED BD BD =⎧⎨=⎩()BCD BED HL ∴∆≅∆BC BE ∴=EBC ∴∆是等边三角形;(2)如图,延长ED 使得DF MD =,连接MF3,090A ACB ∠=︒∠=︒,BD 是ABC ∠的角平分线,DE AB ⊥60,ADE BDE AD BD ∴∠=∠=︒=60,18060MDF ADE MDB ADE BDE ∴∠=∠=︒∠=︒-∠-∠=︒MDF ∴∆是等边三角形,60MF DM F DMF ∴=∠=∠=︒60BMG ∠=︒DMF DM B M G G D M G ∴∠+∠=+∠∠,即FMG DMB ∠=∠在FMG ∆和DMB ∆中,60F MDB MF MD FMG DMB ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()FMG DMB ASA ∴∆≅∆GF BD ∴=,即DF DG BD +=AD DF DG MD DG ∴=+=+即AD DG MD =+;(3)结论:AD DG ND =-,证明过程如下:如图,延长BD 使得DH ND =,连接NH由(2)可知,60,18060,ADE HDN ADE BDE AD BD ∠=︒∠=︒-∠-∠=︒= HDN ∴∆是等边三角形,60NH ND H HND ∴=∠=∠=︒60BNG ∠=︒HND BND BND BNG ∠+∠=+∠∴∠,即N HNB D G ∠=∠在HNB ∆和DNG ∆中,60H NDG NH ND HNB DNG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()HNB DNG ASA ∴∆≅∆HB DG ∴=,即DH BD DG +=ND AD DG ∴+=即AD DG ND =-.【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.14.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接 BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.解析:(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C →B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.15.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 解析:(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG=GD ,AD=CE=7,∴CG=DG=1.5, ∴4 1.5111.53AG CG +==, 同理,当点E 在线段BC 上时,4 1.551.53AG CG -==, 故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.二、选择题16.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103B .3.84×104C .3.84×105D .3.84×106 解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】试题分析:384 000=3.84×105.故选C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°解析:C【解析】【分析】 根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.18.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =, 则可列出:()223x x +⨯=解得:4x =, 12BC AB =, 28AB x ∴==.故答案为:C.【点睛】本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.19.已知a+b=7,ab=10,则代数式(5ab+4a+7b)+(3a–4ab)的值为()A.49 B.59C.77 D.139解析:B【解析】【分析】首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.【详解】解:∵(5ab+4a+7b)+(3a-4ab)=5ab+4a+7b+3a-4ab=ab+7a+7b=ab+7(a+b)∴当a+b=7,ab=10时原式=10+7×7=59.故选B.20.如图,C为射线AB上一点,AB=30,AC比BC的14多5,P,Q两点分别从A,B两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB上沿AB方向运动,运动时间为t秒,M为BP的中点,N为QM的中点,以下结论:①BC=2AC;②AB=4NQ;③当PB=12BQ时,t=12,其中正确结论的个数是()A.0 B.1 C.2 D.3解析:C【解析】【分析】根据AC比BC的14多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】解:设BC=x,∴AC=14x+5∵AC+BC=AB∴x+14x+5=30,解得:x=20,∴BC=20,AC=10,∴BC=2AC,故①成立,∵AP=2t,BQ=t,当0≤t≤15时,此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点∴MB=12BP=15﹣t∵QM=MB+BQ,∴QM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当15<t≤30时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴BP=AP﹣AB=2t﹣30,∵M是BP的中点∴BM=12BP=t﹣15∵QM=BQ﹣BM=15,∵N为QM的中点,∴NQ=12QM=152,∴AB=4NQ,综上所述,AB=4NQ,故②正确,当0<t≤15,PB=12BQ时,此时点P在线段AB上,∴AP=2t,BQ=t∴PB=AB﹣AP=30﹣2t,∴30﹣2t=12t,∴t=12,当15<t≤30,PB=12BQ时,此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,∴PB=AP﹣AB=2t﹣30,∴2t﹣30=12t,t=20,不符合t>30,综上所述,当PB=12BQ时,t=12或20,故③错误;故选:C.【点睛】本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.21.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .592解析:C【解析】【分析】 由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项.【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++,第二行四个数分别为7,8,9,10x x x x ++++,第三行四个数分别为14,15,16,17x x x x ++++,第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C.【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.22.下列方程是一元一次方程的是( )A .213+x =5xB .x 2+1=3xC .32y =y+2D .2x ﹣3y =1 解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.【详解】解:A 、213+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;C 、32y=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三毕业考试数学试卷(命题:郎绍波)一、填空题(本大题共6个小题,每小题3分,满分18分)1.计算:(-2)2=.2.一种细菌的半径是0.000189 m ,用科学记数法表示这个数是 m . 3.函数y=1x+2中自变量x 的取值范围是 . 4.点P(3,-2)关于x 轴对称的点的坐标是 . 5.如图,已知AC=DB ,再添加一个适当的条件 ,使△ABC ≌△DCB . (只需填写满足要求的一个条件即可) 6.观察下列排列的等式:1×2-1=12,2×3-2=22,3×4-3=32,4×5-4=42,…….猜想:第n 个等式(n 为正整数)应为 .二、选择题(本大题共8个小题,每小题只有一个正确选项,每小题4分,满分32分)7.下列运算正确的是( )(A)a 2a 3=a 6 (B)(a 2)3=a 6 (C)a 6÷a 2=a 3 (D)a 6-a 2=a 4 8.下列图形中,是中心对称图形但不是轴对称图形的是( ) (A)等边三角形 (B)平行四边形 (C)等腰梯形 (D)圆ADBCO9.如图,四边形ABCD 内接于⊙O ,如果它的一个外角 ∠DCE=64°,那么∠BOD=( )(A)128° (B)100° (C)64° (D)32° 10.如图,∠1=∠2,则下列结论一定成立的是( ) (A) AB ∥CD (B) AD ∥BC (C) ∠B=∠D (D) ∠3=∠411.把a 3-ab 2分解因式的正确结果是( ) (A)(a+ab)(a -ab) (B)a(a 2-b 2) (C)a(a+b)(a -b) (D)a(a -b)2 12.对于函数y=x3,下列判断正确的是( ) (A)图象经过点(-1,3) (B)图象在第二、四象限 (C)图象所在的每个象限内,y 随x 的增大而减小 (D)不论x 为何值时,总有y>013.如果圆柱的底面半径为4cm ,母线长为5cm ,那么它的侧面积等于( ) (A )220cm (B )240cm (C )220cm π (D )240cm π 14.关于x 的一元二次方程01)12(2=-+++k x k x 根的情况是( ) (A )有两个不相等实数根 (B )有两个相等实数根 (C )没有实数根 (D )根的情况无法判定三、解答题(本大题共9个小题,满分70分)15.(本小题5分)计算:20180-│-2│+4+121+16.(本小题6分)解方程:212312=---x xx x17.(本小题8分)已知一个二次函数的图象经过点(0,0),(1,﹣3),(2,﹣8). (1)求这个二次函数的解析式; (2)写出它的对称轴和顶点坐标.18.(本小题6分)如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米. 一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?19.(本小题9分)在学校开展的综合初中活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图如图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加了评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件和2件作品获奖,问这两组哪组获奖率较高?1 6 11 16 21 26 31 日期(每组含最小日期,不含最大日期)20.(本小题8分)如图,AB是⊙O的直径,过A作⊙O的切线,在切线上截取AC=AB,连结OC 交⊙O于D,连结BD并延长交AC于E,⊙F是△ADE的外接圆,F在AE上.求证:(1)CD是⊙F的切线;(2)CD=AE.今年,我国政府为减轻农民负担,决定在5年内免去农业税.某乡今年人均上缴农业税25元,若两年后人均上缴农业税为16元,假设这两年降低的百分率相同.(1)求降低的百分率;(2)若小明家有4人,明年小明家减少多少农业税?(3)小明所在的乡约有6000农民,问该乡农民明年减少多少农业税.已知:△ABC中,AB=10(1)如图①,若点D、E分别是AC、BC边的中点,求DE的长;(2)如图②,若点A1、A2把AC边三等分,过A1、A2作AB边的平行线,分别交BC 边于点B1、B2,求A1B1+A2B2的值;(3)如图③,若点A1、A2、…、A10把AC边十一等分,过各点作AB边的平行线,分别交BC边于点B1、B2、…、B10.根据你所发现的规律,直接写出A1B1+A2B2+…+A10B10的结果.23.(本小题10分)已知:如图,在平面直角坐标系中,点C在y轴上,以C为圆心,4cm为半径的圆与x轴相交于点A、B,与y轴相交于D、E,且︵AB=︵BD.点P是⊙C上一动点(P点与A、B点不重合).连结BP、AP.(1)求∠BPA的度数;(2)若过点P的⊙C的切线交x轴于点G,是否存在点P,使△APB与以A、G、P为顶点的三角形相似?若存在,求出点P的坐标;若不存在,说明理由.初三毕业考试数学试卷参考答案一、填空题(每小题3分,共18分) 1.4 2.3.9×10-5 3.x≠-2 4.(3,2)5.AB=DC 或∠ACB=∠DBC 或OB=OC 或OA=OD 6.n(n+1)-n=n 2 二、选择题(每小题4分,共32分)7.B 8.B 9.A 10.B 11.C 12.C 13.D 14.A 三、解答题(本大题共9个小题,满分70分) 15.(本小题5分)20180-│-2│+4+121+=1-2+2+2-1=216.(本小题6分)2133221x x y x x y -===-3设, 则, 那么原方程为:y-y, 即:y 2-2y-3=0 , 解得y 1=3,y 2=-1 当y 1=3时,x=-1,当y 2=-1时,x=13 经检验,x 1= -1, x 2=13是原方程的根 ∴x 1= -1, x 2=1317.(本小题8分)(1)设这个二次函数的解析式为:y=ax 2+bx+c ,∵二次函数图象经过三点(0,0),(1,-3),(2,-8), ∴03428c a a b c a b c =⎧⎧⎪⎪++=-⎨⎨⎪⎪++=-⎩⎩=-1解得b=-2c=0∴这个二次函数的解析式为:y=-x 2-2x ;(2) ∵y=-x 2-2x=-(x+1)2+1 ∴这个二次函数的对称轴为x=-1,顶点坐标为(-1,1)18.(本小题6分)如图,设大树高为AB=10m ,小树高为CD=10m ,过C 点作CE ⊥AB 于E , 则EBDC 是正方形,连接AC ,∴EB=4m ,EC=8m ,AE=AB-EB=10-4=6m在Rt △AEC 中,10AC m ==19.(本小题9分)(1) 60件;(2)第四组交了18件; (3)第六组获奖率较高; 20.(本小题8分)(1)连结DF ,∵OA=OD ,∴∠OAD=∠ODA ,又∵FA=FD ,∴∠FAD=∠FDA ,∴∠BAC=∠FDO .又∵ AC 为⊙O 的切线,∴∠BAC=90°. ∴∠FDO=90°. 即:CD ⊥DF . ∴CD 是O F 的切线; (2) ∵DF ⊥CD ∴Rt △CDF ∽Rt △CAO ∴DF/CD=OA/AC 又∵AC=AB=2OA ∴DF/CD=OA/2OA=1/2 CD=2DF . ∵AE=2DF .∴CD=AE .CD21.(本小题9分)(1)设降低的百分率为x ,依题意有 解得x 1=0.2=20%,x 2 =1.8(舍去)(2)小明全家少上缴税 25×20%×4=20(元) (3)全乡少上缴税 6000×25×20%=30000(元)22.(本小题9分)(1)∵D 、E 分别是AC 、BD 的中点,且AB=10,∴DE=12AB=5. (2)设A 1B 1=x,则A 2B 2=2x. ∵A 1、A 2是AC 的三等分点,且A 1B 1∥A 2B 2∥AB ,∴A 2B 2是梯形A 1ABB 1的中位线,即: x+10=4x ,得x=103,∴A 1B 1+A 2B 2=10 [另解] 分别过B 1、B 2作B 1C 1∥CA ,作B 2C 2∥CA ,交AB 于C 1、C 2,则C 1、C 2是AB的三等分点,∴A 1B 1=AC 1=103,A 2B 2=1020332⨯=,∴A 1B 1+A 2B 2=10 (3)同理可得:A 1B 1+A 2B 2+…+A 10B 10=1020301001111111150++++= 23.(本小题10分)(1)∠BPA=60° 或∠BPA=120°;(2)设存在点P ,使△APB 与以点A 、G 、P 为顶点的三角形相似. ①当P 在弧EAD 上时,(图1) GP 切O C 于点P , ∴∠GPA=∠PBA 又∵∠GAP 是△ABP 的外角,∴∠GAP>∠BPA ,∠GA P>∠PBA .欲使△APB 与以点A 、G 、P 为顶点的三角形相似,须∠GAP=∠PAB=90° ∴BP 为⊙C 的直径.在Rt △PAB 中,∠BPA=60°,PB=8, ∴PA=4,AB=43 OA=23 ∴P(23,4).②当P 在弧EBD 上时,(图2)在△PAB 和△GAP 中, ∵∠PBA 是△GBP 的外角,∴∠PBA>∠PGB . 又∵∠PAB=∠GAP ,欲使△APB 与以点A 、G 、P 为顶点的三角形相似,须∠APB=∠PGB ∴GP 切⊙C 于点P ,∴∠GPB=∠PAG 由三角形内角和定理知:∠ABP=∠GBP ∴∠ABP=∠GBP=90° 在Rt △PAB ,∠BPA=60°,PA=8, ∴PB=4,AB=43∴OB=23 ∴P(-23,4).∴存在点P 1(23,4)、P 2(-23,4)使△APB 与以点A 、G 、P 为顶点的三角形相似.图 1图2225(1)16x -=。

相关文档
最新文档