杭州市2018年中考数学试题-(word版-含答案)
2018年浙江省杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
2018年杭州市中考数学真题试题(含答案)
杭州市2018年中考数学试题(含答案)一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
2018年浙江省杭州市中考数学试卷含答案解析
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市2018年中考数学真题试题(含解析)
浙江省杭州市2018年中考数学真题试题一、选择题1.=()A. 3B. -3 C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106 C. 18×105 D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B.C.D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D 不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差 C. 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B.C.D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
2018年杭州市中考数学试卷及答案(word解析版)
2018年浙江省杭州市中考数学试卷一.选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案.1.(2018杭州)下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称的定义,结合各选项进行判断即可.解答:解:A.不是轴对称图形,故本选项错误;B.不是轴对称图形,故本选项错误;C.不是轴对称图形,故本选项错误;D.是轴对称图形,故本选项正确;故选D.点评:本题考查了轴对称图形的知识,判断轴对称的关键寻找对称轴,属于基础题.2.(2018杭州)下列计算正确的是()A.m3+m2=m5B.m3m2=m6 C.(1﹣m)(1+m)=m2﹣1 D.考点:平方差公式;合并同类项;同底数幂的乘法;分式的基本性质.分析:根据同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质即可判断.解答:解:A.不是同类项,不能合并,故选项错误;B.m3m2=m5,故选项错误;C.(1﹣m)(1+m)=1﹣m2,选项错误;D.正确.故选D.点评:本题考查了同类项的定义,以及同底数的幂的乘法法则,平方差公式,分式的基本性质,理解平方差公式的结构是关键.3.(2018杭州)在▱ABCD中,下列结论一定正确的是()A.AC⊥BD B.∠A+∠B=180°C.AB=AD D.∠A≠∠C考点:平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠A+∠B=180°.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°.故选B.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.4.(2018杭州)若a+b=3,a﹣b=7,则ab=()A.﹣10 B.﹣40 C.10 D.40考点:完全平方公式.专题:计算题.分析:联立已知两方程求出a与b的值,即可求出ab的值.解答:解:联立得:,解得:a=5,b=﹣2,则ab=﹣10.故选A.点评:此题考查了解二元一次方程组,求出a与b的值是解本题的关键.5.(2018杭州)根据2018-2019年杭州市实现地区生产总值(简称GDP,单位:亿元)统计图所提供的信息,下列判断正确的是()A.2018-2019年杭州市每年GDP增长率相同B.2018年杭州市的GDP比2018年翻一番C.2018年杭州市的GDP未达到5500亿元D.2018-2019年杭州市的GDP逐年增长考点:条形统计图.分析:根据条形统计图可以算2018年-2019年GDP增长率,2018年-2019年GDP增长率,进行比较可得A的正误;根据统计图可以大约得到2018年和2018年GDP,可判断出B的正误;根据条形统计图可得2018年杭州市的GDP,可判断出C的正误,根据条形统计图可直接得到2018-2019年杭州市的GDP逐年增长.解答:解:A.2018年-2019年GDP增长率约为:=,2018年-2019年GDP增长率约为=,增长率不同,故此选项错误;B.2018年杭州市的GDP约为7900,2018年GDP约为4900,故此选项错误;C.2018年杭州市的GDP超过到5500亿元,故此选项错误;D.2018-2019年杭州市的GDP逐年增长,故此选项正确,故选:D.点评:本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.6.(2018杭州)如图,设k=(a>b>0),则有()A.k>2 B.1<k<2 C.D.考点:分式的乘除法.专题:计算题.分析:分别计算出甲图中阴影部分面积及乙图中阴影部分面积,然后计算比值即可.解答:解:甲图中阴影部分面积为a2﹣b2,乙图中阴影部分面积为a(a﹣b),则k====1+,∵a>b>0,∴0<<1,故选B.点评:本题考查了分式的乘除法,会计算矩形的面积及熟悉分式的运算是解题的关键.7.(2018杭州)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点 C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径考点:直线与圆的位置关系;命题与定理.分析:根据直线与圆的位置关系进行判断即可.解答:解:A.圆心到两条直线的距离都等于圆的半径时,两条直线可能垂直,故本选项错误;B.当两圆经过两条直线的交点时,圆与两条直线有三个交点;C.两条平行弦所在直线没有交点,故本选项正确;D.两条平行弦之间的距离一定小于直径,但不一定小于半径,故本选项错误,故选C.点评:本题考查了直线与圆的位置关系、命题与定理,解题的关键是熟悉直线与圆的位置关系.8.(2018杭州)如图是某几何体的三视图,则该几何体的体积是()A.B.C.D.考点:由三视图判断几何体.分析:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2.根据正六棱柱的体积=底面积×高即可求解.解答:解:由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,所以该几何体的体积=6××62×2=108.故选C.点评:本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键.9.(2018杭州)在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A.B.C.D.考点:解直角三角形.专题:计算题.分析:在直角三角形ABC中,由AB与sinA的值,求出BC的长,根据勾股定理求出AC的长,根据面积法求出CD的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S△ABC=AC•BC=AB•CD,∴CD==.故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.10.(2018杭州)给出下列命题及函数y=x,y=x2和y=①如果,那么0<a<1;②如果,那么a>1;③如果,那么﹣1<a<0;④如果时,那么a<﹣1.则()A.正确的命题是①④B.错误的命题是②③④ C.正确的命题是①②D.错误的命题只有③考点:二次函数与不等式(组);命题与定理.分析:先确定出三函数图象的交点坐标为(1,1),再根据二次函数与不等式组的关系求解即可.解答:解:易求x=1时,三个函数的函数值都是1,所以,交点坐标为(1,1),根据对称性,y=x和y=在第三象限的交点坐标为(﹣1,﹣1),①如果,那么0<a<1正确;②如果,那么a>1或﹣1<a<0,故本小题错误;③如果,那么a值不存在,故本小题错误;④如果时,那么a<﹣1正确.综上所述,正确的命题是①④.故选A.点评:本题考查了二次函数与不等式组的关系,命题与定理,求出两交点的坐标,并准确识图是解题的关键.二.填空题(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11.(2018杭州)32×3.14+3×(﹣9.42)= .考点:有理数的混合运算.分析:根据32×3.14+3×(﹣9.42)=3×9.42﹣3×(﹣9.42)即可求解.解答:解:原式=3×9.42﹣3×(﹣9.42)=0.故答案是:0.点评:本题考查了有理数的混合运算,理解运算顺序是关键.12.(2018杭州)把7的平方根和立方根按从小到大的顺序排列为.考点:实数大小比较.专题:计算题.分析:先分别得到7的平方根和立方根,然后比较大小.解答:解:7的平方根为﹣,;7的立方根为,所以7的平方根和立方根按从小到大的顺序排列为﹣<<.故答案为:﹣<<.点评:本题考查了实数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.13.(2018杭州)在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sinA=;②cosB=;③tanA=;④tanB=,其中正确的结论是(只需填上正确结论的序号)考点:特殊角的三角函数值;含30度角的直角三角形.专题:探究型.分析:先根据题意画出图形,再由直角三角形的性质求出各角的度数,由特殊角的三角函数值即可得出结论.解答:解:如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sinA==,故①错误;∴∠A=30°,∴∠B=60°,∴cosB=cos60°=,故②正确;∵∠A=30°,∴tanA=tan30°=,故③正确;∵∠B=60°,∴tanB=tan60°=,故④正确.故答案为:③③④.点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(2018杭州)杭州市某4所高中近两年的最低录取分数线如下表(单位:分),设4所高中2018年和2018年的平均最低录取分数线分别为,,则= 分杭州市某4所高中最低录取分数线统计表考点:算术平均数.分析:先算出2018年的平均最低录取分数线和2018年的平均最低录取分数线,再进行相减即可.解答:解:2018年的平均最低录取分数线=(438+435+435+435)÷4=435.75(分),2018年的平均最低录取分数线=(442+442+439+439)÷4=440.5(分),则=440.5﹣435.75=4.75(分);故答案为:4.75.点评:此题考查了算术平均数,掌握平均数的计算公式是解题的关键,是一道基础题,比较简单.15.(2018杭州)四边形ABCD是直角梯形,AB∥CD,AB⊥BC,且BC=CD=2,AB=3,把梯形ABCD 分别绕直线AB,CD旋转一周,所得几何体的表面积分别为S1,S2,则|S1﹣S2|= (平方单位)考点:圆锥的计算;点、线、面、体;圆柱的计算.分析:梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差.解答:解:AB旋转一周形成的圆柱的侧面的面积是:2π×2×3=12π;AC旋转一周形成的圆柱的侧面的面积是:2π×2×2=8π,则|S1﹣S2|=4π.故答案是:4π.点评:本题考查了图形的旋转,理解梯形ABCD分别绕直线AB,CD旋转一周所得的几何体的表面积的差就是AB和CD旋转一周形成的圆柱的侧面的差是关键.16.(2018杭州)射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,cm 为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值(单位:秒)考点:切线的性质;等边三角形的性质.专题:分类讨论.分析:求出AB=AC=BC=4cm,MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:画出图形,结合图形求出即可;解答:解:∵△ABC是等边三角形,∴AB=AC=BC=AM+MB=4cm,∠A=∠C=∠B=60°,∵QN∥AC,AM=BM.∴N为BC中点,∴MN=AC=2cm,∠BMN=∠BNM=∠C=∠A=60°,分为三种情况:①如图1,当⊙P切AB于M′时,连接PM′,则PM′=cm,∠PM′M=90°,∵∠PMM′=∠BMN=60°,∴M′M=1cm,PM=2MM′=2cm,∴QP=4cm﹣2cm=2cm,即t=2;②如图2,当⊙P于AC切于A点时,连接PA,则∠CAP=∠APM=90°,∠PMA=∠BMN=60°,AP=cm,∴PM=1cm,∴QP=4cm﹣1cm=m,即t=3,当当⊙P于AC切于C点时,连接PC,则∠CP′N=∠ACP′=90°,∠P′NC=∠BNM=60°,CP′=cm,∴P′N=1cm,∴QP=4cm+2cm+1cm=7cm,即当3≤t≤7时,⊙P和AC边相切;③如图1,当⊙P切BC于N′时,连接PN′3则PN′=cm,∠PM\N′N=90°,∵∠PNN′=∠BNM=60°,∴N′N=1cm,PN=2NN′=2cm,∴QP=4cm+2cm+2cm=8cm,即t=8;故答案为:t=2或3≤t≤7或t=8.点评:本题考查了等边三角形的性质,平行线的性质,勾股定理,含30度角的直角三角形性质,切线的性质的应用,主要考查学生综合运用定理进行计算的能力,注意要进行分类讨论啊.三.解答题(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(2018杭州)如图,四边形ABCD是矩形,用直尺和圆规作出∠A的平分线与BC边的垂直平分线的交点Q(不写作法,保留作图痕迹).连结QD,在新图形中,你发现了什么?请写出一条.考点:作图—复杂作图.分析:根据角平分线的作法以及线段垂直平分线的作法得出Q点位置,进而利用垂直平分线的作法得出答案即可.解答:解:如图所示:发现:DQ=AQ或者∠QAD=∠QDA等等.点评:此题主要考查了复杂作图以及线段垂直平分线的作法和性质等知识,熟练应用其性质得出系等量关系是解题关键.18.(2018杭州)当x满足条件时,求出方程x2﹣2x﹣4=0的根.考点:解一元二次方程-公式法;解一元一次不等式组.分析:通过解一元一次方程组求得2<x<4.然后利用求根公式x=求得方程程x2﹣2x﹣4=0的根,由x的取值范围来取舍该方程的根.解答:解:由求得,则2<x<4.解方程x2﹣2x﹣4=0可得x1=1+,x2=1﹣,∵2<<3,∴3<1+<4,符合题意∴x=1+.点评:本题考查了解一元二次方程﹣﹣公式法,解一元一次不等式组.要会熟练运用公式法求得一元二次方程的解.19.(2018杭州)如图,在等腰梯形ABCD中,AB∥DC,线段AG,BG分别交CD于点E,F,DE=CF.求证:△GAB是等腰三角形.考点:等腰梯形的性质;全等三角形的判定与性质;等腰三角形的判定.专题:证明题.分析:由在等腰梯形ABCD中,AB∥DC,DE=CF,利用SAS,易证得△ADE≌△BCF,即可得∠DAE=∠CBF,则可得∠GAB=∠GBA,然后由等角对等边,证得:△GAB是等腰三角形.解答:证明:∵在等腰梯形中ABCD中,AD=BC,∴∠D=∠C,∠DAB=∠CBA,在△ADE和△BCF中,,∴△ADE≌△BCF(SAS),∴∠DAE=∠CBF,∴∠GAB=∠GBA,∴GA=GB,即△GAB为等腰三角形.点评:此题考查了等腰梯形的性质、全等三角形的判定与性质以及等腰三角形的判定.此题难度不大,注意掌握数形结合思想的应用.20.(2018杭州)已知抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A,B(点A,B在原点O两侧),与y 轴相交于点C,且点A,C在一次函数y2=x+n的图象上,线段AB长为16,线段OC长为8,当y1随着x的增大而减小时,求自变量x的取值范围.考点:二次函数的性质;抛物线与x轴的交点.专题:分类讨论.分析:根据OC的长度确定出n的值为8或﹣8,然后分①n=8时求出点A的坐标,然后确定抛物线开口方向向下并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围;②n=﹣8时求出点A的坐标,然后确定抛物线开口方向向上并求出点B的坐标,再求出抛物线的对称轴解析式,然后根据二次函数的增减性求出x的取值范围.解答:解:根据OC长为8可得一次函数中的n的值为8或﹣8.分类讨论:①n=8时,易得A(﹣6,0)如图1,∵抛物线经过点A、C,且与x轴交点A、B在原点的两侧,∴抛物线开口向下,则a<0,∵AB=16,且A(﹣6,0),∴B(10,0),而A、B关于对称轴对称,∴对称轴直线x==2,要使y1随着x的增大而减小,则a<0,∴x>2;(2)n=﹣8时,易得A(6,0),如图2,∵抛物线过A、C两点,且与x轴交点A,B在原点两侧,∴抛物线开口向上,则a>0,∵AB=16,且A(6,0),∴B(﹣10,0),而A、B关于对称轴对称,∴对称轴直线x==﹣2,要使y1随着x的增大而减小,且a>0,∴x<﹣2.点评:本题考查了二次函数的性质,主要利用了一次函数图象上的点的坐标特征,二次函数的增减性,难点在于要分情况讨论.21.(2018杭州)某班有50位学生,每位学生都有一个序号,将50张编有学生序号(从1号到50号)的卡片(除序号不同外其它均相同打乱顺序重新排列,从中任意抽取1张卡片(1)在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),求取到的卡片上序号是20的倍数或能整除20的概率;(2)若规定:取到的卡片上序号是k(k是满足1≤k≤50的整数),则序号是k的倍数或能整除k(不重复计数)的学生能参加某项活动,这一规定是否公平?请说明理由;(3)请你设计一个规定,能公平地选出10位学生参加某项活动,并说明你的规定是符合要求的.考点:游戏公平性.分析:(1)由在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),直接利用概率公式求解即可求得答案;(2)由无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.可知此游戏不公平;(3)可设计为:先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.解答:解:(1)∵在序号中,是20的倍数的有:20,40,能整除20的有:1,2,4,5,10(为了不重复计数,20只计一次),∴是20倍数或者能整除20的数有7个,则取到的卡片上序号是20的倍数或能整除20的概率为:;(2)不公平,∵无论k取何值,都能被1整除,则序号为1的学生被抽中的概率为1,即100%,而很明显抽到其他序号学生概率不为100%.∴不公平;(3)先抽出一张,记下数字,然后放回.若下一次抽到的数字与之前抽到过的重复,则不记数,放回,重新抽取.不断重复,直至抽满10个不同的数字为止.(为保证每个数字每次被抽到的概率都是)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.22.(2018杭州)(1)先求解下列两题:①如图①,点B,D在射线AM上,点C,E在射线AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度数;②如图②,在直角坐标系中,点A在y轴正半轴上,AC∥x轴,点B,C的横坐标都是3,且BC=2,点D在AC上,且横坐标为1,若反比例函数的图象经过点B,D,求k的值.(2)解题后,你发现以上两小题有什么共同点?请简单地写出.考点:等腰三角形的性质;反比例函数图象上点的坐标特征.分析:(1)①根据等边对等角可得∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,然后用∠A表示出∠EDM,计算即可求解;②先根据反比例函数图象上的点的坐标特征表示出点B的坐标,再表示出点C的坐标,然后根据AC∥x 轴可得点C、D的纵坐标相同,从而表示出点D的坐标,再代入反比例函数解析式进行计算即可得解.(2)从数学思想上考虑解答.解答:解:(1)①∵AB=BC=CD=DE,∴∠A=∠BCA,∠CBD=∠BDC,∠ECD=∠CED,根据三角形的外角性质,∠A+∠BCA=∠CBD,∠A+∠CDB=∠ECD,∠A+∠CED=∠EDM,又∵∠EDM=84°,∴∠A+3∠A=84°,解得,∠A=21°;②∵点B在反比例函数y=图象上,点B,C的横坐标都是3,∴点B(3,),∵BC=3,∴点C(3,+2),∵AC∥x轴,点D在AC上,且横坐标为1,∴A(1,+2),∵点A也在反比例函数图象上,∴+2=k,解得,k=3;(2)用已知的量通过关系去表达未知的量,使用转换的思维和方法.(开放题)点评:本题考查了等腰三角形两底角相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,以及反比例函数图象上点的坐标特征,是基础题.23.(2018杭州)如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E 在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1.(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.考点:四边形综合题.分析:(1)利用正方形与三角形的相关角之间的关系可以证明结论;(2)本问关键是求出y与x之间的函数解析式.①首先分别用x表示出S1与S2,然后计算出y与x的函数解析式.这是一个二次函数,求出其最大值;②注意中心对称、轴对称的几何性质.解答:(1)证明:∵∠EPF=45°,∴∠APE+∠FPC=180°﹣45°=135°;而在△PFC中,由于PF为正方形ABCD的对角线,则∠PCF=45°,则∠CFP+∠FPC=180°﹣45°=135°,∴∠APE=∠CFP.(2)解:①∵∠APE=∠CFP,且∠FCP=∠PAE=45°,∴△APE∽△CPF,则.而在正方形ABCD中,AC为对角线,则AC=AB=,又∵P为对称中心,则AP=CP=,∴AE===.如图,过点P作PH⊥AB于点H,PG⊥BC于点G,P为AC中点,则PH∥BC,且PH=BC=2,同理PG=2.S△APE==×2×=,∵阴影部分关于直线AC轴对称,∴△APE与△APN也关于直线AC对称,则S四边形AEPN=2S△APE=;而S2=2S△PFC=2×=2x,∴S1=S正方形ABCD﹣S四边形AEPN﹣S2=16﹣﹣2x,∴y===+﹣1.∵E在AB上运动,F在BC上运动,且∠EPF=45°,∴2≤x≤4.令=a,则y=﹣8a2+8a﹣1,当a==,即x=2时,y取得最大值.而x=2在x的取值范围内,代入x=2,则y最大=4﹣2﹣1=1.∴y关于x的函数解析式为:y=+﹣1(2≤x≤4),y的最大值为1.②图中两块阴影部分图形关于点P成中心对称,而此两块图形也关于直线AC成轴对称,则阴影部分图形自身关于直线BD对称,则EB=BF,即AE=FC,∴=x,解得x=,代入x=,得y=﹣2.点评:本题是代数几何综合题,考查了正方形的性质、相似三角形、二次函数的解析式与最值、几何变换(轴对称与中心对称)、图形面积的计算等知识点,涉及的考点较多,有一定的难度.本题重点与难点在于求出y与x的函数解析式,在计算几何图形面积时涉及大量的计算,需要细心计算避免出错.。
杭州市2018年中考数学试题含答案
2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分) 1. 3-=( ) A. 3 B. 3- C.31 D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯ 3.下列计算正确的是( ) A.222= B. 222±= C. 242= D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( ) A.方差 B. 标准差 C. 中位数 D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( ) A.AN AM > B. AN AM ≥ C. AN AM < D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20=-y x B. 20=+y x C. 6025=-y x D. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( ) A.61 B. 31C. 21D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A. ()︒=++30-3241θθθθ)(B. ()︒=++40-3142θθθθ)(C. ()︒=++70-4321θθθθ)(D. ()︒=+++1804321θθθθ)(9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A. 甲 B.乙 C. 丙 D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则23S S >B. 若AB AD >2,则23S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分) 11.计算:=-a a 312.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠213.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1, 则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
(word完整版)2018年杭州市中考数学试卷含答案解析(Word版)(2),推荐文档
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E 两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省2018中考数学真题(含答案)(Word精校版)
2018年杭州市初中毕业升学文化考试数学一、选择题:本大题有10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项最符合题目要求的。
1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()(第8题)A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()(第10题)A. 若,则B. 若,则C. 若,则D. 若,则二、填空题:本大题有6个小题,每小题4分,共24分。
11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
2018年杭州市中考数学试卷含答案解析(Word版)
浙江省杭州市2018年中考数学试题一、选择题 (∙∙∙ )✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙数据 用科学计数法表示为(∙∙∙ )✌∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙ ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙ ∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙ ∙下列计算正确的是(∙ ∙∙)✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙∙∙∙∙∙∙测试五位学生❽一分钟跳绳❾成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( ∙∙∙) ✌∙方差∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙标准差∙∙∙∙∙∙∙∙ ∙中位数∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙平均数若线段✌,✌☠分别是△✌边上的高线和中线,则(∙∙∙ ) ✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙∙某次知识竞赛共有 道题,规定:每答对一题得 分,每答错一题得 分,不答的题得 分。
已知圆圆这次竞赛得了 分,设圆圆答对了 道题,答错了 道题,则(∙ ∙∙)✌∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙ ∙∙ ∙ ∙∙∙∙∙ ∙∙∙ ∙一个两位数,它的十位数字是 ,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字 )朝上一面的数字。
2018年杭州市中考数学试题含答案
浙江省杭州市2018年中考数学试题一、选择题1.=()A.3B.-3C.D.2.数据1800000用科学计数法表示为()A.1.86B.1.8×106C.18×105D.18×1063.下列计算正确的是()A.B.C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A.方差B.标准差C.中位数D.平均数5.若线段AM ,AN 分别是△ABC 边上的高线和中线,则()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A.B.C.D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.B.C.D.8.如图,已知点P 矩形ABCD 内一点(不含边界),设,,,,若,,则()A. B.C.D.9.四位同学在研究函数(b ,c 是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.如图,在△ABC 中,点D 在AB 边上,DE ∥BC ,与边AC 交于点E ,连结BE ,记△ADE ,△BCE 的面积分别为S 1,S 2,()A.若,则B.若,则C.若,则D.若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
浙江省杭州市2018年中考数学试题(含答案)
2018年杭州市中考数学试题一、选择题(本题有10小题,每小题3分,共30分)1. 3-=( ) A. 3 B. 3- C. 31 D. 31- 2.数据1800000用科学计数法表示为( ) A.68.1 B.6108.1⨯ C. 51018⨯ D. 61018⨯3.下列计算正确的是( )A. 222=B. 222±=C. 242=D. 242±=4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是( )A.方差B. 标准差C. 中位数D. 平均数5.若线段 AM ,AN 分别是ABC ∆边上的高线和中线,则( )A.AN AM >B. AN AM ≥C. AN AM <D. AN AM ≤6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A. 20=-y xB. 20=+y xC. 6025=-y xD. 6025=+y x7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1~6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A. 61B. 31C. 21 D. 32 8.如图,已知点P 矩形ABCD 内一点(不含边界),设1θ=∠PAD ,2θ=∠PBA ,3θ=∠PCB ,4θ=∠PDC ,若︒=∠︒=∠50,80CPD APB ,则( )A.()︒=++30-3241θθθθ)( B. ()︒=++40-3142θθθθ)( C.()︒=++70-4321θθθθ)( D. ()︒=+++1804321θθθθ)( 9.四位同学在研究函数是常数)c b c bx ax y ,(2++=时,甲发现当1=x 时,函数有最小值;乙发现1-是方程02=++c bx ax 的一个根;丙发现函数的最小值为3;丁发现当2=x 时,4=y .已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A. 甲B.乙C. 丙D.丁10.如图,在ABC ∆中,点D 在AB 边上,BC DE //,与边AC 交于点E ,连结BE ,记BCE ADE ∆∆,的面积分别为21,S S ,( )A. 若AB AD >2,则2123S S >B. 若AB AD >2,则2123S S <C. 若AB AD <2,则2123S S >D. 若AB AD <2,则2123S S <二、填空题(本大题共有6个小题,每小题4分,共24分)11.计算:=-a a 3 12.如图,直线b a //,直线c 与直线b a ,分别交于A,B ,若︒=∠451,则=∠2 13.因式分解:()()=---a b b a 214.如图,AB 是⊙的直径,点C 是半径OA 的中点,过点C 作AB DE ⊥,交O 于点D 、E 两点,过点D 作直径DF ,连结AF ,则=∠DFA15.某日上午,甲、乙两车先后从A 地出发沿一条公路匀速前往B 地,甲车8点出发,如图是其行驶路程s (千米)随行驶时间t (小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v (单位:千米/小时)的范围是16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE ∆翻折,点A 落在DC 边上的点F 处,折痕为DE ,点E 在AB 边上;②把纸片展开并铺平;③把CDG ∆翻折,点C 落在直线AE 上的点H 处,折痕为DG ,点G 在BC 边上,若AB=AD+2,EH=1,则AD=三、简答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)17.(本题满分6分)已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v (单位:吨0/小时),卸完这批货物所需的时间为t (单位:小时)。
2018杭州市中考数学试题含答案解析[]
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C. D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B.C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C.D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B.C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1, S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
(完整版),2018年杭州市中考数学试卷含答案解析(版),推荐文档
浙江省杭州市2018年中考数学试题一、选择题1.=()A. 3B. -3C.D.2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×1063.下列计算正确的是()A. B. C. D.4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差C. 中位数D. 平均数5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
已知圆圆这次竞赛得了60分,设圆圆答对了道题,答错了道题,则()A. B. C. D.7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别有数字1—6)朝上一面的数字。
任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A. B. C. D.8.如图,已知点P矩形ABCD内一点(不含边界),设,,,,若,,则()A. B.C. D.9.四位同学在研究函数(b,c是常数)时,甲发现当时,函数有最小值;乙发现是方程的一个根;丙发现函数的最小值为3;丁发现当时,.已知这四位同学中只有一位发现的结论是错误的,则该同学是()A. 甲B. 乙C. 丙D. 丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,()A. 若,则B. 若,则C. 若,则D. 若,则二、填空题11.计算:a-3a=________。
12.如图,直线a∥b,直线c与直线a,b分别交于A,B,若∠1=45°,则∠2=________。
13.因式分解:________14.如图,AB是⊙的直径,点C是半径OA的中点,过点C作DE⊥AB,交O于点D,E两点,过点D作直径DF,连结AF,则∠DEA=________。
2018浙江杭州中考数学试卷(含解析)
2018年浙江杭州市初中毕业、升学考试数学学科(满分120分,考试时间120分钟)一、选择题:本大题共10小题,每小题3分,共30分.不需写出解答过程,请把最后结果填在题后括号内. 1.(2018浙江杭州,1,3分) |-3|=( ) A.3 B.-3 C.13 D. 13- 【答案】D【解析】负数的绝对值等于它的相反数,|-3|=3,故选择D 【知识点】负数的绝对值等于它的相反数 2.(2018浙江杭州,2,3分)数据1 800 000用科学计数法表示为( ) A. 61.8 B. 61.810⨯ C. 51.810⨯ D. 61810⨯ 【答案】B【解析】把大于10的数表示成10na ⨯的形式时,n 等于原数的整数位数减1,故选择B 【知识点】科学计数法 3.(2018浙江杭州,3,3分) 下列计算正确的是( ) A.22=2 B. 22=2± C. 24=2 D. 24=2±【答案】A【解析】20a a =≥,∴B 、D 错,24=4,∴C 也错【知识点】根式的性质 4.(2018浙江杭州,4,3分) 测试五位学生的“一分钟跳绳”的成绩,得到五个各不相同的数据,在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响到的是( ) A. 方差 B. 标准差 C.中位数 D. 平均数【答案】C【解析】平均数、方差、标准差与各个数据大小都有关系,而中位数只受数据排列顺序的影响,最大的更大不影响大小处中间数的位置 【知识点】数据分析 5.(2018浙江杭州,5,3分) 若线段AM ,AN 分别是△ABC 的BC 边上的高线和中线,则( ) A. AM AN > B. AM AN ≥ C. AM AN < D. AM AN ≤ 【答案】D【解析】AM 和AN 可以看成是直线为一定点到直线上两定点的距离,由垂线段最短,则AM AN <,再考虑特殊情况,当AB=AC 的时候AM=AN 【知识点】垂线段最短 6.(2018浙江杭州,6,3分)某次知识竞赛共有20道题,规定:每答对一道得+5,每答错一题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( ) A. 20x y -= B. 20x y += C. 5260x y -= D. 5260x y +=【答案】C【解析】答对得分:5x 分,答错得分-2y 分,不答得分0分,共得分60分,则5260x y -=【知识点】二元一次方程组的应用 7.(2018浙江杭州,7,3分) 一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字。
2018年浙江杭州市中考数学试卷及答案
2018 浙江杭州中考数学试题卷答案见后文一、选择题:本大题共10个小题,每小题 3 分,共 30 分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 3 ()A.3 B .-3 C .13D .132.数据 1800000 用科学记数法表示为()A. 61.8B .61.810C .518 10D .618 103.下列计算正确的是()A. 22 2 B .22 2 C .24 2 D .24 24.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据. 在统计时,出现了一处错误:将最高成绩写得更高了. 计算结果不受影响的是()A.方差 B .标准差 C .中位数 D .平均数5.若线段AM , AN 分别是ABC 的BC 边上的高线和中线,则()A. AM AN B . AM AN C . AM AN D . AM AN6.某次知识竞赛共有20 道题,规定:每答对一道题得 5 分,每答错一道题得2分,不答的题得0 分. 已知圆圆这次竞赛得了60 分. 设圆圆答对了x道题,答错了y 道题,则()A. x y 20 B . x y 20 C .5x 2y60 D .5x 2y607.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字 1~6)朝上一面的数字. 任意抛掷这枚骰子一次,得到的两位数是 3 的倍数的概率等于()A.16B .13C .12D .238.如图,已知点P 是矩形 ABCD 内一点(不含边界),设P AD ,PBA 2 ,1PCB ,PDC 4 . 若APB 80 ,CPD 50 ,则()3A.() ( ) 30 B . (2 4 ) ( 13 ) 401 42 3C.() ( ) 70 D . (1 2) ( 3 4 ) 1801 2 3 49.四位同学在研究函数2y x bx c(b ,c是常数)时,甲发现当x 1时,函数有最小值;乙发现 -1 是方程2 0x bx c 的一个根;丙发现函数的最小值为3;丁发现当x 2时, y 4 . 已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲 B .乙 C .丙 D .丁10.如图,在ABC 中,点D 在 AB 边上, DE / /BC ,与边AC 交于点E ,连结 BE . 记ADE ,BCE 的面积分别为S1 ,S2 ,()A.若 2AD AB ,则3S 2S B .若 2AD AB ,则1 2 3S 2S 12C.若 2AD AB ,则3S 2S D .若 2AD AB ,则 3S1 2S21 2二、填空题:本大题有 6 个小题,每小题 4 分,共 24 分.11.计算: a 3a .12.如图,直线 a / /b ,直线c与直线a,b 分别交于点A,B . 若 1 45 ,则2 .14.如图, AB 是O 的直径,点C 是半径 OA的中点,过点 C 作 DE AB ,交O 于 D 、E 两点,过点 D 作直径 DF ,连结 AF ,则DFA .15.某日上午,甲、乙两车先后从 A 地出发沿同一条公路匀速前往 B 地. 甲车 8 点出发,如图是其行驶路程s(千米)随行驶时间t (小时)变化的图象,乙车9 点出发,若要在10 点至 11 点之间(含10 点和 11 点)追上甲车,则乙车的速度v(单位:千米/ 小时)的范围是.16.折叠矩形纸片ABCD 时,发现可以进行如下操作:①把ADE 翻折,点 A 落在 DC 边上的点 F 处,折痕为DE ,点 E 在 AB 边上;②把纸片展开并铺平;③把CDG 翻折,点C 落在线段AE 上的点 H 处,折痕为DG ,点G 在 BC 边上. 若 AB AD 2 , EH 1,则 AD .三、解答题:本大题有7 个小题,共66 分. 解答应写出文字说明、证明过程或演算步骤.17.已知一艘轮船上装有100 吨货物,轮船到达目的地后开始卸货. 设平均卸货速度为v(单位:吨 / 小时),卸完这批货物所需的时间为t (单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过 5 小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾. 下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别( kg )频数1.9~4.5 21.9~5.0 a5.0~5.5 35.5~6.0 1(1)求a 的值;(2)已知收集的可回收垃圾以0.8 元/ kg 被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50 元?19.如图,在ABC 中, AB AC , AD 为 BC 边上的中线,DE AB 于点 E .(1)求证BDE CAD :.(2)若 AB 13 ,BC 10 ,求线段DE 的长.20.设一次函数y kx b (k , b 是常数,k 0)的图象过A(1,3) ,B( 1, 1) 两点. (1)求该一次函数的表达式.(2)若点2 (2a 2,a ) 在该一次函数图象上,求 a的值.(3)已知点 C( x 1, y 1 )和点 D(x 2, y 2) 在该一次函数图象上 . 设 m (x 1 x 2)( y 1y 2 ),判断反比例函数 ym x 1 的图象所在的象限,说明理由 .21. 如图,在ABC 中, ACB 90 ,以点 B 为圆心, BC 长为半径画弧,交线段 AB 于点 D ;以点 A 为圆心, AD 长为半径画弧,交线段 AC 于点 E ,连结 CD .(1)若 A 28 ,求 ACD 的度数 . (2)设 BCa , ACb .①线段 AD 的长是方程 2 22 0x ax b 的一个根吗?说明理由 . ②若 AD EC ,求 a b的值.22. 设二次函数2( ) y ax bxa b ( a , b 是常数, a 0 ). (1)判断该二次函数图象与 x 轴的交点的个数,说明理由.(2)若该二次函数图象经过 A( 1,4) , B(0, 1) ,C (1,1)三个点中的其中两个点,求该二次函数的表达式 .(3)若 a b 0 ,点 P(2, m)( m 0) 在该二次函数图象上,求证: a 0 .23. 如图,在正方形 ABCD 中,点 G 在边 BC 上(不与点 B ,C 重合),连结 AG ,作DEAG 于点 E , BFAG 于点 F ,设B G BCk .(2)连结BE ,DF ,设EDF ,EBF . 求证: tan k tan .(3)设线段AG 与对角线BD 交于点H ,AHD 和四边形CDHG 的面积分别为S和 S2 . 1求S2S1的最大值 .2018 杭州中考数学参考答案一、选择题1-5: ABACD 6-10: CBABD二、填空题24.2a 12. 135 13. (a b)( a b 1) 14. 30 15. 60 v 801.10 3 2 3三、解答题1.11解:(1)根据题意,得vt 100( t 0) ,所以100v (t 0)t.(2)因为100v (0 t 5)t,又因为 100 0,所以当t 0时,v随着t 的增大而减小,当0 t 5时,100v 20 ,5所以平均每小时至少要卸货20 吨.1.12解:(1)由图表可知, a 4 .(2)设这周该年级收集的可回收垃圾被回收后所得金额为w 元,则w (2 4.5 4 5.0 3 5.5 1 6.0) 0.8 41.2 50 .所以这周该年级收集的可回收垃圾被回收后所得金额达不到50 元.1.13解:(1)因为AB AC ,所以 B C ,又因为AD 为BC 边上的中线,所以AD BC ,又因为 DE AB ,所以BED ADC 90 ,所以BDE CAD .(2)因为BC 10 ,所以 BD 5,根据勾股定理,得AD 12 .由(1)得B D DEAC AD,所以5DE13 12,所以6025. 解:(1)根据题意,得k b k b3 ,解得 k2,b1. 1所以 y 2x 1.(2)因为点2(2a 2,a ) 在函数 y 2x 1的图象上,所以 2 4 5a a , 解得 a 5 或 a 1 . (3)由题意,得 y 1y 2(2 x 1 1) (2x 2 1) 2( x 1x 2) ,所以2 m (x x )( y y ) 2(xx )0 , 1 2 1 2 12所以 m 1 0 ,m 1所以反比例函数 y的图象位于第一、第三象限 . x 26. 解:(1)因为A 28 ,所以B 62 , 又因为 BCBD ,所以1 BCD (18062 )59 . 2所以 ACD905931 .(2)因为 BC a , AC b ,所以 AB a 2 b 2 ,所以2 2 ADAB BDa b a .①因为 2 2 2 2 22( a b a) 2a( a b ) a) b2 2 2 2 2(a b 2a a b a ) 2 2 2 2 2a a b 2a b 0 ,所以线段 AD 的长是方程 2 22 0x ax b 的一个根 . ②因为b AD EC AE ,2所以2b42 0ab b ,即24ab 3b .第 8 页因为 b 0 ,所以ab34.27.解:(1)当 y 0时,ax2 bx (a b) 0(a 0) .因为 2 4 ( ) (2 )2b a a b a b ,所以,当2a b 0时,即0时,二次函数图象与x 轴有1 个交点;当2a b 0 ,即0时,二次函数图象与x 轴有2 个交点 .(2)当 x 1时, y 0,所以函数图象不可能经过点 C (1,1).所以函数图象经过A( 1,4) ,B(0, 1)两点,所以a b (a b) 4 (a b) 1.解得 a 3,b 2.所以二次函数的表达式为2y 3x 2x 1.(3)因为P(2, m) 在该二次函数图象上,所以 m 4a 2b (a b) 3a b ,因为 m 0 ,所以 3a b 0 .又因为 a b 0,所以 2a 3a b (a b) 0 ,所以 a 0 .28.解:(1)因为四边形ABCD 是正方形,所以BAF EAD 90 ,又因为 DE AG ,所以EAD ADE 90 ,所以ADE BAF ,又因为 BF AG ,所以DEA AFB 90 .又因为AD AB ,所以 Rt DAE Rt ABF ,指导 参考 范例-- 所以 AE BF .(2)易知 Rt BFGRt DEA ,所以 B F BG DE AD, 在 Rt DEF 和 Rt BEF 中, tan E F DE , tan E F BF, 所以 tan kB G EF BG EF BC BF AD BF BF EF EF DE BF DE tan , 所以 tan k tan .(3)设正方形 ABCD 的边长为 1,则 BGk , 所以 ABG 的面积等于 1 2 k .因为 ABD 的面积为 1 2, 又因为B H BG HD AD k S ,所以 1 1 2(k 1), 所以 2 1 1 k k 1 S 1 k 2 2 2(k 1) 2(k 1) , 所以 S 2 S 1 1 5 2 2 k k 1 (k )2 4 5 4 , 因为 0 k 1,所以当 1 k ,即点 G 为 BC 中点时, 2 S 2 S 1有最大值 5 4 . 第 10 页。
中考真题:浙江省杭州市2018年中考数学试卷(word解析版)
浙江省杭州市2018年中考数学试题(解析版)一、选择题1.=()A. 3B. -3C.D.【答案】A【考点】绝对值及有理数的绝对值【解析】【解答】解:|-3|=3【分析】根据负数的绝对值等于它的相反数,即可求解。
2.数据1800000用科学计数法表示为()A. 1.86B. 1.8×106C. 18×105D. 18×106【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:1800000=1.8×106【分析】根据科学计数法的表示形式为:a×10n。
其中1≤|a|<10,此题是绝对值较大的数,因此n=整数数位-1,即可求解。
3.下列计算正确的是()A. B. C. D.【答案】A【考点】二次根式的性质与化简【解析】【解答】解:AB、∵,因此A符合题意;B不符合题意;CD、∵,因此C、D不符合题意;故答案为:A【分析】根据二次根式的性质,对各选项逐一判断即可。
4.测试五位学生“一分钟跳绳”成绩,得到五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了。
计算结果不受影响的是()A. 方差B. 标准差 C 中位数 D. 平均数【答案】C【考点】中位数【解析】【解答】解:∵五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了∴中位数不会受影响故答案为:C【分析】抓住题中关键的已知条件:五个各不相同的数据,统计时,出现了一处错误:将最高成绩写得更高了,可知最高成绩提高,中位数不会变化。
5.若线段AM,AN分别是△ABC边上的高线和中线,则()A. B. C. D.【答案】D【考点】垂线段最短【解析】【解答】解:∵线段AM,AN分别是△ABC边上的高线和中线,当BC边上的中线和高重合时,则AM=AN当BC边上的中线和高不重合时,则AM<AN∴AM≤AN故答案为:D【分析】根据垂线段最短,可得出答案。
6.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分。
2018中杭州中考数学(含答案)(优选.)
2018年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题日要求的。
1.|-3|=()A.3 B.-3 C.1/3 D.-1/32.数据1800000用科学记数法表示为()A.1.86 B.1.8×106 C.18×105 D.18×1063.下列计算正确的是()A.√(22)=2B.√(22)=±2C..√(42)=2D.√(42)=±24.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据、在统计时,出现了一处错误:将最高成绩写得更高了,计算结果不受影响的是()方差B.标准差C.中位数D.平均数5.若线段AM,AN分别是△ABC的BC边上的高线和中线,则()A.AM>AN B.AM≥AN C.AM<AN D.AM≤AN6.某次知识竞赛共有20道题,现定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x-y=20 B.x+y=20 C.5x-2y=60 D.5x+2y=607.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1-6)朝上一面的数字,任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于()A.1/6 B.1/3 C.1/2 D.2/38.如图,已知点P是矩形ABCD内一点(不含边界),设∠PAD=θ1,∠PBA=θ2,∠PCB=θ3,∠PDC=θ4,若∠APB=80°,∠CPD=50°,则()A.(θ1+θ4)-(θ2+θ3)=30°B.(θ2+θ4)-(θ1+θ3)=40°C.(θ1+θ2)-(θ3+θ4)=70°D.(θ1+θ2)+(θ3+θ4)=180°9.四位同学在研究函数y=x2+bx+c(b,c是常数)时,甲发现当x=1时,函数有最小值;乙发现-1是方程x2+bx+c=0的一个根;丙发现函数的最小值为3;丁发现当x=2时,y=4,已知这四位同学中只有一位发现的结论是错误的,则该同学是()A.甲B.乙C.丙D.丁10.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE.记△ADE,△BCE的面积分别为S1,S2()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2二、填空题:本大题有6个小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018浙江杭州中考数学 试题卷一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.3-=( )A .3B .-3C .13 D .13- 2.数据1800000用科学记数法表示为( )A .61.8B .61.810⨯C .51810⨯D .61810⨯ 3.下列计算正确的是( )A 2=B 2=±C 2=D 2=±4.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最高成绩写得更高了.计算结果不受影响的是( )A .方差B .标准差C .中位数D .平均数5.若线段AM ,AN 分别是ABC ∆的BC 边上的高线和中线,则( ) A .AM AN > B .AM AN ≥ C .AM AN < D .AM AN ≤6.某次知识竞赛共有20道题,规定:每答对一道题得5+分,每答错一道题得2-分,不答的题得0分.已知圆圆这次竞赛得了60分.设圆圆答对了x 道题,答错了y 道题,则( ) A .20x y -= B .20x y += C .5260x y -= D .5260x y +=7.一个两位数,它的十位数字是3,个位数字是抛掷一枚质地均匀的骰子(六个面分别标有数字1~6)朝上一面的数字.任意抛掷这枚骰子一次,得到的两位数是3的倍数的概率等于( )A .16B .13C .12D .238.如图,已知点P 是矩形ABCD 内一点(不含边界),设1PAD θ∠=,2PBA θ∠=,3PCB θ∠=,4PDC θ∠=.若80APB ∠=o ,50CPD ∠=o ,则( )A .1423()()30θθθθ+-+=oB .2413()()40θθθθ+-+=oC .1234()()70θθθθ+-+=oD .1234()()180θθθθ+-+=o 9.四位同学在研究函数2y x bx c =++(b ,c 是常数)时,甲发现当1x =时,函数有最小值;乙发现-1是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =.已知这四位同学中只有一位发现的结论是错误的,则该同学是( ) A .甲 B .乙 C .丙 D .丁 10.如图,在ABC ∆中,点D 在AB 边上,//DE BC ,与边AC 交于点E ,连结BE .记ADE ∆,BCE ∆的面积分别为1S ,2S ,( )A .若2AD AB >,则1232S S > B .若2AD AB >,则1232S S <C .若2AD AB <,则1232S S > D .若2AD AB <,则1232S S <二、填空题:本大题有6个小题,每小题4分,共24分.11.计算:3-=.a a12.如图,直线//a b,直线c与直线a,b分别交于点A,B.若∠=o,则2145∠=.13.因式分解:2a b b a---=.()()14.如图,AB是Oe的直径,点C是半径OA的中点,过点C作e于D、E两点,过点D作直径DF,连结AF,则DE AB⊥,交O∠=.DFA15.某日上午,甲、乙两车先后从A地出发沿同一条公路匀速前往B地.甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象,乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.16.折叠矩形纸片ABCD时,发现可以进行如下操作:①把ADE∆翻折,点A落在DC边上的点F处,折痕为DE,点E在AB边上;②把纸片展开并铺平;③把CDG∆翻折,点C落在线段AE上的点H 处,折痕为DG,点G在BC边上.若2EH=,则AB AD=+,1AD=.三、解答题:本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤.17.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1)求v关于t的函数表达式.(2)若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?18.某校积极参与垃圾分类活动,以班级为单位收集可回收垃圾.下面是七年级各班一周收集的可回收垃圾的质量的频数表和频数直方图(每组含前一个边界值,不含后一个边界值).某校七年级各班一周收集的可回收垃圾的质量的频数表组别(kg)频数4.0~4.5 24.5~5.0 a5.0~5.5 35.5~6.0 1(1)求a的值;(2)已知收集的可回收垃圾以0.8元/kg被回收,该年级这周收集的可回收垃圾被回收后所得金额能否达到50元?19.如图,在ABC=,AD为BC边上的中线,DE AB ∆中,AB AC⊥于点E.(1)求证BDE CAD::.∆∆(2)若13BC=,求线段DE的长.AB=,1020.设一次函数y kx b =+(k ,b 是常数,0k ≠)的图象过(1,3)A ,(1,1)B --两点.(1)求该一次函数的表达式.(2)若点2(22,)a a +在该一次函数图象上,求a 的值. (3)已知点11(,)C x y 和点22(,)D x y 在该一次函数图象上.设1212()()m x x y y =--,判断反比例函数1m y x+=的图象所在的象限,说明理由.21.如图,在ABC ∆中,90ACB ∠=o ,以点B 为圆心,BC 长为半径画弧,交线段AB 于点D ;以点A 为圆心,AD 长为半径画弧,交线段AC 于点E ,连结CD .(1)若28A ∠=o ,求ACD ∠的度数. (2)设BC a =,AC b =.①线段AD 的长是方程2220x ax b +-=的一个根吗?说明理由. ②若AD EC =,求ab的值.22.设二次函数2()y ax bx a b =+-+(a ,b 是常数,0a ≠). (1)判断该二次函数图象与x 轴的交点的个数,说明理由. (2)若该二次函数图象经过(1,4)A -,(0,1)B -,(1,1)C 三个点中的其中两个点,求该二次函数的表达式.(3)若0a b +<,点(2,)(0)P m m >在该二次函数图象上,求证:0a >.23.如图,在正方形ABCD 中,点G 在边BC 上(不与点B ,C 重合),连结AG ,作DE AG ⊥于点E ,BF AG ⊥于点F ,设BGk BC=.(1)求证:AE BF =.(2)连结BE ,DF ,设EDF α∠=,EBF β∠=.求证:tan tan k αβ=. (3)设线段AG 与对角线BD 交于点H ,AHD ∆和四边形CDHG 的面积分别为1S 和2S .求21S S 的最大值.2018杭州中考数学参考答案一、选择题1-5: 6-10: 二、填空题11. 2a - 12. 135o 13. ()(1)a b a b --+ 14. 30o 15. 6080v ≤≤ 16.3+三、解答题17.解:(1)根据题意,得100(0)vt t =>,所以100(0)v t t=>. (2)因为100(05)v t t=<≤,又因为1000>,所以当0t >时,v 随着t 的增大而减小, 当05t <≤时,100205v ≥=, 所以平均每小时至少要卸货20吨. 18.解:(1)由图表可知,4a =.(2)设这周该年级收集的可回收垃圾被回收后所得金额为w 元,则(2 4.54 5.03 5.51 6.0)w <⨯+⨯+⨯+⨯0.841.250⨯=<.所以这周该年级收集的可回收垃圾被回收后所得金额达不到50元.19.解:(1)因为AB AC =,所以B C ∠=∠, 又因为AD 为BC 边上的中线,所以AD BC ⊥,又因为DE AB ⊥, 所以90BED ADC ∠=∠=o , 所以BDE CAD ∆∆:.(2)因为10BC =,所以5BD =, 根据勾股定理,得12AD =.由(1)得BD DE AC AD =,所以51312DE=,所以6013DE =.20.解:(1)根据题意,得31k b k b +=⎧⎨-+=-⎩,解得2k =,1b =. 所以21y x =+.(2)因为点2(22,)a a +在函数21y x =+的图象上, 所以245a a =+, 解得5a =或1a =-.(3)由题意,得121212(21)(21)2()y y x x x x -=+-+=-, 所以2121212()()2()0m x x y y x x =--=-≥, 所以10m +>, 所以反比例函数1m y x+=的图象位于第一、第三象限. 21.解:(1)因为28A ∠=o ,所以62B ∠=o , 又因为BC BD =,所以1(18062)592BCD ∠=⨯-=o o o . 所以905931ACD ∠=-=o o o .(2)因为BC a =,AC b =,所以AB =所以AD AB BD a =-=.①因为22)2)a a a b +--222(2)a b a =+-2222a b +- 0=,所以线段AD 的长是方程2220x ax b +-=的一个根. ②因为2b AD EC AE ===, 所以2b 是方程2220x ax b +-=的根,所以2204b ab b +-=,即243ab b =.因为0b ≠,所以34ab =.22.解:(1)当0y =时,2()0(0)ax bx a b a +-+=≠. 因为224()(2)b a a b a b ∆=++=+,所以,当20a b +=时,即0∆=时,二次函数图象与x 轴有1个交点; 当20a b +≠,即0∆>时,二次函数图象与x 轴有2个交点. (2)当1x =时,0y =,所以函数图象不可能经过点(1,1)C . 所以函数图象经过(1,4)A -,(0,1)B -两点, 所以()4()1a b a b a b --+=⎧⎨-+=-⎩.解得3a =,2b =-.所以二次函数的表达式为2321y x x =--. (3)因为(2,)P m 在该二次函数图象上, 所以42()3m a b a b a b =+-+=+, 因为0m >,所以30a b +>.又因为0a b +<,所以23()0a a b a b =+-+>, 所以0a >.23.解:(1)因为四边形ABCD 是正方形,所以90BAF EAD ∠+∠=o , 又因为DE AG ⊥,所以90EAD ADE ∠+∠=o , 所以ADE BAF ∠=∠,又因为BF AG ⊥,所以90DEA AFB ∠=∠=o . 又因为AD AB =,所以Rt DAE Rt ABF ∆≅∆, 所以AE BF =.(2)易知Rt BFG Rt DEA ∆∆:,所以BF BG DE AD=, 在Rt DEF ∆和Rt BEF ∆中,tan EF DE α=,tan EF BFβ=, 所以tan BG EF BG EF k BC BF AD BFβ=⋅=⋅ tan BF EF EF DE BF DE α=⋅==, 所以tan tan k αβ=.(3)设正方形ABCD 的边长为1,则BG k =, 所以ABG ∆的面积等于12k . 因为ABD ∆的面积为12, 又因为BH BG k HD AD ==,所以112(1)S k =+, 所以22111122(1)2(1)k k S k k k -++=--=++,所以2221151()24S k k k S =-++=--+54≤, 因为01k <<,所以当12k =,即点G 为BC 中点时, 21S S 有最大值54.。