中考数学考点辅导圆的基础性质

合集下载

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质

2024中考数学一轮复习核心知识点精讲—圆的基本性质1.理解圆心角及其所对的弧、弦之间的关系;2.理解并运用圆周角定理及其推论;3.探索并证明垂径定理会应用垂径定理解决与圆有关的问题;4.理解并运用圆内接四边形的性质.考点1:圆的定义及性质圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心,线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O,读作圆O。

圆的特点:在一个平面内,所有到一个定点的距离等于定长的点组成的图形。

圆的对称性:1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

考点2:圆的有关概念弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

,读作圆弧弧的概念:圆上任意两点间的部分叫做圆弧,简称弧。

以A、B为端点的弧记作ABAB或弧AB。

等弧的概念:在同圆或等圆中,能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

考点3:垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推论1:1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

推论2:圆的两条平行弦所夹的弧相等。

常见辅助线做法(考点):1)过圆心,作垂线,连半径,造Rt △,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分考点4:垂径定理的应用考点5:圆心角的概念圆心角概念:顶点在圆心的角叫做圆心角。

弧、弦、弦心距、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。

二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。

三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。

四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。

五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。

六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。

七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。

八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。

第6章第20讲圆的基本性质-中考数学一轮考点复习课件(共6张)

第6章第20讲圆的基本性质-中考数学一轮考点复习课件(共6张)

如图,四边形ABCD内接于⊙O,若∠A=40°,则∠C= 140°

重难点 圆中的线段最值问题
【例1】如图,⊙O的半径是2,直线l与⊙O相交于A,B两点,M,N是⊙O上的两 个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB的面积的最大值 是 4 2.
1.如图,△ABC中,∠BAC=60°,∠ABC=45°,AB= 2 ,D是线段BC上的一
(2)推论:在同圆或等圆中,两个圆心角,两条弧,两条弦中如果有一组量相等,
那么它所对应的其余各组量都分别 相等
2.圆周角定理及其推论
(1) 圆周角定理:一条弧所对的圆周角等于它所对圆心角的 一半 .
(2)推论:①同弧或等弧所对的圆周角 相等 ;
②半圆(或直径)所对的圆周角是 90°
,90°的圆周角所对的弦是 直径 .
A.235
B.136
C.265
D.166
圆内接四边形

10. 如图,点A,B,C,D,E在⊙O上,且AB为50°,则∠E+∠C= 1⊙O上,O点在∠D的内部,四边形OABC为平行四边 形,则∠OAD+∠OCD= 60° .
点击进入w ord版
练案·限时提分作业
2.如图,在平面直角坐标系中,点A(5,0),点B(-5,0),点C(3,-4),点D为
第一象限上的一个动点,且OD=5.①∠ACB= 90° ;
②若∠AOD=50°,则∠ACD= 25°

①定点定长存在共圆;②定线段同侧角度相同存在共圆;③定线段同侧角度有2倍 关系存在共圆;④定线段异侧角度互补存在共圆.
A.57° B.52° C.38° D.26°
︵︵ 6. 如图,AD是⊙O的直径,AB=CD,若∠AOB=40°,则圆周角∠BPC的度数是 (B ) A.40° B.50° C.60° D.70°

中考数学--圆的必考点2

中考数学--圆的必考点2

圆的必考基础知识2一、圆的八大定理的定义1、垂径定理:垂直于弦的直径( )这条弦,并且( )弦所对的两条弧平分2、相交弦定理:圆中两条相交弦被交点分成的两条线段长的( )是相等积3、切线长定理:从圆外一点到圆的两条切线的长( ),那点与圆心的连线( )切线的夹角。

相等,平分4、切割线定理:圆的一条切线与一条割线相交于p点,切线交圆于C点,割线交圆于A、B两点,则有( )PC²=PA·PB5、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等.圆外是P点,交点是ABCD,则有()PA.PB=PC.PD6、弦切角定理:弦切角( )对应的圆周角。

等于7、圆心角定理:在同圆或等圆中,相等的圆心角所对弧( ),所对的弦( ),所对的弦的弦心距( )。

相等8、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的( )。

一半二、圆的公式:圆的周长=弧长的公式 =以后看到22.5度,一般会有对应45度1、长度相等的两条弧是等弧(对或错 )错2、等弧的长度是相同的(对或错 )对3、在同圆或等圆中,长度相等的两条弧是等弧。

(对或错 )对4、周长相等的两个圆一定是等圆(对或错 )对5、同心圆就是圆心相同的圆。

(对或错 )错6、同心圆就是圆心相同,但半径不等的两个圆。

(对或错 )对7、相等的圆心角所对的弧相等(对或错 )错8、相等的圆心角所对的弦相等(对或错 )错9、等弦所对的弧相等(对或错 )错10、等弧所对的弦相等(对或错 )对11、在同圆或等圆中,相等的圆心角所对的弧( ),所对的弦( ),所对的弦的弦心距也( )相等12、在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两条弦心距中,只要有一组量相等,那么它们所对应的其余各组量也分别相等13、平行四边形的4个顶点在同一个圆上。

(对或错 )错矩形的4个顶点在同一个圆上。

(对或错 )对菱形的4个顶点在同一个圆上。

(对或错 )错正方形4个顶点在同一个圆上。

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳

九年级数学圆形知识点归纳九年级数学学习中,我们接触到了许多有关圆形的知识。

本文将对这些知识进行归纳总结,以便更好地了解和掌握圆形的特性和运用。

一、圆的定义和性质圆是由平面上与一个固定点的距离相等的所有点组成的图形,这个固定点称为圆心,距离称为半径。

圆的性质有以下几个要点:1. 圆上的任意点与圆心的距离都相等。

2. 圆的直径是两个任意点在圆上连线的最长线段,它的长度是圆的半径的两倍。

3. 圆的弧是两个点在圆上连线所得到的曲线部分。

4. 圆心角是以圆心为顶点的角,它的度数等于所对的弧所在圆周的度数。

二、圆的计算公式在解决圆的相关问题时,我们需要运用一些计算公式。

以下是常见的圆的计算公式:1. 圆的周长公式:C = 2πr,其中C表示圆的周长,r表示半径,π取近似值3.14。

2. 圆的面积公式:S = πr²,其中S表示圆的面积。

三、圆的相关定理1. 同圆弧所对的圆心角相等。

2. 等弧所对的圆心角相等。

3. 在同一个圆或等圆中,圆心角大的所对的弧也大,圆心角小的所对的弧也小。

4. 在同一个圆或等圆中,与同一弧相交的弦所对的圆心角相等。

四、切线和切点的性质1. 切线是与圆只有一个交点的直线。

2. 在切点处,切线垂直于半径。

3. 半径和切线之间的夹角是直角。

五、圆锥和圆柱体1. 圆锥是以一个圆为底面,上方以一个顶点为端点的三维图形。

2. 圆柱体是以一个圆为底面,上下底面平行且等大小的三维图形。

六、几何图形的应用在生活中,我们经常会遇到一些与圆相关的几何图形。

以下是一些常见的应用场景:1. 钟表:钟表的表盘就是一个圆形,指针所指的位置是圆上的点。

2. 气球:气球形状都是圆形,用圆的表面面积计算气球的充气量。

3. 轮胎:轮胎是车辆底盘的重要组成部分,轮胎的结构和运动都与圆形有关。

通过对九年级数学圆形知识点的归纳总结,我们对圆形的定义、性质、计算公式、相关定理,以及在几何图形应用中的实际场景有了更深入的理解。

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系--知识讲解(基础)

中考总复习:圆的有关概念、性质与圆有关的位置关系—知识讲解(基础)责编:常春芳【考纲要求】1. 圆的基本性质和位置关系是中考考查的重点,但圆中复杂证明及两圆位置关系中证明会有下降趋势,不会有太复杂的大题出现;2.中考试题中将更侧重于具体问题中考查圆的定义及点与圆的位置关系,对应用、创新、开放探究型题目,会根据当前的政治形势、新闻背景和实际生活去命题,进一步体现数学来源于生活,又应用于生活.【知识网络】【考点梳理】考点一、圆的有关概念及性质1.圆的有关概念圆、圆心、半径、等圆;弦、直径、弦心距、弧、半圆、优弧、劣弧、等弧;三角形的外接圆、三角形的内切圆、三角形的外心、三角形的内心、圆心角、圆周角.要点诠释:等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.2.圆的对称性圆是轴对称图形,任何一条直径所在直线都是它的对称轴,圆有无数条对称轴;圆是以圆心为对称中心的中心对称图形;圆具有旋转不变性.3.圆的确定不在同一直线上的三个点确定一个圆.要点诠释:圆心确定圆的位置,半径确定圆的大小.4.垂直于弦的直径垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:在图中(1)直径CD ,(2)CD ⊥AB ,(3)AM =MB ,(4)C C A B =,(5)AD BD =.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三. 注意:(1)(3)作条件时,应限制AB 不能为直径.5.圆心角、弧、弦之间的关系定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量也相等. 6.圆周角圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半. 推论1 在同圆或等圆中,相等的圆周角所对的弧也相等.推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径. 要点诠释:圆周角性质的前提是在同圆或等圆中.考点二、与圆有关的位置关系 1.点和圆的位置关系设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有:点P 在圆外⇔d >r ; 点P 在圆上⇔d =r ; 点P 在圆内⇔d <r . 要点诠释:圆的确定:①过一点的圆有无数个,如图所示.②过两点A 、B 的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.2.直线和圆的位置关系(1)切线的判定切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.(会过圆上一点画圆的切线)(2)切线的性质切线的性质定理圆的切线垂直于过切点的半径.(3)切线长和切线长定理切线长经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.切线长定理从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.要点诠释:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.3.圆和圆的位置关系(1)基本概念两圆相离、相切、外离、外切、相交、内切、内含的定义.(2)请看下表:要点诠释:①相切包括内切和外切,相离包括外离和内含.其中相切和相交是重点. ②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解. ④“R-r ”时,要特别注意,R >r .【典型例题】类型一、圆的性质及垂径定理的应用【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题1】1.已知:如图所示,在⊙O 中,弦AB 的中点为C ,过点C 的半径为OD .(1)若AB =OC =1,求CD 的长; (2)若半径OD =R ,∠AOB =120°,求CD 的长.【思路点拨】如图所示,一般的,若∠AOB =2n °,OD ⊥AB 于C ,OA =R ,OC =h ,则AB =2R ·sin n °=2n ·tan n °=CD =R -h ;AD 的长180n Rπ=. 【答案与解析】解:∵半径OD 经过弦AB 的中点C , ∴半径OD ⊥AB .(1)∵AB=AC=BC∵OC=1,由勾股定理得OA=2.∴CD=OD-OC=OA-OC=1,即CD=1.(2)∵OD⊥AB,OA=OB,∴∠AOD=∠BOD.∴∠AOB=120°,∴∠AOC=60°.∵OC=OA·cos∠AOC=OA·cos60°=12 R,∴1122CD OD OC R R R =-=-=.【总结升华】圆的半径、弦长的一半、弦心距三条线段组成一个直角三角形,其中一个锐角为弦所对圆心角的一半,可充分利用它们的关系解决有关垂径定理的计算问题.举一反三:【变式】在足球比赛场上,甲、乙两名队员互相配合向对方球门进攻,当甲带球冲到A点时,乙已跟随冲到B点(如图所示),此时甲是自己直接射门好还是迅速将球回传给乙,让乙射门好呢?(不考虑其他因素)【答案】解:过M、N、B三点作圆,显然A点在圆外,设MA交圆于C,则∠MAN<∠MCN.而∠MCN=∠MBN,∴∠MAN<∠MBN.因此在B点射门较好.即甲应迅速将球回传给乙,让乙射门.2.(2015•大庆模拟)已知AB是⊙O的直径,C是圆周上的动点,P是弧AC的中点.(1)如图1,求证:OP∥BC;(2)如图2,PC交AB于D,当△ODC是等腰三角形时,求∠A的度数.【思路点拨】(1)连结AC,延长PO交AC于H,如图1,由P是弧AC的中点,根据垂径定理得PH⊥AC,再根据圆周角定理,由AB是⊙O的直径得∠ACB=90°,然后根据OP∥BC;(2)如图2,根据圆心角、弧、弦的关系,以及三角形内角和等推论证来求得∠A的度数.【答案与解析】(1)证明:连结AC,延长PO交AC于H,如图1,∵P是弧AB的中点,∴PH⊥AC,∵AB是⊙O的直径,∴∠ACB=90°,∴BC⊥AC,∴OP∥BC;(2)解:如图2,∵P是弧AC的中点,∴PA=PC,∴∠PAC=∠PCA,∵OA=OC,∴∠OAC=∠OCA,∴∠PAO=∠PCO,当DO=DC,设∠DCO=x,则∠DOC=x,∠PAO=x,∴∠OPC=∠OCP=x,∠PDO=2x,∵∠OPA=∠PAO=x,∴∠POD=2x,在△POD中,x+2x+2x=180°,解得x=36°,即∠PAO=36°,当CO=CD,设∠DCO=x,则∠OPC=x,∠PAO=x,∴∠POD=2x,∴∠ODC=∠POD+∠OPC=3x,∵CD=CO,∴∠DOC=∠ODC=3x,在△POC中,x+x+5x=180°,解得x=()°,即∠PAO=()°.综上所述,∠A的度数为36°或()°.【总结升华】本题考查了圆周角定理及其推论同时考查了等腰三角形的性质、垂径定理和三角形内角和定理.举一反三:【变式】(2015•温州模拟)如图,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分线,过A、C、D三点的圆与斜边AB交于点E,连接DE.(1)求BE的长;(2)求△ACD外接圆的半径.【答案】解:(1)∵∠ACB=90°,且∠ACB为圆O的圆周角(已知),∴AD为圆O的直径(90°的圆周角所对的弦为圆的直径),∴∠AED=90°(直径所对的圆周角为直角),又AD是△ABC的角平分线(已知),∴∠CAD=∠EAD(角平分线定义),∴CD=DE(在同圆或等圆中,相等的圆周角所对的弦相等),在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE(全等三角形的对应边相等);∵△ABC为直角三角形,且AC=5,CB=12,∴根据勾股定理得:AB==13,∴BE=13﹣AC=13﹣5=8;(2)由(1)得到∠AED=90°,则有∠BED=90°,设CD=DE=x,则DB=BC﹣CD=12﹣x,EB=AB﹣AE=AB﹣AC=13﹣5=8,在Rt△BED中,根据勾股定理得:BD2=BE2+ED2,即(12﹣x)2=x2+82,解得:x=,∴CD=,又AC=5,△ACD为直角三角形,∴根据勾股定理得:AD==,根据AD是△ACD外接圆直径,∴△ACD外接圆的半径为:×=.类型二、圆的切线判定与性质的应用3.如图所示,AB=AC,O是BC的中点,⊙O与AB相切于点D,求证:AC与⊙O相切.【思路点拨】AC与⊙O有无公共点在已知条件中没有说明,因此只能过点O向AC作垂线段OE,长等于⊙O的半径,则垂足E必在⊙O上,从而AC与⊙O相切.【答案与解析】证明:连接OD,作OE⊥AC,垂足为E,连结OA.∵AB与⊙O相切于点D,∴OD⊥AB.∵AB=AC,OB=OC,∴∠1=∠2,∴OE=OD.∵OD为⊙O半径,∴AC与⊙O相切.【总结升华】如果已知直线经过圆上一点,那么连半径,证垂直;如果已知直线与圆是否有公共点在条件中并没有给出,那么作垂直,证半径.举一反三:【变式】如图所示,在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c.求△ABC的内切圆的半径.【答案】解:设△ABC的内切圆与三边的切点分别为D、E、F,根据切线长定理可得:AE =AF ,BF =BD ,CD =CE ,而AE+CE =b ,CD+BD =a ,AF+BF =c , 可求2a b cCE +-=. 连接OE 、OD ,易证OE =CE .即直角三角形的内切圆半径2a b cr +-=.4.如图所示,已知:△ABC 内接于⊙O ,点D 在OC 的延长线上,1sin 2B =,∠D =30°. (1)求证:AD 是⊙O 的切线; (2)若AC =6,求AD 的长.【思路点拨】(1)连接OA ,根据圆周角定理求出∠O 的度数,根据三角形的内角和定理求出∠OAD ,根据切线的判定推出即可;(2)得出等边三角形AOC ,求出OA ,根据勾股定理求出AD 的长即可. 【答案与解析】(1)证明:连接OA ,∵1sin 2B =,∴∠B =30°. ∵∠AOC =2∠B ,∴∠AOC =60°. ∵∠D =30°,∴∠OAD =180°-∠D -∠AOD =90°. ∴AD 是⊙O 的切线.(2)解:∵OA =OC ,∠AOC =60°,∴△AOC是等边三角形,∴OA=AC=6.∵∠OAD=90°,∠D=30°,∴AD=【总结升华】证明直线是圆的切线的方法:①有半径,证垂直;②有垂直,证半径.举一反三:【变式】如图所示,半径OA⊥OB,P是OB延长线上一点,PA交⊙O于D,过D作⊙O的切线交PO于C 点,求证:PC=CD.【答案】证明:连接OD.∵CE切⊙O于D,∴OD⊥CE.∴∠2+∠3=90°.∵OA⊥OB,∴∠P+∠A=90°.∵OD=OA,∴∠3=∠A..∴∠P=∠2.又∵∠1=∠2,∴∠P=∠1.∴PC=CD.类型三、切线的性质与等腰三角形、勾股定理综合运用5.已知AB是⊙O的直径,点P是AB延长线上的一个动点,过P作⊙O的切线,切点为C,∠APC 的平分线交AC于点D,求∠CDP的度数.【思路点拨】连接OC,根据题意,可知OC⊥PC,∠CPD+∠DPA+∠A+∠ACO=90°,可推出∠DPA+∠A=45°,即∠CDP=45°.【答案与解析】解:连接OC,∵OC=OA,,PD平分∠APC,∴∠CPD=∠DPA,∠A=∠ACO,∵PC为⊙O的切线,∴OC⊥PC,∵∠CPD+∠DPA+∠A+∠ACO=90°,∴∠DPA+∠A=45°,即∠CDP=45°.【总结升华】本题主要考查切线的性质、等边三角形的性质、角平分线的性质、外角的性质,解题的关键在于做好辅助线构建直角三角形,求证∠CPD+∠DPA+∠A+∠ACO=90°,即可求出∠CDP=45°.【高清课堂:圆的有关概念、性质及与圆有关的位置关系 ID:412074 经典例题3】6.如图所示,AB是⊙O的直径,AF是⊙O的弦,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若DE=4,sinC=35,求AE的长.【思路点拨】构造半径、半弦、弦心距的直角三角形.【答案与解析】解:(1)证明:连接OE,BF,交于点G,则BF⊥AF,BF∥CD.∵OA=OE,∴∠OAE=∠OEA.∵∠OAE=∠FAE,∴∠OEA=∠FAE.∴OE∥AF,∵AF⊥DE,∴OE⊥CD.∴CD为⊙O的切线.(2)解:∵ BF∥DE,OE∥AF,∠D=90°,∴四边形DEGF为矩形.∴BF=2GF=2DE=8.∵BF∥CD,∴∠C=∠ABF.可求得OA=OB=5,OG=3.∴DF=EG=2,AF=AB·sinC=6.∴AD=8,AE=【总结升华】(1)通过挖掘图形的性质,将分散的条件sinC=35,DE=4,集中到一个直角三角形中,使问题最终得到解决;(2)本题第(2)问还可以适当改变后进行变式训练,如改为:若DF=2,sinC=35,求AE的长;(3)第(2)问还可以过O作OM⊥AF于M后得OM=DE=4,sin∠AOM=sinC=35加以解决.。

圆的基础性质知识点

圆的基础性质知识点

第三章圆
1、圆的定义(重点)
2、和圆相关的概念:
(1)弦:连结圆上任意两点的线段;(弦不一定是直径,直径一定是弦,直径是圆中最长的弦)
(2)直径:经过圆心的弦;
(3)弧:圆上任意两点间的部分;(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)
(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;
(5)优弧:大于半圆的弧,用三个大写字母表示;
(6)劣弧:小于半圆的弧,用两个大写字母表示;
(7)弓形由弦及其所对的弧组成的图形;
(8)等圆:能够重合的两个圆;
(9)等弧:在同圆或等圆中,能够互相重合的弧;
(10)同心圆:圆心相同,半径不相等的两个圆;
(11)圆心角:定点是圆心的角;
(12)圆周角:顶点在圆上,并且两边都和圆相交的角;
(13)弦心距:圆心到弦的距离。

注意:(1)直径等于半径的2倍;
(2)同圆或等圆的半径相等;
(3)等弧必须是同圆或等圆中的弧;
(4)弧长相等的弧不一定是等弧,但等弧的弧长必相等。

第2节圆的对称性1、圆的旋转不变性
2、与圆有关的概念
3、垂径定理及其推论(重点)
4、圆心角、弧、弦、弦心距之间的相等关系
第3节圆周角和圆心角的关系圆周角要具备两个特征:①角的顶点在圆上;
4、圆内接四边形对角互补。

初三圆的知识点总结

初三圆的知识点总结

初三圆的知识点总结圆是初中数学中的重要概念之一,而初三阶段则是圆的学习重点。

在初三阶段,学生需要掌握圆的定义、性质、相关定理和应用。

下面我们来总结一下初三圆的知识点。

一、圆的定义和性质1. 圆的定义圆是由平面上到定点的距离等于定长的所有点构成的集合。

定点叫圆心,定长叫半径。

通常记作圆O,圆心为O,半径为r。

2. 圆的性质(1)圆的直径、半径、弧长和圆心角的关系:一个圆的直径是圆的一条弧上的两个端点,直径等于圆的半径的两倍。

(2)圆的周长公式:圆的周长等于2πr,其中r为圆的半径。

(3)圆的面积公式:圆的面积等于πr²,其中r为圆的半径。

(4)切线定理:在圆上的切线和半径垂直,切点、圆心和切线上的半径构成直角三角形。

二、圆的相关定理1. 圆心角定理定理:在同一个圆或等圆上的圆心角等于其对应弧所对的圆周角的一半。

结论:圆心角相等的弧是等弧。

2. 弧长定理定理:在同一个圆或等圆上,相等圆心角所对的弧相等,反之,相等弧对应的圆心角相等。

3. 弧度和角度定理:弧长与半径之比叫做弧度制下的角度。

1弧度(rad)=57.3°。

结论:弧长l=rθ,其中θ为弧度。

4. 正弦定理和余弦定理正弦定理:在一个三角形ABC中,a/sinA=b/sinB=c/sinC。

余弦定理:在一个三角形ABC中,a²=b²+c²-2bc*cosA。

5. 切线定理定理:在圆上的切线和半径垂直。

6. 切线与弦的关系定理:在圆上,如果一条切线和一条弦相交,那么切线和弦的交点与圆心的连线垂直。

三、圆的相关应用1. 圆的相关应用(1)圆的插值:根据圆的相关性质和定理求出圆的周长、面积及其相关角度。

(2)圆的相关推理:利用圆的性质和相关定理解决与圆相关的问题。

2. 圆的实际应用(1)工程中的车轮和齿轮。

(2)地理中的经纬度。

(3)天文中的星座和行星轨道。

(4)生活中的钟面和圆形的器物。

以上就是初三圆的知识点总结,希望对你的学习有所帮助。

2023年九年级中考一轮复习数学课件圆的基本性质

2023年九年级中考一轮复习数学课件圆的基本性质

例 4 如图,正方形 ABCD 内接于⊙O,E 为 AB 的中点,连结 CE 交 BD 于点 F,延长 CE 交⊙O 于点 G,连结 BG.
(1)求证:FB2=FE·FG; (2)若 AB=6,求 FB 和 EG 的长.
解:(1)证明:∵四边形 ABCD 是正方形, ∴AD=BC,
∴A︵D=B︵C.
(2)如图,连结 OC,CD,OD,OD 交 BC 于点 F. ∵∠DBC=∠CAD=∠BAD=∠BCD, ∴BD=DC. ∵OB=OC,∴OD 垂直平分 BC. ∵△BDE 是等腰直角三角形,BE=2 10,∴BD=2 5. ∵AB=10,∴OB=OD=5. 设 OF=t,则 DF=5-t. 在 Rt△BOF 和 Rt△BDF 中,52-t2=(2 5)2-(5-t)2,解得 t=3, ∴BF=4.∴BC=8.

相等的圆周角所对的弧相等..
推 1、半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径. 论 2、圆内接四边形的对角互补,并且任何一个外角等于它的内对角.
常 见 图 形
圆中常用辅助线:
遇到 弦时
有作垂直于弦的 半径(或直径)或再连接过弦的端点
的半径.
常连弦心距
【解】如图 1,当 PA,PB 不在同一个半圆时,过点 P 作直径 PQ,连结
AQ,BQ.
∵PQ 是⊙O 的直径,
∴∠PAQ=∠PBQ=90°.
∵⊙O 的半径 r=1,
∴PQ=2r=2.
图1
∵PA= 3,PB= 2,
∴cos∠APQ=PPAQ= 23,
cos∠BPQ=PPQB=
2 2.
∴∠APQ=30°,∠BPQ=45°.
∴∠APB=∠APQ+∠BPQ=75°.

中考数学考点29圆的基本性质总复习(解析版)

中考数学考点29圆的基本性质总复习(解析版)

圆的基本性质【命题趋势】圆的基本性质是中考考查的重点.常以选择题.填空题和解答题考查为主;其中选择题和填空题的难度不会太大.对应用、创新、开放探究型题目.会根据当前的政治形势、新闻背景和实际生活去命题.进一步体现数学来源于生活.又应用于生活。

【中考考查重点】一、运用垂径定理及其推论进行计算二、运用圆周角定理及其推论进行计算三、垂径定理雪与圆周角定理结合考点:圆的有关概念圆的定义:在一个平面内.线段OA绕它固定的一个端点O旋转一周.另一个端点A所形成的图形叫圆。

这个固定的端点O叫做圆心.线段OA叫做半径。

圆的表示方法:以O点为圆心的圆记作⊙O.读作圆O。

圆的特点:在一个平面内.所有到一个定点的距离等于定长的点组成的图形。

确定圆的条件:1)圆心;2)半径。

备注:圆心确定圆的位置.半径长度确定圆的大小。

【补充】1)圆心相同且半径相等的圆叫做同圆;2)圆心相同.半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆。

圆的对称性:1)圆是轴对称图形.经过圆心的每一条直线都是它的对称轴;2)圆是以圆心为对称中心的中心对称图形。

弦的概念:连结圆上任意两点的线段叫做弦(例如:右图中的AB)。

直径的概念:经过圆心的弦叫做直径(例如:右图中的CD)。

备注:1)直径是同一圆中最长的弦。

2)直径长度等于半径长度的2倍。

⏜.读弧的概念:圆上任意两点间的部分叫做圆弧.简称弧。

以A、B为端点的弧记作AB作圆弧AB或弧AB。

等弧的概念:在同圆或等圆中.能够互相重合的弧叫做等弧。

半圆的概念:圆的任意一条直径的两个端点把圆分成两条弧.每一条弧都叫做半圆。

优弧的概念:在一个圆中大于半圆的弧叫做优弧。

劣弧的概念:小于半圆的弧叫做劣弧。

弦心距概念:从圆心到弦的距离叫做弦心距。

1.(2021秋•顺义区期末)如图.在⊙O中.如果=2.则下列关于弦AB与弦AC之间关系正确的是()A.AB=AC B.AB=2AC C.AB>2AC D.AB<2AC【答案】D【解答】解:如图.取弧AB的中点D.连接AD.BD.则=2=2.∵=2.∴==.∴AD=BD=AC.在△ABD中.AD+BD>AB.∴AC+AC>AB.即AB<2AC.故选:D.2.(2021秋•平原县期末)下列语句.错误的是()A.直径是弦B.相等的圆心角所对的弧相等C.弦的垂直平分线一定经过圆心D.平分弧的半径垂直于弧所对的弦【答案】B【解答】解:直径是弦.A正确.不符合题意;在同圆或等圆中.相等的圆心角所对的弧相等.B错误.符合题意;弦的垂直平分线一定经过圆心.C正确.不符合题意;平分弧的半径垂直于弧所对的弦.D正确.不符合题意;故选:B.3.(2021秋•玉林期末)如图.从A地到B地有两条路可走.一条路是大半圆.另一条路是4个小半圆.有一天.一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走.它不敢与猫同行(怕被猫吃掉).就沿着4个小半圆行走.假设猫和老鼠行走的速度相同.那么下列结论正确的是()A.猫先到达B地B.老鼠先到达B地C.猫和老鼠同时到达B地D.无法确定【答案】C【解答】解:以AB为直径的半圆的长是:π•AB;设四个小半圆的直径分别是a.b.c.d.则a+b+c+d=AB.则老鼠行走的路径长是:a+πb+πc+πd=π(a+b+c+d)=π•AB.故猫和老鼠行走的路径长相同.故选:C.考点:垂径定理垂径定理:垂直于弦的直径平分这条弦.并且平分弦所对的两条弧。

中考数学专题复习圆

中考数学专题复习圆

第六章圆第二十三讲圆的有关概念及性质【基础知识回顾】一、圆的定义及性质:1、圆的定义:⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合2、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类3、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴,的直线都是它的对称轴⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径;3、圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】二、垂径定理及推论:1、垂径定理:垂直于弦的直径,并且平分弦所对的。

2、推论:平分弦()的直径,并且平分弦所对的。

【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其余三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线(即弦心距)。

3、垂径定理常用作计算,在半径r、弦a、弦心d和弓高h中已知其中两个量可求另外两个量。

】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是,900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,是类,它们的关系是,2、作直径所对的圆周角是圆中常作的辅助线】五、圆内接四边形:定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做,这个圆叫做。

初三数学圆知识点总结归纳

初三数学圆知识点总结归纳

初三数学圆知识点总结归纳数学是一门重要的学科,其中圆是初三阶段的重点内容之一。

为了帮助同学们更好地理解和掌握圆的知识,本文将对初三数学圆的知识点进行总结和归纳。

下面将从圆的基本性质、圆的相关定理以及圆的应用三个方面进行详细介绍。

一、圆的基本性质圆是我们生活中常见的几何形状之一,了解圆的基本性质对于理解和解题都非常重要。

1.圆的定义:圆是平面上一点到另一点距离保持不变的点的集合。

2.圆的要素:圆心、半径和直径是圆的基本要素。

圆心是圆上所有点到该点的距离相等的点,常用字母O表示;半径是从圆心到圆上任意一点的距离,用字母r表示;直径是通过圆心,且两个端点在圆上的线段,直径的长度等于半径的两倍。

3.弧与弦:圆上两点之间的线段叫做弦,圆上两点之间的弧是圆上除去弦包含的部分所剩下的弯曲部分。

4.圆周角:以圆心为顶点的角叫做圆周角,圆周角的度数是弧长所对应的圆心角的度数。

二、圆的相关定理熟练掌握圆的相关定理对于解题非常有帮助,下面将介绍常用的圆的定理。

1. 半径相等定理:同一个圆内,所有的半径相等。

2. 弦长定理:在同一个圆上,相等弧所对的弦相等,或者说弦相等所对的弧相等。

3. 切线定理:切线与半径垂直,半径与切线的交点恰好在切点上。

4. 弧度制与角度制转换:1 弧度=180°/π,1 度=π/180 弧度。

三、圆的应用圆的知识不仅仅用于理论中,还有很多实际应用场景。

下面将介绍几个常见的应用。

1. 圆的面积:圆的面积公式为S = πr^2,其中S表示面积,r表示半径。

2. 扇形面积:扇形是由圆心、弧和两条半径组成的区域,计算扇形的面积可以使用扇形面积公式S = (θ/360°) × πr^2。

3. 弧长公式:弧长公式为L = rθ,其中L表示弧长,r表示半径,θ表示圆心角的度数。

4. 圆与三角形的关系:在三角形中,圆的内切圆是三角形内接圆,三角形的外接圆是三角形外接圆。

通过以上对圆的基本性质、相关定理和应用的总结归纳,我们可以更好地理解和掌握圆的知识点。

初中数学知识归纳圆的性质

初中数学知识归纳圆的性质

初中数学知识归纳圆的性质圆是一种重要的几何图形,它在数学和实际生活中都有广泛应用。

本文将对初中数学中与圆相关的一些基本性质进行归纳,包括圆的定义、圆的元素、圆的位置关系、弧与扇形的性质以及圆的面积计算方法。

一、圆的定义与元素圆是由平面上到一个固定点的距离等于定长的点的集合。

这个固定点叫做圆心,定长叫做半径。

圆通常用“O”表示圆心,用“r”表示半径。

二、圆的位置关系1. 内切与外切:若两个圆相交于一个点,且一个圆内切于另一个圆,则这两个圆是内切的;若一个圆上的一个点与另一个圆相切,则这两个圆是外切的。

2. 相交:当两个圆上的点的集合不为空时,称这两个圆相交。

3. 相离:当两个圆的交集为空集时,称这两个圆相离。

三、弧与扇形的性质1. 弧度:一条圆周上的弧所对应的圆心角的大小叫做弧的弧度。

一个圆周上的弧长等于圆周长的1/360,对应的圆心角的弧度为1度。

2. 弧长公式:弧长等于半径乘以弧度。

3. 扇形面积公式:扇形的面积等于弧度除以2再乘以半径的平方。

四、圆的面积计算方法1. 圆的面积公式:圆的面积等于半径的平方乘以π(π≈3.14)。

2. 扇形面积公式:扇形的面积等于扇形的弧度除以2再乘以半径的平方。

3. 圆环面积公式:圆环的面积等于外圆面积减去内圆面积。

五、例题与解答例题1:已知一个圆上的弧长为10cm,半径为3cm,求该弧对应的圆心角的弧度。

解:根据弧长公式,弧长等于半径乘以弧度,得到10=3×弧度。

解方程可得弧度≈3.33。

例题2:一个扇形的圆心角的弧度为0.8,半径为5cm,求该扇形的面积。

解:根据扇形面积公式,扇形的面积等于弧度除以2再乘以半径的平方,得到面积≈3.14。

例题3:一个圆的半径为7cm,求该圆的面积和周长。

解:根据圆的面积公式,圆的面积等于半径的平方乘以π,得到面积≈153.94。

根据圆的周长公式,圆的周长等于半径乘以2再乘以π,得到周长≈43.98。

六、实际应用圆的性质在生活中有很多应用。

中考数学专题复习全攻略:第一节 圆的基本性质

中考数学专题复习全攻略:第一节 圆的基本性质

第一节 圆的基本性质知识点一:圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形. 在一个个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转所形成的图形叫做圆,固定的端点O 叫做圆心,线段OA 叫做半径。

以点O 为圆心的圆记作“⊙O ”,读作“圆O ”(2) 弦连接圆上任意两点的线段叫做弦。

(如图中的AB )(3)直径经过圆心的弦叫做直径。

(如途中的CD )直径等于半径的2倍。

(4)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(5)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A ,B 为端点的弧记作“”,读作“圆弧AB ”或“弧AB ”。

大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)(6)圆心角:顶点在圆心的角叫做圆心角.(7)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(8)弦心距:圆心到弦的距离. (9)圆的对称性1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

点或)任意三角形的三个顶点确定一个圆,即该三角形的外接圆2)圆的中心对称性: 圆是以圆心为对称中心的中心对称图形。

变式练习1:如图,⊙O 的半径为4,△ABC 是⊙O 的内接三角形,连接OB ,OC.若∠BAC 与∠BOC 互补,则弦BC 的长为( B )A .3 3B .4 3C .5 3D .6 3,第1题图) ,第2题图)变式练习2:如图,在⊙O 中,AB ︵=AC ︵,∠AOB =40°,则∠ADC 的度数是( C )A .40°B .30°C .20°D .15°变式练习3: 如图,扇形OAB 的圆心角为122°,C 是AB ︵上一点,则∠ACB =__119__°.,第3题图)知识点二 :垂径定理及其推论1.垂径定理及其推论1)定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2)推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。

中考数学复习圆的基本性质

中考数学复习圆的基本性质

⌒ ⌒ , AB=8cm,ED=2cm, CD=___ 5 3)若AD= BD
知识回顾
A
垂径定理及其推论
C
O
E
D
1、垂直于弦的直径平分弦,并且平分弦所对的弧
B
2 、弦的垂直平分线经过圆心,并且平分弦所对的两条弧 3、平分弦(不是直径)的直径垂直弦,并且平分弦所对 的弧 4、平分弦所对的一条弧的直径,垂直平分弦
巩固训练
8.如图,⊙O的直径AB的两侧有定点C和动点P.已 知BC=4,CA=3,点P在弧AB上运动,过点C作CP的垂线, 与PB的延长线交于点Q.
(1)当点P运动到与点C关于AB对称时 ,求CQ的长.
C 3 4 O· D
Q B
A
P
巩固训练
8.如图,⊙O的直径AB的两侧有定点C和动点P.已 知BC=4,CA=3,点P在弧AB上运动,过点C作CP的垂线, 与PB的延长线交于点Q.
1) CD⊥弦AB于E,若AB=8cm,
O D E C
3 CD=10cm,则OE=___
B
2)若AE=BE,若DE=1cm,CD=10cm,则 6 AB=___ 4)若弦AB∥MN, CD⊥弦AB于E ,AB=8、 CD=10、 MN=6,则AB与MN之间 的距离为 _____________ 1或7
B E
C A O
D
圆心角定理推论:在同圆或等圆中,如果
两个圆心角、两条弧、两条弦、两个弦心距中 有一对量相等,那么它们所对应的其余各对量 都相等.
典型例题解析
1 如 图 , 等 腰 △ ABC 内 接 于 半 径 为 5cm 的 ⊙ O , tanB = 3
AB=AC,。求: A (1)BC的长; B D O

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质-中考数学一轮复习精讲+热考题型(解析版)

专题30 圆的基本性质【知识要点】知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑴圆心;⑵半径,⑶其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,并且直径是同一圆中最长的弦.⏜,读作弧AB.在同圆或弧的概念:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作AB等圆中,能够重合的弧叫做等弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.弦心距概念:从圆心到弦的距离叫做弦心距.弦心距、半径、弦长的关系:(考点)知识点二垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;常见辅助线做法(考点):1)过圆心,作垂线,连半径,造RT△,用勾股,求长度;2)有弧中点,连中点和圆心,得垂直平分.知识点一圆的基础概念圆的概念:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.特点:圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.确定圆的条件:⑷圆心;⑸半径,⑹其中圆心确定圆的位置,半径长确定圆的大小.补充知识:1)圆心相同且半径相等的圆叫做同圆;2)圆心相同,半径不相等的两个圆叫做同心圆;3)半径相等的圆叫做等圆.弦的概念:连结圆上任意两点的线段叫做弦。

(中考考点梳理)圆的性质及与圆有关的位置关系-中考数学一遍过

(中考考点梳理)圆的性质及与圆有关的位置关系-中考数学一遍过

考点18 圆的性质及与圆有关的位置关系一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.学-科网(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r 由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=16 cm,则球的半径为A.cm B.10 cmC.cm D.cm【答案】B【点睛】解本题的关键是作辅助线弦心距,构造直角三角形,这个直角三角形的斜边是半径,另两条边分别为弦心距和弦的一半,再根据解直角三角形解题.典例3 如图,将半径为2 cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为A .2 cmB cmCD 【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD 的长,再根据垂径定理得AB 的长. 作OD ⊥AB 于D ,连接OA .根据题意得OD =12OA =1cm ,再根据勾股定理得:AD cm ,根据垂径定理得AB . 故选C .3.如图,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为4,则弦AB 的长是A .3B .6C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB 大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,AB和CD是⊙O的两条直径,弦DE∥AB,若弧DE为40°的弧,则∠BOC=A.110° B.80°C.40° D.70°【答案】A【解析】连接OE,如图所示:∵弧DE 为40°的弧,∴∠DOE =40°.∵OD =OE ,∴∠ODE =180402︒-︒=70°. ∵弦DE ∥AB ,∴∠AOC =∠ODE =70°,∴∠BOC =180°–∠AOC =180°–70°=110°.故选A .【点睛】本题考查的是圆心角、弧、弦的关系,根据题意作出辅助线,构造出等腰三角形是解答此题的关键. 典例5 如图,在⊙O 中,圆心角∠AOB =120°,P 为弧AB 上一点,则∠APB 度数是A .100°B .110°C .120°D .130°【答案】C【解析】如图,在优弧AB 上取点C ,连接AC 、BC ,由圆周角定理得由圆内接四边形的性质得到,180120APB ACB ∠=︒-∠=︒,故选C . 【点睛】在同圆或等圆中,同弧所对的圆周角等于圆心角的一半.5.如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠OCA =50°,AB =4,则 BC的长为A .103π B .109π C .59π D .518π 6.如图,AB 是⊙O 的直径, =BCCD DE =,∠COD =38°,则∠AEO 的度数是A.52° B.57° C.66° D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6 已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7 在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC所在直线向下平移__________cm时与⊙O相切.学_科网考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8 如图,已知BC是⊙O的直径,AB是⊙O的弦,切线AD交BC的延长线于D,若∠D=40°,则∠B 的度数是A.40° B.50°C.25° D.115°【答案】C【解析】连接OA,根据切线的性质得到OA⊥AD,由三角形的内角和得到∠AOC=50°,根据等腰三角形的性质得到∠B=∠OAB,根据圆周角定理可得到结论.连接OA,∵AD是⊙O的切线,∴OA⊥AD,∴∠D=40°,∴∠AOC=50°,∵BO=OA,∴∠B=∠BAO,∴∠B+∠BAO=∠AOC=50°,∴∠B=∠BAO=12∠AOC=25°.故选C.【点睛】本题考查了切线的性质,三角形内角和,圆周角定理,正确的作出辅助线是解题的关键.典例9 如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B9.已知四边形ABCD是梯形,且AD∥BC,AD<BC,又⊙O与AB、AD、CD分别相切于点E、F、G,圆心O在BC上,则AB+CD与BC的大小关系是A.大于B.等于C.小于D.不能确定10.如图,以等腰△ABC的腰AB为⊙O的直径交底边BC于D,DE AC于E.;(2)DE为⊙O的切线.求证:(1)DB DC1.下列关于圆的叙述正确的有①圆内接四边形的对角互补;②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等;④同圆中的平行弦所夹的弧相等.A.1个B.2个C.3个D.4个2.如图所示,△ABC的三个顶点在⊙O上,D是 AB上的点,E是 AC上的点,若∠BAC=50°,则∠D+∠E=A.220° B.230°C.240° D.250°3.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD,已知DE=6,∠BAC+∠EAD =180°,则弦BC 的长等于A BC .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,点O 是△ABC 的内心,∠A =62°,则∠BOC =A .59°B .31°C .124°D .121°6.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且 34AB AMC ∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O 的内接正十边形的一边, DE的度数为__________.11.如图,在圆内接四边形ABCD 中,若∠A ,∠B ,∠C 的度数之比为4∶3∶5,则∠D 的度数是__________°.12.如图,AB 为⊙O 的直径,C 、F 为⊙O 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;学_科网(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图,⊙O是△ABC的外接圆,BC为⊙O的直径,点E为△ABC的内心,连接AE并延长交⊙O于D 点,连接BD并延长至F,使得BD=DF,连接CF、BE.(1)求证:DB=DE;(2)求证:直线CF为⊙O的切线.1.(2018•张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=A.8cm B.5cmC.3cm D.2cm2.(2018•甘孜州)如图,在⊙O中,直径CD⊥弦AB,则下列结论中正确的是A.AC=AB B.∠C=12∠BODC.∠C=∠B D.∠A=∠BOD3.(2018•乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆柱形木材的直径是多少?”如图所示,请根据所学知识计算:圆柱形木材的直径AC是A.13寸B.20寸C.26寸D.28寸4.(2018•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED 的正切值等于A BC.2 D.1 25.(2018•常州)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是A.58B.78C.710D.456.(2018•襄阳)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为A.4 B.C D .7.(2018•邵阳)如图所示,四边形ABCD 为⊙O 的内接四边形,∠BCD =120°,则∠BOD 的大小是A .80°B .120°C .100°D .90°8.(2018•宜宾)在△ABC 中,若O 为BC 边的中点,则必有:AB 2+AC 2=2AO 2+2BO 2成立.依据以上结论,解决如下问题:如图,在矩形DEFG 中,已知DE =4,EF =3,点P 在以DE 为直径的半圆上运动,则PF 2+PG 2的最小值为A B .192C .34D .109.(2018•牡丹江)如图,△ABC 内接于⊙O ,若sin ∠BAC =13,BC ,则⊙O 的半径为A .B .C .D .10.(2018•湘西州)已知⊙O 的半径为5cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系为 A .相交 B .相切 C .相离D .无法确定11.(2018•常州)如图,AB 是⊙O 的直径,MN 是⊙O 的切线,切点为N ,如果∠MNB =52°,则∠NOA 的度数为A.76° B.56°C.54° D.52°12.(2018•广元)如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C 与 AB的中点D的距离CD=2cm.则此圆环形士片的外圆半径为__________cm.13.(2018•毕节市)如图,AB是⊙O的直径,C、D为半圆的三等分点,CE⊥AB于点E,∠ACE的度数为__________.14.(2018•牡丹江)如图,在⊙O中, AB=2 AC,AD⊥OC于D.求证:AB=2AD.15.(2018•湖北)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.16.(2018•黄石)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE,∠BCD=120°,A为 BE的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.17.(2018•贺州)如图,AB是⊙O的弦,过AB的中点E作EC⊥OA,垂足为C,过点B作直线BD交CE 的延长线于点D,使得DB=DE.(1)求证:BD是⊙O的切线;(2)若AB=12,DB=5,求△AOB的面积.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2,∴半径缩小到原来的14后所得新圆的面积22211ππ416S r r ⎛⎫== ⎪⎝⎭,∴22211π116π16rS S r ==.故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤.故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=, ∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm,根据题意可得:DO2+BD2=BO2,则(x–2.3)2+12)2=x2,解得x=3.答:圆弧形所在圆的半径为3米;(2)如图所示:当MN=1.7米,则过点N作NF⊥CO于点F,可得:DF=1.7米,则FO=2.4米,NO=3米,故FN=1.8(米),故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米.5.【答案】B【解析】根据题意可知:∠OAC=∠OCA=50°,则∠BOC=2∠OAC=100°,则弧BC的长度为故选B.7.【答案】A【解析】如图,连接OA,则在直角△OMA中,根据勾股定理得到OA5=<.∴点A与⊙O的位置关系是:点A在⊙O内.故选A.8.【答案】2【解析】连接OA.∵直线和圆相切时,OH=5,又∵在直角三角形OHA中,HA=AB÷2=4,OA=5,∴OH=3.∴需要平移5–3=2(cm).故答案是:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d=R.9.【答案】B【解析】如图,连接OF,OA,OE,作AH⊥BC于H.∵AD是切线,∴OF⊥AD,易证四边形AHOF是矩形,∴AH=OF=OE,∵S△AOB=12•OB•AH=12•AB•OE,∴OB=AB,同理可证:CD=CO,∴AB+CD=BC,故选B.【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.学科_网1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】如图,连接OA 、OB 、OC ,由圆心角、弧、弦的关系定理得出∠BOC =100°,得出∠AOB +∠AOC =260°,由圆周角定理得出∠D =12(∠BOC +∠AOC ),∠E =12(∠BOC +∠AOB ),即可得出∠D+∠E=12(∠BOC+∠AOC+∠BOC+∠AOB)=12(260°+100°+100°)=230°.故选B.3.【答案】C【解析】如图,延长CA,交⊙A于点F,∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC8=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】D【解析】∵∠BAC=62°,∴∠ABC+∠ACB=180°–62°=118°,∵点O是△ABC的内心,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12×118°=59°,∴∠BOC=180°–59°=121°.故选D.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB =BC 可得:弧AB 的度数和弧BC 的度数相等,则弧AMC 的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴ DE的度数为84°.故答案为:84°.11.【答案】120【解析】∵∠A ,∠B ,∠C 的度数之比为4∶3∶5, ∴设∠A =4x ,则∠B =3x ,∠C =5x .∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得x=20°,∴∠B=3x=60°,∴∠D=180°–60°=120°.故答案为:120.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)∵E是△ABC的内心,∴∠BAE=∠CAE,∠EBA=∠EBC,∵∠BED=∠BAE+∠EBA,∠DBE=∠EBC+∠DBC,∠DBC=∠EAC,∴∠DBE=∠DEB,∴DB=DE.(2)如图,连接CD.∵AD平分∠BAC,∴∠DAB=∠DAC,∴ BD= CD,∴BD=CD,∵BD=DF,∴CD=DB=DF,∴∠BCF=90°,∴BC⊥CF,∴CF是⊙O的切线.1.【答案】A【解析】∵弦CD⊥AB于点E,CD=8cm,∴CE=12CD=4cm.在Rt△OCE中,OC=5cm,CE=4cm,∴OE=3cm,∴AE=AO+OE=5+3=8cm.故选A.2.【答案】B【解析】A、根据垂径定理不能推出AC=AB,故A选项错误;B、∵直径CD⊥弦AB,∴ AD= BD,∵ AD对的圆周角是∠C, BD对的圆心角是∠BOD,∴∠BOD=2∠C,故B选项正确;C、不能推出∠C=∠B,故C选项错误;D、不能推出∠A=∠BOD,故D选项错误;故选B.3.【答案】C【解析】设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r–1,OA=r,则有r2=52+(r–1)2,解得r=13,∴⊙O的直径为26寸,故选C.4.【答案】D【解析】∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=12.故选D.5.【答案】D【解析】如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO=810=45,故选D.6.【答案】D【解析】如图,∵OA⊥BC,∴CH=BH, AC= AB,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB BC=2BH D.7.【答案】B【解析】∵四边形ABCD为⊙O的内接四边形,∴∠A=180°–∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选B.8.【答案】D【解析】如图,设点M为DE的中点,点N为FG的中点,连接MN交半圆于点P,此时PN取最小值.∵DE=4,四边形DEFG为矩形,∴GF=DE,MN=EF,∴MP=FN=12DE=2,∴NP=MN–MP=EF–MP=1,∴PF2+PG2=2PN2+2FN2=2×12+2×22=10.故选D.9.【答案】A【解析】如图:连接OB ,O C .作OD ⊥BC 于D∵OB =OC ,OD ⊥BC ,∴CD =12BC ,∠COD =12∠BOC ,又∵∠BOC =2∠A ,BC ,∴∠COD =∠A ,CD ,∵sin ∠BAC =13,∴sin ∠COD =CD OC =13,∴OC ,故选A . 10.【答案】B【解析】∵圆心到直线的距离5cm=5cm ,∴直线和圆相切.故选B . 11.【答案】A【解析】∵MN 是⊙O 的切线,∴ON ⊥NM ,∴∠ONM =90°,∴∠ONB =90°–∠MNB =90°–52°=38°,∵ON =OB ,∴∠B =∠ONB =38°,∴∠NOA =2∠B =76°.故选A . 12.【答案】5【解析】如图,连接OA ,∵CD =2cm ,AB =8cm , ∵CD ⊥AB ,∴OD ⊥AB ,∴AC =12AB =4cm ,∴设半径为r ,则OD =r –2, 根据题意得:r 2=(r –2)2+42,解得:r =5. ∴这个玉片的外圆半径长为5cm .故答案为:5.13.【答案】30°【解析】如图,连接OC .∵AB是直径, AC= CD= BD,∴∠AOC=∠COD=∠DOB=60°,∵OA=OC,∴△AOC是等边三角形,∴∠A=60°,∵CE⊥OA,∴∠AEC=90°,∴∠ACE=90°–60°=30°.故答案为30°.14.【解析】如图,延长AD交⊙O于E,∵OC⊥AD,∴ AE=2 AC,AE=2AD,∵ AB=2 AC,∴ AE= AB,∴AB=AE,∴AB=2AD.15.【解析】(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;16.【解析】(1)连接DE,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°–120°=60°,∵BE为直径,∴∠BDE=90°,在Rt △BDE 中,DE =12BE =12×,BD DE ; (2)连接EA ,如图, ∵BE 为直径,∴∠BAE =90°,∵A 为 BE的中点,∴∠ABE =45°, ∵BA =AP ,而EA ⊥BA , ∴△BEP 为等腰直角三角形, ∴∠PEB =90°,∴PE ⊥BE , ∴直线PE 是⊙O 的切线.17.【解析】(1)∵OA =OB ,DB =DE ,∴∠A =∠OBA ,∠DEB =∠DBE ,∵EC ⊥OA ,∠DEB =∠AEC ,∴∠A +∠DEB =90°, ∴∠OBA +∠DBE =90°,∴∠OBD =90°, ∵OB 是圆的半径,∴BD 是⊙O 的切线;(2)如图,过点D 作DF ⊥AB 于点F ,连接OE , ∵点E 是AB 的中点,AB =12, ∴AE =EB =6,OE ⊥AB ,又∵DE =DB ,DF ⊥BE ,DB =5,DB =DE ,∴EF =BF =3,∴DF =4, ∵∠AEC =∠DEF ,∴∠A =∠EDF ,∵OE ⊥AB ,DF ⊥AB ,∴∠AEO =∠DFE =90°,∴△AEO ∽△DFE ,∴EO AE FE DF =,即634EO =,得EO =4.5, ∴△AOB 的面积是:12 4.522AB OE ⋅⨯==27.。

备战中考数学分点透练真题圆的基本性质(解析版)

备战中考数学分点透练真题圆的基本性质(解析版)

第二十讲圆的基本性质命题点1 圆周角定理及其推论有关的计算1.(2021•长沙)如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A.27°B.108°C.116°D.128°【答案】B【解答】解:∵∠A=54°,∴∠BOC=2∠A=108°,故选:B.2.(2021•重庆)如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A.70°B.90°C.40°D.60°【答案】A【解答】解:∵AB是⊙O的直径,∴∠C=90°,∵∠A=20°,∴∠B=90°﹣∠A=70°,故选:A.3.(2021•嘉峪关)如图,点A,B,C,D,E在⊙O上,AB=CD,∠AOB=42°,则∠CED =()A.48°B.24°C.22°D.21°【答案】D【解答】解:连接OC、OD,∵AB=CD,∠AOB=42°,∴∠AOB=∠COD=42°,∴∠CED=∠COD=21°.故选:D.4.(2021•邵阳)如图,点A,B,C是⊙O上的三点.若∠AOC=90°,∠BAC=30°,则∠AOB的大小为()A.25°B.30°C.35°D.40°【答案】B【解答】解:∵∠BAC与∠BOC所对弧为,由圆周角定理可知:∠BOC=2∠BAC=60°,又∠AOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°.故选:B.5.(2021•武汉)如图,AB是⊙O的直径,BC是⊙O的弦,先将沿BC翻折交AB于点D,再将沿AB翻折交BC于点E.若=,设∠ABC=α,则α所在的范围是()A.21.9°<α<22.3°B.22.3°<α<22.7°C.22.7°<α<23.1°D.23.1°<α<23.5°【答案】B【解答】解:如图,连接AC,CD,DE.∵=,∴ED=EB,∴∠EDB=∠EBD=α,∵==,∴AC=CD=DE,∴∠DCE=∠DEC=∠EDB+∠EBD=2α,∴∠CAD=∠CDA=∠DCE+∠EBD=3α,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°,∴4α=90°,∴α=22.5°,故选:B.6.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是的中点,则∠ABE=.【答案】13°【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.7.(2021•安徽)如图,圆O的半径为1,△ABC内接于圆O.若∠A=60°,∠B=75°,则AB=.【答案】【解答】解:如图,连接OA,OB,在△ABC中,∠BAC=60°,∠ABC=75°,∴∠ACB=180°﹣∠A﹣∠B=45°,∴∠AOB=90°,∵OA=OB,∴△OAB是等腰直角三角形,∴AB=OA=.故答案为:.8.(2021•烟台)如图,在正方形网格中,每个小正方形的边长都是1,⊙O是△ABC的外接圆,点A,B,O在网格线的交点上,则sin∠ACB的值是.【答案】【解答】解:如图,连接AO并延长交⊙O于D,由圆周角定理得:∠ACB=∠ADB,由勾股定理得:AD==2,∴sin∠ACB=sin∠ADB===,故答案为:.命题点2 垂径定理及其推论类型一垂径定理及其推论有关的计算9.(2021•丽水)如图,AB是⊙O的直径,弦CD⊥OA于点E,连结OC,OD.若⊙O的半径为m,∠AOD=∠α,则下列结论一定成立的是()A.OE=m•tanαB.CD=2m•sinαC.AE=m•cosαD.S△COD=m2•sinα【答案】B【解答】解:∵AB是⊙O的直径,弦CD⊥OA于点E,∴DE=CD,在Rt△EDO中,OD=m,∠AOD=∠α,∴tanα=,∴OE==,故选项A不符合题意;∵AB是⊙O的直径,CD⊥OA,∴CD=2DE,∵⊙O的半径为m,∠AOD=∠α,∴DE=OD•sinα=m•sinα,∴CD=2DE=2m•sinα,故选项B正确,符合题意;∵cosα=,∴OE=OD•cosα=m•cosα,∵AO=DO=m,∴AE=AO﹣OE=m﹣m•cosα,故选项C不符合题意;∵CD=2m•sinα,OE=m•cosα,∴S△COD=CD×OE=×2m•sinα×m•cosα=m2sinα•cosα,故选项D不符合题意;故选:B.10.(2021•营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D 是上任意一点,则∠ADB度数为()A.112°B.124°C.122°D.134°【答案】B【解答】解:作所对的圆周角∠APB,如图,∵C为AB的中点,OA=OB,∴OC⊥AB,OC平分∠AOB,∴∠AOC=∠BOC=56°,∴∠APB=∠AOB=56°,∵∠APB+∠ADB=180°,∴∠ADB=180°﹣56°=124°.故选:B.11.(2021•凉山州)点P是⊙O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为()A.3cm B.4cm C.5cm D.6cm【答案】B【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=10cm,CD=6cm.∵AB是直径,且CD⊥AB,∴CP=CD=3cm.根据勾股定理,得OP===4(cm).故选:B.12.(2021•黄冈)如图,⊙O是Rt△ABC的外接圆,OE⊥AB交⊙O于点E,垂足为点D,AE,CB的延长线交于点F.若OD=3,AB=8,则FC的长是()A.10B.8C.6D.4【答案】A【解答】解:由题知,AC为直径,∴∠ABC=90°,∵OE⊥AB,∴OD∥BC,∵OA=OC,∴OD为三角形ABC的中位线,∴AD=AB=×8=4,又∵OD=3,∴OA===5,∴OE=OA=5,∵OE∥CF,点O是AC中点,∴OE是三角形ACF的中位线,∴CF=2OE=2×5=10,故选:A.13.(2021•广东)如图,AB是⊙O的直径,点C为圆上一点,AC=3,∠ABC的平分线交AC于点D,CD=1,则⊙O的直径为()A.B.2C.1D.2【答案】B【解答】解:如图,过点D作DT⊥AB于T.∵AB是直径,∴∠ACB=90°,∴DC⊥BC,∵DB平分∠CBA,DC⊥BC,DT⊥BA,∴DC=DT=1,∵AC=3,∴AD=AC﹣CD=2,∴AD=2DT,∴∠A=30°,∴AB===2,解法二:AD=2DT由此处开始,可以在Rt△ADT中用勾股定理得AT=,再由垂径定理可得AB=2AT得解.故选:B.14.(2021•成都)如图,在平面直角坐标系xOy中,直线y=x+与⊙O相交于A,B两点,且点A在x轴上,则弦AB的长为.【答案】2【解答】解:设直线AB交y轴于C,过O作OD⊥AB于D,如图:在y=x+中,令x=0得y=,∴C(0,),OC=,在y=x+中令y=0得x+=0,解得x=﹣2,∴A(﹣2,0),OA=2,Rt△AOC中,tan∠CAO===,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×=,∵OD⊥AB,∴AD=BD=,∴AB=2,故答案为:2.类型二垂径定理的实际应用15.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分【答案】A【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=AB=8(厘米),∵OA=10厘米,∴OD===6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.16.(2021•恩施州)《九章算术》被尊为古代数学“群经之首”,其卷九勾股篇记载:今有圆材埋于壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?如图,大意是,今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深CD等于1寸,锯道AB长1尺,问圆形木材的直径是多少?(1尺=10寸)答:圆材直径寸.【答案】26【解答】解:过圆心O作OC⊥AB于点C,延长OC交圆于点D,连接OA,如图:∵OC⊥AB,∴AC=BC=AB,.则CD=1寸,AC=BC=AB=5寸.设圆的半径为x寸,则OC=(x﹣1)寸.在Rt△OAC中,由勾股定理得:52+(x﹣1)2=x2,解得:x=13.∴圆材直径为2×13=26(寸).故答案为:26.命题点3 圆内接四边形17.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【答案】D【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.18.(2021•泰安)如图,四边形ABCD是⊙O的内接四边形,∠B=90°,∠BCD=120°,AB=2,CD=1,则AD的长为()A.2﹣2B.3﹣C.4﹣D.2【答案】C【解答】解:延长AD、BC交于E,∵∠BCD=120°,∴∠A=60°,∵∠B=90°,∴∠ADC=90°,∠E=30°,在Rt△ABE中,AE=2AB=4,在Rt△CDE中,DE==,∴AD=AE﹣DE=4﹣,故选:C.19.(2021•苏州)如图,四边形ABCD内接于⊙O,∠1=∠2,延长BC到点E,使得CE =AB,连接ED.(1)求证:BD=ED;(2)若AB=4,BC=6,∠ABC=60°,求tan∠DCB的值.【答案】(1)略(2)tan∠DCB=【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠A=∠DCE,∵∠1=∠2,∴=,∴AD=DC,在△ABD和△DCE中,,∴△ABD≌△CED(SAS),∴BD=ED;(2)解:过点D作DM⊥BE于M,∵AB=4,BC=6,CE=AB,∴BE=BC+EC=10,∵BD=ED,DM⊥BE,∴BM=ME=BE=5,∴CM=BC﹣BM=1,∵∠ABC=60°,∠1=∠2,∴∠2=30°,∴DM=BM•tan∠2=5×=,∴tan∠DCB==.20.(2021秋•越秀区校级期中)已知:在圆O内,弦AD与弦BC交于点G,AD=CB,M,N分别是CB和AD的中点,联结MN,OG.(1)求证:OG⊥MN;(2)联结AC,AM,CN,当CN∥OG时,求证:四边形ACNM为矩形.【答案】(1)略(2)四边形AMNC是矩形.【解答】(1)证明:如图,连接OM,ON,OB,OD.∵M,N分别是CB和AD的中点∴OM⊥CB,ON⊥AD,∵AD=BC,∴BM=DN,在Rt△OMB和Rt△OND中,,∴Rt△OMB≌Rt△OND(HL),∴OM=ON,在Rt△OMG和Rt△ONG中,∴Rt△OMG≌Rt△ONG(HL),∴GM=GN,∵OM=ON,∴OG⊥MN;(2)证明:∵OG⊥MN,CN∥OG,∴CN⊥MN,∴∠MNC=90°,∵GM=GN,∴∠GMN=∠GNM,∵∠GMN+∠GCN=90°,∠GNM+∠GNC=90°,∴∠GCN=∠GNC,∴GC=GN,∵CM=CB,AN=AD,BC=AD,∴CM=AN,∴AG=CG,∴AG=GN=CG=GM,∴四边形AMNC是平行四边形,∵AN=CM,∴四边形AMNC是矩形.。

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质

初中数学:有关圆的概念及性质一、圆的基本概念及性质(1)圆的有关概念①圆:平面. 上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆. 上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形:其对称轴是任意一条过圆心的直线:圆是中心对称图形,对称中心为圆心。

②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.③弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有-组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角: 90”的圆周角所对的弦是直径.④三角形的内心和外心确定圆的条件:不在同一直线上的三个点确定一个圆.⑥:三角形的外心:三角形的三个顶点确定-一个圆,这个圆叫做三角形的外接圆,外接圆的圆心就是三角形三边的垂直平分线的交点,叫做三角形的外心.三角形的内心:和三角形的三边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

圆周角的度数等于它所对的弧的度数的一半.(3)圆心角与圆周角的关系:同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的- -半.(4)圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.圆内接四边形对角互补,它的一一个外角等于它相邻内角的对角.圆的性质1、圆是轴对称图形,对称轴是任意一条过圆心的直线。

2、垂径定理:垂直于弦的直径平分这条弦,并粗平分弦所对的弧。

垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并平分弦对的弧。

中考数学考点复习:圆的基础性质

中考数学考点复习:圆的基础性质

中考数学考点复习:圆的基础性质
2019中考数学考点复习:圆的基础性质
为了更有效地帮助学生梳理学过的知识,提高复习质量和效率,在2019中考中取得理想的成绩,下文为大家准备了2019中考数学考点复习:圆的基础性质。

⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。

外接圆圆心是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学考点辅导圆的基础性质
为了能更好更全面的做好复习和迎考准备,确保将所涉及的2019中考考点全面复习到位,让孩子们充满信心的步入考场,现特准备了2019中考数学考点辅导。

⑴垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理
①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②一条弧所对的圆周角等于它所对的圆心角的一半。

直径所对的圆周角是直角。

90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理
①一个三角形有唯一确定的外接圆和内切圆。

外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)
④两相切圆的连心线过切点(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与B C分别交PQ于X,Y,那么M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。

要求学生抽空抄录并且阅读成诵。

其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。

如此下去,除假期外,一年便可以积累40多那么材料。

如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?(8)周长相等,圆面积比长方形、正方形、三角形的面积大。

唐宋或更早之前,针对〝经学〞〝律学〞〝算学〞和〝书学〞各科目,其相应传授者称为〝博士〞,这与当今〝博士〞含义已经相去甚远。

而对那些特别讲授〝武事〞或讲解〝经籍〞者,又称〝讲师〞。

〝教授〞和〝助教〞均原为学官称谓。

前者始于宋,乃〝宗学〞〝律学〞〝医学〞〝武学〞等科目的讲授者;而后者那么于西晋武帝时代即已设立了,主要协助国子、博士培养生徒。

〝助教〞在古代不仅要作入流的学问,其教书育人的职责也十分明晰。

唐代国子学、太学等所设之〝助教〞一席,也是当朝打眼的学官。

至明清两代,只设国子监〔国子学〕一科的〝助教〞,其身价不谓显赫,也称得上朝廷要员。

至此,无论是〝博士〞〝讲师〞,还是〝教授〞〝助教〞,其今日教师应具有的基本概念都具有了。

圆的知识要领不仅常考公式,又是也会直接出一些关于定理的试题。

其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,〝死记〞之后会〝活用〞。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是
远远不够的,必须从基础知识抓起,每天挤一点时间让学生〝死记〞名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

希望为大家提供的2019中考数学考点辅导的内容,能够对大家有用,更多相关内容,请及时关注!。

相关文档
最新文档