2013年全国高考文科数学试题及答案-新课标2

合集下载

(完整版)2013年高考文科数学全国新课标卷2试题与答案

(完整版)2013年高考文科数学全国新课标卷2试题与答案

1. 2. 3. 4. 2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第I 卷 、选择题:本大题共 12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. )已知集合 M = {x | — 3v x v 1}, N = { — 3,— 2,— 1,0,1},贝U MH N =( A. { — 2,一 1,0,1} 1 i A. 2 2 B 设x , y 满足约束条件 A. — 7 B △ ABC 的内角 A. 2、. 3+2 { — 3,— 2,— 1,0} C . { —2,—-2 D . . 1 1 0,1 0,则z = 2x — 3y 的最小值是( y 3, .—5 1,0} A , B, C 的对边分别为 a , b , c ,已知 b = 2, 3+1C ).D . . { 一 3,一 2,一 1} 2设椭圆C:笃 a 则C 的离心率为( A. 6 5. B 2 y 2=1 (a > b > 0)的左、 b 2 2.3 2 右焦点分别为 F i , 6. 已知sin 2 cos 2 A. 6 B .3 C . 2D . 执行下面的程序框图,如果输入的 N= 4, 1 1 1 11 + - — — 1+ - A.234 B 21 1 1 1 11 + - — — — 1+- C.2345 D 2 7. 2 3 那么输出的 1 b = log 52, B 设 a = log 32, A. a > c > b 一个四面体的顶点在空间直角坐标系B 丄 6.3F 2,S =( 1 n-,则△ ABC 勺面积为().4P 是C 上的点, PF 丄 F 1F 2, / PFF 2= 30 ° ,c = log 23,则(.b >c >a C . c >b >a O- xyz 中的坐标分别是(1,0,1) 以zOx 平面为投影面, D . c > a > b9 . (0,1,1) ,(0,0,0),画该四面体三视图中的正视图时,,(1,1,0),则得到的正视图可以为().10•设抛物线c :y 2= 4x 的焦点为F,直线I 过F 且与C 交于A,B 两点•若| AF J = 3| BF |,则l 的方程为().J。

2013年高考文科数学全国卷2(含详细答案)

2013年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共36页)数学试卷 第2页(共36页)数学试卷 第3页(共36页)绝密★启用前2013年普通高等学校招生全国统一考试(全国新课标卷2)文科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )A .{2,1,0,1}--B .{3,2,1,0}---C .{2,1,0}--D .{3,2,1}---2.2||1i=+( )A .22B .2C .2D .13.设x ,y 满足约束条件10,10,3,x y x y x -+⎧⎪+-⎨⎪⎩≥≥≤则23z x y =-的最小值是( )A .7-B .6-C .5-D .3-4.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2b =,π6B =,π4C =,则ABC △的面积为( )A .232+B .31+C .232-D .31-5.设椭圆C :22221(0)x y a b a b +=>>的左、右焦点分别为1F ,2F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )A .36B .13C .12D .336.已知2sin 23α=,则2πcos ()4α+=( )A .16B .13C .12 D .237.执行如图的程序框图,如果输入的4N =,那么输出的S = ( )A .1111234+++B .1111232432+++⨯⨯⨯ C .111112345++++D .111112324325432++++⨯⨯⨯⨯⨯⨯8.设3log 2a =,5log 2b =,2log 3c =,则( )A .a c b >>B .b a c >>C .c b a >>D .c a b >>9.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )ABCD10.设抛物线C :24y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( )A .1y x =-或1y x =-+B .3(1)3y x =-或3(1)3y x =-- C .3(1)y x =-或3(1)y x =--D .2(1)2y x =-或2(1)2y x =-- 11.已知函数32()f x x ax bx c =+++,下列结论中错误的是( )A .0x ∃∈R ,0()0f x =B .函数()y f x =的图象是中心对称图形C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减D .若0x 是()f x 的极值点,则0()0f x '=12.若存在正数x 使2()1x x a -<成立,则a 的取值范围是( )A .(,)-∞+∞B .(2,)-+∞C .(0,)+∞D .(1,)-+∞第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD =________. 15.已知正四棱锥O ABCD -的体积为322,底面边长为3,则以O 为球心,OA 为半径的球的表面积为________.16.函数cos(2)(ππ)y x ϕϕ=+-≤<的图象向右平移π2个单位后,与函数πsin(2)3y x =+的图象重合,则ϕ=________.三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且1a ,11a ,13a 成等比数列.(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+. --------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共36页)数学试卷 第5页(共36页)数学试卷 第6页(共36页)18.(本小题满分12分)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点. (Ⅰ)证明:1BC ∥平面1A CD ;(Ⅱ)设12AA AC CB ===,22AB =,求三棱锥1C A DE -的体积.19.(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1t 该产品获利润500元,未售出的产品,每1t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润. (Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57 000元的概率.20.(本小题满分12分)在平面直角坐标系xOy 中,已知圆P 在x 轴上截得线段长为22,在y 轴上截得线段长为23.(Ⅰ)求圆心P 的轨迹方程; (Ⅱ)若P 点到直线y x =的距离为22,求圆P 的方程.21.(本小题满分12分)已知函数2()e x f x x -=.(Ⅰ)求()f x 的极小值和极大值;(Ⅱ)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,CD 为ABC △外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且BC AE DC AF =,B ,E ,F ,C 四点共圆.(Ⅰ)证明:CA 是ABC △外接圆的直径;(Ⅱ)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC △外接圆面积的比值.23.(本小题满分10分)选修4—4:坐标系与参数方程已知动点P ,Q 都在曲线C :2cos ,2sin x t y t =⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02π)α<<,M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程;(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.24.(本小题满分10分)选修4—5:不等式选讲设a ,b ,c 均为正数,且1a b c ++=.证明: (Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.3 / 124.【答案】B【解析】ππ()π-+64πA B C ⎛ ⎝=-+=由正弦定理得sin sin a bA B=,6.【答案】A【解析】由半角公式可得,cos45 / 12的投影即正视图为,故选10.【答案】C【解析】由题意可得抛物线焦点当直线l 的斜率大于0时,如图所示,过物线定义可得,AM AF =,设3()0AM AF t t ==>,BN =611.【答案】C【解析】若0x 是()f x 的极小值点,则正确.12.【答案】D【解析】由题意可得,x a >7 / 12【答案】2{},AB AD 为基底,则0AB AD ⋅=,而12AE AB AD =+,-BD AD AB =, ∴22111()(-)--222AE BD AB AD AD AB AB AD ⋅=+⋅=+=15.【答案】24π【解析】如图所示,在正四棱锥∴1322OO =,1AO =在1Rt OO A ∆中,OA =|89 / 12又D 是AB 中点,连结1DF 因为1DF ACD ⊂平面,1ACD 平面, 所以11.BC ACD 平面 (2)因为11ABC A B C -是直三棱柱,所以AA AC CB =,D AB A =,于是1011/ 1212。

2013年全国高考新课标卷Ⅱ(文科)答案及考点分析

2013年全国高考新课标卷Ⅱ(文科)答案及考点分析

2013年普通高等学校招生全国统一考试(新课标2)文科数学试题参考答案一、选择题{2,N=-B.5.D【解析】如图所示:∵212PF F F⊥,01230PF F∠=,∴122PF PF=,又因D.,所以7.B【解析】由框图可知第134454k N=>=,终止循环,B.8.D,所以c a b>>,故选D.9.A【解析】根据题意可画出如图所示的四面体O ABC-,以zOx平面为投影面,则A 与'A重合,B与'B重合,故其正视图可以为如图所示,故选A.10.C【解析】如图所示:设11A(,)x y,22(,)B x y,则21122244y xy x⎧=⎪⎨=⎪⎩,作差得:,∴直线l则=3,∴直线3(1)x=-,'()0f x<,所以()f x在(,3)-∞-和(1,)+∞内为增,(3,1)-内为减,则1x=时为极小值点,但在区间(,1)-∞不单调递减,显然错误,故选C.12.D【解析】因为“存在正数x,使2()1x x a-<成立”,的否定为“任意非正数x,使2()1x x a-≥成立”令()2()xf x x a=-,显然()f x在(,0]-∞是单调递增函数,所以max()(0)f x f=,即1a≤-,所以1a≤-的补集为(1,)-+∞,故选D.二、填空题131,2,3,4,5中任取2个数使其为5的情况有(1,4)、(2,3)两种,所以概率14.2【解析】设AB a=,AD b=,则||||2a b==,0a b⋅=,12AE a b=+,BD b a=-,所以1()()2AE BD a b b a⋅=+-=2.15.24π【解析】如图所示:连接BD,AC相交于E,∴,,∴24S Rπ=球=24π16【解析】因为cos(2)y xϕ=+=cos(2)xϕ--=,图像向右平移个单位后为:,与三、解答题17.解析:解:(1)设{a n}的公差为d.由题意,a211=a1a13,即(a1+10d)2=a1(a1+12d),于是d(2a1+25d)=0.又a1=25,所以d=0(舍去),d=-2.故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列.从而 S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .【点评】近几年高考每年必考一数列大题,但新课标高考考查的难度已大为降低,所考查的的热点为求数列的通项公式、等差(比)数列的性质及数列的求和问题.18.解析:(1)证明:联结AC 1交A 1C 于点F ,则F 为AC 1中点.又D 是AB 中点,联结DF ,则BC 1∥DF .因为DF ⊂平面A 1CD ,BC 1⊄平面A 1CD ,所以BC 1∥平面A 1CD .图1-8(2)因为ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥CD .由已知AC =CB ,D 为AB 的中点,所以CD ⊥AB .又AA 1∩AB =A ,于是CD ⊥平面ABB 1A 1.由AA 1=AC =CB =2,AB =2 2得∠ACB =90°,CD =2,A 1D =6,DE =3,A 1E =3,故A 1D 2+DE 2=A 1E 2,即DE ⊥A 1D . 所以VC -A 1DE =13×12×6×3×2=1.19.解:(1)当X ∈[100,130)时, T =500X -300(130-X ) =800X -39 000.当X ∈[130,150]时,T =500×130=65 000.所以T =⎩⎪⎨⎪⎧800X -39 000,100≤X <130,65 000,130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当 120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7.20.解:(1)设P (x ,y ),圆P 的半径为r .由题设y 2+2=r 2,x 2+3=r 2.从而y 2+2=x 2+3. 故P 点的轨迹方程为y 2-x 2=1. (2)设P (x 0,y 0),由已知得|x 0-y 0|2=22.又P 点在双曲线y 2-x 2=1上,从而得⎩⎪⎨⎪⎧|x 0-y 0|=1,y 20-x 20=1.由⎩⎪⎨⎪⎧x 0-y 0=1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=-1.此时,圆P 的半径r = 3.由⎩⎪⎨⎪⎧x 0-y 0=-1,y 20-x 20=1得⎩⎪⎨⎪⎧x 0=0,y 0=1, 此时,圆P 的半径r = 3.故圆P 的方程为x 2+(y -1)2=3或x 2+(y +1)2=3.21.解:(1)f (x )的定义域为(-∞,+∞). f ′(x )=-e -x x (x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f ′(x )<0; 当x ∈(0,2)时,f ′(x )>0.所以f (x )在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增.故当x =0时,f (x )取得极小值,极小值为f (0)=0;当x =2时,f (x )取得极大值,极大值为f (2)=4e -2.(2)设切点为(t ,f (t )),则l 的方程为y =f ′(t )(x -t )+f (t ). 所以l 在x 轴上的截距为m (t )=t -f (t )f ′(t )=t +t t -2=t -2+2t -2+3. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h (x )=x +2x (x ≠0),则当x ∈(0,+∞)时,h (x )的取值范围为[2 2,+∞);当x ∈(-∞,-2)时,h (x )的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m (t )的取值范围是(-∞,0)∪[2 2+3,+∞). 综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[2 2+3,+∞).22. 解:(1)因为CD 为△ABC 外接圆的切线,所以∠DCB =∠A ,由题设知BC FA =DCEA ,故△CDB ∽△AEF ,所以∠DBC =∠EFA .因为B ,E ,F ,C 四点共圆,所以∠CFE =∠DBC ,故∠EF A =∠CFE =90°. 所以∠CBA =90°,因此CA 是△ABC 外接圆的直径.图1-11(2)联结CE ,因为∠CBE =90°,所以过B ,E ,F ,C 四点的圆的直径为CE , 由DB =BE ,有CE =DC . 又BC 2=DB ·BA =2DB 2, 所以CA 2=4DB 2+BC 2=6DB 2. 而DC 2=DB ·DA =3DB 2,故过B ,E ,F ,C 四点的圆的面积与△ABC 外接圆面积的比值为12.23.解:(1)依题意有P (2cos α,2sin α),Q (2cos 2α ,2sin 2α),因此M (cos α+cos 2α,sin α+sin 2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点24.证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca . 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1. 所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c ,故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c2a ≥1.2013全国新课标卷数学(文)考点分析表湖北大学附属中学高二数学备课组。

2013年高考新课标全国Ⅱ卷文数试题及答案(word)有答案

2013年高考新课标全国Ⅱ卷文数试题及答案(word)有答案

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名、准考证号填写在答题卡上。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷一、选择题:本大题共12小题。

每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的。

(1)已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= (A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1 }(2)|错误!未找到引用源。

|=(A)2错误!未找到引用源。

错误!未找到引用源。

(B)2 (C)错误!未找到引用源。

(D)1(3)设x,y满足约束条件错误!未找到引用源。

,则z=2x-3y的最小值是(A)错误!未找到引用源。

(B)-6 (C)错误!未找到引用源。

(D)-(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=错误!未找到引用源。

,C=错误!未找到引用源。

,则△ABC的面积为(A)2错误!未找到引用源。

错误!未找到引用源。

+2 (B)错误!未找到引用源。

(C)2错误!未找到引用源。

(D)错误!未找到引用源。

-1(5)设椭圆C:错误!未找到引用源。

+错误!未找到引用源。

=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30。

,则C的离心率为(A)错误!未找到引用源。

(B)错误!未找到引用源。

(C)错误!未找到引用源。

(D)错误!未找到引用源。

(6)已知sin2α=错误!未找到引用源。

,则cos2(α+错误!未找到引用源。

2013全国新课标卷2数学(文科)试卷及解析

2013全国新课标卷2数学(文科)试卷及解析

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则MN =( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以MN {2,1,0}=--,选C.2、21i=+( ) (A)(B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i i i i --===-+-+,所以21i =+ C. 3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B- 2 -【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。

作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )232 (B 31 (C )232 (D 31 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c ππ=,解得22c =所以三角形的面积为117sin 2222212bc A π=⨯⨯.因为73221231sinsin()()123422222πππ=+=+=+,所以1231sin 22()3122bc A =+=,选B. 5、设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A 3 (B )13 (C )12(D 3【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以2123432tan 30,3PF c PF ===。

2013年高考数学试题及答案(全国卷文数3套)

2013年高考数学试题及答案(全国卷文数3套)

2013年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.13.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣34.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣15.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a 9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(5分)(2013•新课标Ⅱ)若存在正数x使2x(x﹣a)<1成立,则a的取值范围是()A.(﹣∞,+∞)B.(﹣2,+∞)C.(0,+∞)D.(﹣1,+∞)二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).2013年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题.每小题5分,在每个小题给出的四个选项中,只有一项是符合要求的.1.(5分)(2013•新课标Ⅱ)已知集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},则M∩N=()A.{﹣2,﹣1,0,1}B.{﹣3,﹣2,﹣1,0}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1}【分析】找出集合M与N的公共元素,即可求出两集合的交集.【解答】解:∵集合M={x|﹣3<x<1,x∈R},N={﹣3,﹣2,﹣1,0,1},∴M∩N={﹣2,﹣1,0}.故选:C.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2013•新课标Ⅱ)=()A.2B.2C.D.1【分析】通过复数的分子与分母同时求模即可得到结果.【解答】解:===.故选:C.【点评】本题考查复数的模的求法,考查计算能力.3.(5分)(2013•新课标Ⅱ)设x,y满足约束条件,则z=2x﹣3y的最小值是()A.﹣7B.﹣6C.﹣5D.﹣3【分析】先画出满足约束条件:,的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=2x﹣3y的最小值.【解答】解:根据题意,画出可行域与目标函数线如下图所示,由得,由图可知目标函数在点A(3,4)取最小值z=2×3﹣3×4=﹣6.故选:B.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.4.(5分)(2013•新课标Ⅱ)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B =,C=,则△ABC的面积为()A.2+2B.C.2﹣2D.﹣1【分析】由sin B,sin C及b的值,利用正弦定理求出c的值,再求出A的度数,由b,c 及sin A的值,利用三角形的面积公式即可求出三角形ABC的面积.【解答】解:∵b=2,B=,C=,∴由正弦定理=得:c===2,A=,∴sin A=sin(+)=cos=,=bc sin A=×2×2×=+1.则S△ABC故选:B.【点评】此题考查了正弦定理,三角形的面积公式,以及两角和与差的余弦函数公式,熟练掌握正弦定理是解本题的关键.5.(5分)(2013•新课标Ⅱ)设椭圆C:=1(a>b>0)的左、右焦点分别为F1、F2,P是C上的点PF2⊥F1F2,∠PF1F2=30°,则C的离心率为()A.B.C.D.【分析】设|PF2|=x,在直角三角形PF1F2中,依题意可求得|PF1|与|F1F2|,利用椭圆离心率的性质即可求得答案.【解答】解:|PF2|=x,∵PF2⊥F1F2,∠PF1F2=30°,∴|PF1|=2x,|F1F2|=x,又|PF1|+|PF2|=2a,|F1F2|=2c∴2a=3x,2c=x,∴C的离心率为:e==.故选:D.【点评】本题考查椭圆的简单性质,求得|PF1|与|PF2|及|F1F2|是关键,考查理解与应用能力,属于中档题.6.(5分)(2013•新课标Ⅱ)已知sin2α=,则cos2(α+)=()A.B.C.D.【分析】所求式子利用二倍角的余弦函数公式化简,再利用诱导公式变形,将已知等式代入计算即可求出值.【解答】解:∵sin2α=,∴cos2(α+)=[1+cos(2α+)]=(1﹣sin2α)=×(1﹣)=.故选:A.【点评】此题考查了二倍角的余弦函数公式,以及诱导公式的作用,熟练掌握公式是解本题的关键.7.(5分)(2013•新课标Ⅱ)执行如图的程序框图,如果输入的N=4,那么输出的S=()A.1+++B.1+++C.1++++D.1++++【分析】由程序中的变量、各语句的作用,结合流程图所给的顺序可知当条件满足时,用S+的值代替S得到新的S,并用k+1代替k,直到条件不能满足时输出最后算出的S 值,由此即可得到本题答案.【解答】解:根据题意,可知该按以下步骤运行第一次:S=1,第二次:S=1+,第三次:S=1++,第四次:S=1+++.此时k=5时,符合k>N=4,输出S的值.∴S=1+++故选:B.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,以及表格法的运用,属于基础题.8.(5分)(2013•新课标Ⅱ)设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>a>b D.c>b>a【分析】判断对数值的范围,然后利用换底公式比较对数式的大小即可.【解答】解:由题意可知:a=log32∈(0,1),b=log52∈(0,1),c=log23>1,所以a=log32,b=log52=,所以c>a>b,故选:C.【点评】本题考查对数值的大小比较,换底公式的应用,基本知识的考查.9.(5分)(2013•新课标Ⅱ)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()A.B.C.D.【分析】由题意画出几何体的直观图,然后判断以zOx平面为投影面,则得到正视图即可.【解答】解:因为一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),几何体的直观图如图,是正方体的顶点为顶点的一个正四面体,所以以zOx平面为投影面,则得到正视图为:故选:A.【点评】本题考查几何体的三视图的判断,根据题意画出几何体的直观图是解题的关键,考查空间想象能力.10.(5分)(2013•新课标Ⅱ)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.若|AF|=3|BF|,则l的方程为()A.y=x﹣1或y=﹣x+1B.y=(x﹣1)或y=﹣(x﹣1)C.y=(x﹣1)或y=﹣(x﹣1)D.y=(x﹣1)或y=﹣(x﹣1)【分析】根据题意,可得抛物线焦点为F(1,0),由此设直线l方程为y=k(x﹣1),与抛物线方程联解消去x,得﹣y﹣k=0.再设A(x1,y1),B(x2,y2),由根与系数的关系和|AF|=3|BF|,建立关于y1、y2和k的方程组,解之可得k值,从而得到直线l的方程.【解答】解:法一:∵抛物线C方程为y2=4x,可得它的焦点为F(1,0),∴设直线l方程为y=k(x﹣1)由消去x,得﹣y﹣k=0设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=﹣4…(*)∵|AF|=3|BF|,∴y1+3y2=0,可得y1=﹣3y2,代入(*)得﹣2y2=且﹣3y22=﹣4,消去y2得k2=3,解之得k=∴直线l方程为y=(x﹣1)或y=﹣(x﹣1)法二:做出抛物线的准线,以及A、B到准线的垂线段AA'、BB',并设直线l交准线与M,设|BF|=m,由抛物线的定义可知|BB'|=m,|AA'|=|AF|=3m,由BB'∥AA'可知,,即,所以|MB|=2m,则|MA|=6m,故∠AMA'=30°,根据斜率与角度的关系可得选C选项.故选:C.【点评】本题给出抛物线的焦点弦AB被焦点F分成1:3的两部分,求直线AB的方程,着重考查了抛物线的标准方程、简单几何性质和直线与圆锥曲线的位置关系等知识,属于中档题.11.(5分)(2013•新课标Ⅱ)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是()A.∃x0∈R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)上单调递减D.若x0是f(x)的极值点,则f′(x0)=0【分析】对于A,对于三次函数f(x)=x3+ax2+bx+c,由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故在区间(﹣∞,+∞)肯定存在零点;对于B,根据对称变换法则,求出对应中心坐标,可以判断;对于C:采用取特殊函数的方法,若取a=﹣1,b=﹣1,c=0,则f(x)=x3﹣x2﹣x,利用导数研究其极值和单调性进行判断;D:若x0是f(x)的极值点,根据导数的意义,则f′(x0)=0,正确.【解答】解:A、对于三次函数f(x)=x3+ax2+bx+c,A:由于当x→﹣∞时,y→﹣∞,当x→+∞时,y→+∞,故∃x0∈R,f(x0)=0,故A正确;B、∵f(﹣﹣x)+f(x)=(﹣﹣x)3+a(﹣﹣x)2+b(﹣﹣x)+c+x3+ax2+bx+c=﹣+2c,f (﹣)=(﹣)3+a (﹣)2+b (﹣)+c =﹣+c ,∵f (﹣﹣x )+f (x )=2f (﹣),∴点P (﹣,f (﹣))为对称中心,故B 正确.C 、若取a =﹣1,b =﹣1,c =0,则f (x )=x 3﹣x 2﹣x ,对于f (x )=x 3﹣x 2﹣x ,∵f ′(x )=3x 2﹣2x ﹣1∴由f ′(x )=3x 2﹣2x ﹣1>0得x ∈(﹣∞,﹣)∪(1,+∞)由f ′(x )=3x 2﹣2x ﹣1<0得x ∈(﹣,1)∴函数f (x )的单调增区间为:(﹣∞,﹣),(1,+∞),减区间为:(﹣,1),故1是f (x )的极小值点,但f (x )在区间(﹣∞,1)不是单调递减,故C 错误;D :若x 0是f (x )的极值点,根据导数的意义,则f ′(x 0)=0,故D 正确.由于该题选择错误的,故选:C .【点评】本题考查了导数在求函数极值中的应用,利用导数求函数的单调区间,及导数的运算.12.(5分)(2013•新课标Ⅱ)若存在正数x 使2x (x ﹣a )<1成立,则a 的取值范围是()A .(﹣∞,+∞)B .(﹣2,+∞)C .(0,+∞)D .(﹣1,+∞)【分析】转化不等式为,利用x 是正数,通过函数的单调性,求出a 的范围即可.【解答】解:因为2x (x ﹣a )<1,所以,函数y=是增函数,x>0,所以y>﹣1,即a>﹣1,所以a的取值范围是(﹣1,+∞).故选:D.【点评】本题考查不等式的解法,函数单调性的应用,考查分析问题解决问题的能力.二、填空题:本大题共4小题,每小题4分.13.(4分)(2013•新课标Ⅱ)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是0.2.【分析】由题意结合组合数公式可得总的基本事件数,再找出和为5的情形,由古典概型的概率公式可得答案.【解答】解:从1,2,3,4,5中任意取出两个不同的数共有=10种情况,和为5的有(1,4)(2,3)两种情况,故所求的概率为:=0.2故答案为:0.2【点评】本题考查古典概型及其概率公式,属基础题.14.(4分)(2013•新课标Ⅱ)已知正方形ABCD的边长为2,E为CD的中点,则•=2.【分析】根据两个向量的加减法的法则,以及其几何意义,可得要求的式子为()•(),再根据两个向量垂直的性质,运算求得结果.【解答】解:∵已知正方形ABCD的边长为2,E为CD的中点,则=0,故=()•()=()•()=﹣+﹣=4+0﹣0﹣=2,故答案为2.【点评】本题主要考查两个向量的加减法的法则,以及其几何意义,两个向量垂直的性质,属于中档题.15.(4分)(2013•新课标Ⅱ)已知正四棱锥O﹣ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为24π.【分析】先直接利用锥体的体积公式即可求得正四棱锥O﹣ABCD的高,再利用直角三角形求出正四棱锥O﹣ABCD的侧棱长OA,最后根据球的表面积公式计算即得.【解答】解:如图,正四棱锥O﹣ABCD的体积V=sh=(×)×OH=,∴OH=,在直角三角形OAH中,OA===所以表面积为4πr2=24π;故答案为:24π.【点评】本题考查锥体的体积、球的表面积计算,考查学生的运算能力,属基础题.16.(4分)(2013•新课标Ⅱ)函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【分析】根据函数图象平移的公式,可得平移后的图象为y=cos[2(x﹣)+φ]的图象,即y=cos(2x+φ﹣π)的图象.结合题意得函数y=sin(2x+)=的图象与y=cos(2x+φ﹣π)图象重合,由此结合三角函数的诱导公式即可算出φ的值.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin (2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=A sin(ωx+φ)的图象变换等知识,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)(2013•新课标Ⅱ)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{a n}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式a n;=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.【解答】解:(I)设等差数列{a n}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴a n=25+(n﹣1)×(﹣2)=﹣2n+27.=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6(II)由(I)可得a3n﹣2为公差的等差数列.∴S n=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键.18.(12分)(2013•新课标Ⅱ)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)AA1=AC=CB=2,AB=,求三棱锥C﹣A1DE的体积.【分析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD ⊥平面ABB1A1.求得CD的值,利用勾股定理求得A 1D、DE和A1E的值,可得A1D⊥DE.进而求得的值,再根据三棱锥C﹣A1DE的体积为••CD,运算求得结果.【解答】解:(Ⅰ)证明:连接AC1交A1C于点F,则F为AC1的中点.∵直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,故DF为三角形ABC1的中位线,故DF∥BC1.由于DF⊂平面A1CD,而BC1不在平面A1CD中,故有BC1∥平面A1CD.(Ⅱ)∵AA1=AC=CB=2,AB=2,故此直三棱柱的底面ABC为等腰直角三角形.由D为AB的中点可得CD⊥平面ABB1A1,∴CD==.∵A1D==,同理,利用勾股定理求得DE=,A1E=3.再由勾股定理可得+DE2=,∴A1D⊥DE.∴==,∴=••CD=1.【点评】本题主要考查直线和平面平行的判定定理的应用,求三棱锥的体积,体现了数形结合的数学思想,属于中档题.19.(12分)(2013•新课标Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ)将T表示为X的函数;(Ⅱ)根据直方图估计利润T不少于57000元的概率.【分析】(I)由题意先分段写出,当X∈[100,130)时,当X∈[130,150)时,和利润值,最后利用分段函数的形式进行综合即可.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.再由直方图知需求量X∈[120,150]的频率为0.7,利用样本估计总体的方法得出下一个销售季度的利润T 不少于57000元的概率的估计值.【解答】解:(I)由题意得,当X∈[100,130)时,T=500X﹣300(130﹣X)=800X﹣39000,当X∈[130,150]时,T=500×130=65000,∴T=.(II)由(I)知,利润T不少于57000元,当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度的利润T不少于57000元的概率的估计值为0.7.【点评】本题考查用样本的频率分布估计总体分布及识图的能力,求解的重点是对题设条件及直方图的理解,了解直方图中每个小矩形的面积的意义.20.(12分)(2013•新课标Ⅱ)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为2,在y轴上截得线段长为2.(Ⅰ)求圆心P的轨迹方程;(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.【分析】(Ⅰ)由题意,可直接在弦心距、弦的一半及半径三者组成的直角三角形中利用勾股定理建立关于点P的横纵坐标的方程,整理即可得到所求的轨迹方程;(Ⅱ)由题,可先由点到直线的距离公式建立关于点P的横纵坐标的方程,将此方程与(I)所求的轨迹方程联立,解出点P的坐标,进而解出圆的半径即可写出圆P的方程.【解答】解:(Ⅰ)设圆心P(x,y),由题意得圆心到x轴的距离与半径之间的关系为2=﹣y2+r2,同理圆心到y轴的距离与半径之间的关系为3=﹣x2+r2,由两式整理得x2+3=y2+2,整理得y2﹣x2=1即为圆心P的轨迹方程,此轨迹是等轴双曲线(Ⅱ)由P点到直线y=x的距离为得,=,即|x﹣y|=1,即x=y+1或y =x+1,分别代入y2﹣x2=1解得P(0,﹣1)或P(0,1)若P(0,﹣1),此时点P在y轴上,故半径为,所以圆P的方程为(y+1)2+x2=3;若P(0,1),此时点P在y轴上,故半径为,所以圆P的方程为(y﹣1)2+x2=3;综上,圆P的方程为(y+1)2+x2=3或(y﹣1)2+x2=3【点评】本题考查求轨迹方程的方法解析法及点的直线的距离公式、圆的标准方程与圆的性质,解题的关键是理解圆的几何特征,将几何特征转化为方程21.(12分)(2013•新课标Ⅱ)已知函数f(x)=x2e﹣x(Ⅰ)求f(x)的极小值和极大值;(Ⅱ)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【分析】(Ⅰ)利用导数的运算法则即可得出f′(x),利用导数与函数单调性的关系及函数的极值点的定义,即可求出函数的极值;(Ⅱ)利用导数的几何意义即可得到切线的斜率,得出切线的方程,利用方程求出与x 轴交点的横坐标,再利用导数研究函数的单调性、极值、最值即可.【解答】解:(Ⅰ)∵f(x)=x2e﹣x,∴f′(x)=2xe﹣x﹣x2e﹣x=e﹣x(2x﹣x2),令f′(x)=0,解得x=0或x=2,令f′(x)>0,可解得0<x<2;令f′(x)<0,可解得x<0或x>2,故函数在区间(﹣∞,0)与(2,+∞)上是减函数,在区间(0,2)上是增函数.∴x=0是极小值点,x=2极大值点,又f(0)=0,f(2)=.故f(x)的极小值和极大值分别为0,.(Ⅱ)设切点为(),则切线方程为y﹣=(x﹣x0),令y=0,解得x==,∵曲线y=f(x)的切线l的斜率为负数,∴(<0,∴x0<0或x0>2,令,则=.①当x0<0时,0,即f′(x0)>0,∴f(x0)在(﹣∞,0)上单调递增,∴f(x0)<f(0)=0;②当x 0>2时,令f′(x0)=0,解得.当时,f′(x0)>0,函数f(x0)单调递增;当时,f′(x0)<0,函数f(x0)单调递减.故当时,函数f(x 0)取得极小值,也即最小值,且=.综上可知:切线l在x轴上截距的取值范围是(﹣∞,0)∪.【点评】本题考查利用导数求函数的极值与利用导数研究函数的单调性、切线、函数的值域,综合性强,考查了推理能力和计算能力.选做题.请考生在第22、23、24题中任选择一题作答,如果多做,则按所做的第一部分,作答时请写清题号.22.(2013•新课标Ⅱ)【选修4﹣1几何证明选讲】如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E、F分别为弦AB 与弦AC上的点,且BC•AE=DC•AF,B、E、F、C四点共圆.(1)证明:CA是△ABC外接圆的直径;(2)若DB=BE=EA,求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.【分析】(1)已知CD为△ABC外接圆的切线,利用弦切角定理可得∠DCB=∠A,及BC•AE=DC•AF,可知△CDB∽△AEF,于是∠CBD=∠AFE.利用B、E、F、C四点共圆,可得∠CFE=∠DBC,进而得到∠CFE=∠AFE=90°即可证明CA是△ABC外接圆的直径;(2)要求过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值.只需求出其外接圆的直径的平方之比即可.由过B、E、F、C四点的圆的直径为CE,及DB=BE,可得CE=DC,利用切割线定理可得DC2=DB•DA,CA2=CB2+BA2,都用DB表示即可.【解答】(1)证明:∵CD为△ABC外接圆的切线,∴∠DCB=∠A,∵BC•AE=DC•AF,∴.∴△CDB∽△AEF,∴∠CBD=∠AFE.∵B、E、F、C四点共圆,∴∠CFE=∠DBC,∴∠CFE=∠AFE=90°.∴∠CBA=90°,∴CA是△ABC外接圆的直径;(2)连接CE,∵∠CBE=90°,∴过B、E、F、C四点的圆的直径为CE,由DB=BE,得CE=DC,又BC2=DB•BA=2DB2,∴CA2=4DB2+BC2=6DB2.而DC2=DB•DA=3DB2,故过B、E、F、C四点的圆的面积与△ABC面积的外接圆的面积比值==.【点评】熟练掌握弦切角定理、相似三角形的判定与性质、四点共圆的性质、直径的判定、切割线定理、勾股定理等腰三角形的性质是解题的关键.23.(2013•新课标Ⅱ)已知动点P、Q都在曲线(β为参数)上,对应参数分别为β=α与β=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.【分析】(1)利用参数方程与中点坐标公式即可得出;(2)利用两点之间的距离公式、三角函数的单调性即可得出.【解答】解:(1)依题意有P(2cosα,2sinα),Q(2cos2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α).M的轨迹的参数方程为为参数,0<α<2π).(2)M点到坐标原点的距离d=(0<α<2π).当α=π时,d=0,故M的轨迹过坐标原点.【点评】本题考查了参数方程与中点坐标公式、两点之间的距离公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.24.(14分)(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a,b,c均为正数,且a+b+c=1,证明:(Ⅰ)(Ⅱ).【分析】(Ⅰ)依题意,由a+b+c=1⇒(a+b+c)2=1⇒a2+b2+c2+2ab+2bc+2ca=1,利用基本不等式可得3(ab+bc+ca)≤1,从而得证;(Ⅱ)利用基本不等式可证得:+b ≥2a ,+c ≥2b ,+a ≥2c ,三式累加即可证得结论.【解答】证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得:a 2+b 2+c 2≥ab +bc +ca ,由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤.(Ⅱ)因为+b ≥2a ,+c ≥2b ,+a ≥2c ,故+++(a +b +c )≥2(a +b +c ),即++≥a +b +c .所以++≥1.【点评】本题考查不等式的证明,突出考查基本不等式与综合法的应用,考查推理论证能力,属于中档题.2013年全国统一高考数学试卷(文科)(大纲版)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣14.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.2246.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)7.(5分)(2013•大纲版)已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)8.(5分)(2013•大纲版)已知F1(﹣1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆于A、B两点,且|AB|=3,则C的方程为()A.B.C.D.9.(5分)(2013•大纲版)若函数y=sin(ωx+φ)(ω>0)的部分图象如图,则ω=()A.5B.4C.3D.210.(5分)(2013•大纲版)已知曲线y=x4+ax2+1在点(﹣1,a+2)处切线的斜率为8,a =()A.9B.6C.﹣9D.﹣611.(5分)(2013•大纲版)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于()A.B.C.D.12.(5分)(2013•大纲版)已知抛物线C:y2=8x的焦点为F,点M(﹣2,2),过点F且斜率为k的直线与C交于A,B两点,若,则k=()A.B.C.D.2二、填空题:本大题共4小题,每小题5分.13.(5分)(2013•大纲版)设f(x)是以2为周期的函数,且当x∈[1,3)时,f(x)=x ﹣2,则f(﹣1)=.14.(5分)(2013•大纲版)从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有种.(用数字作答)15.(5分)(2013•大纲版)若x、y满足约束条件,则z=﹣x+y的最小值为.16.(5分)(2013•大纲版)已知圆O和圆K是球O的大圆和小圆,其公共弦长等于球O的半径,,则球O的表面积等于.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(10分)(2013•大纲版)等差数列{a n}中,a7=4,a19=2a9,(Ⅰ)求{a n}的通项公式;(Ⅱ)设b n=,求数列{b n}的前n项和S n.18.(12分)(2013•大纲版)设△ABC的内角A,B,C的内角对边分别为a,b,c,满足(a+b+c)(a﹣b+c)=ac.(Ⅰ)求B.(Ⅱ)若sin A sin C=,求C.19.(12分)(2013•大纲版)如图,四棱锥P﹣ABCD中,∠ABC=∠BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形.(Ⅰ)证明:PB⊥CD;(Ⅱ)求点A到平面PCD的距离.20.(12分)(2013•大纲版)甲、乙、丙三人进行羽毛球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判,设各局中双方获胜的概率均为,各局比赛的结果都相互独立,第1局甲当裁判.(Ⅰ)求第4局甲当裁判的概率;(Ⅱ)求前4局中乙恰好当1次裁判概率.21.(12分)(2013•大纲版)已知函数f(x)=x3+3ax2+3x+1.(Ⅰ)求a=时,讨论f(x)的单调性;(Ⅱ)若x∈[2,+∞)时,f(x)≥0,求a的取值范围.22.(12分)(2013•大纲版)已知双曲线C:=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为3,直线y=2与C的两个交点间的距离为.(I)求a,b;(II)设过F2的直线l与C的左、右两支分别相交于A、B两点,且|AF1|=|BF1|,证明:|AF2|、|AB|、|BF2|成等比数列.2013年全国统一高考数学试卷(文科)(大纲版)参考答案与试题解析一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2013•大纲版)设集合U={1,2,3,4,5},集合A={1,2},则∁U A=()A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【分析】由题意,直接根据补集的定义求出∁U A,即可选出正确选项【解答】解:因为U={1,2,3,4,5,},集合A={1,2}所以∁U A={3,4,5}故选:B.【点评】本题考查补集的运算,理解补集的定义是解题的关键2.(5分)(2013•大纲版)若α为第二象限角,sinα=,则cosα=()A.B.C.D.【分析】由α为第二象限角,得到cosα小于0,根据sinα的值,利用同角三角函数间的基本关系即可求出cosα的值.【解答】解:∵α为第二象限角,且sinα=,∴cosα=﹣=﹣.故选:A.【点评】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.3.(5分)(2013•大纲版)已知向量=(λ+1,1),=(λ+2,2),若(+)⊥(﹣),则λ=()A.﹣4B.﹣3C.﹣2D.﹣1【分析】利用向量的运算法则、向量垂直与数量积的关系即可得出.【解答】解:∵,.∴=(2λ+3,3),.∵,∴=0,∴﹣(2λ+3)﹣3=0,解得λ=﹣3.故选:B.【点评】熟练掌握向量的运算法则、向量垂直与数量积的关系是解题的关键.4.(5分)(2013•大纲版)不等式|x2﹣2|<2的解集是()A.(﹣1,1)B.(﹣2,2)C.(﹣1,0)∪(0,1)D.(﹣2,0)∪(0,2)【分析】直接利用绝对值不等式的解法,去掉绝对值后,解二次不等式即可.【解答】解:不等式|x2﹣2|<2的解集等价于,不等式﹣2<x2﹣2<2的解集,即0<x2<4,解得x∈(﹣2,0)∪(0,2).故选:D.【点评】本题考查绝对值不等式的解法,考查转化思想与计算能力.5.(5分)(2013•大纲版)(x+2)8的展开式中x6的系数是()A.28B.56C.112D.224【分析】利用二项展开式的通项公式求出第r+1项,令x的指数为6求出x6的系数.【解答】解:(x+2)8展开式的通项为T r+1=x8﹣r2r令8﹣r=6得r=2,∴展开式中x6的系数是22C82=112.故选:C.【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.6.(5分)(2013•大纲版)函数f(x)=log2(1+)(x>0)的反函数f﹣1(x)=()A.B.C.2x﹣1(x∈R)D.2x﹣1(x>0)【分析】把y看作常数,求出x:x=,x,y互换,得到y=log2(1+)的反函数.注意反函数的定义域.【解答】解:设y=log2(1+),把y看作常数,求出x:。

2013年高考文科数学全国新课标卷2试题与答案

2013年高考文科数学全国新课标卷2试题与答案

2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 2.21i+=( ). A..2 C..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2D 15.设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .B .13C .12D .6.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++ D .11111+2324325432+++⨯⨯⨯⨯⨯⨯ 8.设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >a C .c >b >a D .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y2=4x 的焦点为F ,直线l 过F 且与C 交于A,B 两点.若|AF |=3|BF |,则l的方程为( ).A .y =x -1或y =-x +1B .y =1)3x -或y =(1)3x --C.y=1)x-或y=1)x-D.y=1)x-或y=1)x-11.已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是().A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.若存在正数x使2x(x-a)<1成立,则a的取值范围是( ).A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=__________。

2013年高考文科数学全国卷2-答案

2013年高考文科数学全国卷2-答案

O-ABCD
中, VO-ABCD=13

S正方形ABCD

OO1
=1 3

(
3)2

OO1
=3
2 2


OO1
=3 2 2

AO1 =
6, 2
在 RtOO1A 中, OA=
| OO1 |2 | AO1 |2
2
2
3 2 2

6 2

6 ,即 R
6,
当直线 l 的斜率小于 0 时,如图所示,同理可得直线方程为 y=- 3(x-1) ,故选 C.
11.【答案】C
【解析】若 x0 是 f x 的极小值点,则 y=f x 的图像大致如下图所示,则在 (-,x0 ) 上不单调,故 C 不
正确.
12.【答案】D
【解析】由题意可得,
a

x
-

2013 年普通高等学校招生全国统一考试(全国新课标卷 2)
文科数学答案解析
第Ⅰ卷
一、选择题
1.【答案】C 【解析】由题意可得, M N={-2,-1,0}。故选 C.
2.【答案】C
【解析】∵ 2 =1-i ,∴ 2 = 1-i = 3 。故选 C.
1+i
1+i
3.【答案】B
【解析】如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为
所以 T

800X - 39000,100 X 65000,130 X 150.
130,
(2)由(1)知利润 T 不少于 57 000 元当且仅当120 X 150 . 由直方图知需求量 X [120,150] 的频率为 0.7,所以下一个销售季度内的利润 T 不少于 57 000 元的概率的 估计值为 0.7. 20.【答案】(1) y2-x2=1

2013年高考文科数学全国新课标卷2试题与答案

2013年高考文科数学全国新课标卷2试题与答案

2013 年普通高等学校夏季招生全国统一考试数学文史类( 全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.) 已知集合M={ x| -3<x<1} ,N={-3,-2,-1,0,1} ,则M∩N=( ) .A.{ -2,-1,0,1} B .{ -3,-2,-1,0} C .{ -2,-1,0} D ..{-3,-2,-1}2.21 i=( ) .A.2 2 B .2 C . 2 D ..1x y 1 0,3.设x,y 满足约束条件x y 1 0,则z=2x-3y 的最小值是( ) .x 3,A.-7 B .-6 C .-5 D .-34.△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,πB ,6πC ,则△ABC的面积为( ) .4A.23+2 B .3+1 C .2 3 2 D . 3 12 2x y 5.设椭圆C: 2 2 =1a b则C的离心率为( ) .(a>b>0) 的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,3 1 1 3 A.6 B .3 C .2 D .36.已知sin 2 α=23,则 2πcos4=( ) .1 1 1 2A.6 B .3 C .2 D .37.执行下面的程序框图,如果输入的N=4,那么输出的S=( ) .A.1+1 1 12 3 4 B .1+1 1 12 3 2 4 3 2C.1+1 1 1 12 3 4 5 D .1+1 1 1 12 3 2 4 3 2 5 4 3 28.设a=log 32,b=log 52,c=log 2 3,则( ) .A.a>c>b B .b>c>a C .c>b>a D .c>a>b9.一个四面体的顶点在空间直角坐标系O-xyz 中的坐标分别是(1,0,1) ,(1,1,0) ,(0,1,1) ,(0,0,0) ,画该四面体三视图中的正视图时,以zOx平面为投影面,则得到的正视图可以为( ) .210.设抛物线C:y =4x 的焦点为F,直线l 过F 且与C交于A,B两点.若| AF| =3| BF| ,则l 的方程为( ) .A.y=x-1 或y=-x+1 B .y=33(x 1)或y=33(x 1)C.y=33(x1)或y=33(x 1)D .y=22(x1)或y=22(x 1)111.已知函数 f ( x)=x3+ax2+bx+c,下列结论中错误的是( ) .A.? x0∈R,f(x0) =0B.函数y=f(x) 的图像是中心对称图形C.若x0 是f(x) 的极小值点,则f(x) 在区间(-∞,x0) 单调递减D.若x0 是f(x) 的极值点,则 f ′(x0) =012.若存在正数x 使2x( x-a) <1 成立,则 a 的取值范围是( ) .A.( -∞,+∞) B .( -2,+∞) C .(0 ,+∞) D .(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题 5 分.13.从1,2,3,4,5 中任意取出两个不同的数,其和为 5 的概率是__________.14.已知正方形ABCD的边长为2,E为CD的中点,则AE BD =__________.15.已知正四棱锥O-ABCD的体积为3 22,底面边长为 3 ,则以O为球心,OA为半径的球的表面积为__________.π16.函数y=cos(2 x+φ)( -π≤φ<π) 的图像向右平移个单位后,与函数y=2πsin 2x 的图3像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.( 本小题满分12 分) 已知等差数列{ a n} 的公差不为零,a1=25,且a1,a11,a13 成等比数列.(1) 求{ a n} 的通项公式;(2) 求a1+a4+a7+, +a3n-2.18.( 本小题满分12 分) 如图,直三棱柱A BC-A1B1C1 中,D,E分别是AB,BB1 的中点.219.( 本小题满分12 分) 经销商经销某种农产品,在一个销售季度内,每售出 1 t 该产品获利润500 元,未售出的产品,每1 t亏损300 元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X( 单位:t,100 ≤X≤150)表示下一个销售季度内的市场需求量,T( 单位:元)表示下一个销售季度内经销该农产品的利润.(1) 将T 表示为X的函数;(2) 根据直方图估计利润T不少于57 000 元的概率.20.( 本小题满分12 分) 在平面直角坐标系x Oy中,已知圆P在x 轴上截得线段长为 2 2 在y 轴上截得线段长为2 3 .(1) 求圆心P的轨迹方程;(2) 若P点到直线y=x 的距离为22,求圆P的方程.21.( 本小题满分12 分) 已知函数 f ( x)=x2e-x.(1) 求f ( x)的极小值和极大值;(2) 当曲线y=f ( x)的切线l的斜率为负数时,求l 在x 轴上截距的取值范围.322.( 本小题满分10 分) 选修4—1:几何证明选讲如图,CD为△A BC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23.( 本小题满分10 分) 选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:M为PQ的中点.x2cost ,y 2sin t( t 为参数) 上,对应参数分别为t =α与t =2α(0 <α<2π) ,(1) 求M的轨迹的参数方程;(2) 将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.)( 本小题满分10 分) 选修4—5:不等式选讲设a,b,c 均为正数,且a+b+c=1. 证明:(1) ab+bc+ca≤13 ;(2)2 2 2a b cb c a≥ 1.42013 年普通高等学校夏季招生全国统一考试数学文史类( 全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.答案:C解析:由题意可得,M∩N={ -2,-1,0} .故选 C.2.答案:C解析:∵3.答案:B21 i=1-i ,∴21 i=|1 -i| = 2 .解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为2 zy x ,先画出l3 30:y=23x,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C,由x3,x y1 0,可得C(3,4) ,代入目标函数得,z min=2×3-3×4=- 6.4.答案:B解析:A=π-( B+C) =πππ7π,6 4 12由正弦定理得a bsin A sin B,则a7π2sinb Asin 12 6 2πsin sinB6,∴S△ABC=5.答案:D 1 1 2ab sin C 2 ( 6 2) 3 1.2 2 2解析:如图所示,在Rt△PF1F2 中,| F1F2| =2c,设| PF2| =x,则| PF1| =2x,| PF | x 3 由tan 30 °= 2| F F | 2c 31 2 ,得2 3xc .3而由椭圆定义得,| PF1| +| PF2| =2a=3x,∴3a x 3c ,∴2ec ca c333.6.答案:A解析:由半角公式可得, 2 πcos45=π 21 cos2 12 1 sin 23 12 2 2 6.7.答案:B解析:由程序框图依次可得,输入N=4,T=1,S=1,k=2;1 T ,21S 1+ ,k=3;21T ,S=3 2 1+1 12 3 2,k=4;1T ,4 3 21 1 1S 1 ,k=5;2 3 2 4 3 2输出8.1 1 1S 1 .2 3 2 4 3 2答案:D解析:∵log 25>log 23>1,∴log 23>1>b.9.答案:A1log 32>1log 52>0,即log 23>1>log 32>log 52>0,∴c>a>解析:如图所示,该四面体在空间直角坐标系O-xyz 的图像为下图:则它在平面zOx的投影即正视图为,故选 A.10.答案:C解析:由题意可得抛物线焦点F(1,0) ,准线方程为x=-1.当直线l 的斜率大于0 时,如图所示,过A,B两点分别向准线x=-1 作垂线,垂足分别为M,N,则由抛物线定义可得,| AM| =| AF| ,| BN| =| BF|.设| AM| =| AF| =3t ( t >0) ,| BN| =| BF| =t ,| BK| =x,而| GF| =2,在△AMK中,由| NB | | BK || AM | | AK |,得t x3t x 4t,解得x=2t,则cos∠NBK =| NB | t 1 |BK | x 2,∴∠NBK=60°,则∠GFK=60°,即直线AB的倾斜角为60° .∴斜率k=tan 60 °=3,故直线方程为y=3( x-1).当直线l 的斜率小于0 时,如图所示,同理可得直线方程为y=3( x-1),故选C.611. 答案: C解析: 若 x 0 是 f ( x ) 的极小值点,则 y =f ( x ) 的图像大致如下图所示,则在 ( -∞, x 0) 上不单调,故 C 不正确. 12. 答案: D解析: 由题意可得,x1a x( x >0) .2令 f ( x ) =x1x,该函数在 (0 ,+∞) 上为增函数, 可知 f ( x ) 的值域为 ( -21,+∞) ,故 a >-1 时,存在正数 x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。

(完整版)2013年高考文科数学全国新课标卷2试题与答案

(完整版)2013年高考文科数学全国新课标卷2试题与答案

2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1}2. 21i+=( ). A. B .2 CD ..13.设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,πB =,π4C =,则△ABC 的面积为( ). A . B C .2 D 15.设椭圆C :2222=1x y a b +(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A .6B .13C .12 D .36.已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .23 7.执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.设a =log 32,b =log 52,c =log 23,则().A .a >c >bB .b >c >aC .c >b >aD .c >a >b9.一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ). A .y =x -1或y =-x +1 B .y=1)x -或y=1)x -C .y=(1)3x -或y=(1)3x -- D .y=(1)2x -或y=(1)2x --11.已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D .若x0是f(x)的极值点,则f′(x0)=012.若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ).A .(-∞,+∞) B.(-2,+∞) C .(0,+∞) D .(-1,+∞) 第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________. 14.已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅u u u r u u u r =__________.15.已知正四棱锥O -ABCD的体积为2,则以O 为球心,OA 为半径的球的表面积为__________. 16.函数y =cos(2x +φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y =πsin 23x ⎛⎫+ ⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17. (本小题满分12分)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式;(2)求a 1+a 4+a 7+…+a 3n -2.18. (本小题满分12分)如图,直三棱柱ABC -A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点.(1) 证明:BC 平行面CD A 1 (2) 设,22,21====AB CB AC AA 求三棱锥DE A C 1-的体积19. (本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20. (本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221. (本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22. (本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23. (本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b c b c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C.2.答案:C解析:∵21i +=1-i ,∴21i +=|1-i|. 3.答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233z y x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4.答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+=⎪⎝⎭, 由正弦定理得sin sin a b A B=,则7π2sin sin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c ,设|PF 2|=x ,则|PF 1|=2x ,由tan 30°=212||||23PF x F F c ==,得3x c =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A 解析:由半角公式可得,2πcos 4α⎛⎫+ ⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4,T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8.答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9.答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A.10.答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t x t x t=+, 解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°.∴斜率k y 1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y =1)x -,故选C.11.答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12.答案:D解析:由题意可得,12x a x ⎛⎫>- ⎪⎝⎭(x >0). 令f (x )=12x x ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。

2013年高考文科数学全国新课标卷2试题与答案word解析版

2013年高考文科数学全国新课标卷2试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅱ,文1)已知集合M ={x |-3<x <1},N ={-3,-2,-1,0,1},则M ∩N =( ).A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D ..{-3,-2,-1} 2.(2013课标全国Ⅱ,文2)21i+=( ). A. B .2 CD ..13.(2013课标全国Ⅱ,文3)设x ,y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩则z =2x -3y 的最小值是( ).A .-7B .-6C .-5D .-34.(2013课标全国Ⅱ,文4)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b =2,π6B =,π4C =,则△ABC 的面积为( ).A. BC.2 D15.(2013课标全国Ⅱ,文5)设椭圆C :2222=1x y a b+(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( ).A. B .13 C .12 D.6.(2013课标全国Ⅱ,文6)已知sin 2α=23,则2πcos 4α⎛⎫+ ⎪⎝⎭=( ). A .16 B .13 C .12 D .237.(2013课标全国Ⅱ,文7)执行下面的程序框图,如果输入的N =4,那么输出的S =( ).A .1111+234++B .1111+232432++⨯⨯⨯C .11111+2345+++D .11111+2324325432+++⨯⨯⨯⨯⨯⨯8.(2013课标全国Ⅱ,文8)设a =log 32,b =log 52,c =log 23,则( ).A .a >c >bB .b >c >aC .c >b >aD .c >a >b 9.(2013课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( ).10.(2013课标全国Ⅱ,文10)设抛物线C :y 2=4x 的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若|AF |=3|BF |,则l 的方程为( ).A .y =x -1或y =-x +1B .y=(1)3x -或y=1)x -C.y=(1)3x-或y=(1)3x--D.y=(1)2x-或y=(1)2x--11.(2013课标全国Ⅱ,文11)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是( ).A.∃x0∈R,f(x0)=0B.函数y=f(x)的图像是中心对称图形C.若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减D.若x0是f(x)的极值点,则f′(x0)=012.(2013课标全国Ⅱ,文12)若存在正数x使2x(x-a)<1成立,则a的取值范围是( ).A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2013课标全国Ⅱ,文13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是__________.14.(2013课标全国Ⅱ,文14)已知正方形ABCD的边长为2,E为CD的中点,则AE BD⋅=__________.15.(2013课标全国Ⅱ,文15)已知正四棱锥O-ABCD的体积为2,则以O为球心,OA为半径的球的表面积为__________.16.(2013课标全国Ⅱ,文16)函数y=cos(2x+φ)(-π≤φ<π)的图像向右平移π2个单位后,与函数y=πsin23x⎛⎫+⎪⎝⎭的图像重合,则φ=__________.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(2013课标全国Ⅱ,文17)(本小题满分12分)已知等差数列{a n}的公差不为零,a1=25,且a1,a11,a13成等比数列.(1)求{a n}的通项公式;(2)求a1+a4+a7+…+a3n-2.18.(2013课标全国Ⅱ,文18)(本小题满分12分)如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.19.(2013课标全国Ⅱ,文19)(本小题满分12分)经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.20.(2013课标全国Ⅱ,文20)(本小题满分12分)在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为y轴上截得线段长为(1)求圆心P的轨迹方程;,求圆P的方程.(2)若P点到直线y=x的距离为221.(2013课标全国Ⅱ,文21)(本小题满分12分)已知函数f(x)=x2e-x.(1)求f(x)的极小值和极大值;(2)当曲线y=f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.22.(2013课标全国Ⅱ,文22)(本小题满分10分)选修4—1:几何证明选讲如图,CD为△ABC外接圆的切线,AB的延长线交直线CD于点D,E,F分别为弦AB与弦AC上的点,且BC·AE =DC·AF,B,E,F,C四点共圆.23.(2013课标全国Ⅱ,文23)(本小题满分10分)选修4—4:坐标系与参数方程已知动点P,Q都在曲线C:2cos,2sinx ty t=⎧⎨=⎩(t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.(1)求M的轨迹的参数方程;(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.24.(2013课标全国Ⅱ,文24)(本小题满分10分)选修4—5:不等式选讲设a,b,c均为正数,且a+b+c=1.证明:(1)ab+bc+ca≤13;(2)222a b cb c a++≥1.2013年普通高等学校夏季招生全国统一考试数学文史类(全国卷II 新课标)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 答案:C解析:由题意可得,M ∩N ={-2,-1,0}.故选C. 2. 答案:C 解析:∵21i+=1-i ,∴21i +=|1-i|.3. 答案:B解析:如图所示,约束条件所表示的区域为图中的阴影部分,而目标函数可化为233zy x =-,先画出l 0:y =23x ,当z 最小时,直线在y 轴上的截距最大,故最优点为图中的点C ,由3,10,x x y =⎧⎨-+=⎩可得C (3,4),代入目标函数得,z min =2×3-3×4=-6.4. 答案:B解析:A =π-(B +C )=ππ7ππ6412⎛⎫-+= ⎪⎝⎭, 由正弦定理得sin sin a bA B=,则7π2sinsin 12πsin sin 6b A a B === ∴S △ABC=11sin 21222ab C =⨯⨯⨯=. 5.答案:D解析:如图所示,在Rt △PF 1F 2中,|F 1F 2|=2c , 设|PF 2|=x ,则|PF 1|=2x , 由tan 30°=212||||23PF x F F c ==,得3x =.而由椭圆定义得,|PF 1|+|PF 2|=2a =3x ,∴32a x ==,∴c e a ===6. 答案:A解析:由半角公式可得,2πcos 4α⎛⎫+⎪⎝⎭=π21cos 211sin 21232226αα⎛⎫++- ⎪-⎝⎭===. 7.答案:B解析:由程序框图依次可得,输入N =4, T =1,S =1,k =2;12T =,11+2S =,k =3; 132T =⨯,S =111+232+⨯,k =4; 1432T =⨯⨯,1111232432S =+++⨯⨯⨯,k =5; 输出1111232432S =+++⨯⨯⨯. 8. 答案:D解析:∵log 25>log 23>1,∴log 23>1>21log 3>21log 5>0,即log 23>1>log 32>log 52>0,∴c >a >b .9. 答案:A解析:如图所示,该四面体在空间直角坐标系O -xyz 的图像为下图:则它在平面zOx 的投影即正视图为,故选A. 10. 答案:C解析:由题意可得抛物线焦点F (1,0),准线方程为x =-1.当直线l 的斜率大于0时,如图所示,过A ,B 两点分别向准线x =-1作垂线,垂足分别为M ,N ,则由抛物线定义可得,|AM |=|AF |,|BN |=|BF |.设|AM |=|AF |=3t (t >0),|BN |=|BF |=t ,|BK |=x ,而|GF |=2,在△AMK 中,由||||||||NB BK AM AK =,得34t xt x t=+,解得x =2t ,则cos ∠NBK =||1||2NB t BK x ==, ∴∠NBK =60°,则∠GFK =60°,即直线AB 的倾斜角为60°. ∴斜率ky1)x -.当直线l 的斜率小于0时,如图所示,同理可得直线方程为y=1)x -,故选C.11. 答案:C解析:若x 0是f (x )的极小值点,则y =f (x )的图像大致如下图所示,则在(-∞,x 0)上不单调,故C 不正确.12. 答案:D解析:由题意可得,12xa x ⎛⎫>- ⎪⎝⎭(x >0).令f (x )=12xx ⎛⎫- ⎪⎝⎭,该函数在(0,+∞)上为增函数,可知f (x )的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第Ⅱ卷本卷包括必考题和选考题两部分。

12013年新课标II高考文科数学试卷及答案(word解析版)

12013年新课标II高考文科数学试卷及答案(word解析版)

2
5、设椭圆 C
:
x2 a2

y2 1F2 30 ,则 C 的离心率为(
3
(A)
6
【答案】D
【解析】因为

PF1

PF2
PF2

63 3

1
(B)
3
(a
F1F2 , PF1F2
c

2a
b
,所以

7 12
33


y
(C) 2 3 2

4
,C
(B) 3 1

4
,所以
所以三角形的面积为 1 bc sin A 1 2 2 2 sin 7 .因为
2
sin 7 sin( ) 3 2 2 1 2 ( 3 1) ,所以
12
2
A
34 2 2 2 2 2 2 2
1 bc sin A 2 2 2 ( 3 1) 3 1,选 B.
3、设
(A) 7
【答案】B
x,
y
1 i (1 i)(1 i) 2
满足约束条件
x y 1 0,

x

x 3,
(B) 6
y
1
0, ,则
(C) 2
z

(C) 5
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,通系电1,力过根保管据护线生高0不产中仅工资2艺料22高试2可中卷以资配解料置决试技吊卷术顶要是层求指配,机置对组不电在规气进范设行高备继中进电资行保料空护试载高卷与中问带资题负料2荷试2,下卷而高总且中体可资配保料置障试时2卷,32调需3各控要类试在管验最路;大习对限题设度到备内位进来。行确在调保管整机路使组敷其高设在中过正资程常料1工试中况卷,下安要与全加过,强度并看工且25作尽52下可22都能护可地1关以缩于正小管常故路工障高作高中;中资对资料于料试继试卷电卷连保破接护坏管进范口行围处整,理核或高对者中定对资值某料,些试审异卷核常弯与高扁校中度对资固图料定纸试盒,卷位编工置写况.复进保杂行护设自层备动防与处腐装理跨置,接高尤地中其线资要弯料避曲试免半卷错径调误标试高方中等案资,,料要编试求5写、卷技重电保术要气护交设设装底备备置。4高调、动管中试电作线资高气,敷料中课并设3试资件且、技卷料中拒管术试试调绝路中验卷试动敷包方技作设含案术,技线以来术槽及避、系免管统不架启必等动要多方高项案中方;资式对料,整试为套卷解启突决动然高过停中程机语中。文高因电中此气资,课料电件试力中卷高管电中壁气资薄设料、备试接进卷口行保不调护严试装等工置问作调题并试,且技合进术理行,利过要用关求管运电线行力敷高保设中护技资装术料置。试做线卷到缆技准敷术确设指灵原导活则。。:对对在于于分调差线试动盒过保处程护,中装当高置不中高同资中电料资压试料回卷试路技卷交术调叉问试时题技,,术应作是采为指用调发金试电属人机隔员一板,变进需压行要器隔在组开事在处前发理掌生;握内同图部一纸故线资障槽料时内、,设需强备要电制进回造行路厂外须家部同出电时具源切高高断中中习资资题料料电试试源卷卷,试切线验除缆报从敷告而设与采完相用毕关高,技中要术资进资料行料试检,卷查并主和且要检了保测解护处现装理场置。设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2013高考全国卷2文科数学试卷及答案

2013高考全国卷2文科数学试卷及答案

(A)1
(B)1+
(C)1+ + + +
(D)1+ + +
+
(8)设 a=log32,b=log52,c=log23,则
(A)a>c>b
(B) b>c>a
(C)c>b>a
(D)c>a>b
(9)一个四面体的顶点在点间直角坐系 O-xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,
(12)若存在正数 x 使 2x(x-a)<1 成立,则 a 的取值范围是
(A)(-∞,+∞) (B)(-2, +∞) (C)(0, +∞)
(D)(-1,+∞)
第Ⅱ卷
本卷包括必考题和选考题两部分。第 13 题-第 21 题为必考题,每个试题考生都必须作答。第 22 题-第 24 题为选
考题,考生根据要求作答。
二.填空题:本大题共 4 小题,每小题 5 分。
(13)从 1,2,3,4,5 中任意取出两个不同的数,其和为 5 的概率是________.
(14)已知正方形 ABCD 的边长为 2,E 为 CD 的 中点,则
=________.
(15)已知正四棱锥 O-ABCD 的体积为 ,底面边长为 ,则以 O 为球心,OA 为半径的球的表面积为________.
(20) (本小题满分 12 分) 在平面直角坐标系 xOy 中,己知圆 P 在 x 轴上截得线段长为 2
段长为 2 . (Ⅰ)求圆心 P 的轨迹方程;
,在 Y 轴上截得线
(Ⅱ)若 P 点到直线 y=x 的距离为 ,求圆 P 的方程.
(21)(本小题满分 12 分) 己知函数 f(X) = x2e-x (I)求 f(x)的极小值和极大值; (II)当曲线 y = f(x)的切线 l 的斜率为负数时,求 l 在 x 轴上截距的取值范围.

2013新课标Ⅱ卷高考数学文科试题及解析

2013新课标Ⅱ卷高考数学文科试题及解析
因为|y1|=3|y2|,x1=9x2,所以x1=3,x2= ,当x1=3时, ,所以此时 ,若 ,则 ,此时 ,此时直线方程为 。若 ,则 ,此时 ,此时直线方程为 。所以 的方程是 或 ,选C
11.C【解析】若 则有 ,所以A正确。由 得 ,因为函数 的对称中心为(0,0),所以 的对称中心为 ,所以B正确。由三次函数的图象可知,若 是f(x)的极小值点,则极大值点在 的左侧,所以函数在区间(-∞, )单调递减是错误的,D正确。选C.
故 ,所以 ,因此CA是△ABC外接圆的直径.
(Ⅱ)设DB=BE=EA= ,则由切割线定理可得:
,解得 ,由(1)知:CA是△ABC外接圆的直径,所以 ,AC⊥CD,解得AC= ,CE= ,所以过B、E、F、C四点的圆的面积与△ABC外接圆面积的比值为 = .
20.(本小题满分12分)
在平面直角坐标系xOy中,己知圆P在 轴上截得线段长为 ,在 轴上截得线
段长为 .
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线 的距离为 ,求圆P的方程.
21.(本小题满分12分)
己知函数
(I)求 的极小值和极大值;
(II)当曲线 的切线 的斜率为负数时,求 在 轴上截距的取值范围.
(A){ 2, 1,0,1}(B){ 3, 2, 1,0}(C){ 2, 1,0}(D){ 3, 2, 1 }
2.| |=
(A) (B)2(C) (D)1
3.设x,y满足约束条件 ,则 的最小值是
(A) (B)-6(C) (D)-3
4.△ABC的内角A,B,C的对边分别为 ,已知b=2,B= ,C= ,则△ABC的面积为
请从下面所给的22,23,24三题中选定一题作答.并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (文科)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前考生将自己的姓名\准考证号填写在本试卷和答题卡相应位置。

2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号标黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。

4. 考试结束,将试题卷和答题卡一并交回。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

1、已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N =I ( ) (A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N I {2,1,0}=--,选C.2、21i=+( ) (A) (B )2 (C(D )1 【答案】C 【解析】22(1)2(1)11(1)(1)2i i i i i i --===-+-+,所以21i =+ C. 3、设,x y 满足约束条件10,10,3,x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由z=2x-3y 得3y=2x-z ,即233zy x =-。

作出可行域如图,平移直线233z y x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线z=2x-3y 得32346z =⨯-⨯=-,选B.4、ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A )232+ (B 31 (C )232 (D 31 【答案】B 【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b cππ=,解得22c =所以三角形的面积为117sin 2222212bc A π=⨯⨯.因为73221231sinsin()()123422222πππ=+=+=+,所以1231sin 22()3122bc A ==,选B. 5、设椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=o ,则C 的离心率为( )(A )36 (B )13 (C )12(D )33 【答案】D【解析】因为21212,30PF F F PF F ⊥∠=o ,所以2123432tan 30,PF c PF ===o。

又12323PF PF a +==,所以33c a ==33,选D.6、已知2sin 23α=,则2cos ()4πα+=( ) (A )16 (B )13 (C )12 (D )23【答案】A【解析】因为21cos 2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,选A. 7、执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,选B. 8、设3log 2a =,5log 2b =,2log 3c =,则( )(A )a c b >> (B )b c a >> (C )c b a >> (D )c a b >> 【答案】D【解析】因为321log 21log 3=<,521log 21log 5=<,又2log 31>,所以c 最大。

又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,选D. 9、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),所以选A.10、设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点。

若||3||AF BF =,则l 的方程为( )(A )1y x =-或!y x =-+ (B )31)y x =-或31)y x =- (C )3(1)y x =-或3(1)y x =- (D )21)2y x =-或2(1)2y x =-- 【答案】C【解析】抛物线y 2=4x 的焦点坐标为(1,0),准线方程为x=-1,设A (x 1,y 1),B (x 2,y 2),则因为|AF|=3|BF|,所以x 1+1=3(x 2+1),所以x 1=3x 2+2 因为|y 1|=3|y 2|,x 1=9x 2,所以x 1=3,x 2=13,当x 1=3时,2112y =,所以此时11223y =±=±若123y =,则123(3,3),(,3A B ,此时3AB k =,此时直线方程为3(1)y x =-。

若123y =-则13(3,3),(,)33A B -,此时3AB k =-此时直线方程为3(1)y x =-。

所以l 的方程是3(1)y x =-或3(1)y x =-,选C.11、已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) (A )0x R ∃∈,0()0f x =(B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确。

由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为(0,0),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确。

由三次函数的图象可知,若0x 是f(x)的极小值点,则极大值点在0x 的左侧,所以函数在区间(-∞, 0x )单调递减是错误的,D 正确。

选C.12、若存在正数x 使2()1xx a -<成立,则a 的取值范围是( )(A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞ 【答案】D【解析】因为20x>,所以由2()1xx a -<得122xxx a --<=,在坐标系中,作出函数(),()2x f x x a g x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,所以选D.第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。

第22题~第24题为选考题,考生根据要求作答。

二、填空题:本大题共4小题,每小题5分。

(13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是_______。

【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=。

(14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=u u u r u u u r_______。

【答案】2【解析】在正方形中,12AE AD DC =+u u u r u u u r u u u r,BD BA AD AD DC =+=-u u u r u u u r u u u r u u u r u u u r ,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 。

(15)已知正四棱锥O ABCD -的体积为2,则以O 为球心,OA 为半径的球的表面积为________。

【答案】24π【解析】设正四棱锥的高为h,则2132h ⨯=,解得高2h =。

则底面正方形的对角=OA ==所以球的表面积为2424ππ=. (16)函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_________。

【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=。

三.解答题:解答应写出文字说明,证明过程或演算步骤。

(17)(本小题满分12分)已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列。

(Ⅰ)求{}n a 的通项公式; (Ⅱ)求14732+n a a a a -++⋅⋅⋅+;(18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点,。

相关文档
最新文档