数据结构各种常用排序算法综合
数据结构最基础的十大算法
数据结构最基础的十大算法数据结构是计算机科学中的重要分支,它研究如何组织和存储数据以便于访问和修改。
在数据结构中,算法是解决问题的关键。
下面将介绍数据结构中最基础的十大算法。
1. 线性搜索算法线性搜索算法是最简单的算法之一,它的作用是在一个列表中查找一个特定的元素。
该算法的时间复杂度为O(n),其中n是列表中元素的数量。
2. 二分搜索算法二分搜索算法是一种更高效的搜索算法,它的时间复杂度为O(log n)。
该算法要求列表必须是有序的,它通过将列表分成两半来查找元素,直到找到目标元素为止。
3. 冒泡排序算法冒泡排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过比较相邻的元素并交换它们的位置来排序列表。
4. 快速排序算法快速排序算法是一种更高效的排序算法,它的时间复杂度为O(nlog n)。
该算法通过选择一个基准元素并将列表分成两部分来排序列表。
5. 插入排序算法插入排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过将每个元素插入到已排序的列表中来排序列表。
6. 选择排序算法选择排序算法是一种简单的排序算法,它的时间复杂度为O(n^2)。
该算法通过选择最小的元素并将其放在列表的开头来排序列表。
7. 堆排序算法堆排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。
该算法通过将列表转换为堆并进行排序来排序列表。
8. 归并排序算法归并排序算法是一种更高效的排序算法,它的时间复杂度为O(n log n)。
该算法通过将列表分成两部分并将它们合并来排序列表。
9. 哈希表算法哈希表算法是一种高效的数据结构,它的时间复杂度为O(1)。
该算法通过将键映射到哈希表中的位置来存储和访问值。
10. 树算法树算法是一种重要的数据结构,它的时间复杂度取决于树的深度。
树算法包括二叉树、AVL树、红黑树等。
以上是数据结构中最基础的十大算法,它们在计算机科学中有着广泛的应用。
常用算法举例范文
常用算法举例范文在计算机科学中,算法是解决问题的一系列有序步骤,它能够帮助我们解决各种各样的问题。
以下是一些常用的算法及其举例:1.排序算法:-冒泡排序:通过比较相邻元素并交换位置来将最大的元素逐渐移动到数组的末尾。
-快速排序:选择一个基准元素,将数组分为两部分,左边的元素小于基准,右边的元素大于基准,然后递归地对两部分进行快速排序。
-归并排序:将数组划分为两个子数组,对每个子数组分别进行归并排序,然后将两个有序子数组合并成一个有序数组。
2.查找算法:-二分查找:对于有序数组,通过与中间元素进行比较,将查找范围缩小一半,直到找到目标元素或确定不存在。
-哈希查找:通过将关键字映射到数组的索引位置来进行查找,可以在常数时间内找到目标元素。
3.图算法:-广度优先(BFS):从起始节点开始,逐层遍历图中的节点,直到找到目标节点。
-深度优先(DFS):从起始节点开始,沿着一条路径一直向下,直到找到目标节点或无法继续为止。
4.动态规划算法:-背包问题:给定一组物品和一个容量限制,选择一些物品放入背包中,使得总价值最大。
-最长公共子序列(LCS):给定两个字符串,找到它们的最长公共子序列的长度。
5.数学算法:-欧几里得算法:计算两个整数的最大公约数。
-快速幂算法:计算一个数的幂运算,通过将指数进行二进制拆分来减少计算次数。
6.字符串处理算法:-KMP算法:通过利用已匹配字符的信息来避免不必要的回溯,实现高效的字符串匹配。
- Boyer-Moore算法:利用模式串中的信息来进行快速的字符串匹配。
7.图像处理算法:-图像平滑算法:通过对图像进行滤波处理,去除图像中的噪声,使其更加平滑。
-图像边缘检测算法:通过检测图像中的边缘信息,突出物体的轮廓。
8.机器学习算法:-K均值聚类算法:将数据集划分为K个簇,使得同一个簇内的数据点之间的距离最小化。
-支持向量机(SVM):将数据集映射到高维空间,并通过找到最优的超平面来实现分类。
数据结构排序算法总结表格
在计算机科学中,排序算法是用于对数据进行排序的一种算法。以下是一些常见的排序算法,总结在一张表格中:
算法名称
描述
时间复杂度
空间复杂度
稳定性
冒泡排序
通过重复地比较相邻元素并交换位置,将最大(或最小)的元素移到数组的末尾。
O(n²)
O(1)
是
选择排序
在未排序的序列中找到最小(或最大)的元素,将其放在已排序
插入排序
将一个元素插入到已排序的序列中,保持序列的有序性。
O(n²)
O(1)
是
希尔排序
将数组划分为多个子序列,然后分别对子序列进行插入排序,最后再进行一次插入排序。
O(n²)
O(1)
是
快速排序
选择一个元素作为基准,将数组划分为两个子序列,一个子序列的所有元素都比基准小,另一个子序列的所有元素都比基准大。递归地对子序列进行排序。
O(n log n)
O(1)(如果从数组创建堆时)
是(但是不稳定)
基数排序
通过按位(或数字的其他属性)对元素进行比较和交换位置来排序数组。是一种稳定的排序算法。
O(nk)(k是数字的位数)
O(n)(如果使用外部存储)
是
O(n log n) 到 O(n²)(最坏情况下)
O(log n) 到 O(n)(递归调用的开销)
否(但是快速选择是稳定的)
归并排序
将数组划分为两个子数组,分别对子数组进行排序,然后将两个已排序的子数组合并成一个有序的数组。递归地进行这个过程。
O(n log n)
O(n)(合并时)
是
堆排序
将数组构建成一个大顶堆或小顶堆,然后不断地将堆顶元素与堆尾元素交换,并重新调整堆结构。重复这个过程直到所有元素都已排序。
java常用算法和数据结构
java常用算法和数据结构Java是一种面向对象的编程语言,它具有丰富的算法库和数据结构库,为开发人员提供了许多常用的算法和数据结构。
下面将介绍一些Java常用的算法和数据结构。
1.排序算法-冒泡排序(Bubble Sort):比较相邻的两个元素,如果顺序错误则交换位置,重复该过程直到整个序列有序。
-插入排序(Insertion Sort):将数组分为已排序和未排序两部分,每次从未排序部分取出一个元素,插入到已排序部分合适的位置。
-选择排序(Selection Sort):每次从未排序部分选择最小(或最大)的元素,放到已排序部分的末尾。
-快速排序(Quick Sort):选择一个基准元素,将数组分为两部分,小于基准的放左边,大于基准的放右边,递归地对左右两部分进行快速排序。
-归并排序(Merge Sort):将数组分为两部分,分别对每个子数组进行排序,然后合并两个有序子数组。
2.搜索算法-二分查找(Binary Search):对有序数组进行查找,每次将查找范围缩小一半。
-广度优先搜索(BFS):以树或图的形式搜索,从根节点开始,逐层扩展搜索范围,直到找到目标节点。
-深度优先搜索(DFS):以树或图的形式搜索,从根节点开始,逐个访问节点的所有邻居节点,直到找到目标节点或搜索完所有节点。
3.数据结构-数组(Array):一组按顺序存储的相同类型元素的集合,通过索引访问元素,可以快速访问元素,但插入和删除元素较慢。
-链表(Linked List):一组通过指针连接的节点存储的元素的集合,支持灵活的插入和删除操作,但访问元素较慢。
-栈(Stack):一种特殊的线性数据结构,遵循先进后出(LIFO)原则,只能在栈顶进行插入和删除操作。
-队列(Queue):一种特殊的线性数据结构,遵循先进先出(FIFO)原则,在队尾插入元素,队头删除元素。
-堆(Heap):一种特殊的树形数据结构,可以快速找到最小(或最大)元素,常用于实现优先队列。
排序算法十大经典方法
排序算法十大经典方法
排序算法是计算机科学中的经典问题之一,它们用于将一组元素按照一定规则排序。
以下是十大经典排序算法:
1. 冒泡排序:比较相邻元素并交换,每一轮将最大的元素移动到最后。
2. 选择排序:每一轮选出未排序部分中最小的元素,并将其放在已排序部分的末尾。
3. 插入排序:将未排序部分的第一个元素插入到已排序部分的合适位置。
4. 希尔排序:改进的插入排序,将数据分组排序,最终合并排序。
5. 归并排序:将序列拆分成子序列,分别排序后合并,递归完成。
6. 快速排序:选定一个基准值,将小于基准值的元素放在左边,大于基准值的元素放在右边,递归排序。
7. 堆排序:将序列构建成一个堆,然后一次将堆顶元素取出并调整堆。
8. 计数排序:统计每个元素出现的次数,再按照元素大小输出。
9. 桶排序:将数据分到一个或多个桶中,对每个桶进行排序,最后输出。
10. 基数排序:按照元素的位数从低到高进行排序,每次排序只考虑一位。
以上是十大经典排序算法,每个算法都有其优缺点和适用场景,选择合适的算法可以提高排序效率。
数据结构的常用算法
数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
【十大经典排序算法(动图演示)】 必学十大经典排序算法
【十大经典排序算法(动图演示)】必学十大经典排序算法0.1 算法分类十种常见排序算法可以分为两大类:比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。
非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。
0.2 算法复杂度0.3 相关概念稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。
不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。
时间复杂度:对排序数据的总的操作次数。
反映当n变化时,操作次数呈现什么规律。
空间复杂度:是指算法在计算机内执行时所需存储空间的度量,它也是数据规模n的函数。
1、冒泡排序(Bubble Sort)冒泡排序是一种简单的排序算法。
它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。
走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。
这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。
1.1 算法描述比较相邻的元素。
如果第一个比第二个大,就交换它们两个;对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数;针对所有的元素重复以上的步骤,除了最后一个;重复步骤1~3,直到排序完成。
1.2 动图演示1.3 代码实现1.unction bubbleSort(arr) {2. varlen = arr.length;3. for(vari = 0; i arr[j+1]) {// 相邻元素两两对比6. vartemp = arr[j+1];// 元素交换7. arr[j+1] = arr[j];8. arr[j] = temp;9. }10. }11. }12. returnarr;13.}2、选择排序(Selection Sort)选择排序(Selection-sort)是一种简单直观的排序算法。
数据排序技巧
数据排序技巧在现代数字化时代,大量的数据涌现出来,如何对这些数据进行排序成为了一项必备的技能。
数据排序可以提高数据的可读性、搜索效率和数据处理的速度。
本文将介绍一些常见的数据排序技巧,帮助读者掌握数据排序的基本方法。
一、冒泡排序法冒泡排序法是一种简单直观的排序方法。
它通过比较相邻的两个元素,如果它们的顺序不正确,则交换它们的位置。
通过多次的遍历和比较,将最大(或最小)的元素不断“冒泡”到最前面(或最后面),从而完成排序。
冒泡排序的步骤如下:1. 遍历数据元素,从第一个元素开始,依次比较相邻的两个元素。
2. 如果顺序不正确,则交换它们的位置。
3. 继续遍历比较相邻的元素,直到遍历完所有的元素。
4. 重复上述步骤,直到所有元素都按照要求排序。
冒泡排序的时间复杂度为O(n^2),它是一种效率较低的排序方法,适用于数据量较小的情况。
二、快速排序法快速排序法是一种常用且高效的排序方法。
它使用了分治的思想,将一个大问题拆分成若干个小问题进行解决。
快速排序的步骤如下:1. 选择一个基准元素(通常为第一个元素),将数据分成两部分,一部分小于基准元素,一部分大于基准元素。
2. 递归地对两部分数据进行排序。
3. 合并排序后的两部分数据。
快速排序的时间复杂度为O(nlogn),它是一种较为高效的排序方法,适用于各种规模的数据。
三、归并排序法归并排序法是一种稳定且高效的排序方法。
它采用了分治的思想,将一个大问题拆分成若干个小问题进行解决,并在合并的过程中完成排序。
归并排序的步骤如下:1. 将数据拆分成若干个小的子序列。
2. 对每个子序列递归地进行排序。
3. 将排好序的子序列进行合并,得到完整的有序序列。
归并排序的时间复杂度为O(nlogn),它是一种稳定的排序方法,适用于各种规模的数据。
四、堆排序法堆排序法是一种利用堆数据结构进行排序的方法。
堆是一种完全二叉树,它满足堆的性质,即对于每个非叶子节点,其值都大于等于(或小于等于)它的子节点的值。
数据结构常考的5个算法
数据结构常考的5个算法1. 递归算法递归是一种将问题分解为相同或相似的子问题解决的方法。
在递归算法中,一个函数可以调用自己来解决更小规模的问题,直到遇到基本情况,然后递归返回并解决整个问题。
递归算法通常用于解决需要重复执行相同操作的问题,例如计算斐波那契数列、计算阶乘、树和图的遍历等。
递归算法的主要特点是简洁、易理解,但在大规模问题上可能效率较低。
以下是一个使用递归算法计算斐波那契数列的示例代码:def fibonacci(n):if n <= 1:return nelse:return fibonacci(n-1) + fibonacci(n-2)2. 排序算法排序算法用于将一组数据按照一定顺序进行排列。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
•冒泡排序逐渐交换相邻的元素,将较大的元素逐渐“冒泡”到最后的位置。
•选择排序每次选择最小(或最大)的元素,并将其放置在已排序部分的末尾。
•插入排序通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。
•快速排序通过选择一个基准元素,将数组分割为左右两部分,对左右两部分分别递归地进行快速排序。
•归并排序将数组分成两个子数组,分别对两个子数组进行排序,然后将两个有序子数组合并为一个有序数组。
以下是一个使用快速排序算法对数组进行排序的示例代码:def quick_sort(arr):if len(arr) <= 1:return arrpivot = arr[len(arr)//2]left = [x for x in arr if x < pivot]middle = [x for x in arr if x == pivot]right = [x for x in arr if x > pivot]return quick_sort(left) + middle + quick_sort(right)3. 查找算法查找算法用于在数据集合中查找特定元素的位置或存在性。
10种常用典型算法
10种常用典型算法1. 冒泡排序(Bubble Sort):通过比较相邻元素的大小,将较大的元素交换到后面,较小的元素交换到前面,从而实现排序。
时间复杂度为O(n^2)。
2. 插入排序(Insertion Sort):将待排序的元素插入到有序子数组中的合适位置,逐步构建有序数组。
时间复杂度为O(n^2)。
3. 选择排序(Selection Sort):找到未排序部分最小的元素,并将其放到已排序部分的末尾,不断重复这个过程,直到排序完成。
时间复杂度为O(n^2)。
4. 归并排序(Merge Sort):将数组不断二分,然后将二分后的小数组进行排序合并,最终得到一个排序好的数组。
时间复杂度为O(nlogn)。
5. 快速排序(Quick Sort):从数组中选择一个基准元素,将比基准元素小的元素放到基准元素的左边,比基准元素大的元素放到基准元素的右边,然后递归地对左右两个部分进行排序。
时间复杂度为O(nlogn)。
6. 堆排序(Heap Sort):将待排序的数组构建成一个最大堆(或最小堆),然后依次从堆顶取出最大(或最小)元素,再进行调整,直到堆为空。
时间复杂度为O(nlogn)。
7. 计数排序(Counting Sort):统计数组中每个元素出现的次数,然后根据元素的出现次数将其放到相应的位置上,最终得到一个有序的数组。
时间复杂度为O(n+k),其中k为数组中的最大值。
8. 基数排序(Radix Sort):按照元素的位数将数组进行排序,从低位到高位依次排序。
时间复杂度为O(d*(n+k)),其中d为数组中元素的位数,k为基数。
9. 希尔排序(Shell Sort):将待排序的数组按照一定的间隔(增量)分成多个子数组,对每个子数组进行插入排序,然后不断减小增量,最终进行一次完整的插入排序。
时间复杂度为O(nlogn)。
10. 鸽巢排序(Pigeonhole Sort):适用于元素范围较小且元素重复较多的数组,通过统计元素的出现次数,将元素按照其出现的次数放入鸽巢中,然后按次数从小到大依次取出元素,得到一个有序的数组。
五种常见的排序方法
五种常见的排序方法在计算机科学中,排序是一种非常重要的操作,它可以将一组数据按照一定的顺序排列。
排序算法是计算机科学中最基本的算法之一,它的应用范围非常广泛,例如数据库查询、数据压缩、图像处理等。
本文将介绍五种常见的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是一种简单的排序算法,它的基本思想是将相邻的元素两两比较,如果前面的元素大于后面的元素,则交换它们的位置,一遍下来可以将最大的元素放在最后面。
重复这个过程,每次都可以确定一个最大的元素,直到所有的元素都排好序为止。
冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。
二、选择排序选择排序是一种简单的排序算法,它的基本思想是每次从未排序的元素中选择最小的元素,将它放到已排序的元素的末尾。
重复这个过程,直到所有的元素都排好序为止。
选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。
三、插入排序插入排序是一种简单的排序算法,它的基本思想是将一个元素插入到已排序的元素中,使得插入后的序列仍然有序。
重复这个过程,直到所有的元素都排好序为止。
插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。
四、快速排序快速排序是一种高效的排序算法,它的基本思想是选择一个基准元素,将序列分成两个子序列,其中一个子序列的所有元素都小于基准元素,另一个子序列的所有元素都大于基准元素。
然后递归地对这两个子序列进行排序。
快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。
五、归并排序归并排序是一种高效的排序算法,它的基本思想是将序列分成两个子序列,然后递归地对这两个子序列进行排序,最后将这两个有序的子序列合并成一个有序的序列。
归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。
总结在实际的应用中,选择合适的排序算法非常重要,不同的排序算法有不同的优劣势。
冒泡排序、选择排序和插入排序是三种简单的排序算法,它们的时间复杂度都为O(n^2),在处理小规模的数据时比较适用。
五种常用的排序算法详解
五种常用的排序算法详解排序算法是计算机科学中的一个重要分支,其主要目的是将一组无序的数据按照一定规律排列,以方便后续的处理和搜索。
常用的排序算法有很多种,本文将介绍五种最常用的排序算法,包括冒泡排序、选择排序、插入排序、快速排序和归并排序。
一、冒泡排序冒泡排序是最简单的排序算法之一,其基本思想是反复比较相邻的两个元素,如果顺序不对就交换位置,直至整个序列有序。
由于该算法的操作过程如同水中的气泡不断上浮,因此称之为“冒泡排序”。
冒泡排序的时间复杂度为O(n^2),属于较慢的排序算法,但由于其实现简单,所以在少量数据排序的场景中仍然有应用。
以下是冒泡排序的Python实现代码:```pythondef bubble_sort(arr):n = len(arr)for i in range(n-1):for j in range(n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```二、选择排序选择排序也是一种基本的排序算法,其思想是每次从未排序的序列中选择最小数,然后放到已排序的序列末尾。
该算法的时间复杂度同样为O(n^2),但与冒泡排序相比,它不需要像冒泡排序一样每次交换相邻的元素,因此在数据交换次数上略有优势。
以下是选择排序的Python代码:```pythondef selection_sort(arr):n = len(arr)for i in range(n-1):min_idx = ifor j in range(i+1, n):if arr[j] < arr[min_idx]:min_idx = jarr[i], arr[min_idx] = arr[min_idx], arr[i]```三、插入排序插入排序是一种简单直观的排序算法,其基本思想是通过构建有序序列,对于未排序的数据,在已排序序列中从后向前扫描,找到相应位置并插入该元素。
数据结构与算法(12):排序
int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;
数据结构——排序——8种常用排序算法稳定性分析
数据结构——排序——8种常⽤排序算法稳定性分析⾸先,排序算法的稳定性⼤家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。
在简单形式化⼀下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。
其次,说⼀下稳定性的好处。
排序算法如果是稳定的,那么从⼀个键上排序,然后再从另⼀个键上排序,第⼀个键排序的结果可以为第⼆个键排序所⽤。
基数排序就是这样,先按低位排序,逐次按⾼位排序,低位相同的元素其顺序再⾼位也相同时是不会改变的。
另外,如果排序算法稳定,对基于⽐较的排序算法⽽⾔,元素交换的次数可能会少⼀些(个⼈感觉,没有证实)。
回到主题,现在分析⼀下常见的排序算法的稳定性,每个都给出简单的理由。
(1)冒泡排序冒泡排序就是把⼩的元素往前调或者把⼤的元素往后调。
⽐较是相邻的两个元素⽐较,交换也发⽣在这两个元素之间。
所以,如果两个元素相等,我想你是不会再⽆聊地把他们俩交换⼀下的;如果两个相等的元素没有相邻,那么即使通过前⾯的两两交换把两个相邻起来,这时候也不会交换,所以相同元素的前后顺序并没有改变,所以冒泡排序是⼀种稳定排序算法。
(2)选择排序选择排序是给每个位置选择当前元素最⼩的,⽐如给第⼀个位置选择最⼩的,在剩余元素⾥⾯给第⼆个元素选择第⼆⼩的,依次类推,直到第n-1个元素,第n个元素不⽤选择了,因为只剩下它⼀个最⼤的元素了。
那么,在⼀趟选择,如果当前元素⽐⼀个元素⼩,⽽该⼩的元素⼜出现在⼀个和当前元素相等的元素后⾯,那么交换后稳定性就被破坏了。
⽐较拗⼝,举个例⼦,序列5 8 5 2 9,我们知道第⼀遍选择第1个元素5会和2交换,那么原序列中2个5的相对前后顺序就被破坏了,所以选择排序不是⼀个稳定的排序算法。
(3)插⼊排序插⼊排序是在⼀个已经有序的⼩序列的基础上,⼀次插⼊⼀个元素。
当然,刚开始这个有序的⼩序列只有1个元素,就是第⼀个元素。
常见的排序算法有哪些
常见的排序算法有哪些
排序算法是《数据结构与算法》中最基本的算法之一。
排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。
用一张图概括:
关于时间复杂度
平方阶(O(n2)) 排序各类简单排序:直接插入、直接选择和冒泡排序。
线性对数阶(O(nlog2n)) 排序快速排序、堆排序和归并排序;
O(n1+§)) 排序,§是介于0 和1 之间的常数。
希尔排序
线性阶(O(n)) 排序基数排序,此外还有桶、箱排序。
关于稳定性
稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
名词解释:
•n:数据规模
•k:"桶"的个数
•In-place:占用常数内存,不占用额外内存
•Out-place:占用额外内存
•稳定性:排序后2 个相等键值的顺序和排序之前它们的顺序相同包含以下内容:
•1、冒泡排序
•2、选择排序
•3、插入排序
•4、希尔排序
•5、归并排序
•6、快速排序
•7、堆排序
•8、计数排序
•9、桶排序
•10、基数排序。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
常用数据结构和算法
常用数据结构和算法在计算机科学领域,数据结构和算法是构建高效程序的基石。
无论是开发软件应用,还是进行系统优化,都离不开对数据结构和算法的研究和应用。
本文将介绍一些常用的数据结构和算法,并讨论它们的特点和应用场景。
一、数组(Array)数组是最基本的数据结构之一,它由一系列连续的内存空间组成,可以存储相同类型的数据。
数组的特点是随机存取,即可以通过索引直接访问指定位置的元素。
数组在存取数据时效率非常高,但插入和删除操作则比较低效。
它的应用场景包括存储一组有序的数据、快速查找等。
二、链表(Linked List)链表是一种非连续的数据结构,由多个节点组成,每个节点包含一个数据元素和指向下一个节点的指针。
链表的特点是插入和删除操作效率高,但查找操作则比较低效,需要遍历整个链表。
链表适用于频繁插入和删除元素的场景,比如实现队列、栈等。
三、栈(Stack)栈是一种特殊的数据结构,它遵循先入后出(LIFO)的原则。
栈可以用数组或链表来实现,常见的操作包括入栈(push)和出栈(pop)。
栈的应用场景很广,比如表达式求值、函数调用等。
四、队列(Queue)队列是一种遵循先入先出(FIFO)原则的数据结构。
队列可以用数组或链表来实现,常见的操作包括入队(enqueue)和出队(dequeue)。
队列的应用包括任务调度、消息传递等。
五、树(Tree)树是一种层次结构的数据结构,由节点和边组成。
树的结构使得在其中进行搜索、插入和删除等操作非常高效。
常见的树结构包括二叉树、二叉搜索树、平衡二叉树、红黑树等。
树的应用非常广泛,比如文件系统、数据库索引等。
六、图(Graph)图是一种由节点和边组成的非线性数据结构,它包括有向图和无向图。
图的表示方式有邻接矩阵和邻接表两种,它的应用场景包括网络拓扑分析、搜索算法等。
七、排序算法排序算法是数据处理中非常重要的一类算法,主要用于将一组无序的数据按照某种规则进行排序。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
各个常用的排序算法的适用场景详细分析
各个常用的排序算法的适用场景详细分析1. 适用场景分析总览排序算法是计算机科学中的一个重要概念,它能够将一组无序数据按照特定规则排列成有序的序列。
在实际应用中,不同的排序算法在不同的场景中具有各自的优势和适用性。
本文将详细分析常用的几种排序算法的适用场景,并加以比较。
2. 冒泡排序冒泡排序是最基本的排序算法之一,它通过相邻元素之间的比较和交换来实现排序。
由于其简单易懂的特点,适用于数据量较小、或者已有部分有序的场景。
冒泡排序的时间复杂度为O(n^2),在大数据量排序时效率较低。
3. 插入排序插入排序是一种简单直观的排序算法,通过将未排序元素逐个插入已排序部分的合适位置来实现排序。
它适用于数据量较小、或者已有部分有序的场景,其时间复杂度为O(n^2)。
插入排序相较于冒泡排序在一定程度上有一定的优化。
4. 选择排序选择排序通过每次选取最小(或最大)的元素来排序,每次找到的最小(或最大)元素与未排序部分的首位元素进行交换。
选择排序适用于数据量较小、或者对内存占用要求较高的场景。
它的时间复杂度为O(n^2),相对于冒泡排序和插入排序而言,选择排序更稳定。
5. 快速排序快速排序是一种基于分治思想的排序算法,其通过递归将数组划分为较小和较大的两部分,并逐步将排序问题划分为更小规模的子问题进行处理。
快速排序适用于数据量较大的情况,具有较好的时间复杂度,平均情况下为O(nlogn)。
然而,当输入数据已基本有序时,快速排序的效率会变得较低。
6. 归并排序归并排序也是一种分治思想的排序算法,它将一个数组分成两个子数组,分别对每个子数组进行排序,然后再将两个已排序的子数组进行合并。
归并排序适用于对稳定性要求较高的场景,时间复杂度为O(nlogn)。
相较于快速排序,归并排序对已有序的数组进行排序效率更高。
7. 堆排序堆排序是一种通过维护最大(或最小)堆的性质来实现排序的算法。
它适用于对内存占用要求较高的场景,时间复杂度为O(nlogn)。
数据结构之——八大排序算法
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
常见数据结构与算法整理总结
常见数据结构与算法整理总结一、常见数据结构与算法整理总结在我们日常的工作中,数据结构和算法是非常重要的知识体系。
它们可以帮助我们更好地理解和处理数据,提高我们的工作效率。
在这篇文章中,我将对一些常见的数据结构和算法进行整理和总结,帮助大家更好地掌握这些知识。
二、数据结构的基础知识1.1 数组数组是一种最基本的数据结构,它可以存储一组具有相同类型的数据。
数组的优点是查找、插入和删除操作非常快,因为它们的时间复杂度都是O(1)。
但是,数组的大小是固定的,不能动态扩展。
1.2 链表链表是一种由一系列节点组成的数据结构。
每个节点包含两部分:数据域和指针域。
数据域用于存储数据,指针域用于指向下一个节点。
链表的优点是可以动态扩展,但是查找、插入和删除操作的时间复杂度都是O(n)。
1.3 栈栈是一种后进先出(LIFO)的数据结构。
它有两个主要的操作:入栈和出栈。
入栈是将元素压入栈顶,出栈是从栈顶弹出元素。
栈的优点是空间利用率高,但是只能在栈顶进行插入和删除操作,查找操作的时间复杂度是O(n)。
1.4 队列队列是一种先进先出(FIFO)的数据结构。
它有两个主要的操作:入队和出队。
入队是将元素放入队尾,出队是从队头取出元素。
队列的优点是可以动态扩展,但是只能在队头进行插入操作,查找操作的时间复杂度是O(n)。
三、算法的基础知识2.1 排序算法排序算法是将一组无序数据按照某种规则排列成有序数据的算法。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序等。
排序算法的时间复杂度通常在O(nlogn)到O(n^2)之间,其中最常用的是快速排序算法。
2.2 查找算法查找算法是在一组数据中查找指定元素的算法。
常见的查找算法有顺序查找、二分查找、哈希查找等。
查找算法的时间复杂度通常在O(logn)到O(n)之间,其中最常用的是二分查找算法。
2.3 图论算法图论算法是研究图结构的一类算法。
常见的图论算法有深度优先搜索、广度优先搜索、最短路径算法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
#include"stdio.h"#define LT(a,b) ((a)<(b))#define LQ(a,b) ((a)>(b))#define maxsize 20typedef int keytype;typedef struct{keytype key;}RedType;typedef struct{RedType r[maxsize+1];int length;}Sqlist;//直接插入排序void insertsort(Sqlist &L){int i,j;for(i=2;i<=L.length;++i)if(LT(L.r[i].key,L.r[i-1].key)){L.r[0]=L.r[i];L.r[i]=L.r[i-1];for(j=i-2;LT(L.r[0].key,L.r[j].key);--j)L.r[j+1]=L.r[j];L.r[j+1]=L.r[0];}//if}//insertsort//折半插入排序void BInsertSort(Sqlist &L){int i,j,low,high,m;for(i=2;i<=L.length;++i){L.r[0]=L.r[i];low=1;high=i-1;while(low<=high){m=(low+high)/2;if(LT(L.r[0].key,L.r[m].key))high=m-1;elselow=m+1;}//whilefor(j=i-1;j>=high+1;--j)L.r[j+1]=L.r[j];L.r[high+1]=L.r[0];}//for}//BInsertSort//快速排序int Partition(Sqlist &L,int low,int high){int pivotkey;L.r[0]=L.r[low];pivotkey=L.r[low].key;while(low<high){while(low<high&&L.r[high].key>=pivotkey)--high;L.r[low]=L.r[high];while(low<high&&L.r[low].key<=pivotkey)++low;L.r[high]=L.r[low];}L.r[low]=L.r[0];return low;}//Partitionvoid QSort(Sqlist &L,int low,int high){int pivotloc;if(low<high){pivotloc=Partition(L,low,high);QSort(L,low,pivotloc-1);QSort(L,pivotloc+1,high);}}//QSortvoid QuickSort(Sqlist &L){QSort(L,1,L.length);}//QuickSort//简单选择排序int SelectMinKey(Sqlist &L,int m){int i,index=m;for(i=m;i<=L.length;++i){if(LT(L.r[i].key,L.r[index].key))index=i;}return index;}void SelectSort(Sqlist &L){int i,j,temp;for(i=1;i<=L.length;++i){j=SelectMinKey(L,i);if(i!=j){temp=L.r[i].key;L.r[i].key=L.r[j].key;L.r[j].key=temp;}//if}//for}//SelectSort//堆排序void HeapAdjust(Sqlist &L,int s,int m){int rc,j;rc=L.r[s].key;for(j=2*s;j<=m;j*=2){if(j<m&<(L.r[j].key,L.r[j+1].key)) ++j;if(!LT(rc,L.r[j].key)) break;L.r[s]=L.r[j];s=j;}//forL.r[s].key=rc;}//HeapAdjustvoid HeapSort(Sqlist &L){int i,temp;for(i=L.length/2;i>0;--i)HeapAdjust(L,i,L.length);for(i=L.length;i>1;--i){temp=L.r[1].key;L.r[1].key=L.r[i].key;L.r[i].key=temp;HeapAdjust(L,1,i-1);}//for}//HeapSort//归并排序void Merge (RedType SR[], RedType TR[], int i, int m, int n) { int j,k;for (j=m+1, k=i; i<=m && j<=n; ++k) {if LQ(SR[i].key,SR[j].key) TR[k] = SR[i++];else TR[k] = SR[j++];}if (i<=m)while (k<=n && i<=m) TR[k++]=SR[i++];if (j<=n)while (k<=n &&j <=n) TR[k++]=SR[j++];} // Mergevoid MSort(RedType SR[], RedType TR1[], int s, int t) { int m;RedType TR2[20];if (s==t) TR1[t] = SR[s];else {m=(s+t)/2;MSort(SR,TR2,s,m);MSort(SR,TR2,m+1,t);Merge(TR2,TR1,s,m,t);}} // MSortvoid MergeSort(Sqlist &L) {MSort(L.r, L.r, 1, L.length);} // MergeSort//冒泡排序void BubbleSort(Sqlist &L){int i,j,temp,index;for(i=1;i<L.length;++i){index=i;for(j=i+1;j<=L.length;++j)if(LT(L.r[j].key,L.r[index].key))index=j;temp=L.r[index].key;L.r[index]=L.r[i];L.r[i].key=temp;}//for}//BubbleSortvoid main(){char c;Sqlist L;int n,i;printf("1-直接插入排序:\n");printf("2-折半插入排序:\n");printf("3-简单选择排序:\n");printf("4-堆排序:\n");printf("5-冒泡排序:\n");printf("6-归并排序:\n");printf("7-快速排序:\n");printf("输入所选排序方法的序号(1~7):");scanf("%c",&c);printf("input n:");scanf("%d",&n);L.length=n;printf("input the datas:\n");for(i=1;i<=L.length;++i)scanf("%d",&L.r[i]);switch(c){case '1':insertsort(L);break;case '2':BInsertSort(L);break;case '3':SelectSort(L);break;case '4':HeapSort(L);break;case '5':BubbleSort(L);break;case '6':MergeSort(L);break;case '7':QuickSort(L);break;default:printf("没有该序号!\n");}printf("排序后的序列:\n");for(i=1;i<=L.length;++i)printf("%d ",L.r[i]);printf("\n");}。