带式运输机传动装置的设计方案说明书

合集下载

带式运输机传动装置的设计方案说明书

带式运输机传动装置的设计方案说明书

目录一、传动方案拟定------------------------------------2二、电动机的选择------------------------------------2三、计算总传动比及分配各级的传动比------------------4四、运动参数及动力参数计算--------------------------5五、传动零件的设计计算------------------------------5六、轴的设计计算------------------------------------9七、键联接的选择及计算-----------------------------17八、减速器箱箱盖及附件的设计计算-------------------18九、润滑与密封-------------------------------------20十、设计小结---------------------------------------20 十一、参考资料目录---------------------------------21一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。

(2)小批量生产,带式输送机的传动效率为0.96。

(3)原始数据:滚筒圆周力F=2KN;带速V=1.3m/s;滚筒直径D=180mm。

1、电动机2、v带传动3、斜齿圆柱齿轮减速器4、联轴器5、带式运输机二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相异步电动机。

2、确定电动机的功率:<1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.98×0.99×0.97=0.89(2>电机所需的工作功率:P d=FV/1000η总=2000×1.3/1000×0.89=2.31KW3、确定电动机转速:滚筒轴的工作转速:N w=60×1000V/πD=60×1000×1.3/π×180=137.93r/min根据[2]表2.2中推荐的合理传动比范围,取V带传动比I v=2~4,单级圆柱齿轮传动比范围I c=3~8,则合理总传动比i的范围为i=6~32,故电动机转速的可选范围为n d=i×n w=<6~32)×137.93=828~4414r/min符合这一范围的同步转速有960 r/min和1420r/min。

机械设计课程设计说明书(带式运输机传动装置)

机械设计课程设计说明书(带式运输机传动装置)

机械设计课程设计说明书 机械设计课程设计说明书题号:43一、 传动方案-—V 带传动原始题目:课程设计题目五:带式运输机传动装置工作条件:连续单向运转,载荷平稳,空载起动,使用期限10年,小批量生产,两班制工作,运输带速度允许误差为±5%。

滚筒效率:ηj =0。

96(包括滚筒与轴承的效率损失)。

1-电动机 2-带传动 3-减速器 4-联轴器 5-滚筒 6-传送带原始数据题 号 41 42 4344 45 46 47 4849 50运输带工作拉力(N)1100 1150 1200 1250 1300 1350 1450 1500 1500 1600 运输带工作速度(m ·s -1) 1.50 1。

60 1。

70 1。

50 1.55 1.60 1.55 1。

65 1。

70 1.80 卷筒直径(mm) 250 260 270 240 250 260 250 260 280 300已知条件: 1.工作参数运输带工作拉力F = 1200N 。

运输带工作速度V =1。

70 m/s(允许带速误差±5%)。

滚筒直径D = 270 mm. 滚筒效率0。

96(包括滚筒与轴承的效率损失). 2.使用工况两班制工作,连续单向运转,载荷平稳,空载起动。

3.工作环境室内,灰尘较大,环境最高温度35℃。

4.动力来源三相交流电,电压380/220V. 5.寿命要求使用期限10年,其工作期限(使用折旧期)为10年,大修期4年,中修期2年,小修Fν期半年。

6.制造条件一般机械厂制造,小批量生产.二、选择电动机(1)确定电动机额定功率、工作功率(输出功率)动力来源:三相交流电,电压380/220V电动机是标准件,根据要求两班制,灰尘较大,最高温度35度,三相交流电,笼型异步,封闭式结构,电压380v,Y型根据,可得电动机额定功率因为总效率——为闭式齿轮传动效率(0.97);——带传动效率(0.96)--为滚动轴承效率(0。

带式运输机传动装置的设计

带式运输机传动装置的设计

机械设计基础课程设计说明书带式运输机传动装置的设计A-5-------同轴式二级圆柱齿轮减速器的设计一.设计说明用于带式运输机的同轴式二级圆柱齿轮减速器;传动装置简图如右图所示;视情况可增加一级带传动或链传动;(1)带式运输机数据运输机工作轴转矩T=5300N·m运输带工作速度v=0.9m/s运输带滚筒直径D=450mm2工作条件单班制工作,空载启动,单向、连续运转,工作中有轻微振动;运输带速度允许速度误差为±5%;3使用期限工作期限为十年,检修期间隔为三年; 4生产批量及加工条件小批量生产;2.设计任务详见基本要求1选择电动机型号;二.选择电动机型号电动机是最常用的原动机,具有结构简单、工作可靠、控制简单和维护容易等优点;电动机的选择主要包括选择其类型和结构型式、容量功率和转速、确定具体型号;选择电动机类型根据任务书要求可知:本次设计的机械属于恒功率负载特性机械,且其负载较小,故采用Y型三相异步电动机全封闭结构即可达到所需要求;2、选择电动机容量工作机所需的功率其中带式输送机的效率电动机的输出功率其中η为电动机至滚筒主动轴传动装置的总效率,包括V带传动、一对齿轮传动、两对滚动轴承及联轴器等的效率,η值计算如下:由机械设计基础课程设计表10-1查得V带传动效率,一对齿轮传动的效率,一对滚动球轴承传动效率,联轴器效率,因此所以根据选取电动机的额定功率使,并由机械设计基础课程设计表10-110查得电动机的额定功率为确定电动机转速:滚筒转速为:取V带传动的传动比范围为:取单级齿轮传动的传动比范围为:则可得合理总传动比的范围为:故电动机转速可选的范围为:在这个范围内的电动机的同步转速有和两种,综合考虑电动机和传动装置的情况再确定最后的转速,为降低电动机的重量和成本,可选择同步转速为;根据同步转速查机械设计基础课程设计表10-110确定电动机型号为,其满载转速;此外,电动机的中心高、外形尺寸、轴伸尺寸等均可查表得出;三.选择联轴器,设计减速器总传动比的计算与分配电动机确定后面,根据电动机的满载转速和工作装置的转速,就可以计算传动装置的总传动比;总传动比的分配是个比较重要的问题;它将影响到传动装置的外轮廓尺寸、重量、润滑等许多问题;1、计算总传动比2、分配各级传动比为使带传动的尺寸不至过大,满足,可取,则齿轮的传动比传动装置的运动和动力参数计算传动装置的运动和动力参数是指各轴的转速、功率和转矩,这些参数是设计传动零件齿轮和带轮和轴时所必需的已知条件;计算这些参数时,可以按从高速轴往低速轴的顺序进行;1、各轴的转速2、各轴的功率3、各轴的转矩最后,将计算结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970323.3374.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3311.91309.221277.1传动比 i3 4.351效率η0.960.9650.975传动零件的设计计算设计时,一般先作减速器箱外传动零件的设计计算,以便确定减速器内的传动比及各轴转速、转矩的精确数值,从而使所设计的减速器原始条件比较准确;第一节减速器外传动零件的设计本传动方案中,减速器外传动即电动机与减速器之间的传动,采用V带传动;V 带已经标准化、系列化,设计的主要内容是确定V带型号和根数,带轮的材料、直径和轮毂宽度、中心距等;1、求计算功率查机械设计基础表13-8得,故2、选V带型号根据,由机械设计基础图13-15查出此坐标点位于B型号区域;3、求大、小带轮基准直径查机械设计基础表13-9,应不小于125mm,现取,由机械设计基础式13-9得式中;由机械设计基础表13-9,取;4、验算带速带速在范围内,合适;5、求V带基准长度和中心距初步选取中心距由机械设计基础式13-2得带长查机械设计基础表13-2,对B型带选用;再由机械设计基础式13-16计算实际中心距6、验算小带轮包角由机械设计基础式13-1得合适;7、求V带根数由机械设计基础式13-15得令,查机械设计基础表13-3得由机械设计基础式13-9得传动比查机械设计基础表13-5得由查机械设计基础表13-7得,查机械设计基础表13-2得,由此可得取5根;8、求作用在带轮轴上的压力查机械设计基础表13-1得,故由机械设计基础式13-17得单根V带的初拉力作用在轴上的压力9、带轮结构设计带轮速度,可采用铸铁材料;小带轮直径,采用实心式;大带轮直径,采用轮辐式;传动比及运动参数的修正外传动零件设计完成后,V带的传动比随之确定;用新的传动比对减速器内轴Ⅰ的转速、转矩数值进行修正;1、对轴Ⅰ转速的修正2、对轴Ⅰ转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.3374.33功率P/KW1110.5610.199.94转矩T/N.M108.3318.141309.221277.1传动比 i 3.06 4.351效率η0.960.9650.975减速器内传动零件的设计减速器内的传动零件主要是指齿轮轴;本传动方案中的减速器采用直齿圆柱齿轮进行传动;直齿圆柱齿轮传动设计需要确定齿轮的材料、模数、齿数、分度圆、顶圆和根圆、齿宽和中心距等;1、选择材料及确定许用应力小齿轮用调质,齿面硬度,,机械设计基础表11-1,大齿轮用调质,齿面硬度,,机械设计基础表11-1;由机械设计基础表11-5,取,,2、按齿面接触强度设计设齿轮齿面按7级精度制造;取载荷系数机械设计基础表11-3,齿宽系数机械设计基础表11-6;小齿轮上的转矩取机械设计基础表11-4齿数取,则;故实际传动比;模数齿宽,取,,这里取;按机械设计基础表4-1取,小齿轮实际的分度圆直径,大齿轮实际的分度圆直径;齿顶高齿根高小齿轮齿顶圆直径小齿轮齿根圆直径大齿轮齿顶圆直径大齿轮齿根圆直径中心距3、验算轮齿弯曲强度齿形系数机械设计基础图11-8,机械设计基础图11-9 ,由机械设计基础式11-54、齿轮的圆周速度对照机械设计基础表11-2可知选用7级精度是合宜的;轴Ⅱ运动参数的修正内传动零件设计完成后,齿轮的传动比随之确定;用新的传动比对减速器内轴Ⅱ的转速、转矩数值进行修正;1、对轴Ⅱ、工作装置转速的修正2、对轴Ⅱ、工作装置转矩的修正最后,将修正结果填入下表:轴名参数电动机轴Ⅰ轴Ⅱ轴滚筒轴转速n/r/min970316.9974.0474.04功率P/KW1110.5610.199.94转矩T/N.M108.3318.141314.351282.1传动比 i 3.06 4.281效率η0.960.9650.975轴的设计计算第一节高速轴Ⅰ的计算已知轴Ⅰ传递的功率,转速,小齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行调质处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得考虑到有键槽的存在,轴径加大5%左右即取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;2确定轴的各段直径轴结构示意图1轴段安装带轮,轴径取不大于70mm的标准值,这里取;2轴段安装轴承端盖,取;3轴段安装轴承,轴径为轴承内径的大小 ;查机械设计基础课程设计续表10-35:选取深沟球轴承6311,轴承内径,外径,轴承宽;这里取;轴两端安装轴承处轴径相等,则6段取;4轴段安装齿轮,齿轮内径,齿轮的轴向定位轴肩,取;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据带轮结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,起厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为小齿轮的齿宽为80mm,轴段的长度应比零件的轮毂短2-3mm,5轴段长度15mm;6轴段轴承的宽挡油环的长度和;3、按弯扭合成强度对轴Ⅰ的强度进行校核已知:转矩,小齿轮分度圆直径;圆周力径向力法向力1绘制轴受力简图如下2绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:4绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,调质处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;第二节低速轴Ⅱ的计算已知轴Ⅱ传递的功率,转速,大齿轮的齿宽,齿数,模数,压力角,载荷平稳;1、初步估算轴的直径查机械设计基础表14-1轴的常用材料及其主要力学性能表,选取45号钢作为轴Ⅰ的材料,并进行正火处理;查机械设计基础表14-2常用材料的值和C值,取;由机械设计基础式14-2得根据联轴器结构及尺寸,取;2、轴的结构设计1确定轴的结构方案右轴承从轴的右端装入,靠轴肩定位;齿轮和左轴承从轴的左端装入,齿轮右侧端面靠轴肩定位,齿轮和左轴承之间用定位套筒使左轴承右端面得以定位,左右轴承均采用轴承端盖,齿轮采用普通平键得到圆周固定;(2)确定轴的各段直径轴结构示意图由图中个零件配合尺寸关系知;,,,;3确定轴的各段长度结合绘图后确定各轴段长度如下:1轴段的长度取根据联轴器结构及尺寸;2轴段总长度根据外装式轴承端盖的结构尺寸,其厚度,还有箱体的厚度取10mm;3轴段轴承的宽挡油环的长度和;4轴段因为大齿轮的齿宽为75mm,轴段的长度应比零件的轮毂短2-3mm;5轴段;6轴段;3、按弯扭合成强度对轴Ⅱ的强度进行校核已知:转矩:,大齿轮分度圆直径;圆周力径向力法向力(1)绘制轴受力简图如下(2)绘制垂直面弯矩图如下垂直面内的轴承支反力:水平面内的轴承支反力:由两边对称,知截面C的弯矩也对称;截面C在垂直面弯矩为3绘制水平面弯矩图如下截面C在水平面上弯矩为:(4)绘制合弯矩图如上5绘制扭矩图如上扭矩:6当量弯矩计算扭矩产生的扭转力按脉动循环变化,取α=0.6,截面C处的当量弯矩:7校核危险截面C的强度判定危险截面为第四段轴的中心面,轴的材料选用45钢,正火处理,查机械设计基础表14-1得;查机械设计基础表14-3查得则:∴该轴强度足够;键的选择与强度验算1、高速轴Ⅰ上键的选择与校核(1)最小直径处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;(2)齿轮处1)选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;2、低速轴Ⅱ上键的选择与校核1最小直径处1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3强度校核:轴所受转矩;查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键2齿轮处:1选择键型:该键为静联接,为了便于安装固定,选择普通A型平键;2确定键的尺寸:该轴上最小直径为,轴长,查机械设计基础课程设计表10-33得,用于此处连接的键的尺寸为;3)强度校核:查机械设计基础表10-10,取,;由机械设计基础式10-26有:键连接的挤压强度;由机械设计基础式10-27有:键连接的压强;强度满足要求;该键标记为:键;滚动轴承的选择及联轴器的选择第一节滚动轴承的选择根据设计条件,轴承预计寿命:小时1、计算高速轴处的轴承对于高速轴处的轴承选择,首先考虑深沟球轴承;初选用6311型深沟球轴承,其内径为55mm,外径为120mm,宽度为29mm,极限转速脂:5300r/min;极限转速油:6700r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量动载荷,转速n=316.99r/min,小时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选用6311型深沟球轴承符合要求;2、计算低速轴处的轴承对于低速轴处的轴承选择,考虑深沟球轴承,初选6018型深沟球轴承,其内径为90mm,外径为140mm,宽度为24mm,极限转速脂:4300r/min;极限转速油:5300r/min;因轴承工作温度不高、载荷平稳,查机械设计基础表16-8及表16-9,取;由于轴向力的影响可以忽略不计,即,取X=1,Y=0.则当量=74.04r/min,小动载荷,转速n2时,;由机械设计基础式16-3得:所需径向基本额定动载荷查机械设计基础课程设计表10-35得:,故选6018型深沟球轴承符合要求;第二节联轴器的选择轴Ⅰ与V带轮通过键连接来传递力和扭矩,不需用联轴器;轴Ⅱ与滚筒之间用联轴器联接实现力和扭矩的传递;需选用合适的联轴器;考虑此运输机的功率不大,工作平稳,考虑结构简单、安装方便,故选择弹性柱销联轴器;计算转矩按下式计算:式中 T——名义转矩;N·mm;——工作情况系数;KA取K=1.5,则A=74.04r/min输出轴输出段直径为d=80mm;轴Ⅱ的转速为n2查机械设计课程上机与设计表14-5,可选择YL14或YLD14型弹性联轴器;第七章减速器润滑与密封1、润滑齿轮圆周速度,采用油池润滑,圆柱齿轮浸入油的深度约一个齿高,大齿轮的齿顶到油底面的距离≥30~60mm;选择油面的高度为40mm;并考虑轴承的润滑方式,计算:高速轴:低速轴:;所以选用脂润滑,润滑脂的加入量为轴承空隙体积的,采用稠度较小润滑脂;2、密封为了防止润滑油或脂漏出和箱体外杂质、水及灰尘等侵入,减速器在轴的伸出处、箱体的结合面处和轴承盖、窥视孔及放油孔与箱体的结合面处需要密封;轴伸出处的滚动轴承密封装置采用毛毡圈密封,由机械原理课程上机与设计表15-15可得,其中输入轴按密封圈密封处直径:,选择毛毡圈尺寸:;输出轴按密封圈密封处直径:;选择毛毡圈尺寸:;第八章减速器附件选择1、轴承端盖轴承端盖全部采用外装式轴承端盖,并根据机械设计课程上机与设计表13-4与表15-3进行选择;1、高速轴的轴承端盖轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,,取;2、低速轴的轴承端盖:轴承外径,螺栓直径,端盖上螺栓数目6;,,,,,取,, 取2、通气器减速器工作时,由于箱体内部温度升高,气体膨胀,压力增大,使得箱体内外压力不等;为使箱体内受热膨胀的气体自由排出,以保持箱体内外压力平衡,不致使润滑油沿分箱面或轴伸密封件处向外渗漏,需要顶部或直接在窥视孔盖板上设置通气器;本设计将通气器安装在窥视孔盖板上;选用通气帽根据机械设计课程上机与设计表15-5进行选择;3、窥视孔窥视孔用于检查传动零件的啮合、润滑及齿轮损坏情况,并兼做注油孔,可向减速器箱体内注入润滑油,观察孔应设置在减速器箱盖上方的适当位置,以便直接进行观察并使手能伸入箱体内进行操作,平时观察孔用盖板盖住;查机械设计基础课程设计表5-16,取窥视孔孔盖的结构尺寸如下:150200100150M620 6个124、油标为指示减速器内油面的高度符合要求,以便保持箱内正常的油量,在减速器箱体上需设置油面指示装置;本设计选用长形油标,油标尺中心线与水平面成45度,注意加工油标凸台和安装油标时,不与箱体凸缘或吊钩相干涉;查机械设计课程上机与设计表15-10,选择A80 GB1161油标;5、放油孔及放油螺塞为排放减速器箱体内油污和便于清洗箱体内部,在箱座油池的最低处设置放油孔,箱体内底面做成斜面、向放油孔方向倾斜1度到2度,油孔附近作成凹坑,以便污油排尽;平时用放油螺塞将放油孔堵住圆柱螺纹油塞自身不能8、地脚螺栓为防止减速器倾倒和振动,减速器底座下部凸缘应设有地脚螺钉与地基连接;地脚螺钉为M24 取4个;9、箱体设计箱盖壁厚:10mm,箱座底凸缘厚度:10mm,地脚螺钉直径:24mm;数目:4个,轴承旁联结螺栓直径:16mm;。

完整版带式输送机传动系统设计说明书(单级圆柱齿轮减速器+链传动)

完整版带式输送机传动系统设计说明书(单级圆柱齿轮减速器+链传动)

《机械设计》课程设计设计说明书带式输送机传动系统设计起止日期:2019 年12 月29 日至2020年 1 月10 日学生姓名王班级机设1706班学号1740570成绩指导教师(签字)目录第一部分概述 (1)1.1设计的目的 (1)1.2设计计算步骤 (1)第二部分.设计任务书及方案拟定 (2)2.1《机械设计》课程设计任务书 (2)2.2.传动系统方案拟定 (3)第三部分选择电动机 (3)3.1电动机类型的选择 (3)3.2确定传动装置的效率 (3)3.3选择电动机容量 (4)3.4确定传动装置的总传动比和分配传动比 (5)3.5动力学参数计算 (6)第四部分减速器齿轮传动设计计算 (7)第五部分链传动设计计算 (11)第六部分传动轴和传动轴承及联轴器的设计 (13)6.1输入轴设计计算 (13)5.2输出轴设计计算 (18)第七部分轴承的选择及校核计算 (22)7.1输入轴的轴承计算与校核 (22)7.2输出轴的轴承计算与校核 (23)第八部分键联接的选择及校核计算 (24)8.1输入轴键选择与校核 (24)8.2输出轴键选择与校核 (25)第九部分联轴器的选择 (25)第十部分减速器的润滑和密封 (25)10.1减速器的润滑 (25)10.2减速器的密封 (26)第十一部分减速器附件及箱体主要结构尺寸 (26)11.1减速器附件的设计与选取 (26)11.2减速器箱体主要结构尺寸 (31)第十二部分设计小结 (33)第十三部分参考文献 (34)第一部分概述1.1设计的目的设计目的在于培养机械设计能力。

设计是完成机械专业全部课程学习的最后一次较为全面的、重要的、必不可少的实践性教学环节,其目的为:1.通过设计培养综合运用所学全部专业及专业基础课程的理论知识,解决工程实际问题的能力,并通过实际设计训练,使理论知识得以巩固和提高。

2.通过设计的实践,掌握一般机械设计的基本方法和程序,培养独立设计能力。

带式运输机传动装置设计方案

带式运输机传动装置设计方案

课程设计题目带式运输机传动装置设计教学院机电工程学院专业机械制造及自动化班级机械制造及自动化(专)2010(1)班姓名指导教师2012 年05 月28 日前言设计目的:机械设计课程是培养学生具有机械设计能力的技术基础课。

课程设计则是机械设计课程的实践性教案环节,同时也是高等工科院校大多数专业学生第一次全面的设计能力训练,其目的是:(1)通过课程设计实践,树立正确的设计思想,增强创新意识,培养综合运用机械设计课程和其他先修课程的的理论与实际知识去分析和解决机械设计问题的能力。

(2)学习机械设计的一般方法,掌握机械设计的一般规律。

(3)通过制定设计方案,合理选择传动机构和零件类型,正确计算零件的工作能力,确定尺寸及掌握机械零件,以较全面的考虑制造工艺,使用和维护要求,之后进行结构设计,达到了解和掌握机械零件,机械传动装置或简单机械的设计过程和方法。

(4)学习进行机械设计基础技能的训练,例如:计算、绘图、查阅设计资料和手册、运用标准和规定。

目录一、确定传动方案 (1)二、选择电动机 (1)一、选择电动机 (1)二、计算传动装置的总传动比并分配各级传动比 (2)三、计算传动装置的运动参数和动力参数 (2)三、传动零件的设计计算 (3)(1)普通V带传动 (4)(2)圆柱齿轮设计 (5)四、低速轴的结构设计 (7)(1)轴的结构设计 (7)(2)确定各轴段的尺寸 (8)(3)确定联轴器的尺寸 (10)(4)按扭转和弯曲组合进行强度校核 (10)五、高速轴的机构设计 (13)六、键的选择及强度校核 (13)七、选择轴承及计算轴承的寿命 (14)八、选择轴承润滑与密封方式 (16)九、箱体及附件的设计 (17)(1)箱体的选择 (17)(2)选择轴承端盖 (17)(3)确定检查孔与孔盖 (17)(4)通气孔 (17)(5)油标装置 (17)(6)螺塞 (17)(7)定位销 (17)(8)起吊装置 (17)(9)设计小结 (18)参考文献 (19)图A-1 Fw(N) Vw(m/s) Dw(mm) η2000 2.7 380 0.95 1)选择电动机类型和结构形式 根据工作要求和条件,选用一般用途的Y 系列三相异步电动机,结构为卧室封闭结构 2)确定电动机功率 工作机所需的功率Pw (kW )按下式计算W P = W W W v F η1000 =kw 68.595.010007.22000=⨯⨯1)各轴段的直径因本减速器为一般常规用减速器,轴的材料无特殊要求,故选择45钢,正火处理查教材知 45钢的A=118~107带入设计公式。

带式运输机传动装置 课程设计

带式运输机传动装置 课程设计

目录一.拟定传动方案 (2)1.电动机选型说明 (2)2.电动机容量的确定 (2)3.电动机传动比的确定及各传动比的分配 (3)4.电动机型号 (3)5. 各轴转速、转矩及传动功率 (4)二.传动件的设计 (5)1.V带传动主要传动参数 (5)三.齿轮传动部分的设计 (7)(1)高速级齿轮传动主要参数 (7)(2)低速级齿轮传动主要参数 (12)四.减速器各轴结构设计 (17)1.低速轴的设计 (17)2.高速轴的设计 (22)3.中间轴的设计 (23)五.轴承与键的选择与校核 (26)六.润滑与密封 (30)七、减速器的箱体及其附件 (30)八.小结 (33)九.参考文献 (34)查得,5.1=AK,则mNTKTAca⋅=⋅=⋅=77.188518.12575.14,查课程设计书P159表16-4,选用HL5型弹性柱销联轴器,半联轴器的孔径为60,半联轴器与轴配合的毂孔长度为:mmL1071=,半联轴器长度mmL142=。

2.初步选取可同时承受径向力与轴向力的滚动轴承,参照mmd702=,选择30314圆锥滚子轴承,其尺寸为3515070⨯⨯=⨯⨯BDd a=30.6故mmdmmdmmdmmd70,80,85,756543====四.计算轴上的载荷1)由轴的初步结构作计算简图:2)判断危险截面参照《机械设计》P372图15-24 从应力集中来看截面Ⅳ和Ⅴ应力集中最严重。

但截面Ⅴ不受扭矩作用而且轴径较大故不必校核。

因此轴只需较核截面Ⅳ。

3)作出轴的计算简图mmLmmLmmL86,100,170321===(1)水平面mmNLFMmmNLFMmmNdFMNLLLFFNLLLFFNHHNHHaatNHtNH⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅=⋅==+⋅=+⋅==+⋅=+⋅=28.3866548698.449538665410054.386686.308682267.3003.2053254.3866861008652.836298.44958610010052.8362322211432223231(2)垂直面mmNTKcaA⋅==77.18855.1mmLmmLmmL86100170321===mmNMmmNMmmNMNFNFHHaNHNH⋅=⋅=⋅===28.38665438665486.30868254.386698.44952121故可知轴安全。

带式运输机传动装置设计任务书

带式运输机传动装置设计任务书

带式运输机传动装置设计任务书1、带式运输机工作原理带式运输机传动示意图如下图所示。

2、已知条件1)工作条件:两班制,连续单向运转,载荷较平稳,室内工作,有粉尘,环境最高温度35℃;2)使用折旧期:八年;3)检修间隔期:四年一次大修,两年一次中修,半年一次小修;4)动力来源:电力,三相交流,电压380/220V;5)运输带速度允许误差:±5%;6)制造条件及生产批量:一般机械厂制造,小批量生产。

3、设计数据运输带工作拉力:F=2600N ;运输带工作速度:V=1.1m/s ;卷筒直径:D=220mm。

注:运输带与卷筒直接按机卷筒轴承的摩擦影响已经在F中考虑。

4、传动方案带—单级直齿圆柱齿轮减速器,传动方案简图如图1-2所示。

5、设计内容1)按照给定的数据和传动方案设计减速器装置;2)完成减速器装配图一张(A1);3)零件工作图两张;4)编写设计计算说明书1份。

一、选择电动机电动机是常用的原动机,是已经系列化的标准产品,具有结构简单、工作可靠、控制简便和维护容易等优点。

在接卸设计课程设计中,主要根据需电动机的输出功率,工作条件及经济性要求,从产品目录中选择其类型和结构形式、容量(功率)和转速、确定具体型号。

(1)选择电动机的类型:按工作要求和条件选取Y系列一般用途的全封闭自扇冷式笼型三相异步电动机。

(2)选择电动机的容量:工作机所需的功率:P w =F*V/1000=2600x1.1 / 1000=2.86(kW)由电动机至工作机之间的总效率(包括工作机的效率)为η= η1*η2*η2*η3*η4*η5机械传动及摩擦副的效率概略表得各部分效率为:齿轮传动效率η1 = 0.96;滚动轴承传动效率(一对)η2= 0.99、;闭式圆柱齿轮传动效率η3=0.97;弹性联轴器传动效率η4=0.99;卷筒轴的轴承及卷筒的传动效率η5=0.96.η= 0.96×0.99×0.99×0.97×0.99×0.96 =0.867所以:P d= P w/η= 2.86 / 0.867 kW = 3.30 kW使P m = (1∽1.3)P d = 3.30 ~ 4.29kW根据P m选取电动机的额定功率P w,因为载荷较平稳,由查表选得Y系列电动机的额定功率P d = 4 kW △P%=(P m - P d)/ P m =(4.29-4)/ 4.29 = 6.7% 可以选用该功率的电动机(3)确定电动机的转速:运输机卷筒轴的工作转速为:n w = 60×1000V/πD = 60×1000×1.1/(3.14×220) =95.54r/min按推荐传动比范围,取V带传动传动比i1= 2 ∽4,单级直齿圆柱齿轮传动比i2 = 3 ∽5,则合理总传动比的范围为: i= 6 ∽20故电动机的转速范围为:n d= i*n w= (6∽20)×95.54r/min = 573.24 ∽1910.8 r/min符合这一范围的同步转速有750 r/min 、1000 r/min,1500 r/min.再根据计算出的容量,挑选出电机做比较选择,取1000 r/min的电动机。

设计带式输送机传动装置机械设计说明书

设计带式输送机传动装置机械设计说明书

机械设计基础课程设计计算说明书设计题目带式运输机上的单级圆柱齿轮减速器系机电工程系专业数控技术班级设计者指导教师2011年 07 月 12 日目录一、设计任务书 0二、带式运输送机传动装置设计 (1)三、普通V带传动的设计 (5)四、直齿圆柱齿轮传动设计 (6)五、低速轴系的结构设计和校核 (9)六、高速轴结构设计 (16)七、低速轴轴承的选择计算 (18)八、低速轴键的设计 (19)九、联轴器的设计 (20)十、润滑和密封 (20)十一﹑设计小结 (21)参考资料 (22)一.设计任务书一.设计题目设计带式输送机传动装置。

二.工作条件及设计要求1.设计用于带式运输机的传动装置。

2.该机室内工作,连续单向运转,载荷较平稳,空载启动。

运输带速允许误差为 5%。

3.在中小型机械厂小批量生产,两班制工作。

要求试用期为十年,大修期为3年。

三.原始数据第三组选用原始数据:运输带工作拉力F=1250N 运输带工作速度V=s 卷筒直径D=240mm四.设计任务1.完成传动装置的结构设计。

2.完成减速器装备草图一张(A1)。

3.完成设计说明书一份。

二.带式运输送机传动装置设计电动机的选择1.电动机类型的选择:按已知的工作要求和条件,选用Y型全封闭笼型三相异步电动机2.电动机功率的选择:P=Fv/1000=1250*1000=E3.确定电动机的转速:卷筒工作的转速Wn=60*1000/(π*D)=60*1000**240)=min4.初步估算传动比:总i =电动机n /卷筒n =d n /w n =43.1191000或43.1191500=~ 因为根据带式运输机的工作要求可知,电动机选1000r/min 或1500r/min 的比较合适。

5.分析传动比,并确定传动方案(1)机器一般是由原动机,传动装置和工作装置组成。

传动装置是用来传递原动机的运动和动力,变换其运动形式以满足工作装置的需要,是机器的重要组成部分。

带式运输机传动装置的设计-《机械设计》课程设计说明书

带式运输机传动装置的设计-《机械设计》课程设计说明书

机械设计课程设计说明书课题名称:带式运输机传动装置的设计专业班级:机械电子工程03班学生学号: 1203120333 学生姓名:学生成绩:指导教师:秦襄培课题工作时间:2014年12月22日至 2015年1月 9日武汉工程大学教务处目录一、设计任务书——铸造车间型砂输送机的传动装置 (3)二、传动装置总体设计 (5)1. 系统总体方案的确定 (5)2. 电动机的选择(Y系列三相交流异步电动机) (7)3. 传动装置的总传动比及其分配 (9)三、传动零件的设计计算 (11)1. V带传动的设计计算 (11)2. 齿轮传动的设计计算 (15)四、轴的设计计算 (23)1. 选择轴的材料及热处理 (23)2. 初估轴径 (23)3. 轴的结构设计 (24)4. 减速器零件的位置尺寸 (28)五、润滑方式润滑油牌号及密封装置的选择 (29)六、箱体及其附件的结构设计 (30)七、减速器的箱体的结构尺寸 (33)附:参考文献 (35)一、设计任务书——铸造车间型砂输送机的传动装置1.设计题目:设计带式运输机的传动装置2.带式运输机的工作原理3.原始数据输送带速度学号鼓轮直径D(mm)输出转矩T(N.m)v(m/s)12031203333500.853804.工作条件(已知条件)1)工作环境:一般条件,通风良好;2)载荷特性:连续工作、近于平稳、单向运转;3)使用期限:8年,大修期3年,每日两班制工作;4)卷筒效率:η=0.96;5)运输带允许速度误差:±5%;6)生产规模:成批生产。

5.设计内容1)设计传动方案;2)设计减速器部件装配图(A1);3)绘制轴、齿轮零件图各一张(高速级从动齿轮、中间轴);4)编写设计计算说明书一份(约7000字)。

二、传动装置总体设计1.系统总体方案的确定1)系统总体方案:电动机→传动系统→执行机构2)初选的三种方案如下:方案一:展开式两级圆柱齿轮方案二:同轴式两级圆柱齿轮方案三:分流式两级圆柱齿轮3)系统方案的总体评价:以上三种方案:方案一中一般采用斜齿轮,低速级也可采用直齿轮。

带式输送机传动装置设计

带式输送机传动装置设计

P
Pd
=w η

3)确定电动机转速
3)确定 电动 机转 速
按表 13—2 推荐的传动比合理范围,单级圆柱齿轮减速器传动比 i∑' = 6 ~ 20
而工作机卷筒轴的转速为
nw
=
v πD
所以电动机转速的可选范围为
nd = i∑' nw = (6 ~ 20) × 87.58 r min = (525.48 ~ 1751.6) r min
14
8. 键联接设计
28
9. 箱体结构的设计
29
10.润滑密封设计
31
11.联轴器设计
32
四 设计小结
32
五 参考资料
32
-1-
111
一 课程设计任务书
课程设计题目:
设计带式运输机传动装置(简图如下)
1——V 带传动 2——运输带 3——单级斜齿圆柱齿轮减速器
4——联轴器 5——电动机 6——卷筒
动机型号为 Y100L2-4。其主要性能如下表:
电动机型号 额定功率/kw 满载转速/(r/min)
启动转矩 额定转矩
最大转矩 额定转矩
选定电动机型 号 Y100L2-4
Y100L2-4
3
1430
电动机的主要安装尺寸和外形如下表:
2.2
2.3
中心
外型尺寸 底 脚 安 装 地 脚 螺 轴 伸 装 键 部 位
-3-
2、电动机的选择
2、电动 机的选 择 1)选择 电动机 的类型 2)选择 电动机 的容量
1)选择电动机的类型
按工作要求和工作条件选用 Y 系列三相笼型异步电动机,全封闭自扇冷式结构,额
定电压 380V。

带式运输机传动装置设计说明书

带式运输机传动装置设计说明书

带式运输机传动装置设计说明书1. 引言本文档为带式运输机的传动装置设计说明书,旨在详细描述带式运输机传动装置的设计原理、参数选取和计算等内容。

带式运输机是一种用于物料输送的机械设备,传动装置作为核心组成部分之一,对其性能和可靠性有着重要影响。

通过本文档的阅读和理解,读者将了解到带式运输机传动装置的设计过程,以及对应的设计指导。

2. 设计原理带式运输机传动装置的设计原理基于传动轴和传动带的运动方式。

传动装置通过驱动轴传递动力给传动带,从而实现物料的输送。

设计原理包括以下几个方面的考虑:1.动力传递方式:传动装置可以采用电动机、液压马达或者内燃机等形式作为动力源,其中电动机是最常见的选择;2.传动装置的布局:传动装置的布局应考虑到整体设计的紧凑性和结构的稳定性,以保证传动装置的正常运行;3.传动装置的传动方式:传动装置可以采用齿轮传动、链条传动或者带传动等方式,根据实际需要选择合适的传动方式。

3. 参数选取和计算带式运输机传动装置的参数选取和计算是设计过程中的重要环节。

以下是几个关键参数的选取和计算方法的简要说明:3.1 动力计算动力计算是确定传动装置所需动力的重要步骤。

根据实际物料输送需求和传动装置的效率,可以计算出传动装置所需的最小动力。

动力计算公式如下:$$P = \\frac{Q \\cdot H}{η \\cdot 1000}$$其中,P为传动装置所需动力(单位:千瓦),Q为物料输送量(单位:吨/小时),H为提升高度(单位:米),η为传动装置效率(取值范围为0到1之间)。

3.2 速度计算速度计算是确定传动装置所需转速的重要步骤。

根据物料输送的要求和传动装置的传动比例,可以计算出传动装置所需的转速。

速度计算公式如下:$$N = \\frac{V}{\\pi \\cdot D}$$其中,N为传动装置所需转速(单位:转/分钟),V为物料输送速度(单位:米/秒),D为传动装置圆盘的直径(单位:米)。

带式运输机传动装置的设计

带式运输机传动装置的设计

带式运输机传动装置的设计1. 引言带式运输机是一种常用的物料搬运设备,广泛应用于矿山、水泥厂、建筑工地等工业领域。

而传动装置则是带式运输机的核心组成部分,对其运行稳定性和效率起着重要的作用。

本文将详细介绍带式运输机传动装置的设计原理、主要组成部分以及设计方法。

2. 传动装置的设计原理传动装置的设计原理主要涉及到动力传递和力的平衡。

带式运输机传动装置通常由电动机、减速器、轴承以及传动带等组成。

其中电动机负责提供动力,减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。

轴承则起到支撑和定位的作用,保证传动装置的稳定运行。

而传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。

3. 主要组成部分介绍3.1 电动机电动机是带式运输机传动装置的动力源,负责提供驱动力使带式运输机运行起来。

电动机的选型需要根据带式运输机的工作条件和运行要求进行合理选择,通常考虑到功率、转速、工作环境等因素。

3.2 减速器减速器负责将电动机输出的高速旋转转矩转换为带式运输机需要的低速大转矩。

在带式运输机传动装置中,常用的减速器有齿轮减速器、带轮减速器等。

减速器的选型需要根据带式运输机的工作负载和传动比等参数进行匹配。

3.3 轴承轴承起到支撑和定位的作用,保证传动装置的稳定运行。

其中常用的轴承类型有滚动轴承和滑动轴承,选择要根据带式运输机的工作负载、转速和工作环境等因素进行选择,保证轴承寿命和工作效果。

3.4 传动带传动带作为传递动力和物料的媒介,需要具备足够的强度和耐磨性。

常见的传动带材料有橡胶、聚酯纤维、尼龙等,选材要根据带式运输机的工作环境和运行要求进行选择,保证传动带的可靠性和使用寿命。

4. 设计方法带式运输机传动装置的设计方法可以分为以下几个步骤:4.1 确定传动装置的参数根据带式运输机的工作要求,确定传动装置的功率、转速和工作负载等参数。

这些参数直接影响到电动机、减速器和传动带的选型。

4.2 选型电动机和减速器根据传动装置的参数和工作要求,选型合适的电动机和减速器。

机械设计课程设计-带式输送机传动装置

机械设计课程设计-带式输送机传动装置

机械设计课程设计计算说明书题目带式输送机传动装置指导教师院系机电学院班级学号姓名完成时间目录一、设计任务 (3)二、传动方案拟定 (4)三、电动机的选择 (5)四、计算总传动比及分配各级的传动比 (6)五、运动参数及动力参数计算 (7)六、传动零件的设计计算 (8)七、轴的设计计算 (16)八、滚动轴承的选择及校核计算 (26)九、键联接的选择及计算 (28)十、联轴器的选择 (29)十一、润滑与密封 (29)十二、参考文献 (30)十三、附录(零件及装配图) (30)一、设计任务1、带式输送机的原始数据2、工作条件与技术要求 1)输送带速度允许误差为:±5%; 2)输送效率r:0.96;3)工作情况:两班制,连续单向运转,载荷较平稳; 4)工作年限:8年;5)工作环境:室内,灰尘较大,环境最高温度35℃; 6)动力来源:电力,三相交流,电压380V ,7)检修年限:四年一大修,两年一中修,半年一小修; 8)制造条件及生产批量:一般机械厂制造,小批量生产。

3、设计任务量: 1) 减速器装配图一张(A0);2) 零件工作图(包括齿轮、轴的A3图纸); 3)设计说明书一份。

、结构特点:)外传动机构为带传动;)减速器为一级齿轮传动。

、结构特点:轮高速级大齿轮的结构草图如上图。

(其他齿轮结构类似,参数如上,结构草略)(四)轴的校核这里以中间轴为例1)轴的力学模型的建立二)计算轴上的作用力 齿轮2:F t 2=Ft 1=dT 112=036.70890002⨯=2541.55N ;,径向载荷F r根据轴的分析,可知:A点总支反力F r1=F RA=4949.000795N. 点总支反力F r2=F RB=4119.456918N。

,轴向载荷F aF F F。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、传动方案拟定------------------------------------2二、电动机的选择------------------------------------2三、计算总传动比及分配各级的传动比------------------4四、运动参数及动力参数计算--------------------------5五、传动零件的设计计算------------------------------5六、轴的设计计算------------------------------------9七、键联接的选择及计算-----------------------------17八、减速器箱箱盖及附件的设计计算-------------------18九、润滑与密封-------------------------------------20十、设计小结---------------------------------------20 十一、参考资料目录---------------------------------21一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。

(2)小批量生产,带式输送机的传动效率为0.96。

(3)原始数据:滚筒圆周力F=2KN;带速V=1.3m/s;滚筒直径D=180mm。

1、电动机2、v带传动3、斜齿圆柱齿轮减速器4、联轴器5、带式运输机二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用 Y系列三相异步电动机。

2、确定电动机的功率:<1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.98×0.99×0.97=0.89(2>电机所需的工作功率:Pd=FV/1000η总=2000×1.3/1000×0.89=2.31KW3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD=60×1000×1.3/π×180=137.93r/min根据[2]表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~8,则合理总传动比i的范围为i=6~32,故电动机转速的可选范围为nd=i×nw=<6~32)×137.93=828~4414r/min符合这一范围的同步转速有960 r/min和1420r/min。

由[2]表8.1查出有三种适用的电动机型号、如下表综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。

方案2适中。

故选择电动机型号Y100l2-4。

4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。

其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2KNm。

三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/137.93=10.32、分配各级传动比(1)取i带=3(2)∵i总=i齿×i带π∴i齿=i总/i带=10.3/3=3.43四、运动参数及动力参数计算1、计算各轴转速<r/min)nI=nm/i带=1420/3=473.33(r/min>nII=nI/i齿=473.33/3.43=137.93(r/min>滚筒nw=nII=473.33/3.43=137.93(r/min>2、计算各轴的功率<KW)PI=Pd×η带=2.31×0.96=2.2176KWPII=PI×η轴承×η齿轮=2.2176×0.99×0.98=2.15KW3、计算各轴转矩Td=9.55Pd/nm=9550×2.31/1420=15.54N·mTI=9.55p2/n1=9550x2.2176/473.33=44.7N·mTII =9.55p2/n2=9550x2.15/137.93=148.86N·m五、传动零件的设计计算1、皮带轮传动的设计计算(1)选择普通V带截型由[1]表10-8得:=1.2 P=2.31KW=P=1.2×2.31=2.772KW据=2.772KW和=473.33r/min由课本得:选用A型V带(2)确定带轮基准直径,并验算带速由[1]表10-9,取=90mm>=75dd2=dd1(1-ε>=3×90×(1-0.02>=264.6 mm由[1]表10-9,取=265带速V:V=π/60×1000=π×90×1420/60×1000=6.68m/s在5~25m/s范围内,带速合适。

(3)确定带长和中心距初定中心距a0=500mmLd=2a0+π(dd1+dd2>/2+(dd2-dd1>2/4a0=2×500+3.14(90+265>+(265-90>2/4×500=1572.6mm根据[1]10-6选取相近的Ld=1600mm确定中心距a≈a0+(Ld-Ld0>/2=500+(1600-1572.6>/2=536.2mm 符合0.7(dd1+dd2><a<2(dd1+dd2>,故可用。

(4>验算小带轮包角α1=1800-57.30×(dd2-dd1>/a=1800-57.30×(265-90>/536.2=161.30>1200<适用)<5)确定带的根数单根V带传递的额定功率.据dd1和n1,查[1]10-9得 P1=1.4KW i≠1时单根V带的额定功率增量.据带型及i查[1]表10-2得△P=0.17KW PC=2.64 KW P=1.07KW查[1]表10-3,得Kα=0.95;查[1]表10-4得 KL=0.99Z= PC/[(P+△P>KαKL]=2.64/[(1.07+0.17> ×0.95×0.99]=2.26 (取3根>(6>计算轴上压力由[1]表10-5查得q=0.1kg/m,由式<10-20)单根V带的初拉力:F0=500PC/ZV[<2.5/Kα-1]+qV2=500x2.64/[3x6.68(2.5/0.95-1>]+0.10x6.682 =111.9N则作用在轴承的压力FQFQ=2ZF0s in(α1/2>=2×3×111.9sin(163.1/2>=662.4N2、齿轮传动的设计计算<1)选择齿轮材料与热处理及确定需用应力:所设计齿轮传动属于闭式传动,通常齿轮采用软齿面。

选择8级精度制造。

查阅表[1] 表6-8,选用价格便宜便于制造的材料,小齿轮材料为42SiMn 调质,齿面硬度250-280HBS;σHlim1 =720Mpa,σbblim1=530MPa;大齿轮材料也为45钢,正火处理,硬度为215HBS;σHlim2=460MPa,σbblim2=360MPa,取=1,=1.25。

取=188.9,=2.5.[σbb1]=0.7σbblim1/=296.8MPa[σbb2]= 0.7σbblim2/=201.6MPa[σH1]= σHlim1 /=720MPa[σH2]= σHlim2 /=460MPa精度等级:运输机是一般机器,速度不高,故选8级精度。

(2>按齿面接触强度计算取载荷系数K=1.2,齿宽系数φd=1.1,小齿轮上的转矩T1=9.55×106×P1/n1=43060N·mm有分度圆直径,取较小的[σH2]= σHlim2 /=460MPa代入得:=45.20mm,则选择齿轮参数:取齿数=20,则=102.4,取103.验算传动比误差大于2%小于5%,故可用。

初选螺旋角β=15°确定模数m。

由==2.18mm。

查表得=2.5mm计算中心距a=<+)/2=153.75mm,圆整后去系列值a=155mm。

确定分度圆直径:=m Z1=50mm=m Z2=257.5mm计算螺旋角β,由arccosβ=<+)/2a=15.29°在8°~20°的范围,故可取。

<3)计算传动的主要尺寸:实际分度圆=m Z1/cosβ=51.8mm=m Z2 / cosβ=268.2齿宽b=ψd=55mm则取=60mm =55mm(4)校验弯曲强度σbb=≤[σbb]求解参量: Zv1 =20/15.29°=22.60Zv2 = 103/15.29°=115.7当齿轮径向变位系数为0时,取=4.28 ,=3.95则可以得到:σbb1 ==137.25<[σbb1 ]σbb2 ==122.1<[σbb2 ]故弯曲强度足够。

(5)计算齿轮的圆周速度:V==3.84m/s故,选择8级精度是合宜的六、轴的设计计算1、从动轴设计<1)选择轴的材料确定许用应力选轴的材料为45号钢,调质处理。

查[2]表13-1可知:σb=650Mpa,σs=360Mpa查[2]表13-6可知:[σb+1]bb=215Mpa[σ0]bb=102Mpa,[σ-1]bb=60Mpa<2)按扭转强度估算轴的最小直径单级齿轮减速器的低速轴为转轴,输出端与联轴器相接,从结构考虑,输入端的轴径应最小,最小直径为:d≧C查[2]表11-2可得,45钢取C=126~103则d≧C×(2.07/92.44>1/3mm=29.03~35.51mm考虑键槽的影响以及联轴器孔径系列标准,取d=35mm<3)齿轮上作用力的计算齿轮所受的转矩:T=9.55×106P/n=9.55×106×2.07/92.44=213852 N齿轮作用力:圆周力:Ft=2T/d=2×213850/268.2N=1594N径向力:Fr=Fttan200=1594×tan200=580N<4)轴的结构设计并绘制草图1、轴的结构分析要确定轴的结构形状,必须先确定轴上零件的装拆顺序和固定方式,因为不同的装拆顺序和固定方式对应着不同轴的形状,故考虑齿轮从轴的右端装入,齿轮的左端用轴肩定位和固定,右端用套筒固定,因为是单级传动,一般将齿轮安装在箱体中间,轴承安装在箱体的轴承孔中。

相关文档
最新文档