液压系统及液压缸-外文翻译

合集下载

液压油缸部件 中英对照 hydraulic cylinder

液压油缸部件 中英对照  hydraulic cylinder

液压油缸:hydrauli c cylinder / ram缸筒cylinder tube / barrel活塞杆rod导向套gland 缸底 Bottom end活塞piston杆头 Rod head耳环clevis 锻件 casting parts销轴pin 铸件 forging parts防尘圈wiper丁晴橡胶 NBR支撑环back-upring聚氨酯 PU斯特封stepring聚四氟乙烯PTFE格莱圈glydring酚醛夹布 PFO型圈o ring 三元乙丙橡胶EPDMU型圈u ring 环氧树脂EPOXY耐磨环wear ring球面轴承spherialplainbearinggreasenipple节流孔orifice缸径borediameter外径ODOutsideDiameter内径IDInsideDiameter杆径rod diameter行程stroke抗拉强度TensileStrengh 油缸基本英汉对照油脂嘴/黄油嘴伸出长度extendedsize屈服强度YieldStrengh回收长度retracte d size工作压力workingpressurePSI 与Mpa 的换算测试压力testpressurePSI/145=Mpa工作温度working temperat ure内泄漏InternalLeakage1英寸=25.4mm外泄露External Leakage扭紧力矩Tighting Torque液压油Hydraulic Oil一般为ISO VG32/ 46号液压油热处理heat treatmen t调质hardenin g and temperin g感应淬火inductio n hardenin g高频淬火high-frequenc y quenchin g表面硬度surface hardness表面粗糙度surface roughnes s镀铬chrome plating铬层厚度chromepl ate thicknes s中性盐雾试验NSS neutral salt spray testTie rod cylinder Plunge cylinder伺服油缸Servo-cylinder单作用油缸Single acting cylinder双作用油缸Double acting cylinder柱塞缸拉杆油缸。

液压专业英语词汇

液压专业英语词汇

液压专业英语词汇流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics 运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions 连续工况continuous working conditions实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure 进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure 峰值压力peak pressure运行压力operating pressure耐压试验压力proof pressure冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure 充气压力pre-charge pressure吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage 外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate 排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions 回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle 自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase 停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump 泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position 自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder 差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block 板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve 锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve梭阀shuttle valve压力控制阀pressure relief valve 溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve单向节流阀one-way restrictive valve 调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve 蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve 喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage遮盖lap 零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio 相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting 扩口式接头flared fitting快换接头quick release coupling法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir 油箱容量reservoir fluid capacity气囊式蓄能器bladder accumulator空气污染air contamination 固体颗粒污染solid contamination液体污染liquid contamination空气过滤器air filter 油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat 消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure 填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer 复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR聚四氟乙烯polytetrafluoroethene;PTFE优先控制override control压力表pressure gauge 压力传感器electrical pressure transducer压差计differential pressure instrument 液位计liquid level measuring instrument流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit 同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work 管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel 避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density 含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counterSolenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放液压英文资料流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics 气液技术hydropneumatics运行工况operatingconditions额定工况ratedconditions 极限工况limitedconditions瞬态工况instantaneous conditions 稳态工况steady-state conditions许用工况acceptableconditions 连续工况continuousworking conditions实际工况actualconditions 效率 efficiency旋转方向directionof rotation公称压力nominalpressure 工作压力workingpressure进口压力inletpressure出口压力outletpressure 压降 pressure drop;differentialpressure背压 back pressure启动压力breakoutpressure充油压力chargepressure开启压力crackingpressure 峰值压力peakpressure运行压力operatingpressure耐压试验压力proofpressure 冲击压力surgepressure静压力staticpressure系统压力systempressure 控制压力pilotpressure充气压力pre-chargepressure吸入压力suctionpressure 调压偏差overridepressure额定压力ratedpressure耗气量 air consumption 泄漏 leakage内泄漏 internal leakage外泄漏 external leakage 层流 laminar flow紊流 turbulent flow气穴 cavitation流量 flow rate排量 displacement额定流量 rated flow供给流量 supply flow流量系数 flower factor 滞环 hysteresis图形符号graphical symbol 液压气动元件图形符号symbols for hydraulic and pneumatic components 流体逻辑元件图形符号symbols for fluid logic devices 逻辑功能图形符号 symbols for logic functions回路图 circuit diagram 压力-时间图pressure time diagram功能图 function diagram 循环 circle自动循环 automatic cycle工作循环 working cycle循环速度 cycling speed 工步 phase停止工步 dwell phase工作工步 working phase快进工步 rapid advance phase 快退工步rapid return phase频率响应frequency responseHysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressurecontrol)流量(速度)控制回路(speedcontrol)方向控制回路(directionalvalve control)安全回路(securitycontrol)定位回路(positioncontrol)同步回路(synchronisecircuit)顺序动作回路(sequeuntcircuit)液压泵(pump)阀(valve)压力控制阀(pressurevalve)、流量控制阀(flow valve)方向控制阀(directionalvalve)液压辅件(accessory)普通阀(commonvalve)插装阀(cartridge valve)叠加阀(superimposedvalve四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头 union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊空气处理单元air conditioner unit压力控制回路pressurecontrol circuit 安全回路safety circuit差动回路differential circuit调速回路flowcontrol circuit 进口节流回路 meter-incircuit出口节流回路 meter-outcircuit同步回路synchronizing circuit 开式回路opencircuit闭式回路closedcircuit管路布置pipe-work 管卡clamper联轴器drive shaft coupling操作台control console 控制屏control panel避震喉compensator粘度viscosity 运动粘度kinematicviscosity密度density 含水量water content闪点flash point防锈性rust protection 抗腐蚀性anti-corrosive quality便携式颗粒检测仪portableparticle counter Solenoid valve 电磁阀Check valve单向阀Cartridge valve插装阀Sandwich plate valve叠加阀Pilot valve先导阀Pilot operated check valve液控单向阀Sub-plate mount板式安装Manifold block集成块Pressure relief valve压力溢流阀Flow valve 流量阀冷却器cooler加热器heater温度控制器 thermostat消声器silencer双筒过滤器 duplexfilter 过滤器压降filterpressure drop有效过滤面积effectivefiltration area 公称过滤精度 nominalfiltration rating压溃压力 collapsepressure填料密封 packingseal 机械密封 mechanicalseal径向密封 radialseal旋转密封 rotaryseal活塞密封 pistonseal 活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bondedwasher 复合密封件 compositeseal弹性密封件 elastomerseal丁腈橡胶 nitrilebutadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE优先控制 overridecontrol压力表 pressure gauge 压力传感器electricalpressure transducer压差计differential pressure instrument 液位计liquid level measuring instrument流量计flow meter压力开关pressure switch 脉冲发生器 pulse generator液压泵站 power station遮盖lap零遮盖zero lap正遮盖over lap 负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop 分辨率resolution频率响应 frequencyresponse幅值比amplitude ratio相位移phase lag 传递函数transferfunction管路flow line硬管rigid tube软管flexible hose工作管路 workingline回油管路 returnline补液管路replenishing line控制管路 pilot line 泄油管路 drain line放气管路 bleed line接头fitting;connection焊接式接头 welded fitting 扩口式接头 flared fitting快换接头 quick release coupling法兰接头 flange connection 弯头elbow异径接头 reducer fitting流道flow pass油口port闭式油箱 sealed reservoir 油箱容量reservoir fluid capacity气囊式蓄能器bladder accumulator 空气污染 air contamination固体颗粒污染 solid contamination液体污染 liquid contamination 空气过滤器 air filter油雾气lubricator热交换器 heat exchanger分流阀flow divider valve 集流阀 flow-combining valve截止阀shut-off valve球阀global(ball) valve 针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve 噪声等级noise level放大器amplifier模拟放大器analogue amplifier 数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve 四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier 颤振dither阀极性valve polarity流量增益 flow gain对称度symmetry流量极限 flow limit 零位内泄漏null(quiescent) leakage重复性repeat ability复现性reproducibility 漂移drift波动ripple线性度linearity线性区linear region液压锁紧 hydrauliclock 液压卡紧sticking变量泵variable displacement pump泵的控制control ofpump 齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axialpiston pump 法兰安装flangemounting底座安装footmounting液压马达hydraulicmotor 刚度stiffness中位neutral position零位zero position自由位free position缸cylinder 有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke 缓冲cushioning工作行程working stroke负载压力induced pressure输出力force 实际输出力 actual force单作用缸 single-acting cylinder双作用缸 double-acting cylinder 差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate 油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve 滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置 valve element position 单向阀check valve液控单向阀pilot-controlled check valve梭阀shuttle valve 压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve 减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve 直动式directly operated type先导式pilot-operated type 机械控制式mechanically controlled type手动式manually operated type 液控式hydraulic controlled type流量控制阀flow control valve 固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀 one-way restrictive valve调速阀speed regulator valve。

DOC-机械专业毕业设计外文翻译--什么是液压-液压系统

DOC-机械专业毕业设计外文翻译--什么是液压-液压系统

DOC-机械专业毕业设计外文翻译--什么是液压-液压系统What is Hydraulic?A complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, no parts and hydraulic oil. The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump. Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement. Control components (that is, the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid, flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve , one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be dividedinto the hydraulic valve control switch valve, control valve and set thevalue of the ratio control valve. Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oildollars. Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.Hydraulic principleIt consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called "hydraulic press"; the said oil-filled "hydraulic machine." Each of the two liquida sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, pistontop will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P = F1/SI, Can be the same size in all directions to the transmission of liquid. "By the large piston is also equivalent to the inevitable pressure P. If the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2 = PxS2Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of asmaller force, the piston will be in great force, for which thehydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.History of the development of hydraulicAnd air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 Joseph (Joseph Braman ,1749-1814), in London water as a medium to form hydraulic press used in industry, the birth of theworld's first hydraulic press. Media work in 1905 will be replaced byoil-water and further improved.World War I (1914-1918) after the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F. Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century Constantine (G • Constantimsco) fluctuations of the ener gy carried out by passing theoretical and practical research; in 1910 on the hydraulic transmission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan thanEurope and the United States and other countries for nearly 20 years later. Before and after in1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.Hydraulic transmission There are many outstanding advantages, it is widely used, such as general workers. Plastic processing industry, machinery, pressure machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment, such as roller adjustment device; civil waterprojects with flood control the dam gates and devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship deck crane (winch), the bow doors, bulkhead valves, such as the sternthruster ; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti-rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.什么是液压,一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、无件和液压油。

机械外文翻译文献翻译液压系统1

机械外文翻译文献翻译液压系统1

外文原文:Theory of fluid propertiesWe will concentrate mainly on three fluid properties in this chapter:• The density which leads to mass and hence to hydraulic inertia effects.• The viscosity which leads to the hydraulic friction effects.• The compressi bility and thus the bulk modulus which leads to the hydraulic system stiffness. Notice that the compressibility effect can be modified by air release, cavitation phenomena and by expansion of a pipe, hose or chamber containing the hydraulic fluid.1 Density and compressibility coefficientThe density is the mass of a substance per unit volume:Density has dimensions of [M/L3] and is expressed in kilograms per cubic meter [kg/m3]. As mentioned previously the density is a function of the pressure and the temperature:This function can be approximated by the first three terms of a Taylor series:This can also be expressed as:WithAndThis equation is the linearized state equation for a liquid. Using the definition of thedensity, the two coefficients α and B can also be expressed as:B is known as the isothermal bulk modulus or for simplicity the bulk modulus and α is known as the cubical expansion coefficient. Since fluid density varies with the applied pressure, this implies that a given mass of fluid submitted to a pressure change changes its volume. This phenomenon leads to the definition of the compressibility coefficient β:where β is expressed in units Pa 1 (or m2/N). Considering the relation for a closed hydraulic circuit the mass is constant, and hence:it follows thatUsing the definition of the compressibility coefficient β we obtain:More usually we use the bulk modulus B also known as the volumetric elasticity modulus:The relation between ρ and B implies mass conservation. This relation must be RIGOROUSLY RESPECTED in the calculations. In the modeling and simulation context of fluid energy systems, disregarding the relation between ρ and B leads to abnormal evolutions of pressure in the closed circuit submitted to compression and expansion cycles. This phenomenon is strongly accentuated if aeration occurs in the circuit (when dissolved air in the fluid reappears in the form of bubbles). We shall approach this point by examining the phenomena of aeration and cavitation. The aircan also have adverse consequences on a fluid compressibility. In liquid air can be present in two forms: entrapped and dissolved.Entrapped airWhen the return pipe is not submersed in the tank the liquid jet can entrain some air bubbles in the tank. Another phenomenon that affects the quantity of air in liquid is the leakage.Figure 1: Liquid leakageFigure 2: Air is entrainedThis air stays in the liquid as cavities and can modify the fluid compressibility. In this context we talk about effective bulk modulus. Figure 3 shows the bulk modulus of a diesel fuel at 40 °C with 0, 0.01, 0.1, 1, 10% air. The plot is obtained using the system shown. The model of the diesel fuel properties is based on accurate ex-perimental measurements and are designed for use with injection system which are very fast acting. For this reason air is assumed to be entrained rather than dissolved.Figure 3Dissolved airAir can also be dissolved in a liquid. A certain amount of air molecule can be part of the liquid. In this case the dissolved air does not significantly change the fluid properties.2 Air release and cavitationAir can be dissolved or entrained in liquids and it is possible for air to change from one of these two forms to the other depending on the conditions to which the fluid is subjected.Suppose the fluid is in equilibrium with a certain percentage of dissolved gas (usually air: nitrogen and oxygen). Lowering the pressure above a critical value called the saturation pressure induces aeration. This is the process where the dissolved gas forms air bubbles in the liquid until all the dissolved gases or air are free.The exact point where all the dissolved gas has come out of solution is difficult to pin-point because it depends on the chemical composition and behavior of the gas. This is a non-symmetrical dynamic process: the growing process does not have the same dynamics as when air bubbles disappear. In consequence the total amount of bubbles created when the pressure drops may or may not be redissolved in the liquid when it rises again.If the pressure is dropped further and above another critical value called the vapor pres s ure, the fluid itself starts to vaporize. It corresponds to a liquid phase change. At some point only fluid vapor and gas exist. In liquid systems the term cavitation usually refers to the formation and collapse of cavities in the liquid even if cavities contain air or liquid vapor.To summarize with a sketch what we have introduced see above:Figure 4: Air release and cavitationThe development of a cavity is now recognized as being associated with a nucleation center such as microscopic gas particles, wear or wall asperities. When the liquid is subjected to a tensile stress, cavities do not form as a result of liquid rupture but are caused by the rapid growth of these nuclei.To understand this, think of beer (or champagne if you prefer) in a bottle, when it is closed you see no air bubbles and the liquid does not look fizzy. The pressure in the bottle is above the saturation pressure of the gas in the liquid. When you open the bottle suddenly bubbles appear and so the dissolved gas (molecules of gas held in the liquid) starts to appear as gas.In fact the liquid is gas saturated and the atmospheric pressure is less than the saturation pressure of the liquid. This phenomenon is clearly not cavitation but air release (aeration). Considering nuclei effects, bubbles form only at particular places in your glass: around the glass (due to small asperities) and round any particles present in the liquid. Theoretically, if your liquid was perfectly pure and the wall of the system perfectly regular, air release or cavitation would occur with great difficulty! The key point about cavitation is that it is a phase change: the liquid changes to vapor.A comparison can be made between cavitation and boiling. If we look at the phasediagram below:Figure 5: Cavitation and boilingBoiling is a phase change at constant pressure and variable temperature and cavitation is a phase change at constant temperature and variable pressure.In any system air release starts first and if the pressure decreases further, cavitation may occur. This means that, sometimes, people talk about cavitation when the real phenomenon is air release. Both phenomena can lead to destruction of the material or component.In both cases it is entrained gas that causes the troubles. When cavities encounter high pressure in the downstream circuit, these bubbles or cavities can be unstable and can collapse implosively. The pressure developed at collapse can be large enough to cause severe mechanical damage in the containing vessel. It is well-known that hydraulic pumps and pipework can be badly damaged by cavitaton and air release.In all classical hydraulic systems air release and cavitation must be avoided to prevent material destruction but sometimes it is required like for injection systems to prepare the spray formation.3 ViscosityViscosity is a measure of the resistance of the fluid to flow. This characteristic has both positive and negative effects on fluid power systems. A low viscosity leads to oil leaks in the dead zone formed between the mechanical parts in movement, and a high viscosity will lead to loss of pressure in hydraulic ducts.Viscosity is a characteristic of liquids and gases and is manifested in motion throughinternal damping. Viscosity results from an exchange of momentum by molecular diffusion between two layers of fluid with different velocities. In this sense, the viscosity is a fluid property and not a flow property.Figure 6: ViscosityFigure 6 shows the relation between shearing constraint and difference of flow velocity between two layers .The definition of viscosity was first given by Newton. Between two layers of distance dy, the exerted force between these two layers is given by:where U(y) is the velocity depending on the radial position y and dU/dy the velocity gradient. This proportionality expresses the notion of Newtonian fluid and allows the introduction of μ defined as the dynamic viscosity or the absolute viscosity.The dimension of μ is [ML1-T 1-] and the SI unit is kg/m/s or Pa s. The older unit is the Poise, P, which is 0.1 kg/m/s. However, this is very small and hence the milli Poise, mP, is the common unit which is 10-4 kg/m/s.The dynamic viscosity is the constant of proportionality between a stress and the intensity of shearing between two neighboring layers:However the absolute viscosity is not very often used in fundamental equations. For example the dynamics of the elementary volume between the two layers is expressedas:and thus using the shear stress calculation:In other formulas (e.g. Navier Stokes) the ratio between the absolute viscosity and the density occurs so often that a new parameter called the kinematic viscosity ν is introduced .of dimension [L2T 1-] and so the SI unit is the m2/s. The older unit of kinematic viscosity is the Stoke, St, which is 104-m2/s. However, even this is a very small unit and hence the centistoke cSt is the common unit with 1 cSt = 106-m2/s. This parameter is easily measured with viscometers.Note that the viscosity varies significantly with the fluid temperature.Figure 7: Viscosity against temperatureNormally in absence of air release and cavitation the variation with pressure is not great unless the pressure is very extreme.Figure 8: Variation with pressureViscosity influence on the flowAnother important aspect of the viscosity is its influence on the flow conditions of the fluid. We can distinguish two types of flow conditions:• Laminar flow for which the flow lines are parallel and shearing forces create a pressure drop.• Turbulent flow for which the fluid particles have a disordered, random movement leading to a loss of pressure.These two conditions can be distinguished using the Reynolds number which is defined as follows:WithU: average fluid velocityd: diameter of the duct (hydraulic diameter for others geometries)ρ: densityμ: dynamic viscosityν: kinematic viscosityThe transition between laminar to turbulent flow occurs at the critical Reynolds number. This is not well defined, there exists always a transition region. In a hydraulic line, the critical Reynolds number is generally between 1500 to 2000. For uneven geometries (thin-walled orifices), the critical Reynolds number can be lower than 100. For non-circular cross sections, the hydraulic diameter can be used to determine the Reynolds number. Hydraulic diameter is defined as follows:We now give one example:• Circular orifice of diameter:Flow through orificesOrifices (also called restrictions) can be fixed or variable and occur in huge numbers in fluid systems. Not surprisingly in Engineering courses a mathematical description is presented. This is usually based on Bernoulli’s equation and leads to the formwhere Cq is the flow coefficient. This is variously described as typically 0.7 or varying with orifice geometry and Reynolds number.The second alternative is obviously more correct. If we do take a constant value, we are forced to have the gradient of Q against infinity at the origin! This cannot be and if you try to implement it is a numerical disaster! Clearly the flow is laminar for sufficiently small pressure drops which means that Cq is certainly not constant. One solution is to perform detailed e xperiments and compute Cq against Reynold’s number. In the context of the orifice (not necessarily circular) the Reynold’s number iswhere U is a mean velocity and dh the hydraulic diameter. If we take U=Q/A, we end up with the form Cq =f(Q) and ultimately withIt is possible to work with an implicit relationship like this but we would prefer an explicit formula.This is provided by introducing another dimensionless number known as the flow number and denoted by λ. This is defined asFrom a modelin g point of view λ contains quantities we know. Using λ we haveand provided we have,we have an explicit relationship which is easy to evaluate. There are no more problems to obtain measurements forthan forand so the flow number form has many advantages.References :[1] McCloy D, Discharge Characteristics of Servo Valve Orifices, 1968 Fluid International Conference.[2] R.C. Binder, “Fluid Mechanics”. 3rd Edition, 3rd Printing. Prentice-Hall, Inc., Englewood Cliffs,NJ. 1956.译文:液压油理论我们将在本章主要讨论液压油的三个特性:•密度(使油液具有质量和液感效应);•粘性(使油液具有液阻效应);•可压缩性和体积弹性模量(使油液具有容性效应),值得提醒的是容性效应会受油液中析出的空气、气穴现象和装有油液的的管道、软管或油腔的影响。

液压系统外文文献翻译中英文

液压系统外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文Hydraulic systemW Arnold1 IntroductionThe hydraulic station is called a hydraulic pump station and is an independent hydraulic device. It is step by step to supply oil. And control the direction of hydraulic oil flow, pressure and flow, suitable for the host and hydraulic equipment can be separated on the various hydraulic machinery.After the purchase, the user only needs to connect the hydraulic station and the actuator (hydraulic or oil motor) on the mainframe with different tubings. The hydraulic machine can realize various specified actions and working cycles.The hydraulic station is a combination of manifolds, pump units or valve assemblies, electrical boxes, and tank electrical boxes. Each part function is:The pump unit is equipped with a motor and an oil pump, which is the power source of the hydraulic station and can convert mechanical energy into hydraulic oil pressure energy.V alve combination - its plate valve is mounted on the vertical plate, and the rear plate is connected with the same function as the manifold.Oil manifolds - assembled from hydraulic valves and channel bodies. It regulates hydraulic oil pressure, direction and flow.Box--a semi-closed container for plate welding. It is also equipped with an oil screen, an air filter, etc., which is used for cooling and filtering of oil and oil.Electrical box - divided into two types: one is to set the external lead terminal board; one is equipped with a full set of control appliances.The working principle of the hydraulic station: The motor drives the oil pump to rotate, then the pump sucks oil from the oil tank and supplies oil, converts the mechanical energy into hydraulic pressure energy, and the hydraulic oil passes through the manifold (or valve assembly) to adjust the direction, pressure and flow and then passes through the external tube. The way to the hydraulic cylinder or oil motor in the hydraulic machinery, so as to control the direction of the hydraulic motor, the strength of the speed and speed, to promote all kinds of hydraulic machinery to do work.(1) Development history of hydraulic pressureThe development history of hydraulics (including hydraulic power, the same below), pneumatics, and seals industry in China can be roughly divided into three stages, namely: the starting stage in the early 1950s to the early 60s; and the professional in the 60s and 70s. The growth stage of the production system; the 80-90's is a stage of rapid development. Among them, the hydraulic industry began in the early 1950s with thedevelopment of hydraulic machines such as Grinding Machines, broaching machines, and profiling lathes, which were produced by the machine tool industry. The hydraulic components were produced by the hydraulic workshop in the machine tool factory, and were produced for self use. After entering the 1960s, the application of hydraulic technology was gradually promoted from the machine tool to the agricultural machinery and engineering machinery. The original hydraulic workshop attached to the main engine plant was independent and became a professional manufacturer of hydraulic components. In the late 1960s and early 1970s, with the continuous development of mechanization of production, particularly in the provision of highly efficient and automated equipment for the second automobile manufacturing plant, the hydraulic component manufacturing industry witnessed rapid development. The batch of small and medium-sized enterprises also began to become specialized manufacturers of hydraulic parts. In 1968, the annual output of hydraulic components in China was close to 200,000 pieces. In 1973, in the fields of machine tools, agricultural machinery, construction machinery and other industries, the professional factory for the production of hydraulic parts has grown to over 100, and its annual output exceeds 1 million pieces. Such an independent hydraulic component manufacturing industry has taken shape. At this time, the hydraulic product has evolved from the original imitation Su product intoa combination of imported technology and self-designed products. The pressure has been developed towards medium and high pressures, and electro-hydraulic servo valves and systems have been developed. The application of hydraulics has been further expanded. The pneumatic industry started a few years later than hydraulics, and it was only in 1967 that it began to establish a professional pneumatic components factory. Pneumatic components began to be manufactured and sold as commodities. Its sealing industry including rubber seals, flexible graphite seals, and mechanical seals started from the production of common O-rings, oil seals, and other extruded rubber seals and asbestos seal products in the early 1950s. In the early 1960s, it began to develop and produce flexible products. Graphite seals and mechanical seals and other products. In the 1970s, a batch of batches of professional production plants began to be established one after another in the systems of the former Ministry of Combustion, the Ministry of Agriculture, and the Ministry of Agricultural Machinery, formally forming the industry, which laid the foundation for the development of the seal industry.In the 1980s, under the guidance of the national policy of reform and opening up, with the continuous development of the machinery industry, the contradiction between the basic components lags behind the host computer has become increasingly prominent and caused the attention of all relevant departments. To this end, the former Ministry of Machinesestablished the General Infrastructure Industry Bureau in 1982, and unified the original pneumatic, hydraulic, and seal specialties that were scattered in the industries of machine tools, agricultural machinery, and construction machinery, etc. The management of a piece of office, so that the industry in the planning, investment, the introduction of technology and scientific research and development and other aspects of the basic parts of the bureau's guidance and support. This has entered a period of rapid development, it has introduced more than 60 foreign advanced technology, of which more than 40 hydraulic, pneumatic 7, after digestion and absorption and technological transformation, are now mass production, and has become the industry's leading products . In recent years, the industry has intensified its technological transformation. From 1991 to 1998, the total investment of national, local, and corporate self-raised funds totaled about 2 billion yuan, of which more than 1.6 billion were hydraulic. After continuous technological transformation and technological breakthroughs, the technical level of a group of major enterprises has been further improved, and technological equipment has also been greatly improved, laying a good foundation for forming a high starting point, specialization, and mass production. In recent years, under the guidance of the principle of common development of multiple ownership systems in the country, various small and medium-sized enterprises with different ownership have rapidly emerged and haveshown great vitality. With the further opening up of the country, foreign-funded enterprises have developed rapidly, which plays an important role in raising industry standards and expanding exports. So far China has established joint ventures with famous manufacturers in the United States, Germany, Japan and other countries or directly established piston pumps/motors, planetary speed reducers, hydraulic control valves, steering gears, hydraulic systems, hydrostatic transmissions, and hydraulic components. The company has more than 50 manufacturing enterprises such as castings, pneumatic control valves, cylinders, gas processing triplets, rubber seals, and mechanical seals, and has attracted more than 200 million U.S. dollars in foreign capital.(2) Current statusBasic profileAfter more than 40 years of hard work, China's hydraulics, pneumatics and seals industry has formed a complete industrial system with a certain level of production capacity and technical level. According to the statistics of the third n ational industrial census in 1995, China’s state-owned, privately-owned, cooperative, village-run, individual, and “funded enterprises” have annual sales income of more than 1 million yuan in hydraulic, pneumatic, and seal industrial townships and above. There are a total of more than 1,300 companies, including about 700 hydraulics, and about 300 pneumatic and sealing parts. According to thestatistics of the international industry in 1996, the total output value of the hydraulic industry in China was about 2.448 billion yuan, accounting for the 6th in the world; the total output value of the pneumatic industry was about 419 million yuan, accounting for the world’s10 people.2. Current supply and demand profileWith the introduction of technology, independent development and technological transformation, the technical level of the first batch of high-pressure plunger pumps, vane pumps, gear pumps, general hydraulic valves, oil cylinders, oil-free pneumatic components and various types of seals has become remarkable. Improve, and can be stable mass production, provide guarantees for all types of host to improve product quality. In addition, certain achievements have also been made in the aspects of CAD, pollution control, and proportional servo technology for hydraulic pneumatic components and systems, and have been used for production. So far, the hydraulic, pneumatic and seal products have a total of about 3,000 varieties and more than 23,000 specifications. Among them, there are about 1,200 types of hydraulic pressure, more than 10,000 specifications (including 60 types of hydrodynamic products, 500 specifications); about 1350 types of pneumatic, more than 8,000 specifications; there are also 350 types of rubber seals, more than 5000 The specifications are now basically able to adapt to the general needs ofvarious types of mainframe products. The matching rate for major equipment sets can reach more than 60%, and a small amount of exports has started.In 1998, the domestic production of hydraulic components was 4.8 million pieces, with sales of about 2.8 billion yuan (of which mechanical systems accounted for 70%); output of pneumatic components was 3.6 million pieces, and sales were about 550 million yuan (including mechanical systems accounting for about 60%) The production of seals is about 800 million pieces, and the sales volume is about 1 billion yuan (including about 50% of mechanical systems). According to the statistics of the annual report of the China Hydraulic and Pneumatic Sealing Industry Association in 1998, the production and sales rate of hydraulic products was 97.5% (101% of hydraulic power), 95.9% of air pressure, and 98.7% of seal. This fully reflects the basic convergence of production and sales.Although China's hydraulic, pneumatic and sealing industries have made great progress, there are still many gaps compared with the development needs of the mainframe and the world's advanced level, which are mainly reflected in the variety, performance and reliability of products. . Take hydraulic products as an example, the product varieties are only 1/3 of the foreign country, and the life expectancy is 1/2 of that of foreign countries. In order to meet the needs of key hosts, imported hosts, and majortechnical equipment, China has a large number of imported hydraulic, pneumatic, and sealing products every year. According to customs statistics and relevant data analysis, in 1998, the import volume of hydraulic, pneumatic and seal products was about 200 million U.S. dollars, of which the hydraulic pressure was about 140 million U.S. dollars, the pneumatics were 30 million U.S. dollars, and the seal was about 0.3 billion U.S. dollars. The year is slightly lower. In terms of amount, the current domestic market share of imported products is about 30%. In 1998, the total demand for hydraulic parts in the domestic market was about 6 million pieces, and the total sales volume was 4 billion yuan; the total demand for pneumatic parts was about 5 million pieces, and the total sales volume was over 700 million yuan; the total demand for seals was about 1.1 billion yuan. Pieces, total sales of about 1.3 billion yuan. (3) Future developments1. The main factors affecting development(1) The company's product development capability is not strong, and the level and speed of technology development can not fully meet the current needs for advanced mainframe products, major technical equipment and imported equipment and maintenance;(2) Many companies have lagged behind in manufacturing process, equipment level and management level, and their sense of quality is not strong, resulting in low level of product performance, unstable quality,poor reliability, and insufficiency of service, and lack of user satisfaction. And trusted branded products;(3) The degree of professional specialization in the industry is low, the power is scattered, the duplication of the low level is serious, the product convergence between the region and the enterprise leads to blind competition, and the prices are reduced each other, thus the efficiency of the enterprise is reduced, the funds are lacking, and the turnover is difficult. Insufficient investment in development and technological transformation has severely restricted the overall level of the industry and its competitive strength.(4) When the degree of internationalization of the domestic market is increasing, foreign companies have gradually entered the Chinese market to participate in competition, coupled with the rise of domestic private, cooperative, foreign-funded, and individual enterprises, resulting in increasing impact on state-owned enterprises. .2. Development trendWith the continuous deepening of the socialist market economy, the relationship between supply and demand in the hydraulic, pneumatic and sealed products has undergone major changes. The seller market characterized by “shortage” has basically become a buyer’s market characterized by “structured surplus”. Replaced by. From the perspective of overall capacity, it is already in a trend of oversupply, and in particular,general low-grade hydraulic, pneumatic and seals are generally oversupply; and like high-tech products with high technological content and high value and high value-added products that are urgently needed by the host, Can not meet the needs of the market, can only rely on imports. After China's entry into the WTO, its impact may be greater. Therefore, during the “10th Five-Y ear Plan” period, the growth of the industry’s output value must not only rely on the growth of quantity. Instead, it should focus on the structural contradiction of the industry and intensify efforts to adjust the industrial structure and product structure. It should be based on the improvement of quality. Product technology upgrades in order to adapt to and stimulate market demand, and seek greater development.2. Hydraulic application on power slide(1) Introduction of Power Sliding TableUsing the binding force curve diagram and the state space analysis method to analyze and study the sliding effect and the smoothness of the sliding table of the combined machine tool, the dynamics of the hydraulic drive system of the sliding table—the self-regulating back pressure regulating system are established. mathematical model. Through the digital simulation system of the computer, the causes and main influencing factors of the slide impact and the motion instability are analyzed. What kind of conclusions can be drawn from those, if we canreasonably design the structural dimensions of hydraulic cylinders and self-regulating back pressure regulators ——The symbols used in the text are as follows:s 1 - flow source, that is, the flow rate of the governor valve outlet;S el —— sliding friction of the sliding table;R - the equivalent viscous friction coefficient of the slide;I 1 - quality of slides and cylinders;12 - self-adjusting back pressure valve core quality;C 1, c 2 - liquid volume without cylinder chamber and rod chamber;C 2 - Self-adjusting back pressure valve spring compliance;R 1, R2 - Self-adjusting back pressure valve damping orifice fluid resistance;R 9 - Self-adjusting back pressure valve valve fluid resistance;S e2——initial pre-tightening force of self-adjusting back pressure valve spring;I 4, I5 - Equivalent liquid sense of the pipeline;C 5, C 6 - equivalent liquid capacity of the pipeline;R 5, R7 - Equivalent liquid resistance of the pipeline;V 3, V4 - cylinder rodless cavity and rod cavity volume;P 3, P4—pressure of the rodless cavity and rod cavity of the cylinder;F - the slide bears the load;V - speed of slide motion;In this paper, the power bond diagram and the state space splitting method are used to establish the system's motion mathematical model, and the dynamic characteristics of the slide table can be significantly improved.In the normal operation of the combined machine tool, the magnitude of the speed of the slide, its direction and the load changes it undergoes will affect its performance in varying degrees. Especially in the process of work-in-process, the unsteady movement caused by the advancing of the load on the slide table and the cyclical change of the load will affect the surface quality of the workpiece to be machined. In severe cases, the tool will break. According to the requirements of the Dalian Machine Tool Plant, the author used the binding force curve diagram and the state space analysis method to establish a dynamic mathematical model of a self-adjusting back pressure and speed adjustment system for the new hydraulic drive system of the combined machine tool slide. In order to improve the dynamic characteristics of the sliding table, it is necessary to analyze the causes and main influencing factors of the impetus and movement of the sliding table. However, it must pass the computer's digital simulation and the final results obtained from the research.(2) Dynamic Mathematical ModelThe working principle diagram of the self-adjusting back pressure speedregulation system of the combined machine tool slide hydraulic drive system is shown in the figure. This system is used to complete the work-cycle-stop-rewind. When the sliding table is working, the three-position four-way reversing valve is in the illustrated position. The oil supply pressure of the oil pump will remain approximately constant under the effective action of the overflow valve, and the oil flow passes through the reversing valve and adjusts the speed. The valve enters the rodless chamber of the cylinder to push the slide forward. At the same time, the pressurized oil discharged from the rod chamber of the cylinder will flow back to the tank through the self-regulating back pressure valve and the reversing valve. During this process, there was no change in the operating status of both the one-way valve and the relief valve. The complex and nonlinear system of the hydraulic drive system of the self-adjusting back pressure governor system is a kind of self-adjusting back-pressure governor system. To facilitate the study of its dynamic characteristics, a simple and reasonable dynamic mathematical model that only considers the main influencing factors is established. Especially important [1][2]. From the theoretical analysis and the experimental study, we can see that the system process time is much longer than the process time of the speed control valve. When the effective pressure bearing area of the rodless cavity of the fuel tank is large, the flow rate at the outlet of the speed control valve is instantaneous. The overshoot is reflected in thesmall change in speed of the slide motion [2]. In order to further broaden and deeply study the dynamic characteristics of the system so that the research work can be effectively performed on a miniature computer, this article will further simplify the original model [2], assuming that the speed control valve is output during the entire system pass. When the flow is constant, this is considered to be the source of the flow. The schematic diagram of the dynamic model structure of this system is shown in Fig. 2. It consists of a cylinder, a sliding table, a self-adjusting back pressure valve, and a connecting pipe.The power bond graph is a power flow graph. It is based on the transmission mode of the system energy, based on the actual structure, and uses the centralized parameters to represent the role of the subsystems abstractly as a resistive element R, a perceptual element I, and a capacitive element. Three kinds of role of C. Using this method, the physical concept of modeling is clear, and combined with the state-space analysis method, the linear system can be described and analyzed more accurately. This method is an effective method to study the dynamic characteristics of complex nonlinear systems in the time domain. According to the main characteristics of each component of the self-adjusting back pressure control system and the modeling rules [1], the power bond diagram of the system is obtained. The upper half of each key in the figure represents the power flow. The two variables that makeup the power are the force variables (oil pressure P and force F) and the flow variables (flow q and velocity v). The O node indicates that the system is connected in parallel, and the force variables on each key are equal and the sum of the flow variables is zero; 1 The nodes represent the series connection in the system, the flow variables on each key are equal and the sum of the force variables is Zero. TF denotes a transformer between different energy forms. The TF subscripted letter represents the conversion ratio of the flow variable or the force variable. The short bar on the key indicates the causal relationship between the two variables on the key. The full arrow indicates the control relationship. There are integral or differential relationships between the force and flow variables of the capacitive and perceptual elements in the three types of action elements. Therefore, a complex nonlinear equation of state with nine state variables can be derived from Fig. 3 . In this paper, the research on the dynamic characteristics of the sliding table starts from the two aspects of the slide's hedging and the smoothness of the motion. The fourth-order fixed-length Runge-Kutta is used for digital simulation on the IBM-PC microcomputer.(3) Slide advanceThe swaying phenomenon of the slide table is caused by the sudden disappearance of the load acting on the slide table (such as drilling work conditions). In this process, the table load F, the moving speed V, and thepressure in the two chambers of the cylinder P3 and P4 can be seen from the simulation results in Fig. 4. When the sliding table moves at a uniform speed under the load, the oil pressure in the rodless cavity of the oil cylinder is high, and a large amount of energy is accumulated in the oil. When the load suddenly disappears, the oil pressure of the cavity is rapidly reduced, and the oil is rapidly reduced. When the high-pressure state is transferred to the low-pressure state, a lot of energy is released to the system, resulting in a high-speed forward impact of the slide. However, the front slide of the sliding table causes the pressure in the rod cavity of the oil cylinder to cause the back pressure to rise, thereby consuming part of the energy in the system, which has a certain effect on the kicking of the slide table. We should see that in the studied system, the inlet pressure of the self-adjusting back pressure valve is subject to the comprehensive effect of the two-chamber oil pressure of the oil cylinder. When the load suddenly disappears, the pressure of the self-adjusting back pressure valve rapidly rises and stably exceeds the initial back pressure value. It can be seen from the figure that self-adjusting back pressure in the speed control system when the load disappears, the back pressure of the cylinder rises more than the traditional speed control system, so the oil in the rod cavity of the cylinder absorbs more energy, resulting in the amount of forward momentum of the slide It will be about 20% smaller than traditionalspeed control systems. It can be seen from this that the use of self-adjusting back-gear speed control system as a drive system slider has good characteristics in suppressing the forward punch, in which the self-adjusting back pressure valve plays a very large role.(4) The smoothness of the slideWhen the load acting on the slide changes periodically (such as in the case of milling), the speed of the slide will have to fluctuate. In order to ensure the processing quality requirements, it must reduce its speed fluctuation range as much as possible. From the perspective of the convenience of the discussion of the problem, assume that the load changes according to a sine wave law, and the resulting digital simulation results are shown in Figure 5. From this we can see that this system has the same variation rules and very close numerical values as the conventional speed control system. The reason is that when the change of the load is not large, the pressure in the two chambers of the fuel tank will not have a large change, which will eventually lead to the self-regulating back pressure valve not showing its effect clearly.(5) Improvement measuresThe results of the research show that the dynamic performance of a sliding table with self-regulating back pressure control system as a drive system is better than that of a traditional speed control system. To reduce the amount of kick in the slide, it is necessary to rapidly increase the backpressure of the rod cavity when the load disappears. To increase the smoothness of the sliding table, it is necessary to increase the rigidity of the system. The main measure is to reduce the volume of oil. From the system structure, it is known that the cylinder has a large volume between the rod cavity and the oil discharge pipe, as shown in Fig. 6a. Its existence in terms of delay and attenuation of the self-regulating back pressure valve function, on the other hand, also reduces the rigidity of the system, it will limit the further improvement of the propulsion characteristics and the smoothness of the motion. Thus, improving the dynamic characteristics of the sliding table can be handled by two methods: changing the cylinder volume or changing the size of the self-regulating back pressure valve. Through the simulation calculation of the structural parameters of the system and the comparison of the results, it can be concluded that the ratio of the volume V4 between the rod cavity and the oil discharge pipe to the volume V3 between the rodless cavity and the oil inlet pipe is changed from 5.5 to 5.5. At 1 oclock, as shown in the figure, the diameter of the bottom end of the self-adjusting back pressure valve is increased from the original 10mm to 13mm, and the length of the damper triangle groove is reduced from the original lmm to 0.7mm, which will enable the front of the slide table. The impulse is reduced by 30%, the transition time is obviously shortened, and the smoothness of the slide motion will also be greatly improved.中文译文液压系统W Arnold1. 绪论液压站称液压泵站,是独立的液压装置。

液压专业必备英文对照

液压专业必备英文对照

液压专业词汇流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions 实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure 背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure峰值压力peak pressure运行压力operating pressure耐压试验压力proof pressure冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement 额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve调速阀speed regulator valve分流阀flow divider valve 集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity气囊式蓄能器bladder accumulator空气污染air contamination固体颗粒污染solid contamination液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument液位计liquid level measuring instrument 流量计flow meter 压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counter Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)、流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve。

液压系统构成中英文对照外文翻译文献

液压系统构成中英文对照外文翻译文献

(文档含英文原文和中文翻译)中英文资料对照外文翻译The hydraulic system constitutionhydraulic system composition department wind and the function, widely is applying on each kind of mechanical device the hydraulic system, the use has the continual fluid fat liquor now, actuates through the hydraulic pump the hydraulic pump the electric motor or the engine mechanical energy transforms the fat liquor the pressure energy, passes through each kind of control valve, delivers took the actuator in the hydraulic cylinder motor, transforms again while the mechanical power actuates the load. Constitutes such hydraulic system each constituent and the function. The hydraulic system characteristic and the use hydraulic pressure took one transmission technology, has its prominent merit:Can produce the very big power, moreover controls easily; May use the pump to obtain very the high pressure (20-30MPa) hydraulic fluid very easily, sends in this pressure oil the hydraulic cylinder then to produce the very big strength; Can in the very wide scope the limitless speed change; To altogether gives the oil motor or the hydraulic cylinder current capacity with the control valve carries on the stepless adjustment, then at will controls its revolving or the translation speed; Very easy to prevent the overload, the security is big; The size slightly strives in a big way, installs the position to be possible the free choice; Output strength adjustment simple accurate, but long-distance control.Hydraulic system use and service, in order to guarantee the mechanical device non-breakdown the work, must follow the factory the use service request.The hydraulic system is infinitely varied, took the different machinery a constituent, its use matters needing attentionalso differ from naturally.The hydraulic system uses and services the duty including the debugging, the inspection, the service and the repair. How debugs? The debugging is causes the new equipment to put the operation or to cause the original equipment to put the operation a series of activities, including the installment, the oil injection, the flushing, the adjustment, runs gathers. The inspection is examined system active status and function is whether correct, including the observation, the survey and tries to move.The maintenance is refers to the guarantee system the normal function, the few attrition and the replacement wearing parts, including the cleaning up and the replacement components, namely trades the oil, trades ponders the core, trades the seal.The repair is system reply function a series of activities which causes to crash.First must according to the breakdown phenomenon determine expires the spot and verifies the expiration reason, this is the so-called breakdown diagnosis. Then the replacement expiration part, makes the mechanical device to restore the work, this named repair.The expiration part should return the plant to repair.Time use service matters needing attention: When security, use and service hydraulic system, when most important question pays attention to the security, for guarantees the security, has the pressure when the system does not have to loosen the pipe connection, the screw joint or the part.Certainly must put first down the load, causes the pump engine off and releases the accumulator the pressure oil, then opens the thing again, does not have the oil used to work. Although many practical security taboo into general knowledge, but the attention often concentrates in the breakdown phenomenon, but neglects the latent danger.Therefore, in starts to repair the system reason this implementation standardization the engine off procedure, after the repair draws up invests the movement, should implement standardized the again start procedure:Engine off procedure it including following several aspects:1. Puts the low suspension the load or carries on the machinery supports and protections to it.2. Release system3. In release accumulator pressure oil4. Release pressure intensifier both sides pressure oil5. Cut-off electricity control system6.DumpStarts the procedure including following several aspects:1. Elimination expiration root2. If the component failure or the replacement period pollutant enters the system, then according to needs to clean up or the flushing system3. Confirms the part correctly unmistakable4. Confirms the hydraulic pressure connection correctly unmistakable5. Confirms the electrical connection correctly unmistakable6. Adjustable part to secure state7. Fills the oil for the pump and the motor shell8. According to needs to refuel to the system and to deflate9. Relieves the secure interconnection to protect10. Calls the alarm bell and the notice all presents the personnel soon to restart11.Starting systemThe item which this is carries on when service must pay attention, in regarding its sanitary, when service also must pay attention, when service hydraulic system, must do utmost the attention absolutely clean Arab League condition, because the pollutant is the hydraulic system most dangerous enemy.Does not have to carry on the polish and the welding work in the service hydraulic system scene. Loosens in front of the thread must its outside clean first cleanly.With clean returns to protects changes passes over the system the interior to use to open the mouth to seal, guards against the pollutant to enter thesystem.Cleans up when the fuel tank does not permit the use cotton and kapok silk and the rags.Must pass through the filter to the system oil injection.In the tubing, refuels with the flushing is the maintenance clean important link, its matters needing attention are as follows:1. The tubing pipe or the hose damage when must replace immediately.When chooses the pipe, the hose, the screw connector or the flange, must guarantee the pressure rated value (i.e. wall thickness, material quality and so on) satisfy the operation requirements.The hard tube must use the seamless steel pipe.The steel pipe and the metal pipe connection must clean absolutely before the installment, does not have the oil dirt, to scale, the welding, the scrap and so on.May use the steel wire brush, the tube cleaner to clean up or the acid pickling.In front of the acid pickling pipe must carry on degreasing processing, after the acid pickling must clean thoroughly. After cutting in the pipe bank or ridge between fields should the articulation awl hole, remove the burr which possibly has, but cannot ream excessively in order to avoid sells the weak connection.After assembly the pipe does not have again to weld or the gas welding, because is unable to clean up.The hose should the curved several times in order to release any detention the dirty thing.In front of the elbow piece the tubing wants the annealing, prevented when elbow piece the corrugation or changes flat.Wants the accurate elbow piece, enable the pipe then not to arrive after the elastic deformation. The flange must in the fitting surface coordinate smoothly before, and with the length suitable bolt fastening, whether there is the screw connector does install should inspect in the thread the metal burr, in the straight thread does not permit the use seal bandage.If the drive pipe must deposit period of time, should stop up the orifice to prevent the foreign matter enters.But does not have to use the rags or other moves the capital to stop up the orifice, because this only can bring the contamination concern, should use the size appropriate seal cap.2. Refuels the oil drum to want horizontal-type depositing, as far as possible deposits in the room or the awning, opens in front of the oil tung, cleans the barrel to go against and the bung thoroughly, prevented the soil and other outside pollutant enter the fat liquor.Only with the clean vessel, the hose and so on transports the fat liquor from the oil drum to the fuel tank.The recommendation with has at least in the 25um filter feeding pump. Provides 200 goals in the fuel tank oiling tube to ponder the net.The filter is actually specially for the system need oil fluid variety use.Sometimes also discovers the pollutant in the new fat liquor, therefore should for work through the portable purifier the hydraulic system tops up. When portable purifier hose involvement fuel tank, should use cloth attachment cleaning which clean does not shed hair to be clean, prevented the soil and other impurities enter the system.3.Before flushing flushing should take down the precise system part, but installs the pipe nipple in its position or hollow.From the main pipeline which flushes is dismantled the system to ponder the core.The flushing current capacity should for the system anticipated current capacity 2-2.5 times.If possible, use heat flush fluid (85℃).Each time only flushes a leg, from most approaches the wash out pump the return route start, to the downstream advancement, this possibly must additionally build in turn in the system up to the valve, realizes this kind of plan. Cannot use the system pump to take the wash out pump.Generally speaking, the power type pump like centrifugal pump and so on may provide the enough flood peak and the great current capacity, the movement quite is economical, and to flushes the period circulation the pollutant to have the good es the capacity in the flushing system with to use the flushing filter which the current capacity matches, the filtration precision to be as far as possible high, does not have to be lower than the recommendation system filtration precision. If has the possibility, uses the assistance to flush the fuel tank to avoid the pollutant being detained in the system fuel tank.The establishment fat liquor sample plan inspects dustiness, thus determined when finished the flushing procedure.After flushing, takes all measures to prevent when rewiring work part leads the pollutant.4.The replacement part part model must correct unmistakable.When if cannot find the similar model the part to have to use the similar part substitutes, must pay attention to the function, the parameter, the connection size is whether consistent, but also must pay attention installs the position, the ambient temperature, the working voltage and so on.The old seal packing collar must replace, does not permit two uses.The bolt and the screw connector must even screw tight the big stipulation the torque, prevents the part distortion influence work. The adjustable part like delivery valve, the flow valve, the variable displacement pump and so on must establish.5.When accumulator accumulator pressure vessel, Asia locality related safety rule compulsory control.In is loaded with on the accumulator hydraulic system carries on in front of any work, must first download the system pressure.The accumulator shell does not permit the welding and the processing, does not repair when possibly causes the serious accident, therefore must have to repair the accumulator returns delivers the plant to carry on the repair.Hydraulic pump selection: The hydraulic pump is the hydraulic system power supply.Must select can adapt the pressure which the actuator requests to have the return route pump, simultaneously must consider fully the reliability, the life Maintainability one side and so on elect the pump can plant the long-term movement in the system.The hydraulic pump type are extremely many, its characteristic also has the very big difference. Chooses when the hydraulic pump must consider the factor has working pressure, current capacity, rotational speed, quota or variable, variable way, volumetric efficiency, overall effectiveness index, the prime mover type, the noise, the pressure oscillation rate, self-absorption ability and so on, but also must consider and the hydraulic fluid compatibility, the size, the weight, the economy, Maintainability, these factors.The hydraulic pump discharge pressure should be the actuator needs the pressure, the tubing pressure loses, the control valve sum of pressure loss, it does not have to surpass in the sample the rated pressure, when the emphasis security, the reliability.Also should leave leeway the big leeway.In when sample highest working pressure when short-term impact permits pressure.If each circulation plants all has the impact pressure, the pump life can reduce obviously, even the pump can damage.Hydraulic pump life: The hydraulic pump is the hydraulic system power part, its function is transforms the prime mover mechanical energy the liquid the pressure energy, refers to in the hydraulic system the oil pump, it provides the power to the entire hydraulic system.Hydraulic pump structural style common toothed wheel pump, vane pump and ram pump. Affects the hydraulic pump the service life factor to be very many, except outside pump own design, manufacture factor and some with pump use Guanyuan (for example shaft coupling, oil filter and so on) selects, in the test run movement process operation and so on also concerns.1.The air compressorselects the air compressor the basis is the working pressure and the current capacity which the pneumatic system needs.At present, the pneumatic system commonly used working pressure is 0.5~0.8MPa, may select the rated pressure is directly the 0.7~1MPa low-pressure air compressor, the special need fluid may select, high-pressured or the ultrahigh voltage air compressor. When determination air compressor air displacement, should satisfy the biggest gas consumption which each air operated equipment needs (to be supposed to transform into free air gas consumption) the sum.(1) was mad the source refining equipmentgeneral use the air compressor all uses the oil lubrication, the air is compressed in the air compressor, the temperature may elevate 140~170℃, by now were partial the lubricating oil to turn the gas, mixed in the compressed air, in addition in the air water and the dust, formed included mix impurity and so on the water vapor, oil gas, dust compressed air.Ifprovides this kind of compressed air to the air operated equipment use, will be able to have following adverse consequences:Gathers in the compressed air the oil gas to gather in the gas storage fills forms the combustible, even has the detonation danger; Simultaneously the oil vaporizes after the high temperature forms the organic acid, causes the hardware to corrode, affects the equipment the life.(2)The mix impurity deposition in the pipeline and the air operated part, causes to pass flows the area to reduce, circulation drag increment, the overall system work is unstable, when serious, system knock off.(3)In the compressed air water vapor can congeal the waterdrop under certain pressure and the temperature, can cause the pipeline and the assistance part in the cold season because of freezes destroys.(4)In the compressed air dust has the abrasive action to the air operated part movement part, causes it attrition to be serious, affects their life.Thus it can be seen, establishes in the pneumatic system eliminates the water, eliminates the oil, the dust removal and dry and so on was mad the source refining equipment is extremely essential.Second, the air operated assistance partair operated part interior has many relative slippers, somewhat relative slipper depends on the seal packing collar to seal.In order to reduce transports the moving parts relatively the friction force, guaranteed the part movement is normal; In order to reduce the packing material the attrition, prevents divulging; In order to prevent the pipeline and the metal part corrosion, lengthens the part service life, guaranteed the good lubrication is extremely important.The lubrication may not divide into and spurts the mist lubrication for the oil lubrication.Some many air operated application domain does not allow to spurt the mist lubrication.If food and the drugs packing, in the transportation process, the oil granule returns to pollution food and the drugs; The oil granule can affect certain raw material for industry, the chemicals nature; The oil mist can affect the high-level spray coating surface and the electronic component surface quality; The oil mist can affect the measuring instrument true the survey; The oil mist can harm the human body health and so on.Therefore at present uses the mist lubrication to reduce gradually, does not give the oil lubrication already very popularly.Still did not use the rubber material for the oil lubrication to take the glide spot the seal, but sealed has the detention tank special structure, in order to memory lubricant.Other components should use not the easy rusty metal material or the nonmetallic material.For the oil lubrication part also may not to the oil use, once but gives the oil, does not have the midway to stop feed.At the same time, must prevent the condensed water enters in the part, in order to avoid flushes the lubricant.Not only has not saved the lubricating utensils and the lubricating oil for the oil lubrication part, improved the working conditions, moreover reduced the maintenance work load, reduced the cost.Moreover, also improved the lubrication condition.Its lubrication effect with the transit discharge, the pressure height, the tubing condition and so on all has nothing to do with.Also does not exist forgot refuels creates the breakdown the matter.The mist lubrication part has the oil mist and the centralism lubrication part two kinds.In (1) pneumatic system each kind of air valve, the air cylinder, the gas motor and so on, its movable part all needs to lubricate, but take the compressed air all seals the air chamber as the power air operated part, cannot use the general method oil injection, only can mix in by some method the oil in the air current, the belt to the place which needs to lubricate.The oil mist is this kind of kind of special oil injection installment.After it causes the lubrication oilatomization to pour into in the air current, enters the part along with the air which needs to lubricate. Refuels with this method, has the lubrication to be even, to be stable, the oil consumption few and does not need characteristics and so on big oil storage equipment.(2) air strainer is in the pneumatic system important link, is further filters the dust compressed air the impurity.The filter form are very many, the commonly used type includes: The disposable filter and two filter, have been requesting the high special occasion, may use the highly effective filter.99. In the pneumatic actuator system, called generally the filter, the oil mist, the pressure relief valve for air operated three association (or three big-ticket items), are in the pneumatic system the essential auxiliary unit.(3) silencerpneumatic circuit and the hydraulic pressure return route are different, it does not suppose the exhaust pipeline generally, after the compressed air use the direct platoon person atmosphere, because the gas rapidly inflation and forms the turbulent flow phenomenon, will have the intense exhaust noise.The exhaust speed and the power are bigger, the exhaust noise is bigger, may generally big 100~200dB.The noise harms people's physical and moral integrity directly, must eliminate or weaken.For the noise reduction, generally often installs the silencer in the pneumatic system air vent.The air operated functional elementair operated functional element is transforms in the pneumatic system the compressed air pressure energy the mechanical energy the part.It including air cylinder friendly motor.The air cylinder uses in realizing the straight reciprocating motion or swinging, was mad the motor uses in realizing the continual gyroscopic motion.First, The air cylinderair cylinder is in the pneumatic system the most commonly used one kind of functional element, compares with the hydraulic cylinder, it has the structure simply, pollutes, the movement few keen, responded quick, easy to make, easily to service, the cost low status merit, but because the thrust force is small, widely uses in the underloading system.(1) The air cylinder classifiedbasis air cylinder exploitation conditions are different, its structure, the shape, the type are very many, below introduces several kind of classifications.May divide into according to the compressed air function in the piston end surface direction: List function air cylinder and double-acting air cylinder.(2)Different may divide into according to the structure characteristic: Plunger-type air cylinder, plunger air cylinder, film air cylinder, leaf blade type oscillating cylinder, gear strip type oscillating cylinder and so on.(3) May divide into according to the air cylinder function: Ordinary air cylinder and special air cylinder.The ordinary air cylinder refers to the general plunger-type air cylinder, uses in the not special request the situation.The special air cylinder uses in having the special request situation, like was mad - - the fluid damping cylinder, the film air cylinder, flush are mad the air cylinder, the expansion and contraction air cylinder and so on.(4) According to installs the way differently to be possible to divide into: The ear place type, the flange type, sell the shaft type and the flange type and so on.(二)Common air cylinder principle of work and applicationThe ordinary air cylinder principle of work and the use are similar to the hydraulic cylinder, here no longer give unnecessary detail, below only introduces the special air cylinder.1. Is mad - - the fluid damping cylinderbecause the ordinary air cylinder works time, the compressed gas condensibility is big, when the outside work load change is big, the air cylinder appears “crawling” or “self-propelled” the phenomenon, the stability When therefore the equip ment precision is high, the air cylinder work stable request is also high, often uses was mad - - the fluiddamping cylinder is becomes by the air cylinder and the hydraulic cylinder combination, take the compressed air as an energy, by the hydraulic fluid took the control adjustment air cylinder velocity of movement the medium, the use liquid incompressibility control liquid displacement, adjusts the piston the velocity of movement, obtains the piston the steady motion.2. The film air cylinderfilm type air cylinder is replaces the piston by the thin film the air cylinder.It mainly by the cylinder body, the diaphragm, the diaphragm capsule and the connecting rod and so on the major parts is composed.Has the list to affect the type and the double-acting type.液压系统的构成液压系统的组成部风及其作用,如今在各种机械设备上广泛应用着的液压系统,使用具有连续流动性的油液,通过液压泵把驱动液压泵的电动机或发动机的机械能转换成油液的压力能,经过各种控制阀,送到作为执行器的液压缸马达中,再转换乘机械动力去驱动负载.构成这样的液压系统的各个组成部分及其作用.液压系统的特点和用途液压作为一种传动技术,有其突出的优点:能产生很大的动力,而且控制容易;可以用泵很容易地得到很高压力(20-30MPa)的液压油,把此压力油送入液压缸即可产生很大的力;能在很宽范围内无极变速;用控制阀对共给液压马达或液压缸的流量进行无级调整,即可随意控制其旋转或直线运动的速度;很容易防止过载,安全性大;尺寸小出力大,安装位置可自由选择;输出力的调整简单准确,可远程控制.液压系统的使用与维修,为了保证机械设备无故障的工作,必须遵循制造厂的使用维修要求。

液压控制系统-液压液外文文献翻译、中英文翻译

液压控制系统-液压液外文文献翻译、中英文翻译

CHAPTER 3HYDRAULIC FLUIDSDuring the design of equipment that requires fluid power, many factors are considered in selecting the type of system to be used—hydraulic, pneumatic, or a combination of the two. Some of the factors are required speed and accuracy of operation, surrounding atmospheric conditions, economic conditions, availability of replacement fluid, required pressure level, operating temperature range, contamination possibilities, cost of transmission lines, limitations of the equipment, lubricity, safety to the operators, and expected service life of the equipment.After the type of system has been selected, many of these same factors must be considered in selecting the fluid for the system. This chapter is devoted to hydraulic fluids. Included in it are sections on the properties and characteristics desired of hydraulic fluids; types of hydraulic fluids; hazards and safety precautions for working with, handling, and disposing of hydraulic liquids; types and control of contamination; and sampling.PROPERTIESIf fluidity (the physical property of a substance that enables it to flow) and incompressibility were the only properties required, any liquid not too thick might be used in a hydraulic system. However, a satisfactory liquid for a particular system must possess a number of other properties. The most important properties and some characteristics are discussed in the following paragraphs.VISCOSITYViscosity is one of the most important properties of hydraulic fluids. It is a measure of a fluids resistance to flow. A liquid, such as gasoline, which flows easily, has a low viscosity; and a liquid, such as tar, which flows slowly, has a high viscosity. The viscosity of a liquid is affected by changes in temperature and pressure. As the temperature of a liquid increases, its viscosity decreases. That is, a liquid flows more easily when it is hot than when it is cold. The viscosity of a liquid increases as the pressure on the liquid increases.A satisfactory liquid for a hydraulic system must be thick enough to give a good seal at pumps, motors, valves, and so on. These components depend on close fits for creating and maintaining pressure. Any internal leakage through these clearances results in loss of pressure, instantaneous control, and pump efficiency. Leakage losses are greater with thinner liquids (low viscosity). A liquid that is too thin will also allow rapid wearing of moving parts, or of parts that operate under heavy loads. On the other hand, if the liquid is too thick (viscosity too high), the internal friction of the liquid will cause an increase in the liquids flow resistance through clearances of closely fitted parts, lines, and internal passages. This results in pressuredrops throughout the system, sluggish operation of the equipment, and an increase in power consumption.Measurement of ViscosityViscosity is normally determined by measuring the time required for a fixed volume of a fluid (at a given temperature) to flow through a calibrated orifice or capillary tube. The instruments used to measure the viscosity of a liquid are known as viscometers or viscosimeters.Figure 3-1.Saybolt viscometer.Several types of viscosimeters are in use today. The Say bolt viscometer, shown in figure 3-1, measures the time required, in seconds, for 60 milliliters of the tested fluid at 100°F to pass through a standard orifice. The time measured is used to express the fluids viscosity, in Saybolt universal seconds or Saybolt furol seconds.Figure 3-2.Various styles of glass capillary viscometers.The glass capillary viscometers, shown in figure 3-2, are examples of the second type of viscometer used. These viscometers are used to measure kinematic viscosity. Like the Saybolt viscometer, the glass capillary measures the time in seconds required for the tested fluid to flow through the capillary. This time is multiplied by the temperature constant of the viscometer in use to provide the viscosity, expressed in centistokes.The following formulas may be used to convert centistokes (cSt units) to approximate Say bolt universal seconds (SUS units). For SUS values between 32 and 100: SUS SUS cST 195226.0-⨯= For SUS values greater than 100: SUS SUS cST 195220.0-⨯=Although the viscometers discussed above are used in laboratories, there are other viscometers in the supply system that is available for local use. These viscometers can be used to test the viscosity of hydraulic fluids either prior to their being added to a system or periodically after they have been in an operating system for a while.Additional information on the various types of viscometers and their operation can be found in the Physical Measurements Training Manual, NA V AIR 17-35QAL-2.Viscosity IndexThe viscosity index (V.I.) of oil is a number that indicates the effect of temperature changes on the viscosity of the oil. A low V.I. signifies a relatively large change of viscosity with changes of temperature. In other words, the oil becomes extremely thin at high temperatures and extremely thick at low temperatures. On the other hand, a high V.I. signifies relatively little change in viscosity over a wide temperature range.Ideal oil for most purposes is one that maintains a constant viscosity throughout temperature changes. The importance of the V.I. can be shown easily by considering automotive lubricants. Oil having a high V.I. resists excessive thickening when the engine is cold and, consequently, promotes rapid starting and prompt circulation; it resists excessive thinning when the motor is hot and thus provides full lubrication and prevents excessive oil consumption.Another example of the importance of the V.I. is the need for high V.I. hydraulic oil for military aircraft, since hydraulic control systems may be exposed to temperatures ranging from below –65°F at high altitudes to over 100°F on the ground. For the proper operation of the hydraulic control system, the hydraulic fluid must have a sufficiently high V.I. to perform its functions at the extremes of the expected temperature range.Liquids with a high viscosity have a greater resistance to heat than low viscosity liquids which have been derived from the same source. The average hydraulic liquid has a relatively low viscosity. Fortunately, there is a wide choice of liquids available for use in the viscosity range required of hydraulic liquids.The V.I. of an oil may be determined if its viscosity at any two temperatures is known. Tables, based on a large number of tests, are issued by the American Society for Testing and Materials (ASTM). These tables permit calculation of the V.I. from known viscosities.LUBRICATING POWERIf motion takes place between surfaces in contact, friction tends to oppose the motion. When pressure forces the liquid of a hydraulic system between the surfaces of moving parts, the liquid spreads out into a thin film which enables the parts to move more freely. Different liquids, including oils, vary greatly not only in their lubricating ability but also in film strength. Film strength is the capability of a liquid to resist being wiped or squeezed out from between the surfaces when spread out in an extremely thin layer. A liquid will no longer lubricate if the film breaks down, since the motion of part against part wipes the metal clean of liquid.Lubricating power varies with temperature changes; therefore, the climatic and working conditions must enter into the determination of the lubricating qualities of a liquid. Unlike viscosity, which is a physical property, the lubricating power and film strength of a liquid isdirectly related to its chemical nature. Lubricating qualities and film strength can be improved by the addition of certain chemical agents.CHEMICAL STABILITYChemical stability is another property which is exceedingly important in the selection of a hydraulic liquid. It is defined as the liquids ability to resist oxidation and deterioration for long periods. All liquids tend to undergo unfavorable changes under severe operating conditions. This is the case, for example, when a system operates for a considerable period of time at high temperatures.Excessive temperatures, especially extremely high temperatures, have a great effect on the life of a liquid. The temperature of the liquid in the reservoir of an operating hydraulic system does not always indicate the operating conditions throughout the system. Localized hot spots occur on bearings, gear teeth, or at other points where the liquid under pressure is forced through small orifices. Continuous passage of the liquid through these points may produce local temperatures high enough to carbonize the liquid or turn it into sludge, yet the liquid in the reservoir may not indicate an excessively high temperature.Liquids may break down if exposed to air, water, salt, or other impurities, especially if they are in constant motion or subjected to heat. Some metals, such as zinc, lead, brass, and copper, have undesirable chemical reactions with certain liquids.These chemical reactions result in the formation of sludge, gums, carbon, or other deposits which clog openings, cause valves and pistons to stick or leak, and give poor lubrication to moving parts. Once a small amount of sludge or other deposits is formed, the rate of formation generally increases more rapidly. As these deposits are formed, certain changes in the physical and chemical properties of the liquid take place. The liquid usually becomes darker, the viscosity increases and damaging acids are formed.The extent to which changes occur in different liquids depends on the type of liquid, type of refining, and whether it has been treated to provide further resistance to oxidation. The stability of liquids can be improved by the addition of oxidation inhibitors. Inhibitors selected to improve stability must be compatible with the other required properties of the liquid.FREEDOM FROM ACIDITYAn ideal hydraulic liquid should be free from acids which cause corrosion of the metals in the system. Most liquids cannot be expected to remain completely no corrosive under severe operating conditions. The degree of acidity of a liquid, when new, may be satisfactory; but after use, the liquid may tend to become corrosive as it begins to deteriorate.Many systems are idle for long periods after operating at high temperatures. This permits moisture to condense in the system, resulting in rust formation.Certain corrosion- and rust-preventive additives are added to hydraulic liquids. Some of these additives are effective only for a limited period. Therefore, the best procedure is to use the liquid specified for the system for the time specified by the system manufacturer and to protect the liquid and the system as much as possible from contamination by foreign matter, from abnormal temperatures, and from misuse.FLASHPOINTFlashpoint is the temperature at which a liquid gives off vapor in sufficient quantity to ignite momentarily or flash when a flame is applied. A high flashpoint is desirable for hydraulic liquids because it provides good resistance to combustion and a low degree of evaporation at normal temperatures. Required flashpoint minimums vary from 300°F for the lightest oils to 510°F for the heaviest oils.FIRE POINTFire point is the temperature at which a substance gives off vapor in sufficient quantity to ignite and continue to burn when exposed to a spark or flame. Like flashpoint, a high fire point is required of desirable hydraulic liquids.MINIMUM TOXICITYToxicity is defined as the quality, state, or degree of being toxic or poisonous. Some liquids contain chemicals that are a serious toxic hazard. These toxic or poisonous chemicals may enter the body through inhalation, by absorption through the skin, or through the eyes or the mouth. The result is sickness and, in some cases, death. Manufacturers of hydraulic liquids strive to produce suitable liquids that contain no toxic chemicals and, as a result, most hydraulic liquids are free of harmful chemicals. Some fire-resistant liquids are toxic, and suitable protection and care in handling must be provided.DENSITY AND COMPRESSIBILITYA fluid with a specific gravity of less than 1.0 is desired when weight is critical, although with proper system design, a fluid with a specific gravity greater than one can be tolerated. Where avoidance of detection by military units is desired, a fluid which sinks rather than rises to the surface of the water is desirable. Fluids having a specific gravity greater than 1.0 are desired, as leaking fluid will sink, allowing the vessel with the leak to remain undetected.Recall from chapter 2 that under extreme pressure a fluid may be compressed up to 7 percent of its original volume. Highly compressible fluids produce sluggish system operation. This does not present a serious problem in small, low-speed operations, but it must be considered in the operating instructions.FOAMING TENDENCIESFoam is an emulsion of gas bubbles in the fluid. Foam in a hydraulic system results fromcompressed gases in the hydraulic fluid. A fluid under high pressure can contain a large volume of air bubbles. When this fluid is depressurized, as when it reaches the reservoir, the gas bubbles in the fluid expand and produce foam. Any amount of foaming may cause pump cavitations and produce poor system response and spongy control. Therefore, defaming agents are often added to fluids to prevent foaming. Minimizing air in fluid systems is discussed later in this chapter.CLEANLINESSCleanliness in hydraulic systems has received considerable attention recently. Some hydraulic systems, such as aerospace hydraulic systems, are extremely sensitive to contamination. Fluid cleanliness is of primary importance because contaminants can cause component malfunction, prevent proper valve seating, cause wear in components, and may increase the response time of servo valves. Fluid contaminants are discussed later in this chapter.The inside of a hydraulic system can only be kept as clean as the fluid added to it. Initial fluid cleanliness can be achieved by observing stringent cleanliness requirements (discussed later in this chapter) or by filtering all fluid added to the system.TYPES OF HYDRAULIC FLUIDSThere have been many liquids tested for use in hydraulic systems. Currently, liquids being used include mineral oil, water, phosphate ester, water-based ethylene glycol compounds, and silicone fluids. The three most common types of hydraulic liquids are petroleum-based, synthetic fire-resistant, and water-based fire-resistant.PETROLEUM-BASED FLUIDSThe most common hydraulic fluids used in shipboard systems are the petroleum-based oils. These fluids contain additives to protect the fluid from oxidation (antioxidant), to protect system metals from corrosion (anticorrosion), to reduce tendency of the fluid to foam (foam suppressant), and to improve viscosity.Petroleum-based fluids are used in surface ships,electro hydraulic steering and deck machinery systems, submarines,hydraulic systems, and aircraft automatic pilots, shock absorbers, brakes, control mechanisms, and other hydraulic systems using seal materials compatible with petroleum-based fluids.SYNTHETIC FIRE-RESISTANT FLUIDS Petroleum-based oils contain most of the desired properties of a hydraulic liquid. However, they are flammable under normal conditions and can become explosive when subjected to high pressures and a source of flame or high temperatures. Nonflammable synthetic liquids have been developed for use in hydraulic systems where fire hazards exist.Phosphate Ester Fire-Resistant FluidPhosphate ester fire-resistant fluid for shipboard use is covered by specification MIL- H-19457. There are certain trade names closely associated with these fluids. However, the only acceptable fluids conforming to MIL-H-19457 are the ones listed on the current Qualified Products List (QPL) 19457. These fluids will be delivered in containers marked MIL-H-19457C or a later specification revision. Phosphate ester in containers marked by a brand name without specification identification must not be used in shipboard systems, as they may contain toxic chemicals.These fluids will burn if sufficient heat and flame are applied, but they do not support combustion. Drawbacks of phosphate ester fluids are that they will attack and loosen commonly used paints and adhesives, deteriorate many types of insulations used in electrical cables, and deteriorate many gasket and seal materials. Therefore, gaskets and seals for systems in which phosphate ester fluids are used are manufactured of specific materials. Naval Ships,Technical Manual, chapter 262, specifies paints to be used on exterior surfaces of hydraulic systems and components in which phosphate ester fluid is used and on ship structure and decks in the immediate vicinity of this equipment. Naval Ships,Technical Manual, chapter 078, specifies gasket and seal materials used. NA V AIR 01-1A-17 also contains a list of materials resistant to phosphate ester fluids.Trade names for phosphate ester fluids, which do not conform to MIL-H-19457 include Pydraul、Skydrol、and Fire Safe.PHOSPHATE ESTER FLUID SAFETY.—as a maintenance person, operator, supervisor, or crew member of a ship, squadron, or naval shore installation, you must understand the hazards associated with hydraulic fluids to which you may be exposed.Phosphate ester fluid conforming to specification MIL-H-19457 is used in aircraft elevators, ballast valve operating systems, and replenishment-at-sea systems. This type of fluid contains a controlled amount of neurotoxic material. Because of the neurotoxic effects that can result from ingestion, skin absorption, or inhalation of these fluids, be sure to use the following precautions:1. Avoid contact with the fluids by wearing protective clothing.2. Use chemical goggles or face shields to protect your eyes.3. If you are expected to work in an atmosphere containing a fine mist or spray, wear a continuous-flow airline respirator.4. Thoroughly clean skin areas contaminated by this fluid with soap and water.5. If you get any fluid in your eyes, flush them with running water for at least 15 minutes and seek medical attention.If you come in contact with MIL-H-19457 fluid, report the contact when you seek medical aid and whenever you have a routine medical examination.Naval Ships,Technical Manual, chapter 262, contains a list of protective clothing, along with national stock numbers(NSN),for use with fluids conforming to MIL-H-19457.It also contains procedures for repair work and for low-level leakage and massive spills cleanup.PHOSPHATE ESTER FLUID DISPOSAL.—Waste MIL-H-19457 fluids and refuse (rags and other materials) must not be dumped at sea. Fluid should be placed in bung-type drums. Rags and other materials should be placed in open top drums for shore disposal. These drums should be marked with a warning label stating their content, safety precautions, and disposal instructions. Detailed instructions for phosphate ester fluids disposal can be found in Naval Ships, Technical Manual, chapter 262, and OPNA VINST 5090.1.Silicone Synthetic Fire-Resistant FluidsSilicone synthetic fire-resistant fluids are frequently used for hydraulic systems which require fire resistance, but which have only marginal requirements for other chemical or physical properties common to hydraulic fluids. Silicone fluids do not have the detrimental characteristics of phosphate ester fluids, nor do they provide the corrosion protection and lubrication of phosphate ester fluids, but they are excellent for fire protection. Silicone fluid conforming to MIL-S-81087 is used in the missile hold-down and lockout system aboard submarines.Lightweight Synthetic Fire-Resistant Fluids In applications where weight is critical, lightweight synthetic fluid is used in hydraulic systems. MIL-H-83282 is a synthetic, fire-resistant hydraulic fluid used in military aircraft and hydrofoils where the requirement to minimize weight dictates the use of a low-viscosity fluid. It is also the most commonly used fluid in aviation support equipment. NA V AIR 01-1A-17 contains additional information on fluids conforming to specification MIL-H-83282.WATER-BASED FIRE-RESISTANT FLUIDS The most widely used water-based hydraulic fluids may be classified as water-glycol mixtures and water-synthetic base mixtures. The water-glycol mixture contains additives to protect it from oxidation, corrosion, and biological growth and to enhance its load-carrying capacity.Fire resistance of the water mixture fluids depends on the vaporization and smothering effect of steam generated from the water. The water in water-based fluids is constantly being driven off while the system is operating. There- fore, frequent checks to maintain the correct ratio of water are important.The water-based fluid used in catapult retracting engines, jet blast deflectors, and weapons elevators and handling systems conforms to MIL-H-22072.The safety precautions outlined for phosphate ester fluid and the disposal of phosphate ester fluid also apply to water-based fluid conforming to MIL-H-22072.CONTAMINATIONHydraulic fluid contamination may be described as any foreign material or substance whose presence in the fluid is capable of adversely affecting system performance or reliability. It may assume many different forms, including liquids, gases, and solid matter of various compositions, sizes, and shapes. Solid matter is the type most often found in hydraulic systems and is generally referred to as particulate contamination. Con- termination is always present to some degree, even in new, unused fluid, but must be kept below a level that will adversely affect system operation. Hydraulic contamination control consists of requirements, techniques, and practices necessary to minimize and control fluid contamination.CLASSIFICATIONThere are many types of contaminants which are harmful to hydraulic systems and liquids. These contaminants may be divided into two different classes—particulate and fluid.Particulate ContaminationThis class of contaminants includes organic, metallic solid and inorganic solid contaminants. These contaminants are discussed in the following paragraphs.ORGANIC CONTAMINATION.—Organic solids or semisolids found in hydraulic systems are produced by wear, oxidation, or polymerization. Minute particles of O-rings, seals, gaskets, and hoses are present, due to wear or chemical reactions. Synthetic products, such as neoprene, silicones, and hypalon, though resistant to chemical reaction with hydraulic fluids, produce small wear particles. Oxidation of hydraulic fluids increases with pressure and temperature, although antioxidants are blended into hydraulic fluids to minimize such oxidation.The ability of a hydraulic fluid to resist oxidation or polymerization in service is defined as its oxidation stability. Oxidation products appear as organicacids,asphaltics,gums,and varnishes. These products combine with particles in the hydraulic fluid to form sludge. Some oxidation products are oil soluble and cause the hydraulic fluid to increase in viscosity; other oxidation products are not oil soluble and form sediment.METALLIC SOLID CONTAMINATION.—Metallic contaminants are almost always present in a hydraulic system and will range in size from microscopic particles to particles readily visible to the naked eye. These particles are the result of wearing and scoring of bare metal parts and plating materials, such as silver and chromium. Although practically all metals commonly used for parts fabrication and plating may be found in hydraulic fluids, themajor metallic materials found are ferrous, aluminum, and chromium particles. Because of their continuous high-speed internal movement, hydraulic pumps usually contribute most of the metallic particulate contamination present in hydraulic systems. Metal particles are also produced by other hydraulic system components, such as valves and actuators, due to body wear and the chipping and wearing away of small pieces of metal plating materials.INORGANIC SOLID CONTAMINATION.—This contaminant group includes dust, paint particles, dirt, and silicates. Glass particles from glass bead penning and blasting may also be found as contaminants. Glass particles are very undesirable contaminants due to their abrasive effect on synthetic rubber seals and the very fine surfaces of critical moving parts. Atmospheric dust, dirt, paint particles, and other materials are often drawn into hydraulic systems from external sources. For example, the wet piston shaft of a hydraulic actuator may draw some of these foreign materials into the cylinder past the wiper and dynamic seals, and the contaminant materials are then dispersed in the hydraulic fluid. Contaminants may also enter the hydraulic fluid during maintenance when tubing, hoses, fittings, and components are disconnected or replaced. It is therefore important that all exposed fluid ports be sealed with approved protective closures to minimize such contamination.Fluid ContaminationAir, water, solvent,and other foreign fluids are in the class of fluid contaminants.AIR CONTAMINATION.—Hydraulic fluids are adversely affected by dissolved, entrained, or free air. Air may be introduced through improper maintenance or as a result of system design. Any maintenance operation that involves breaking into the hydraulic system, such as disconnecting or removing a line or component will invariably result in some air being introduced into the system. This source of air can and must be minimized by prebilling replacement components with new filtered fluid prior to their installation. Failing to prefill a filter element bowl with fluid is a good example of how air can be introduced into the system. Although prebilling will minimize introduction of air, it is still important to vent the system where venting is possible.Most hydraulic systems have built-in sources of air. Leaky seals in gas-pressurized accumulators and reservoirs can feed gas into a system faster than it can be removed, even with the best of maintenance. Another lesser known but major source of air is air that is sucked into the system past actuator piston rod seals. This usually occurs when the piston rod is stroked by some external means while the actuator itself is not pressurized.WATER CONTAMINATION.—Water is a serious contaminant of hydraulic systems. Hydraulic fluids are adversely affected by dissolved, emulsified, or free water. Water contamination may result in the formation of ice, which impedes the operation of valves,actuators, and other moving parts. Water can also cause the formation of oxidation products and corrosion of metallic surfaces.SOLVENT CONTAMINATION.—Solvent contamination is a special form of foreign fluid contamination in which the original contaminating substance is a chlorinated solvent. Chlorinated solvents or their residues may, when introduced into a hydraulic system, react with any water present to form highly corrosive acids.Chlorinated solvents, when allowed to combine with minute amounts of water often found in operating hydraulic systems, change chemically into hydrochloric acids. These acids then attack internal metallic surfaces in the system, particularly those that are ferrous, and produce a severe rust-like corrosion. NA V AIR 01-1A-17 and NSTM, chapter 556, contain tables of solvents for use in hydraulic maintenance.FOREIGN-FLUIDS CONTAMINATION.—Hydraulic systems can be seriously contaminated by foreign fluids other than water and chlorinated solvents. This type of contamination is generally a result of lube oil, engine fuel, or incorrect hydraulic fluid being introduced inadvertently into the system during servicing. The effects of such contamination depend on the contaminant, the amount in the system, and how long it has been present.NOTE: It is extremely important that the different types of hydraulic fluids are not mixed in one system. If different type hydraulic fluids are mixed, the characteristics of the fluid required for a specific purpose are lost. Mixing the different types of fluids usually will result in a heavy, gummy deposit that will clog passages and require a major cleaning. In addition, seals and packing installed for use with one fluid usually are not compatible with other fluids and damage to the seals will result.ORIGIN OF CONTAMINATIONRecall that contaminants are produced from wear and chemical reactions, introduced by improper maintenance, and inadvertently introduced during servicing. These methods of contaminant introduction fall into one of the four major areas of contaminant origin.1. Particles originally contained in the system. These particles originate during the fabrication and storage of system components. Weld spatter and slag may remain in welded system components, especially in reservoirs and pipe assemblies. The presence is minimized by proper design. For example, seam-welded overlapping joints are preferred, and arc welding of open sections is usually avoided. Hidden passages in valve bodies, inaccessible to sand blasting or other methods of cleaning, are the main source of introduction of core sand. Even the most carefully designed and cleaned castings will almost invariably free some sand particles under the action of hydraulic pressure. Rubber hose assemblies always contain some loose particles. Most of these particles can be removed by flushing the hose before installation;。

液压系统和气压系统外文文献翻译、中英文翻译

液压系统和气压系统外文文献翻译、中英文翻译

Hydraulic systemand Peumatic SystemHui-xiongwan1,Jun Fan2Abstract:Hydraulic system is widely used in industry, such as stamping, grinding of steel type work and general processing industries, agriculture, mining, space technology, deep sea exploration, transportation, marine technology, offshore gas and oil exploration industries, in short, Few people in their daily lives do not get certain benefits from the hydraulic technology. Successful and widely used in the hydraulic system's secret lies in its versatility and ease of maneuverability. Hydraulic power transmission mechanical systems as being not like the machine geometry constraints, In addition, the hydraulic system does not like the electrical system, as constrained by the physical properties of materials, it passed almost no amount of power constraints.Keywords: Hydraulic system,Pressure system,FluidThe history of hydraulic power is a long one, dating from man’s prehistoric efforts to harness the energy in the world around him. The only source readily available were the water and the wind—two free and moving streams.The watermill, the first hydraulic motor, was an early invention. One is pictured on a mosatic at the Great Palace in Byzantium, dating from the early fifth century. The mill had been built by the Romans. But the first record of a watermill goes back even further, to around 100BC, and the origins may indeed have been much earlier. The domestication of grain began some 5000 years before and some enterprising farmer is bound to have become tired of pounding or grinding the grain by hand. Perhaps, in fact, the inventor were some farmer’s wives. Since the often drew the heavy jobs.Fluid is a substance which may flow。

液压专用英语

液压专用英语

contra-propeller(整流板)Control hydraulic(控制液压)还有相关的词语也可以参考,也许有用液压驱动泵medium液压泵fluid clutch液压回路Hydraulic circuitv进油和回油节流调速Flow control valves in inlet and outlet lines 双缸顺序控制Sequence control with two cylinders快进回路Rapid-traverse feed circuit差动回路Differential circuit分流阀Flow divider位移-步骤图Displacement-step diagram电液压系统Electrohydraulics阀类Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions 实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure 背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure峰值压力peak pressure运行压力operating pressure耐压试验压力proof pressure冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components 流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity气囊式蓄能器bladder accumulator空气污染air contamination固体颗粒污染solid contamination液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument液位计liquid level measuring instrument流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counter 电磁阀Solenoid valve单向阀Check valve插装阀Cartridge valve叠加阀Sandwich plate valve先导阀Pilot valve液控单向阀Pilot operated check valve板式安装Sub-plate mount集成块Manifold block压力溢流阀Pressure relief valve流量阀Flow valve节流阀Throttle valve双单向节流阀Double throttle check valve 旋钮Rotary knob节流板Rectifier plate伺服阀Servo valve比例阀Proportional valve位置反馈Position feedback渐增流量Progressive flow电磁铁释放De-energizing of solenoid二、介质类磷酸甘油酯Phosphate ester (HFD-R) 水-乙二醇Water-glycol (HFC)乳化液Emulsion缓蚀剂Inhibitor合成油Synthetic lubricating oil三、液压安装工程污染Contamination灌浆Grout失效Failure点动Jog爬行Creep摩擦Abrasion(活塞杆)伸出Retract(活塞杆)缩回Extension误动作Malfunction酸洗Pickling冲洗Flushing槽式酸洗Dipping process循环Re-circulation钝化Passivity柠檬酸Nitric acid氩气Argon对接焊Butt welding套管焊Socket welding惰性气体焊Inert gas welding四、管接头Bite type fittings 卡套式管接头Tube to tube fittings接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve耐油橡胶垫Oil resistant rubber pad。

液压元件中英文对照

液压元件中英文对照
泵的控制 control of pump
齿轮泵 gear pump
叶片泵 vane pump
柱塞泵 piston pump
轴向柱塞泵 axial piston pump
法兰安装 flange mounting
底座安装 foot mounting
液压马达 hydraulic motor
脉冲发生器 pulse generator
液压泵站 power station
空气处理单元 air conditioner unit
压力控制回路 pressure control circuit
安全回路 safety circuit
差动回路 differential circuit
调速回路 flow control circuit
气囊式蓄能器bladder accumulator
空气污染 air contamination
固体颗粒污染 solid contamination
液体污染 liquid contamination
空气过滤器 air filter
油雾气 lubricator
热交换器 heat exchanger
阀芯 valve element
阀芯位置 valve element position
单向阀 check valve
液控单向阀 pilot-controlled check valve
梭阀 shuttle valve
压力控制阀 pressure relief valve
溢流阀 pressure relief valve
进口节流回路 meter-in circuit

液压系统外文文献翻译、中英文翻译、外文翻译

液压系统外文文献翻译、中英文翻译、外文翻译

本科生毕业设计 (论文)外文翻译原文标题液压系统译文标题HYDRAULIC SYSTEMS作者所在系别作者所在专业作者所在班级作者姓名作者学号指导教师姓名指导教师职称完成时间2017 年 4 月15教务处制控制阀控制阀是操作者可访问的阀,用于引导系统内的流体流动以操作机器或其附件。

通过巧妙地使用控制阀,操作员可以调节液压缸的速度和运行。

注意:液压控制应平稳运行,以消除引起机器机械部件快速磨损和破坏的冲击运动。

执行机构(a)旋转叶片液压致动器,(b)线性液压致动器。

通过输入控制信号改变控制阀的位置,允许通过通道流动以操作致动器。

当致动器移动时,其运动沿反馈路径传递,从而抵消控制阀的原始运动。

因此,致动器的输出运动与输入控制运动成比例。

带反馈的旋转风门执行机构线性执行器(RAM)带反馈SPOOL阀门关闭和方向控制阀芯阀直接流到系统的各个部件,并可通过手柄,先导压力信号,电磁螺线管,电动马达和机械凸轮来操作。

用于滑动滑阀方向阀的典型应用是将流体控制到双作用液压缸,其在一个方向上移动时需要在活塞的一侧上的压力下的流体,而另一侧连接到排出管线。

在上述滑阀中,三位置阀芯通过反馈连杆保持在其位置。

在中央位置,所有部件都被锁定。

因此,显而易见的是,当阀芯保持中心时,气缸不能被轻便。

相对于各种端口移动阀芯的位置控制缺陷的方向,如果阀芯向左移动,高压油将通过阀门流到执行器的左侧。

同时,线性执行器的右侧将连接到排气口。

从而将线性致动器向右移动。

一旦致动器已经移动与控制运动成正比的一定量,线轴将自动地通过反馈链路移动到中心。

累积器描述液压蓄能器并解释其目的。

压力蓄能器用于需要储存压力能量以满足需求浪涌的液压系统中,它们还用于吸收液压冲击载荷,并在泵停止时保持压力时补偿小的内部泄漏。

最常见的蓄能器形式包括含有充气和加压柔性气囊的钢壳。

通过特殊阀将气囊预充到所需压力,然后密封以防止气体泄漏。

压力下的液压油进入蓄能器,压缩气囊,直到达到平衡。

液压系统-外文翻译

液压系统-外文翻译

Hydraulic SystemThere are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3.Actuators which convert hydraulic power to usable mechanical power output at the point required.4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.5.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marinetechnology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.Simplicity, safety, economy. In general, fluid power systems use fewer movingparts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment. There are only three basic methods of transmitting power: electrical, mechanical, and fluid power. Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use, it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modulation, and control of pressure and flow, and in general such systems include:Pumps which convert available power from the prime mover to hydraulic power at the actuator.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.Actuators which convert hydraulic power to usable mechanical power output at the point required.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of components, sealing in valves, and cooling of the system.Connectors which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank (reservoir).Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills , and general manufacturing , agricultural machines , mining industry , aviation , space technology , deep-sea exploration ,transportation , marine technology , and offshore gas petroleum exploration . In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulics.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromagnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automation because of advantages in the following four major categories.1. Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power systems can readily start, stop, speed up or slow down, and position force which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.2. Multiplication of force. A fluid power system (without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3. Constant force or torque. Only fluid power systems are capable of providing constant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4. Simplicity, safety, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, compactness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the sterring unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, ect . are eliminated. This provides a simple,compact systems.In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of controlspace require a small sterring wheel and it becomes necessary to reduce operator fatigue.Additional benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely. Also, most hydraulic oils can cause fires if an oil leak occurs in area of hot equipment.液压系统仅有以下三种基本方法传递动力:电气,机械和流体。

液压专业必备英文对照

液压专业必备英文对照

液压专业词汇流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure 峰值压力peak pressure运行压力operating pressure 耐压试验压力proof pressure 冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure 吸入压力suction pressure调压偏差override pressure 额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions 回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity 线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump 泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve 卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function 管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling 法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity 气囊式蓄能器bladder accumulator 空气污染air contamination固体颗粒污染solid contamination 液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating 压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument 液位计liquid level measuring instrument 流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counter Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)、流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve。

液压专业词汇中英文对照

液压专业词汇中英文对照

液压专业词汇流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions 实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure 背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure峰值压力peak pressure运行压力operating pressure耐压试验压力proof pressure冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumaticcomponents流体逻辑元件图形符号symbols for fluid logic devices 逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder 双作用缸double-acting cylinder 差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve 调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling 法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity 气囊式蓄能器bladder accumulator 空气污染air contamination固体颗粒污染solid contamination 液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument 液位计liquid level measuring instrument 流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counter Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)、流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure 背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure峰值压力peak pressure运行压力operating pressure 耐压试验压力proof pressure 冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure 吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump 泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing valve平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve 调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling 法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity 气囊式蓄能器bladder accumulator 空气污染air contamination固体颗粒污染solid contamination 液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR聚四氟乙烯polytetrafluoroethene;PTFE优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument 液位计liquid level measuring instrument 流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counterSolenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)、流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)插装阀(cartridge valve)叠加阀(superimposed valve补充:一、阀类Solenoid valve 电磁阀Check valve 单向阀Cartridge valve 插装阀Sandwich plate valve 叠加阀Pilot valve 先导阀Pilot operated check valve 液控单向阀Sub-plate mount 板式安装Manifold block 集成块Pressure relief valve 压力溢流阀Flow valve 流量阀Throttle valve 节流阀Double throttle check valve 双单向节流阀Rotary knob 旋钮Rectifier plate 节流板Servo valve 伺服阀Proportional valve 比例阀Position feedback 位置反馈Progressive flow 渐增流量De-energizing of solenoid 电磁铁释放二、介质类Phosphate ester (HFD-R) 磷酸甘油酯Water-glycol (HFC) 水-乙二醇Emulsion 乳化液Inhibitor缓蚀剂Synthetic lubricating oil 合成油三、液压安装工程Contamination 污染Grout 灌浆Failure 失效Jog 点动Creep爬行Abrasion 摩擦Retract(活塞杆)伸出Extension (活塞杆)缩回Malfunction 误动作Pickling 酸洗Flushing 冲洗Dipping process 槽式酸洗Re-circulation 循环Passivity 钝化Nitric acid 柠檬酸Argon 氩气Butt welding 对接焊Socket welding 套管焊Inert gas welding 惰性气体焊四、管接头Bite type fittings 卡套式管接头Tube to tube fittings 接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡。

桩工机械常用部件英语名称

桩工机械常用部件英语名称

一:液压系统有关词汇英文翻译液压卷杨机hydraulic ejector hydraulic elevator hydraulic platform 液压制动液hydraulic brake fluid液压油路hydraulic circuit液压操作阀hydraulic control valve液压控制hydraulic control液缸hydraulic cylinder液压升降机hydraulic hoist液压漏斗hydraulic hopper液压软管hydraulic hose液压管hydraulic tube hydraulic pipeline液压千斤顶hydraulic jack液压起重机hydraulic lift hydraulic crane液压马达hydraulic motor液压油回收器hydraulic oil saver液压油hydraulic oil液压操纵盘hydraulic panel液压管路系统hydraulic plumbing system液压传动hydraulic power-transmission液压油箱hydraulic reservoir hydraulic tank液压绳索升降机hydraulic rope-geared elevator液压系统图hydraulic scheme液压辅助绞车hydraulic utility winch液压阀hydraulic valve液压绞车hydraulic wireline winch液动绞车hydraulically-powered winch液压泵hydraulic pump封头套head cover限位螺杆stop screw锁头螺母locked head nut调节套adjustment sleeve刻度盘scale pointer变量头指针variable head pointer多路换向阀mulch-directional valve溢流阀overflow valve二:桩机基本组成的英文翻译电气系统Electrical system卷扬系统Windlass system回转系统Slewing system液压系统Hydraulic system减速机Reducer边桩器side piling machine主驾驶室main driver’s cabin压桩台pile pressing platform夹桩箱pile clamping box起重机crane升降机构vertial motion mechanism横移回转机构crossive motion and rotary mechanism 纵移机构longitudinal motion mechanism配重梁cantilever辅助配重梁assistant cantilever主压桩缸chief pile pressing cylinder副压桩缸assistant pile pressing cylinder压桩横梁pile pressing beam压桩立拄pile pressing column夹桩箱pile clamping box压桩球头pile pressing spherical head压桩绞座pile pressing winch动力室power room升降机构vertical motion mechanism机身main body油箱oil tank短船short boat回转平台rotary platform复位弹簧座return spring holder行走小车wheel carrier起吊钩lifting hook中心轴安装孔central axis hole夹桩油缸pile clamping cylinder夹桩油缸座pile clamping cylinder holder油缸法兰cylinder flange连接螺母connecting nut拉杆pulling rod连接块connecting block外曾钳口outer jaw内层钳口inner jaw钳口座jaw holder夹桩块pile clamping block内六角螺钉inner hexagonal screw复位弹簧安装孔return spring installation hole吊环螺钉孔hook bolt hole卡板block plate定位销stopper stop pin fixed pin复合轴承composite bearing轨轮wheel压盖press cover螺栓shaft油杯greasing cup调整垫adjusted underlay常压normal piling快压quick piling压桩piling加力adding force返回back松桩loosing pile夹桩clamping pile压桩操作手柄operation handles of pile pressing升降操作手柄vertical motion operating handles行走操作手柄moving operating handles浮机lifting machine三;桩机的相关英文词汇与短语解释label n:商标,标签,标志Vt:加上标签Eg: I labeled the trunk for Shanghai 我给皮箱贴上运往上海的标签manual n:手册,指南adj: 手的,手动的,手工的,手册(性质)的Handbookfirst-aid kit 急救箱protective articles 保全项目防护工具skintight work clothes 紧身工作服hard hat 安全帽safety glasses,goggles 护目镜veil 口罩respiratory veil 呼吸面罩earplug 耳塞vertical: adj:垂直的,智力的n: 垂直线,垂直面eg: Walls are usually vertical同义词:erect uprightparallel: adj H平行的,相同的,类似的,并联的n 平行线V 相应,平行Eg: the long boats of pile driver should be placed parallelswing : v: 摇摆,摆动,回转,旋转n: 秋千,摇摆,Eg: the swing of the crane jibdig: v 掘,挖,钻研,搜集eg: the excavator is digging a tunnel 挖掘机正在挖地道rotate v: (使)旋转eg: While pile driver is rotating, anyone should keep away from the range of the working arealongitudinal adj: 纵向的,经度的screw: n 螺丝丁, 螺旋,螺孔,vt: 调节旋加强拧vi: 转动旋拧Eg: He screwed the cylinders onto the pile pressing boxtorque: n 转矩扭矩driving torque 驱动扭矩jib: n (起重机的)臂crane jib elevator 升降机臂lubricant : adj 润滑的n 润滑剂,润滑油lubricate: vt: 使润滑,给~~~涂润滑油lubricate the connection nut 给拉杆涂润滑油repair 维修replace wearing or damaged partswearing adj: 穿用的使疲惫的磨损的entangle vt: 使缠上,纠缠,卷入Anyone should stay away from the working range to prevent hand, foot, hair and clothes from entangling the piledrivergear n: 齿轮,传动装置steering gear 转向装置gear less 无齿轮装置engine n 引擎发动机;机械工具器械engine lathe 普通车床leakage n: 漏渗漏泄露supercharge vt: 对~~增压,tighten v: 变紧绷紧拉紧拧紧eg: Will you tighten this screw of cylinders, they are very loose.high-pressured liquids 高压液体spray n: 喷雾飞溅vt: 喷射喷溅the spray of electrical sparkleweld vt 焊接n 焊接焊缝jointingfireproof adj: 耐火的放火的fireproof jacket 放火夹克vt: 使防水使耐火solvent n: 溶剂解决办法adj: 溶解的有溶解能力的incombustible adj: 不燃性的incombustible solvent 不可燃溶剂n: 不燃性物质rub out 把(记号,笔记)檫掉 rub out paint with abrasive papervolatilize v 挥发volatilize the paint of surfaceventilate vt 使通风给~~~装通风设备eg: paint removing should be operated at the ventilated outdoorflange n: 法兰边缘凸缘short circuit 短路shift n 移动位移v 替换转移check the machine before every shiftprecast vt 预浇制adj 预制的precast pile 预制桩mechanism n 机构机制装置the mechanism of pile pressing box 夹桩箱结构step-like moving mechanism 步履行走装置fluid drive mechanism液压传动机构piston n 活塞瓣the piston of pumpreel n (电线钢丝绳)卷轴the reel of ejector 升降机的卷轴valve n 阀活门clack valve 瓣阀rotary valve 回转阀hydraulic valve液压阀electromagnetic valve 电磁阀overflow valve 溢流阀ball valve 球阀pedal valve 脚踏阀grease n 黄油vt:涂脂于eg You put grease on a wheel to make it turn more easily 把黄油涂在轮子上使它转起来更灵活一些voltage n 电压伏特数the normal voltage of industrial electrical is 380V current n 电流malfunction n 故障The piling work began after the malfunction of pile clamping box was disposed properlyhoist v 提升n 起重机卷扬机hoist the pile and put it into the pile pressing boxseal n 封印封条the seals of hydraulic cylinder for clamping are worn四:配件1 桩机附件screw螺丝thumb screw大头螺丝screw plug 头塞set screw 固定螺丝hexagon headed bolt 六角头螺栓inner hexagon screw内六角螺钉hexagon nut 六角螺帽nut 螺母flange gasket 法兰垫片flange bolt 法兰螺钉thread螺纹helix螺旋pin销spring弹簧coil spring弹簧dowel pin管钉dowel pin固定销cross 十字接头locking block 定位块oil pressure gauge 油压表oil-filling plug 充油塞piston rod 活塞杆:2:装配工具jack 千斤顶kit 工具箱Pitchers 钳子pliers 铗钳spanner 扳手square 直角尺wrench 螺旋扳手Screw driver起子Electric screw driver电动起子Pneumatic screw driver气动起子trailer=long vehicle拖板车hydraulic hand jack油压板车grinder 砂轮机hammer 铁锤electrode 电焊条fixture 夹具(治具)lathe车床3:装配方法screw 拧螺丝gas cutting.气割arc cutting电弧切割grind off 磨掉arc welding 电弧焊Scribbling 划线second out file 中纹锉Welding: 焊接Threading: 车缧纹Leveling:校平Alignment:对准,定位调整check against 检查, 核对Fixing:固定welded joint焊接缝焊接节点fasten锁紧(螺丝)to file burr 锉毛刺radius 半径。

液压英语词汇

液压英语词汇

流体传动hydraulic power液压技术hydraulics液力技术hydrodynamics气液技术hydropneumatics运行工况operating conditions额定工况rated conditions极限工况limited conditions瞬态工况instantaneous conditions稳态工况steady-state conditions许用工况acceptable conditions连续工况continuous working conditions 实际工况actual conditions效率efficiency旋转方向direction of rotation公称压力nominal pressure工作压力working pressure进口压力inlet pressure出口压力outlet pressure压降pressure drop;differential pressure 背压back pressure启动压力breakout pressure充油压力charge pressure开启压力cracking pressure峰值压力peak pressure运行压力operating pressure耐压试验压力proof pressure冲击压力surge pressure静压力static pressure系统压力system pressure控制压力pilot pressure充气压力pre-charge pressure吸入压力suction pressure调压偏差override pressure额定压力rated pressure耗气量air consumption泄漏leakage内泄漏internal leakage外泄漏external leakage层流laminar flow紊流turbulent flow气穴cavitation流量flow rate排量displacement额定流量rated flow供给流量supply flow流量系数flower factor滞环hysteresis图形符号graphical symbol液压气动元件图形符号symbols for hydraulic and pneumatic components 流体逻辑元件图形符号symbols for fluid logic devices逻辑功能图形符号symbols for logic functions回路图circuit diagram压力-时间图pressure time diagram功能图function diagram循环circle自动循环automatic cycle工作循环working cycle循环速度cycling speed工步phase停止工步dwell phase工作工步working phase快进工步rapid advance phase快退工步rapid return phase频率响应frequency response重复性repeat ability复现性reproducibility漂移drift波动ripple线性度linearity线性区linear region液压锁紧hydraulic lock液压卡紧sticking变量泵variable displacement pump泵的控制control of pump齿轮泵gear pump叶片泵vane pump柱塞泵piston pump轴向柱塞泵axial piston pump法兰安装flange mounting底座安装foot mounting液压马达hydraulic motor刚度stiffness中位neutral position零位zero position自由位free position缸cylinder有杆端rod end无杆端rear end外伸行程extend stroke内缩行程retract stroke缓冲cushioning工作行程working stroke负载压力induced pressure输出力force实际输出力actual force单作用缸single-acting cylinder双作用缸double-acting cylinder差动缸differential cylinder伸缩缸telescopic cylinder阀valve底板sub-plate油路块manifold block板式阀sub-plate valve叠加阀sandwich valve插装阀cartridge valve滑阀slide valve锥阀poppet valve阀芯valve element阀芯位置valve element position单向阀check valve液控单向阀pilot-controlled check valve 梭阀shuttle valve压力控制阀pressure relief valve溢流阀pressure relief valve顺序阀sequence valve减压阀pressure reducing平衡阀counterbalance valve卸荷阀unloading valve直动式directly operated type先导式pilot-operated type机械控制式mechanically controlled type 手动式manually operated type液控式hydraulic controlled type流量控制阀flow control valve固定节流阀fixed restrictive valve可调节流阀adjustable restrictive valve 单向节流阀one-way restrictive valve调速阀speed regulator valve分流阀flow divider valve集流阀flow-combining valve截止阀shut-off valve球阀global(ball) valve针阀needle valve闸阀gate valve膜片阀diaphragm valve蝶阀butterfly valve噪声等级noise level放大器amplifier模拟放大器analogue amplifier数字放大器digital amplifier传感器sensor阈值threshold伺服阀servo-valve四通阀four-way valve喷嘴挡板nozzle flapper液压放大器hydraulic amplifier颤振dither阀极性valve polarity流量增益flow gain对称度symmetry流量极限flow limit零位内泄漏null(quiescent) leakage 遮盖lap零遮盖zero lap正遮盖over lap负遮盖under lap开口opening零偏null bias零漂null drift阀压降valve pressure drop分辨率resolution频率响应frequency response幅值比amplitude ratio相位移phase lag传递函数transfer function管路flow line硬管rigid tube软管flexible hose工作管路working line回油管路return line补液管路replenishing line控制管路pilot line泄油管路drain line放气管路bleed line接头fitting;connection焊接式接头welded fitting扩口式接头flared fitting快换接头quick release coupling法兰接头flange connection弯头elbow异径接头reducer fitting流道flow pass油口port闭式油箱sealed reservoir油箱容量reservoir fluid capacity气囊式蓄能器bladder accumulator空气污染air contamination固体颗粒污染solid contamination液体污染liquid contamination空气过滤器air filter油雾气lubricator热交换器heat exchanger冷却器cooler加热器heater温度控制器thermostat消声器silencer双筒过滤器duplex filter过滤器压降filter pressure drop有效过滤面积effective filtration area公称过滤精度nominal filtration rating压溃压力collapse pressure填料密封packing seal机械密封mechanical seal径向密封radial seal旋转密封rotary seal活塞密封piston seal活塞杆密封rod seal防尘圈密封wiper seal;scraper组合垫圈bonded washer复合密封件composite seal弹性密封件elastomer seal丁腈橡胶nitrile butadiene rubber;NBR 聚四氟乙烯polytetrafluoroethene;PTFE 优先控制override control压力表pressure gauge压力传感器electrical pressure transducer 压差计differential pressure instrument液位计liquid level measuring instrument流量计flow meter压力开关pressure switch脉冲发生器pulse generator液压泵站power station空气处理单元air conditioner unit压力控制回路pressure control circuit安全回路safety circuit差动回路differential circuit调速回路flow control circuit进口节流回路meter-in circuit出口节流回路meter-out circuit同步回路synchronizing circuit开式回路open circuit闭式回路closed circuit管路布置pipe-work管卡clamper联轴器drive shaft coupling操作台control console控制屏control panel避震喉compensator粘度viscosity运动粘度kinematic viscosity密度density含水量water content闪点flash point防锈性rust protection抗腐蚀性anti-corrosive quality便携式颗粒检测仪portable particle counter 电磁阀Solenoid valve单向阀Check valve插装阀Cartridge valve叠加阀Sandwich plate valve先导阀Pilot valve液控单向阀Pilot operated check valve板式安装Sub-plate mount集成块Manifold block压力溢流阀Pressure relief valve流量阀Flow valve节流阀Throttle valve双单向节流阀Double throttle check valve 旋钮Rotary knob节流板Rectifier plate伺服阀Servo valve比例阀Proportional valve位置反馈Position feedback渐增流量Progressive flow电磁铁释放De-energizing of solenoid二、介质类磷酸甘油酯Phosphate ester (HFD-R) 水-乙二醇Water-glycol (HFC)乳化液Emulsion缓蚀剂Inhibitor合成油Synthetic lubricating oil三、液压安装工程污染Contamination灌浆Grout失效Failure点动Jog爬行Creep摩擦Abrasion(活塞杆)伸出Retract(活塞杆)缩回Extension误动作Malfunction酸洗Pickling冲洗Flushing槽式酸洗Dipping process循环Re-circulation钝化Passivity柠檬酸Nitric acid氩气Argon对接焊Butt welding套管焊Socket welding惰性气体焊Inert gas welding四、管接头Bite type fittings 卡套式管接头Tube to tube fittings接管接头union 直通接管接头union elbow 直角管接头union tee 三通管接头union cross 四通管接头Mal stud fittings 端直通管接头Bulkhead fittings 长直通管接头Weld fittings 焊接式管接头Female connector fittings 接头螺母Reducers extenders 变径管接头Banjo fittings 铰接式管接头Adjustable fittings/swivel nut 旋转接头五、伺服阀及伺服系统性能参数Dynamic response 动态频响DDV-direct drive valve 直动式伺服阀NFPA-National Fluid Power Association 美国流体控制学会Phase lag 相位滞后Nozzle flapper valve 喷嘴挡板阀Servo-jet pilot valve 射流管阀Dither 颤振电流Coil impedance 线圈阻抗Flow saturation 流量饱和Linearity 线形度Symmetry 对称性Hysterics 滞环Threshold 灵敏度Lap 滞后Pressure gain 压力增益Null 零位Null bias 零偏Null shift 零飘Frequency response 频率响应Slope 曲线斜坡液压系统(hydraulic system)执行元件(actuator)液压缸(cylinder)液压马达(motor)液压回路(circuit)压力控制回路(pressure control)流量(速度)控制回路(speed control)方向控制回路(directional valve control)安全回路(security control)定位回路(position control)同步回路(synchronise circuit)顺序动作回路(sequeunt circuit)液压泵(pump)阀(valve)压力控制阀(pressure valve)流量控制阀(flow valve)方向控制阀(directional valve)液压辅件(accessory)普通阀(common valve)。

航空词汇知多少——液压系统

航空词汇知多少——液压系统

航空词汇知多少——液压系统
hydraulics
[英][haɪˈdrɒlɪks][美][haɪˈdrɔːlɪks]
[名]1.水力学
2.液压装置,液压系统
词汇解读
“hydraulics”的词根hydr来源于希腊神话中的九头蛇怪物海德拉(hydra),表示水。

所以hydraulics指与水有关系的知识集合,水力学。

到了现代,hydraulics变成了液压系统的专有名词。

液压系统可通过改变压强来增大作用力。

因为功率密度大、快速性好、刚度大,所以液压系统广泛应用于航空领域,被称为“飞行器的血管和肌肉”。

液压系统可分为两类:液压传动系统和液压控制系统。

机载液压
系统多为传递动力和运动之用,如操控舵机驱动、起落架收放等。

为保证飞行安全,飞机液压系统往往由几套相互独立的液压源系统组成。

作动力来自液压作动筒。

A380则将液压能与电能有效结合,采用了“2套液压系统和2套电系统”的配置。

电力作动技术的最大优势是取消了复杂的液压管路,减轻了系统重量。

但是需要增加的电缆和作动器,可能抵消这一优势。

未来很长一段时间内,传统机载液压系统和新型多电系统将并行发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

液压传动第十讲制动器力流体动力系统的优秀的特性之一是由电源产生,通过适当的控制和指导,并通过电线传输,就可以轻松转换到几乎任何类型的机械运动所需要用到的地方。

使用一个合适的驱动装置,可以获得线性(直线)或者是旋转运动。

驱动器是一种转换流体动力机械力和运动的装置。

缸、马达和涡轮机是最常见的将流体动力系统应用于驱动设备的类型。

这一章描述了各种类型的动作汽缸和他们的应用程序、不同类型的流体汽车和使用流体动力系统的涡轮机。

汽缸制动汽缸是一种将流体动力转换成线性或直线、力和运动的装置。

因为线性运动是沿着一条直线前后移动的往复运动。

这种类型的制动器有时被称为一个往复、或线性、电动机。

由ram或活塞组成的汽缸在一个圆柱孔内操作。

制动汽缸可以安装,以便汽缸被固定在一个固定的结构,ram或活塞被连接到该机制来操作,或者是活塞和ram可能被固定到固定结构,汽缸附加到机械装置来操作。

制动汽缸气动和液压系统的设计和操作是类似的。

一些变化的ram和活塞式制动汽缸的内容将在后面的段落中描述。

冲压式缸术语ram和活塞通常可以互换使用。

然而,一个冲压式缸通常被认为是一个截面积活塞杆超过一半的截面积活动元件。

在大多数这种类型的制动汽缸中,杆和活动元件各占一半。

这种类型的活动元件经常被称为柱塞。

冲压式缸主要是用来推动而不是拉。

一些应用程序需要ram的一部分在平坦的外部来推动或升降单位操作。

其他应用程序需要一些机械装置的附件,如一个U型夹或有眼螺栓。

冲压式缸的设计在很多其他方面不同,以满足不同应用程序的要求。

单作用千斤顶单作用千斤顶(如图:10-1)试用力只在一个方向。

流体定向的汽缸取代ram 和他外部的弹性元件,将物体举起放在上面。

当流体压力释放后,由于没有规定由流体动力缩回ram。

物体的重量或者是一些机械设备,比如一个弹簧,迫使ram回到汽缸。

这种流体能量就倒回到容器。

单作用冲压式汽缸通常用于液压千斤顶。

用于移动飞机的飞行甲板和机库甲板航空母舰的升降机也使用这种类型的汽缸。

在这些升降机中,汽缸是水平安装的,通过一系列的电缆和捆运行升降机。

流体压力产生ram的外在能量使升降机运行。

当从ram中释放出流体压力,升降机的重量迫使ram回到汽缸。

反过来,这迫使流体回容器。

双作用千斤顶一个双作用冲压式缸如图10-2。

在这个汽缸中,两个中风的ram都是由加压流体产生的。

它有两个流体端口,每一个都在或是接近汽缸的两端。

针对流体压力的封闭端缸扩展ram和应用力。

撤销ram和减少力、流体是指向截然相反的汽缸。

一个四通换向阀是通常用于控制双作用ram。

当阀门定位来扩展ram,加压流体进入端口A,作用于ram的地面,加强ram的外部力量。

对于在液压系统中的回流管,或者气动系统中的大气,通过控制阀门,高于ram边缘的流体是免费流出端口B的。

通常情况下,流体的压力和ram的中风是相同的。

记得第二章中,力等于压力乘以面积(F=PA)。

注意到不同的领域上的压力如图10-2所示。

在扩展中风期间,在ram适用力的同时,对抗大的表面积的压力是来自于ram的地下。

在收缩行程的过程中,ram不需要很大的动力。

作用于ram顶面的小面积的压力为收回ram提供了必要的动力。

伸缩式千斤顶图10-3显示了一个可伸缩的冲压式气缸。

一系列的ram是嵌在可伸缩的装配中。

除了最小的ram,每一个ram都是中空的,作为下一个较小的ram的油缸壳。

ram 装配主要包括活塞部件,它还提供了流体端口。

尽管这个装配需要一个小空间的ram收回,但是当ram扩展的时候,伸缩式行动的组装提供了一个相对长的冲程。

这种型号的汽缸的一个很好的例子是应用在自动倾卸卡车上。

它是用来解除前端的卡车床和转储负载。

在吊运作业,最大的力量是所需的初始提升的负载。

随着负载的提升并开始转储,所需的力量越来越少,直到负载是完全抛弃。

在提高循环时,加压流体通过端口A进入气缸,然后作用在ram的底部表面。

Ram 1有一个更大的表面积,因此提供了更大的力的初始负载,正如Ram 1完成它的行程所需的力是减少的,当Ram 2移动时,提供较小的力需要继续提高负载。

当ram 2完成它的行程,一个更小的力量是必需的。

是然后Ram 3往外移动完成提高和倾销负载。

一些可伸缩的冲压式的汽缸的单作用类型,像前面所讨论的单作用千斤顶,这些可伸缩的冲压式汽缸通过重力或机械力收回。

一些液压千斤顶配备了可伸缩的ram。

这样的千斤顶是用来提升车辆通过更小的间隙到达所需的高度。

其他类型的可伸缩的汽缸,如图10-3所示,是双作用类型。

在这种类型中,流体压力用于扩展和收缩中风。

一个四通换向阀是常用的控制操作的双作用类型。

注意在墙上的ram1和2的小通路。

他们提供了一个路径流体流向,在汽缸上面边缘的ram2和3之间。

在附加行程中,返回流体通过那些小通路和汽缸外面到达B端口。

然后流经换向阀来返回线路或蓄水池。

撤销ram,流体压力是通过B端口直接进入气缸的,然后反作用于三个ram 的边缘的表面区域。

这迫使ram收回了位置。

流离失所的流体从ram的另一侧通过A端口流出汽缸,通过换向阀来返回线路或蓄水池。

Fluid PowerNAVEDTRA 14105CHAPTER 10ACTUATORSOne of the outstanding features of fluid power systems is that force, generated by the power supply, controlled and directed by suitable valuing, and transported by lines, can be converted with ease to almost any kind of mechanical motion desired at the very place it is needed. Either linear (straight line) or rotary motion can be obtained by using a suitable actuating device. An actuator is a device that converts fluid power into mechanical force and motion. Cylinders, motors, and turbines are the most common types of actuating devices used in fluid power systems. This chapter describes various types of actuating cylinders and their applications, different typesof fluid motors, and turbines used in fluid power systems.CYLINDERSAn actuating cylinder is a device that converts fluid power to linear, or straight line, force and motion. Since linear motion is a back-and-forth motion along a straight line, this type of actuator is sometimes referred to as a reciprocating, or linear, motor. The cylinder consists of a ram or piston operating within a cylindrical bore. Actuating cylinders may be installed so that the cylinder is anchored to a stationary structure and the ram or piston is attached to the mechanism to be operated, or the piston or ram may be anchored to the stationary structure and the cylinder attached to the mechanism to be operated. Actuating cylinders for pneumatic and hydraulic systems are similar in design and operation. Some of the variations of ram- and piston-type actuating cylinders are described in the following paragraphs.RAM-TYPE CYLINDERSThe terms ram and piston are often used interchangeably. However, a ram-type cylinder is usually considered one in which the cross-sectional area of the piston rod is more than one-half the cross-sectional area of the movable element. In most actuating cylinders of this type, the rod and the movable element have equal areas. This type of movable element is frequently referred to as a plunger. The ram-type actuator is used primarily to push rather than to pull. Some applications require simply a flat surface on the external part of the ram for pushing or lifting the unit to be operated. Other applications require some mechanical means of attachment, such as a clevis or eyebolt. The design of ram-type cylinders varies in many other respects to satisfy the requirements of different applications. Single-Acting Ram The single-acting ram (fig. 10-1) applies force in only one direction. The fluid that is directed into the cylinder displaces the ram and forces it outward, lifting the object placed on it.Since there is no provision for retracting the ram by fluid power, when fluid pressure is released, either the weight of the object or some mechanical means, such as a spring, forces the ram back into the cylinder. This forces the fluid back to the reservoir. The single-acting ram-type actuating cylinder is often used in the hydraulic jack. The elevators used to move aircraft to and from the flight deck and hangar deck on aircraft carriers also use cylinders of this type. In these elevators, the cylinders are installed horizontally and operate the elevator through a series of cables and sheaves. Fluid pressure forces the ram outward and lifts the elevator. When fluid pressure is released from the ram, the weight of the elevator forces the ram back into the cylinder. This, in turn, forces the fluid back into the reservoir.Double-Acting RamA double-acting ram-type cylinder is illustrated in figure 10-2. In this cylinder, both strokes of the ram are produced by pressurized fluid. There are two fluid ports, one at or near each end of the cylinder. Fluid under pressure is directed to the closed end of the cylinder to extend the ram and apply force. To retract the ram and reduce the force, fluid is directed to the opposite end of the cylinder. A four-way directional control valve is normally used to control the double-acting ram. When the valve is positioned to extend the ram, pressurized fluid enters port A (fig. 10-2), acts on the bottom surface of the ram, and forces the ram outward.Fluid above the ram lip is free to flow out of port B, through the control valve, and to the return line in hydraulic systems or to the atmosphere in pneumatic systems. Normally, the pressure of the fluid is the same for either stroke of the ram. Recall from chapter 2 that force is equal to pressure times area (F= PA). Notice the difference of the areas upon which the pressure acts in figure 10-2. The pressure acts against the large surface area on the bottom of the ram during the extension stroke, during which time the ram applies force. Since the ram does not require a large force during the retraction stroke, pressure acting on the small area on the top surface of the ram lip provides the necessary force to retract the ram.Telescoping RamsFigure 10-3 shows a telescoping ram-type actuating cylinder. A series of rams is nested in the telescoping assembly. With the exception of the smallest ram, each ram is hollow and serves as the cylinder housing for the next smaller ram. The ram assembly is contained in the main cylinder assembly, which also provides the fluid ports. Although the assembly requires a small space with all the rams retracted, the telescoping action of the assembly provides a relatively long stroke when the rams are extended. An excellent example of the application of this type of cylinder is in the dump truck. It is used to lift the forward end of the truck bed and dump the load. During the lifting operation, the greatest force is required for the initial lifting of the load.As the load is lifted and begins to dump, the required force becomes less and less until the load is completely dumped. During the raise cycle, pressurized fluid enters the cylinder through port A (fig. 10-3) and acts on the bottom surface of all three rams. Ram 1 has a larger surface area and, therefore, provides the greater force for the initial load, As ram 1 reaches the end of its stroke and the required force is decreased, ram 2 moves, providing the smaller force needed to continue raising the load. When ram 2 completes its stroke, a still smaller force is required. Ram 3 then moves outward to finish raising and dumping the load. Some telescoping ram-type cylinders are of the single-acting type. Like the single-acting ram discussed previously, these telescoping ram-type cylinders are retracted by gravity or mechanical force. Some hydraulic jacks are equipped with telescoping rams. Such jacks are used to lift vehicles with low clearances to the required height. Other types of telescoping cylinders, like the one illustrated in figure 10-3, are of thedouble-acting type. In this type, fluid pressure is used for both the extension and retraction strokes. A four-way directional control valve is commonly used to control the operation of the double-acting type. Note the small passages in the walls of rams 1 and 2. They provide a path for fluid to flow to and from the chambers above the lips of rams 2 and 3. During the extension stroke, return fluid flows through these passages and out of the cylinder through port B. It then flows through the directional control valve to the return line or reservoir. To retract the rams, fluid under pressure is directed into the cylinder through port B and acts against the top surface areas of all three ram lips. This forces the rams to the retracted position. The displaced fluid from the opposite side of the rams flows out of the cylinder through port A, through the directional control valve to the return line or reservoir.。

相关文档
最新文档