排序算法[C#实现]

合集下载

C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语言数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插入法排序、折半法排序

C语⾔数组的五种简单排序,选择法排序,冒泡法排序、交换法排序、插⼊法排序、折半法排序⽂章⽬录1、选择法排序选择法排序是指每次选择索要排序的数组中的最⼩值(这⾥是由⼩到⼤排序,如果是由⼤到⼩排序则需要选择最⼤值)的数组元素,将这些数组元素的值与前⾯没有进⾏排序的数组元素值进⾏互换代码实现需要注意的是:声明⼀个数组和两个整形变量,数组⽤于存储输⼊的数字,⽽整形变量⽤于存储最⼩的数组元素的数值与该元素的位置,在我的代码中实现为a[] temp position。

代码具体如下#include<stdio.h>int main(){int m,n,k;printf("please input the length of the array:");scanf("%d",&k);int a[k];int temp;int position;printf("please input the number of the array:\n");for(m=0;m<k;m++){printf("a[%d]=",m+1);scanf("%d",&a[m]);}/*从⼩到⼤排序*/for(m=0;m<k-1;m++){temp=a[m]; //设置当前的值为最⼩值position=m; //记录当前的位置for(n=m+1;n<k;n++){if(a[n]<temp){temp=a[n]; //如果找到⽐当前的还要⼩的数值,则更换最⼩的数值与位置position=n;}}a[position]=a[m];a[m]=temp;}for(m=0;m<k;m++){printf("%d\t",a[m]);}return 0;}结果如下2、冒泡法排序冒泡法排序就是值在排序时,每次⽐较数组中相邻的两个数组元素的值,将⽐较⼩的(从⼩到⼤排序算法,如果是从⼤到⼩排序算法就是将较⼤的数排在较⼩的数前⾯)排在⽐较⼤的前⾯在代码实现的过程中:声明⼀个数组与⼀个整型变量,数组⽤于存放数据元素,整型变量⽤于交换时作为中间变量。

数组排序c语言数组排序方法

数组排序c语言数组排序方法

数组排序c语言数组排序方法在C语言中,可以使用多种排序算法对数组进行排序。

常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序、堆排序等。

下面将详细介绍这些排序算法的原理、实现以及时间复杂度。

1. 冒泡排序(Bubble Sort):冒泡排序是一种简单的排序算法,其基本思想是重复地在相邻的元素之间进行比较和交换,将最大的元素逐渐“浮”到数组的尾部。

具体实现过程如下:cvoid bubbleSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {for (int j = 0; j < n-1-i; j++) {if (arr[j] > arr[j+1]) {交换相邻元素int temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;}}}}冒泡排序的时间复杂度为O(n^2),其中n为数组长度。

2. 选择排序(Selection Sort):选择排序也是一种简单的排序算法,其基本思想是每次从未排序的部分中选取最小(或最大)的元素,放到已排序部分的末尾。

具体实现过程如下:cvoid selectionSort(int arr[], int n) {for (int i = 0; i < n-1; i++) {int minIndex = i;for (int j = i+1; j < n; j++) {if (arr[j] < arr[minIndex]) {minIndex = j;}}将最小元素交换到已排序部分的末尾int temp = arr[i];arr[i] = arr[minIndex];arr[minIndex] = temp;}选择排序的时间复杂度为O(n^2)。

3. 插入排序(Insertion Sort):插入排序的基本思想是将数组分为已排序和未排序两部分,每次从未排序部分选择一个元素,插入到已排序部分的正确位置。

C语言八大排序算法

C语言八大排序算法

C语⾔⼋⼤排序算法C语⾔⼋⼤排序算法,附动图和详细代码解释!来源:C语⾔与程序设计、⽵⾬听闲等⼀前⾔如果说各种编程语⾔是程序员的招式,那么数据结构和算法就相当于程序员的内功。

想写出精炼、优秀的代码,不通过不断的锤炼,是很难做到的。

⼆⼋⼤排序算法排序算法作为数据结构的重要部分,系统地学习⼀下是很有必要的。

1、排序的概念排序是计算机内经常进⾏的⼀种操作,其⽬的是将⼀组“⽆序”的记录序列调整为“有序”的记录序列。

排序分为内部排序和外部排序。

若整个排序过程不需要访问外存便能完成,则称此类排序问题为内部排序。

反之,若参加排序的记录数量很⼤,整个序列的排序过程不可能在内存中完成,则称此类排序问题为外部排序。

2、排序分类⼋⼤排序算法均属于内部排序。

如果按照策略来分类,⼤致可分为:交换排序、插⼊排序、选择排序、归并排序和基数排序。

如下图所⽰:3、算法分析1.插⼊排序*直接插⼊排序*希尔排序2.选择排序*简单选择排序*堆排序3.交换排序*冒泡排序*快速排序4.归并排序5.基数排序不稳定排序:简单选择排序,快速排序,希尔排序,堆排序稳定排序:冒泡排序,直接插⼊排序,归并排序,奇数排序1、插⼊排序将第⼀个和第⼆个元素排好序,然后将第3个元素插⼊到已经排好序的元素中,依次类推(插⼊排序最好的情况就是数组已经有序了)因为插⼊排序每次只能操作⼀个元素,效率低。

元素个数N,取奇数k=N/2,将下标差值为k的数分为⼀组(⼀组元素个数看总元素个数决定),在组内构成有序序列,再取k=k/2,将下标差值为k的数分为⼀组,构成有序序列,直到k=1,然后再进⾏直接插⼊排序。

3、简单选择排序选出最⼩的数和第⼀个数交换,再在剩余的数中⼜选择最⼩的和第⼆个数交换,依次类推4、堆排序以升序排序为例,利⽤⼩根堆的性质(堆顶元素最⼩)不断输出最⼩元素,直到堆中没有元素1.构建⼩根堆2.输出堆顶元素3.将堆低元素放⼀个到堆顶,再重新构造成⼩根堆,再输出堆顶元素,以此类推5、冒泡排序改进1:如果某次冒泡不存在数据交换,则说明已经排序好了,可以直接退出排序改进2:头尾进⾏冒泡,每次把最⼤的沉底,最⼩的浮上去,两边往中间靠16、快速排序选择⼀个基准元素,⽐基准元素⼩的放基准元素的前⾯,⽐基准元素⼤的放基准元素的后⾯,这种动作叫分区,每次分区都把⼀个数列分成了两部分,每次分区都使得⼀个数字有序,然后将基准元素前⾯部分和后⾯部分继续分区,⼀直分区直到分区的区间中只有⼀个元素的时候,⼀个元素的序列肯定是有序的嘛,所以最后⼀个升序的序列就完成啦。

C语言中的算法实现

C语言中的算法实现

C语言中的算法实现算法是计算机科学中非常重要的概念,它是解决问题的一系列步骤或指令集。

在C语言中,我们可以使用不同的方法来实现算法。

本文将介绍一些常见的C语言算法实现方式。

一、排序算法1. 冒泡排序冒泡排序是一种简单但效率较低的排序算法。

它通过不断比较相邻的元素,并按照规则交换它们的位置,直到整个序列排序完成。

2. 选择排序选择排序是一种简单而直观的排序算法。

它每次从未排序的序列中选择最小(或最大)的元素,并将其放置在已排序序列的末尾。

3. 插入排序插入排序是一种简单且高效的排序算法。

它通过构建有序序列,对未排序的元素逐个插入到已排序的序列中,直到所有元素都被插入完成。

二、查找算法1. 顺序查找顺序查找是一种简单的查找算法。

它从列表的开头开始逐个比较元素,直到找到目标元素或查找完整个列表。

2. 二分查找二分查找是一种高效的查找算法,但要求列表必须是有序的。

它通过将待查找区域分成两部分,判断目标元素落在哪一部分,从而缩小查找范围,直到找到目标元素或确定不存在。

三、递归算法递归是一种常用的算法设计技巧。

它通过在函数内调用自身来解决相同问题的不同实例。

在C语言中,递归函数需要定义出口条件,以避免无限递归。

四、动态规划算法动态规划是一种用于解决具有重叠子问题和最优子结构性质的问题的方法。

它将问题分解为一系列子问题,并以自底向上的方式求解子问题,最终得到整体问题的解。

在C语言中,可以使用循环、数组和指针等特性来实现动态规划算法,从而有效地解决问题。

五、图算法图是一种用于描述对象之间关系的数据结构,图算法是解决图相关问题的一类算法。

常见的图算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。

六、字符串算法字符串算法用于处理字符串相关的问题,如字符串匹配、编辑距离等。

C语言提供了一系列字符串处理函数,如strlen、strcpy等,可以方便地实现字符串算法。

七、数学算法C语言在数学算法方面提供了丰富的库函数支持,如求平方根、对数、指数等。

c语言从大到小选择法排序 -回复

c语言从大到小选择法排序 -回复

c语言从大到小选择法排序-回复C语言从大到小选择法排序在计算机编程中,排序算法是一种常见的问题解决方法,它通过将一组数据按照指定的顺序重新排列,以便于后续的查找、统计、分析等操作。

选择排序是排序算法中的一种,它的基本思想是每次从待排序的数据中选择最大(或最小)的元素,放到已排序的数据的末尾。

选择排序算法是一种简单但效率较低的排序算法,它的时间复杂度为O(n^2),其中n代表待排序数据的个数。

尽管如此,选择排序在某些情况下仍然有其优势,特别适用于小规模数据的排序。

下面我们将详细介绍如何使用C语言实现从大到小的选择法排序。

1. 定义待排序数组首先,我们需要定义一个待排序的数组,用于存储需要进行排序的数据。

在C语言中,可以使用静态数组或者动态数组来实现。

在本例中,我们使用静态数组来演示算法的实现。

c#include <stdio.h>#define ARRAY_SIZE 10void selectionSort(int arr[], int n);int main() {int arr[ARRAY_SIZE] = {9, 2, 7, 4, 5, 6, 3, 8, 1, 0};int n = sizeof(arr) / sizeof(arr[0]);printf("Original array: ");for (int i = 0; i < n; i++) {printf("d ", arr[i]);}printf("\n");selectionSort(arr, n);printf("Sorted array in descending order: ");for (int i = 0; i < n; i++) {printf("d ", arr[i]);}return 0;}在上述代码中,我们定义了一个长度为10的数组arr,并初始化了一些随机的整数作为待排序的数据。

C语言算法与数据结构常用算法和数据结构

C语言算法与数据结构常用算法和数据结构

C语言算法与数据结构常用算法和数据结构C语言作为一门广泛应用于软件开发领域的编程语言,对于掌握算法和数据结构的知识非常重要。

掌握常用的算法和数据结构,不仅可以帮助我们解决实际问题,还能提高代码的效率和质量。

本文将介绍C语言中常见的算法和数据结构。

一、算法1. 排序算法(1)冒泡排序:通过不断比较相邻元素并交换位置,将最大(或最小)元素逐步冒泡到最后的位置。

(2)插入排序:将一个元素插入到已排序部分的正确位置,逐步构建有序序列。

(3)快速排序:通过选择一个基准元素,将数据分为两部分,一部分小于基准,一部分大于基准,然后递归地对两部分进行排序。

(4)归并排序:将待排序序列递归地分成两个子序列,然后将两个有序子序列合并成一个有序序列。

2. 查找算法(1)线性查找:逐个比较每个元素,直到找到目标元素或搜索结束。

(2)二分查找:在有序序列中,通过比较目标值与中间元素的大小关系,将查找范围缩小一半,直到找到目标元素或搜索结束。

(3)哈希查找:通过哈希函数计算目标元素在数组中的位置,快速定位目标元素。

二、数据结构1. 数组数组是一种线性数据结构,可以存储多个相同类型的元素。

通过索引可以快速访问数组中的元素,但插入和删除元素的操作较为复杂。

2. 链表链表是一种动态数据结构,可以在运行时分配内存。

每个节点存储数据和指向下一个节点的指针,可以方便地进行插入和删除节点的操作,但访问节点需要遍历链表。

3. 栈栈是一种先进后出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。

常用于表达式求值、递归函数调用等场景。

4. 队列队列是一种先进先出(FIFO)的数据结构,可以在队尾插入元素,在队头删除元素。

常用于任务调度、缓冲区管理等场景。

5. 树树是一种非线性数据结构,由节点和边组成。

常见的树结构包括二叉树、二叉搜索树、平衡二叉树等。

6. 图图是一种包含节点和边的非线性数据结构,用于表示多对多的关系。

常见的图结构包括有向图、无向图、加权图等。

C语言常用算法大全

C语言常用算法大全

C语言常用算法大全1.排序算法-冒泡排序:依次比较相邻的两个元素,如果顺序不对则交换,每轮找出一个最大或最小的元素-选择排序:从未排序的元素中选择最小或最大的放到已排序的最后,以此类推-插入排序:将未排序的元素插入到已排序的合适位置,从后向前进行比较和交换-快速排序:选择一个基准元素,将小于基准元素的放在左边,大于基准元素的放在右边,然后对左右两边递归地进行快速排序-归并排序:将待排序的序列不断划分为左右两部分,分别排序后再将排序好的左右两部分按顺序合并-堆排序:构建大顶堆,将堆顶元素与末尾元素交换,然后重新调整堆,重复这个过程直到排序完成2.查找算法-顺序查找:从给定的元素序列中逐个比较,直到找到目标元素或遍历完整个序列-二分查找:对于有序序列,在序列的中间位置比较目标元素和中间元素的大小关系,通过每次缩小一半的范围来查找目标元素-插值查找:根据目标元素与有序序列的最小值和最大值的比例推测目标元素所在的位置,然后递归地进行查找-斐波那契查找:根据斐波那契数列的性质来确定目标元素所在的位置,然后递归地进行查找3.图算法-深度优先(DFS):从图的一些顶点出发,依次访问其未被访问过的邻接顶点,直到所有顶点都被访问过为止-广度优先(BFS):从图的一些顶点出发,逐层遍历图的顶点,直到所有顶点都被访问过为止- 最小生成树算法:Prim算法和Kruskal算法,用于找到连接图中所有顶点的最小权值边,构成一棵包含所有顶点的生成树- 最短路径算法:Dijkstra算法和Floyd-Warshall算法,用于找到图中两个顶点之间的最短路径-拓扑排序:用于有向无环图(DAG)中的顶点排序,确保排序后的顶点满足所有依赖关系-关键路径算法:找出网络中的关键路径,即使整个工程完成的最短时间4.字符串算法- KMP算法:通过预处理模式串构建next数组,利用next数组在匹配过程中跳过一部分不可能匹配的子串- Boyer-Moore算法:从模式串的末尾开始匹配,利用坏字符和好后缀规则进行跳跃匹配- Rabin-Karp算法:利用哈希函数对主串和匹配串的子串进行哈希计算,然后比较哈希值是否相等- 字符串匹配算法:BM算法、Shift-And算法、Sunday算法等,用于寻找模式串在主串中的出现位置5.动态规划算法-最长公共子序列(LCS):用于寻找两个序列中最长的公共子序列-最长递增子序列(LIS):用于寻找给定序列中最长的递增子序列-0-1背包问题:将有限的物品放入容量为C的背包中,使得物品的总价值最大-最大子数组和:用于求解给定数组中连续子数组的最大和-最大正方形:在给定的0-1矩阵中,找出只包含1的最大正方形的边长这些算法是在C语言中常用的算法,它们涵盖了排序、查找、图、字符串和动态规划等多个领域。

c语言几种数组排序方法

c语言几种数组排序方法

常用的c语言排序算法主要有三种即冒泡法排序、选择法排序、插入法排序。

一、冒泡排序冒泡排序:是从第一个数开始,依次往后比较,在满足判断条件下进行交换。

代码实现(以降序排序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp;for (int i = 0; i < 10; i++){//循环次数for (int j = 0; j <10 - i-1; j++){if (array[j] < array[j+1]){//前面一个数比后面的数大时发生交换temp = array[j];array[j] = array[j+1];array[j + 1] = temp;}}} //打印数组for (int i = 0; i < 10; i++) printf("%2d", array[i]); return 0;}}二、选择排序以升序排序为例:就是在指定下标的数组元素往后(指定下标的元素往往是从第一个元素开始,然后依次往后),找出除指定下标元素外的值与指定元素进行对比,满足条件就进行交换。

与冒泡排序的区别可以理解为冒泡排序是相邻的两个值对比,而选择排序是遍历数组,找出数组元素与指定的数组元素进行对比。

(以升序为例)#include<stdio.h>int main(){int array[10] = { 6,9,7,8,5,3,4,0,1,2 };int temp, index;for (int i = 0; i < 9; i++) {index = i;for (int j = i; j < 10; j++){if (array[j] < array[index])index = j;}if(i != index){temp = array[i]; array[i] = array[index]; array[index] = temp; }for(int i=0;i<10:i++) printf("%2d"array[i])return 0;}三、快速排序是通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

C语言常见排序算法

C语言常见排序算法
Gap的取法有多种。 shell 提出取 gap = n/2,gap = gap/2, 直到gap = 1。
6.1.5 选择排序
排序过程:
首先通过n-1次比较,从n个数中找出最小的, 将它与第一个数 交换—第一趟选择排序,结果最小的数被安置在第一个元素位 置上 再通过n-2次比较,从剩余的n-1个数中找出关键字次小的记录, 将它与第二个数交换—第二趟选择排序 重复上述过程,共经过n-1趟排序后,排序结束
6.1.3 直接插入排序
实用例子:
已知待序的一组记录的初始排列为:21, 25, 49, 25*, 16, 08
21 25 49 25* 16 08 012345
6.1.3 直接插入排序
实用例子:
i=1
21 25 49 25* 16 08 25 012345 temp
i=2 i=3
21 25 49 25* 16 08 49 012345 temp
6.1.1Leabharlann 冒泡排序算法实例21
21
21
21
16
08
25
25
25
16
08
16
49
25
16
08
21
21
25
16
08
25
25
25
16
08
25
25
25
25
08
49
49
49
49
49
6.1.1 冒泡排序
算法实现
输入n 个数给a[1] 到 a[n] for j=1 to n-1
for i=1 to n-j

if ( temp < r[j-1] ) r[j] = r[j-1];

C语言经典算法大全精选

C语言经典算法大全精选

C语言经典算法大全精选1.排序算法1.1冒泡排序:通过不断交换相邻元素的位置,将最大(最小)值“冒泡”到序列的末尾(开头)。

1.2插入排序:将未排序的元素逐个插入已排序的序列中,保持序列始终有序。

1.3选择排序:每次从未排序的元素中选择最小(最大)的元素,放到已排序序列的末尾(开头)。

1.4快速排序:通过递归地将序列分割为较小和较大的两部分,然后分别对两部分进行排序。

1.5归并排序:将序列递归地分割为两个子序列,分别排序后再将结果合并。

1.6堆排序:构建最大(最小)堆,然后逐步将堆顶元素与最后一个元素交换,并调整堆结构。

2.查找算法2.1顺序查找:逐个比较元素,直到找到目标元素或遍历完整个序列。

2.2二分查找:在有序序列中,通过不断缩小查找范围,找到目标元素。

2.3插值查找:根据目标元素与序列中最大、最小元素的关系,按比例选择查找范围。

2.4哈希查找:利用哈希函数将目标元素映射到一个唯一的位置,从而快速定位目标元素。

3.字符串算法3.1字符串匹配算法:在文本串中查找给定的模式串,并返回匹配位置。

3.2字符串翻转:将一个字符串逆序输出。

3.3字符串压缩:将连续出现多次的字符压缩为一个字符,并输出压缩后的字符串。

3.4字符串拆分:按照指定的分隔符将字符串拆分为多个子串,并返回子串列表。

3.5字符串反转单词:将一个句子中的单词顺序逆序输出。

4.图算法4.1深度优先:从起始顶点出发,递归地访问所有能到达的未访问顶点。

4.2广度优先:从起始顶点出发,逐层地访问与当前层相邻的未访问顶点。

4.3最小生成树:找到连接所有顶点的具有最小权值的无环边集合。

4.4最短路径:找到两个顶点之间最短路径的权值和。

4.5拓扑排序:找到一个顶点的线性序列,满足所有有向边的起点在终点之前。

5.数学算法5.1质数判断:判断一个数是否为质数(只能被1和自身整除)。

5.2求最大公约数:找到两个数的最大公约数。

5.3求最小公倍数:找到两个数的最小公倍数。

c常用算法程序集

c常用算法程序集

c常用算法程序集C常用算法程序集一、排序算法排序算法是计算机科学中最基本、最常用的算法之一,常用于按照一定的规则将一组数据进行有序排列。

常见的排序算法有:冒泡排序、插入排序、选择排序、快速排序、归并排序等。

1. 冒泡排序:通过相邻元素的比较和交换来实现排序。

每一轮将最大的元素逐渐“冒泡”到末尾。

时间复杂度为O(n^2)。

2. 插入排序:将待排序的元素插入已排好序的部分,从而达到排序的目的。

时间复杂度为O(n^2),但在部分有序的情况下表现较好。

3. 选择排序:每一轮从待排序的元素中选出最小(或最大)的元素放到已排序的末尾。

时间复杂度为O(n^2),性能较差。

4. 快速排序:通过一趟排序将待排序的序列分割成两部分,其中一部分的所有元素都比另一部分小。

再分别对两部分进行排序,递归地进行下去。

时间复杂度为O(nlogn),性能较好。

5. 归并排序:将待排序的序列分成若干个子序列,分别进行排序,然后再将排好序的子序列合并。

时间复杂度为O(nlogn),稳定且效率较高。

二、查找算法查找算法是在给定的数据集中寻找特定元素的过程,常用于在大规模数据中快速定位目标元素。

常见的查找算法有:顺序查找、二分查找、哈希查找等。

1. 顺序查找:逐个遍历待查找的元素,直到找到目标元素或遍历完整个数据集。

时间复杂度为O(n),适用于小规模数据集。

2. 二分查找:在有序的数据集中,将目标元素与中间元素进行比较,缩小查找范围,直到找到目标元素或范围为空。

时间复杂度为O(logn),适用于大规模数据集。

3. 哈希查找:利用哈希函数将元素映射到一个确定的位置,通过该位置快速查找目标元素。

时间复杂度为O(1),但需要额外的空间存储哈希表。

三、图算法图算法用于解决图论中的问题,常用于描述事物之间的关系和网络结构。

常见的图算法有:深度优先搜索(DFS)、广度优先搜索(BFS)、最短路径算法(Dijkstra算法、Floyd-Warshall算法)等。

c语言常见排序算法

c语言常见排序算法

常见的C语言排序算法有以下几种:
1. 冒泡排序(Bubble Sort):比较相邻的元素,如果前一个元素大于后一个元素,则交换它们的位置,重复这个过程直到整个序列有序。

2. 插入排序(Insertion Sort):将未排序的元素逐个插入到已排序序列中的正确位置,直到整个序列有序。

3. 选择排序(Selection Sort):每次从未排序的元素中选择最小的元素,将其放到已排序序列的末尾,重复这个过程直到整个序列有序。

4. 快速排序(Quick Sort):选择一个基准元素,将序列分成两部分,一部分小于等于基准元素,一部分大于基准元素,然后对两部分递归地进行快速排序。

5. 归并排序(Merge Sort):将序列分成两部分,分别对两部分进行归并排序,然后将两个有序的子序列合并成一个有序的序列。

6. 堆排序(Heap Sort):将序列构建成一个最大堆,然后将堆顶元素与堆末尾元素交换,重复这个过程直到整个序列有序。

7. 希尔排序(Shell Sort):将序列按照一定的间隔分成若干个子序列,对每个子序列进行插入排序,然后逐渐减小间隔直到间隔为1,最后对整个序列进行插入排序。

8. 计数排序(Counting Sort):统计序列中每个元素出现的次数,然后按照元素的大小顺序将它们放入一个新的序列中。

9. 基数排序(Radix Sort):按照元素的个位、十位、百位等依次进行排序,直到所有位数都排完为止。

以上是常见的C语言排序算法,每种算法都有其特点和适用场景,选择合适的排序算法可以提高排序效率。

c语言常用算法

c语言常用算法

c语言常用算法一、前言C语言是一种高效、快速的编程语言,被广泛应用于各种领域。

在C 语言中,算法是非常重要的部分,因为它们能够帮助我们解决许多实际问题。

本文将介绍C语言中常用的算法。

二、排序算法1.冒泡排序冒泡排序是一种简单的排序算法,它通过不断交换相邻两个元素的位置来将最大的元素放到最后。

具体实现如下:```void bubble_sort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {for (int j = 0; j < n - i - 1; j++) {if (arr[j] > arr[j + 1]) {int temp = arr[j];arr[j] = arr[j + 1];}}}}```2.选择排序选择排序也是一种简单的排序算法,它通过不断选择最小元素并放到前面来完成排序。

具体实现如下:```void selection_sort(int arr[], int n) {for (int i = 0; i < n - 1; i++) {int min_index = i;for (int j = i + 1; j < n; j++) {if (arr[j] < arr[min_index]) {min_index = j;}}int temp = arr[i];arr[i] = arr[min_index];}}```3.插入排序插入排序是一种简单的排序算法,它通过将元素逐个插入到已排好序的序列中来完成排序。

具体实现如下:```void insertion_sort(int arr[], int n) {for (int i = 1; i < n; i++) {int key = arr[i];int j = i - 1;while (j >= 0 && arr[j] > key) {arr[j + 1] = arr[j];j--;}arr[j + 1] = key;}}```4.快速排序快速排序是一种高效的排序算法,它通过选取一个基准元素并将数组分为两部分来完成排序。

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全

C语言经典算法C语言代码大全一、排序算法1、冒泡排序它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。

设数组为a[0…n-1]C语言实现如下://冒泡排序void bubbleSort(int arr[], int n)int i, j, temp;bool flag;//表示n次排序过程for(i = 0; i < n - 1; i++)//每次排序将最大的数放到最右边flag = false;for(j= 0; j< n-1-i; j++)if(arr[j] > arr[j+1])temp = arr[j];arr[j] = arr[j+1];arr[j+1] = temp;flag = true;}}//如果趟排序没有进行数据交换,说明数据已经有序if (flag == false)break;}}2、快速排序它采用了分治法的思想,基于快速排序的思想,可以对数组进行非常快速的排序。

设数组为a[0…n-1]C语言实现如下://快速排序// arr[left] 为起始值,arr[right] 为末尾值void quickSort(int arr[], int left, int right)int i, j, base;if (left > right)return;}i = left;j = right;base = arr[left];//定义基准值,可以是数组的第一个值while (i != j)// 因为基准值是 arr[left],所以左边右移,直到找到小于基准值的值while (arr[j] >= base && i < j)j--;}// 因为基准值是 arr[left],所以右边左移while (arr[i] <= base && i < j)i++;}//如果i<j,表示找到了,交换位置if (i < j)int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}//将基准值放到i位置arr[left] = arr[i];。

单片机常用的14个C语言算法2024

单片机常用的14个C语言算法2024

引言概述:在单片机的开发中,C语言是最常用的编程语言之一。

掌握一些常用的C语言算法对于单片机的开发非常重要。

本文将介绍单片机常用的14个C语言算法之二,包括排序算法、查找算法、递归算法、动态规划算法和图算法。

正文内容:一、排序算法1. 冒泡排序:通过不断地交换相邻元素的位置,将大的元素冒泡到数组的末尾。

2. 快速排序:通过选择一个基准元素,将小于基准元素的数移动到基准元素左边,将大于基准元素的数移动到基准元素右边,然后分别对左右两部分递归地进行快速排序。

3. 插入排序:将数组分为已排序和未排序两部分,每次从未排序部分取一个元素,将其插入已排序部分的合适位置。

4. 选择排序:每次从未排序部分选择最小的元素,将其放在已排序部分的末尾。

5. 归并排序:将数组不断划分为更小的子数组,然后将子数组合并为有序数组。

二、查找算法1. 顺序查找:逐个比较数组中的元素,直到找到目标元素或者遍历完整个数组。

2. 二分查找:对于已排序的数组,通过不断将目标值与中间元素比较,并缩小搜索范围,最终找到目标元素的位置。

3. 插值查找:与二分查找类似,不同之处在于确定中间元素的位置时使用插值公式,使得查找范围更接近目标元素。

4. 哈希查找:使用哈希函数将关键字映射到一个唯一的哈希值,通过查找哈希值对应的位置来获取关键字。

5. 递归查找:通过递归地划分问题的规模,从而减小查找范围,最终找到目标元素。

三、递归算法1. 递归定义:在函数的定义中使用函数本身的方式称为递归。

2. 递归函数的特点:包含一个递归结束的条件和一个递归调用的表达式。

3. 递归算法的实现:通过不断把原问题转化为更小规模的子问题,直到满足递归结束的条件。

4. 递归算法的应用:在树、图等数据结构的遍历、搜索等问题中,递归算法被广泛使用。

5. 递归算法的优化:如尾递归优化、记忆化搜索等方法可以避免递归算法中的重复计算。

四、动态规划算法1. 动态规划的思想:将一个问题划分为多个子问题,并保存每个子问题的解,避免重复计算。

c语言十大排序算法

c语言十大排序算法

c语言十大排序算法C语言是一种广泛应用于计算机领域的编程语言,在数据处理过程中,排序算法是最常用的操作之一。

在C语言中,有许多经典的排序算法,下面将介绍十大排序算法并讨论其特点和适用场景。

1.冒泡排序算法冒泡排序算法是一种简单的排序方法,其基本思想是将要排序的数组分为两部分:已排序部分和未排序部分。

进入排序过程后,每一次排序将未排序部分中的第一个数与第二个数进行比较,若第二个数小于第一个数,则交换它们的位置,依次往后,直到最后一个未排序的数。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

2.插入排序算法插入排序算法是一种稳定的排序方法,其中以第一个元素作为基准,与后面的元素进行比较,若后面的元素小于前一个元素,则将其插入到合适位置,依次往后,直到最后一个元素。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

3.选择排序算法选择排序算法是一种简单的排序算法,其基本思想是每次选择一个最小(或最大)的元素,在未排序部分找出最小的元素,并放到已排序部分的最后一个位置。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1),适用于数据量较小的排序场景。

4.归并排序算法归并排序算法是一种稳定的排序算法,其基本思想是将数组分成两半,然后递归地将每个子数组排序,最后将两个排好序的子数组归并到一起。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n),适用于数据量较大的排序场景。

5.快速排序算法快速排序算法是一种常用的排序算法,其基本思想是将待排序的数组分为两个子数组,设置一个基准值,小于基准值的元素放到左边,大于基准值的元素放到右边,然后递归地对左右两个子数组进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(nlogn),适用于数据量较大的排序场景。

6.计数排序算法计数排序算法是一种稳定的排序算法,其基本思想是先统计序列中每个元素出现的次数,将其存入临时数组中,然后从临时数组中按照顺序取出元素。

c语言 数据处理算法 -回复

c语言 数据处理算法 -回复

c语言数据处理算法-回复C语言数据处理算法在计算机科学领域中,算法是一种用于解决问题的计算方法。

算法可以应用于各种不同的领域,包括数据处理。

在C语言中,数据处理是一个非常重要的领域,因为它涉及到对数据进行处理和操作。

数据处理算法是一种用于对数据进行排序、搜索、过滤和转换的算法。

通过有效地处理数据,我们可以对大量数据进行分析和提取有用的信息。

一、排序算法排序算法是在给定数据集中将元素按照特定顺序进行排列的方法。

在C语言中,有许多不同的排序算法可供选择,包括冒泡排序、插入排序、选择排序、快速排序和归并排序等。

1. 冒泡排序冒泡排序是一种简单的排序算法,它通过比较相邻的两个元素并交换它们的位置,将较大的元素往后移动,从而逐渐将最大的元素移动到数组的末尾。

2. 插入排序插入排序是一种逐步构建有序序列的排序算法。

它通过将未排序的元素逐个插入已排序部分的适当位置来实现排序。

3. 选择排序选择排序是一种简单直观的排序算法,它每次从未排序部分中选择最小的元素并将其放在已排序部分的末尾。

4. 快速排序快速排序是一种高效的排序算法,它通过选择一个枢轴元素,并将小于枢轴元素的元素放在其左边,大于枢轴元素的元素放在其右边,然后对左右两个部分递归地进行排序。

5. 归并排序归并排序是一种通过将已排序的子序列合并到一个大的已排序序列中来实现排序的算法。

它利用了“分而治之”的策略,将问题分解为较小的子问题,并逐步解决它们。

二、搜索算法搜索算法是一种用于查找给定数据集中的特定元素或满足特定条件的元素的算法。

在C语言中,常用的搜索算法包括线性搜索和二分搜索。

1. 线性搜索线性搜索是一种简单直接的搜索算法,它从给定数据集的开头开始逐个比较元素,直到找到目标元素或遍历完整个数据集。

2. 二分搜索二分搜索是一种更高效的搜索算法,它通过在给定的有序数据集中反复将目标元素与数据集的中间元素进行比较,逐步缩小搜索范围,直到找到目标元素或确定目标元素不存在。

c语言选择排序法代码函数

c语言选择排序法代码函数

c语言选择排序法代码函数选择排序(Selection Sort)是一种简单且直观的排序算法,其思想是每一次从待排序序列中选取最大(或最小)的元素放到已排序序列的末尾。

本文将详细介绍选择排序算法的实现原理及代码函数。

一、选择排序算法的实现原理选择排序算法可以分为两个子过程:选择和交换。

具体来说,选择过程就是每次从待排序序列中找出最大(或最小)的元素,而交换过程则是将该元素与当前序列的最后一个元素进行交换。

通过多次选择和交换操作,选择排序算法可以实现将整个序列按照升序(或降序)排列。

具体实现过程如下:1. 假设待排序序列为array,长度为n。

2. 从下标为0开始,遍历整个序列,将当前位置的元素标记为最小(或最大)元素。

3. 继续遍历序列,寻找比当前最小(或最大)元素更小(或更大)的元素,将其下标更新为最小(或最大)元素的下标。

4. 遍历完整个序列后,将当前位置的元素与最小(或最大)元素进行交换。

5. 重复步骤2至4,直至完成整个排序过程。

二、选择排序算法的代码函数实现下面是选择排序算法的C语言代码函数实现:cvoid selectionSort(int array[], int n) {int i, j, minIndex, temp;for (i = 0; i < n-1; i++) {寻找最小元素的索引minIndex = i;for (j = i+1; j < n; j++) {if (array[j] < array[minIndex]) {minIndex = j;}}将最小元素与当前位置元素交换temp = array[i];array[i] = array[minIndex];array[minIndex] = temp;}}在以上代码中,`selectionSort`函数接受一个整型数组`array`和数组长度`n`作为输入参数。

函数使用两个循环分别进行选择和交换操作。

c语言气泡法排序

c语言气泡法排序

c语言气泡法排序气泡法排序是一种简单而经典的排序算法,它的原理是通过多次比较相邻元素的大小,然后交换位置,从而达到排序的目的。

本文将详细介绍气泡法排序的思路和实现过程。

一、气泡法排序的思路气泡法排序的思路非常简单,它主要是通过依次比较相邻的两个元素的大小,然后根据需要交换它们的位置。

具体而言,算法从待排序的第一个元素开始,依次比较相邻的两个元素,如果前一个元素大于后一个元素,则交换它们的位置。

这样一趟比较下来,最大的元素就会被交换到最后的位置。

然后,算法再从第一个元素开始,重复上述比较和交换的过程,直到所有元素都排好序为止。

二、气泡法排序的实现过程下面我们通过一个例子来演示气泡法排序的实现过程。

假设有一个待排序的数组arr,它包含n个元素。

首先,我们初始化一个标志flag,用于标记每一趟比较中是否进行了元素交换。

然后,我们使用两层循环进行比较和交换。

外层循环控制比较的趟数,内层循环控制每一趟比较的次数。

具体的实现代码如下:```void bubbleSort(int arr[], int n) {int i, j, temp;int flag = 1; // 标志变量,标记每一趟比较中是否进行了元素交换for (i = 0; i < n - 1 && flag == 1; i++) {flag = 0; // 每一趟比较开始时,将标志变量置为0for (j = 0; j < n - 1 - i; j++) {if (arr[j] > arr[j + 1]) { // 如果前一个元素大于后一个元素,则交换它们的位置temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;flag = 1; // 如果进行了元素交换,将标志变量置为1}}}}```在上述代码中,我们使用了两个嵌套的for循环,外层循环控制比较的趟数,内层循环控制每一趟比较的次数。

c语言计数排序算法

c语言计数排序算法

c语言计数排序算法C语言计数排序算法计数排序是一种用于整数排序的线性时间复杂度算法,它利用了输入的数字的范围比输入的个数大的特点。

计数排序的基本思想是,对于给定的输入序列中的每一个元素x,确定小于x的元素个数。

通过这个信息,可以直接把x放到它在输出序列中的位置上。

计数排序的时间复杂度为O(n+k),其中n是输入序列的长度,k是输入序列中的最大值。

计数排序的步骤如下:1. 找出输入序列的最大值max,确定计数数组的大小为max+1。

2. 初始化计数数组count,将其所有元素置为0。

3. 遍历输入序列,统计每个元素出现的次数,将统计结果存入计数数组count中。

4. 对计数数组count进行累加操作,得到每个元素在输出序列中的位置。

5. 创建与输入序列相同大小的临时数组output。

6. 遍历输入序列,将每个元素放到output数组中的正确位置上。

7. 将output数组复制回输入序列,完成排序。

下面以一个例子来说明计数排序的过程。

假设输入序列为[4, 2, 5, 7, 1, 3, 4, 5],最大值为7。

确定计数数组的大小为8,初始化计数数组count为[0, 0, 0, 0, 0, 0, 0, 0]。

然后,遍历输入序列,统计每个元素出现的次数,得到计数数组count为[1, 1, 1, 2, 0, 2, 0, 1]。

接下来,对计数数组count进行累加操作,得到每个元素在输出序列中的位置,得到计数数组count为[1, 2, 3, 5, 5, 7, 7, 8]。

创建临时数组output,大小与输入序列相同。

然后,遍历输入序列,将每个元素放到output数组中的正确位置上,得到output数组为[1, 2, 3, 4, 4, 5, 5, 7]。

将output数组复制回输入序列,完成排序。

此时,输入序列变为[1, 2, 3, 4, 4, 5, 5, 7],排序完成。

可以看到,计数排序是一种稳定的排序算法,它可以用于对整数进行排序,并且具有线性时间复杂度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

各种排序算法总结和比较排序算法可以说是一项基本功,解决实际问题中经常遇到,针对实际数据的特点选择合适的排序算法可以使程序获得更高的效率,有时候排序的稳定性还是实际问题中必须考虑的,这篇博客对常见的排序算法进行整理,包括:插入排序、选择排序、冒泡排序、快速排序、堆排序、归并排序、希尔排序、二叉树排序、计数排序、桶排序、基数排序。

代码都经过了CodeBlocks的调试,但是很可能有没注意到的BUG,欢迎指出。

比较排序和非比较排序常见的排序算法都是比较排序,非比较排序包括计数排序、桶排序和基数排序,非比较排序对数据有要求,因为数据本身包含了定位特征,所有才能不通过比较来确定元素的位置。

比较排序的时间复杂度通常为O(n2)或者O(nlogn),比较排序的时间复杂度下界就是O(nlogn),而非比较排序的时间复杂度可以达到O(n),但是都需要额外的空间开销。

比较排序时间复杂度为O(nlogn)的证明:a1,a2,a3……an序列的所有排序有n!种,所以满足要求的排序a1',a2',a3'……an'(其中a1'<=a2'<=a3'……<=an')的概率为1/n!。

基于输入元素的比较排序,每一次比较的返回不是0就是1,这恰好可以作为决策树的一个决策将一个事件分成两个分支。

比如冒泡排序时通过比较a1和a2两个数的大小可以把序列分成a1,a2……an与a2,a1……an(气泡a2上升一个身位)两种不同的结果,因此比较排序也可以构造决策树。

根节点代表原始序列a1,a2,a3……an,所有叶子节点都是这个序列的重排(共有n!个,其中有一个就是我们排序的结果a1',a2',a3'……an')。

如果每次比较的结果都是等概率的话(恰好划分为概率空间相等的两个事件),那么二叉树就是高度平衡的,深度至少是log(n!)。

又因为1.n!<n n,两边取对数就得到log(n!)<nlog(n),所以log(n!)=O(nlogn).2.n!=n(n-1)(n-2)(n-3)…1>(n/2)^(n/2)两边取对数得到log(n!)>(n/2)log(n/2)=Ω(nlogn),所以log(n!)=Ω(nlogn)。

因此log(n!)的增长速度与nlogn相同,即log(n!)=Θ(nlogn),这就是通用排序算法的最低时间复杂度O(nlogn)的依据。

排序的稳定性和复杂度不稳定:选择排序(selection sort)—O(n2)快速排序(quicksort)—O(nlogn)平均时间,O(n2)最坏情况;对于大的、乱序串列一般认为是最快的已知排序堆排序(heapsort)—O(nlogn)希尔排序(shell sort)—O(nlogn)基数排序(radix sort)—O(n·k);需要O(n)额外存储空间(K为特征个数)稳定:插入排序(insertion sort)—O(n2)冒泡排序(bubble sort)—O(n2)归并排序(merge sort)—O(n log n);需要O(n)额外存储空间二叉树排序(Binary tree sort)—O(nlogn);需要O(n)额外存储空间计数排序(counting sort)—O(n+k);需要O(n+k)额外存储空间,k为序列中Max-Min+1桶排序(bucket sort)—O(n);需要O(k)额外存储空间每种排序的原理和实现插入排序遍历数组,遍历到i时,a0,a1...a i-1是已经排好序的,取出a i,从a i-1开始向前和每个比较大小,如果小于,则将此位置元素向后移动,继续先前比较,如果不小于,则放到正在比较的元素之后。

可见相等元素比较是,原来靠后的还是拍在后边,所以插入排序是稳定的。

当待排序的数据基本有序时,插入排序的效率比较高,只需要进行很少的数据移动。

void insertion_sort(int a[],int n){int i,j,v;for(i=1;i<n;i++){//如果第i个元素小于第j个,则第j个向后移动for(v=a[i],j=i-1;j>=0&&v<a[j];j--)a[j+1]=a[j];a[j+1]=v;}}选择排序遍历数组,遍历到i时,a0,a1...a i-1是已经排好序的,然后从i到n选择出最小的,记录下位置,如果不是第i个,则和第i个元素交换。

此时第i个元素可能会排到相等元素之后,造成排序的不稳定。

void selection_sort(int a[],int n){int i,j,pos,tmp;for(i=0;i<n-1;i++){//寻找最小值的下标for(pos=i,j=i+1;j<n;j++)if(a[pos]>a[j])pos=j;if(pos!=i){tmp=a[i];a[i]=a[pos];a[pos]=tmp;}}}冒泡排序的名字很形象,实际实现是相邻两节点进行比较,大的向后移一个,经过第一轮两两比较和移动,最大的元素移动到了最后,第二轮次大的位于倒数第二个,依次进行。

这是最基本的冒泡排序,还可以进行一些优化。

优化一:如果某一轮两两比较中没有任何元素交换,这说明已经都排好序了,算法结束,可以使用一个Flag 做标记,默认为false,如果发生交互则置为true,每轮结束时检测Flag,如果为true则继续,如果为false则返回。

优化二:某一轮结束位置为j,但是这一轮的最后一次交换发生在lastSwap的位置,则lastSwap到j之间是排好序的,下一轮的结束点就不必是j--了,而直接到lastSwap即可,代码如下:void bubble_sort(int a[],int n){int i,j,lastSwap,tmp;for(j=n-1;j>0;j=lastSwap){lastSwap=0;//每一轮要初始化为0,防止某一轮未发生交换,lastSwap 保留上一轮的值进入死循环for(i=0;i<j;i++){if(a[i]>a[i+1]){tmp=a[i];a[i]=a[i+1];a[i+1]=tmp;//最后一次交换位置的坐标lastSwap=i;}}}}快速排序首先找到一个基准,下面程序以第一个元素作为基准(pivot),然后先从右向左搜索,如果发现比pivot小,则和pivot交换,然后从左向右搜索,如果发现比pivot大,则和pivot交换,一直到左边大于右边,此时pivot左边的都比它小,而右边的都比它大,此时pivot的位置就是排好序后应该在的位置,此时pivot 将数组划分为左右两部分,可以递归采用该方法进行。

快排的交换使排序成为不稳定的。

int mpartition(int a[],int l,int r){int pivot=a[l];while(l<r){while(l<r&&pivot<=a[r])r--;if(l<r)a[l++]=a[r];while(l<r&&pivot>a[l])l++;if(l<r)a[r--]=a[l];}a[l]=pivot;return l;}void quick_sort(int a[],int l,int r){if(l<r){int q=mpartition(a,l,r);msort(a,l,q-1);msort(a,q+1,r);}}堆排序是把数组看作堆,第i个结点的孩子结点为第2*i+1和2*i+2个结点(不超出数组长度前提下),堆排序的第一步是建堆,然后是取堆顶元素然后调整堆。

建堆的过程是自底向上不断调整达成的,这样当调整某个结点时,其左节点和右结点已经是满足条件的,此时如果两个子结点不需要动,则整个子树不需要动,如果调整,则父结点交换到子结点位置,再以此结点继续调整。

下述代码使用的大顶堆,建立好堆后堆顶元素为最大值,此时取堆顶元素即使堆顶元素和最后一个元素交换,最大的元素处于数组最后,此时调整小了一个长度的堆,然后再取堆顶和倒数第二个元素交换,依次类推,完成数据的非递减排序。

堆排序的主要时间花在初始建堆期间,建好堆后,堆这种数据结构以及它奇妙的特征,使得找到数列中最大的数字这样的操作只需要O(1)的时间复杂度,维护需要logn的时间复杂度。

堆排序不适宜于记录数较少的文件堆排序:void heapAdjust(int a[],int i,int nLength){int nChild;int nTemp;for(nTemp=a[i];2*i+1<nLength;i=nChild){//子结点的位置=2*(父结点位置)+1nChild=2*i+1;//得到子结点中较大的结点if(nChild<nLength-1&&a[nChild+1]>a[nChild])++nChild;//如果较大的子结点大于父结点那么把较大的子结点往上移动,替换它的父结点if(nTemp<a[nChild]){a[i]=a[nChild];a[nChild]=nTemp;}else//否则退出循环break;}}//堆排序算法void heap_sort(int a[],int length){int tmp;//调整序列的前半部分元素,调整完之后第一个元素是序列的最大的元素//length/2-1是第一个非叶节点,此处"/"为整除for(int i=length/2-1;i>=0;--i)heapAdjust(a,i,length);//从最后一个元素开始对序列进行调整,不断的缩小调整的范围直到第一个元素for(int i=length-1;i>0;--i){//把第一个元素和当前的最后一个元素交换,//保证当前的最后一个位置的元素都是在现在的这个序列之中最大的///Swap(&a[0],&a[i]);tmp=a[i];a[i]=a[0];a[0]=tmp;//不断缩小调整heap的范围,每一次调整完毕保证第一个元素是当前序列的最大值heapAdjust(a,0,i);}}归并排序归并排序是采用分治法(Divide and Conquer)的一个非常典型的应用。

首先考虑下如何将将二个有序数列合并。

这个非常简单,只要从比较二个数列的第一个数,谁小就先取谁,取了后就在对应数列中删除这个数。

然后再进行比较,如果有数列为空,那直接将另一个数列的数据依次取出即可。

相关文档
最新文档