新人教版《反比例函数》单元过关检测题
人教版九年级下册《第二十六章 反比例函数》单元测试卷和答案详解
人教版九年级数学下册《第26章反比例函数》单元测试卷(2)一.选择题1.(3分)将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A.2B.C.D.62.(3分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.106.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.59.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣210.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=.13.(3分)反比例函数经过(﹣3,2),则图象在象限.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质;(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为;18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向平移个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是.(2)写出该函数两条不同类型的性质:①;②;(3)写出不等式﹣+4>0的解集.人教版九年级数学下册《第26章反比例函数》单元测试卷(2)参考答案与试题解析一.选择题1.(3分)将x =代入反比例函数y =﹣中,所得函数值记为y 1,又将x =y 1+1代入函数中,所得函数值记为y 2,再将x =y 2+1代入函数中,所得函数值记为y 3,…,如此继续下去,则y 2012的值为()A .2B .C .D .6【考点】反比例函数的定义.【分析】分别计算出y 1,y 2,y 3,y 4,可得到每三个一循环,而2012=670…2,即可得到y 2012=y 2.【解答】解:y 1=﹣=﹣,把x =﹣+1=﹣代入y =﹣中得y 2=﹣=2,把x =2+1=3代入反比例函数y =﹣中得y 3=﹣,把x =﹣+1=代入反比例函数y=﹣得y 4=﹣…,如此继续下去每三个一循环,2012=670…2,所以y 2012=2.故选:A .2.(3分)反比例函数y =与y =﹣kx +1(k ≠0)在同一坐标系的图象可能为()A .B .C .D .【考点】反比例函数的图象;一次函数的图象.【分析】分别根据反比例函数与一次函数的性质对各选项进行逐一分析即可.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.3.(3分)已知二次函数y=﹣x2+bx+c的图象如图,则一次函数y=﹣x﹣2b与反比例函数y=在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】反比例函数的图象;二次函数的图象;一次函数的图象.【分析】由函数图象经过y轴正半轴可知c>0,利用排除法即可得出正确答案.【解答】解:对称轴位于y轴左侧,a、b同号,即b<0.图象经过y轴正半可知c>0,根据对称轴和一个交点坐标用a表示出b,c,b=2a=﹣,c=,由一次函数y=﹣x﹣2b与反比例函数y=得到:=﹣x﹣2b,即x2﹣4x+3=0.则Δ=16﹣12=4>0,所以,可以确定一次函数和反比例函数有2个交点,由b<0可知,直线y=﹣x﹣2b经过一、二、四象限,由c>0可知,反比例函数y=的图象经过第一、三象限,故选:C.4.(3分)反比例函数y=的图象是轴对称图形,它的对称轴的表达式是()A.y=x B.y=﹣x C.y=x,y=﹣x D.无法确定【考点】反比例函数图象的对称性;轴对称图形.【分析】根据反比例函数图象为轴对称图形,并且有两条对称轴进行解答.【解答】解:反比例函数的图象是双曲线,且其为轴对称图形,关于直线y=x和y=﹣x 对称.故选:C.5.(3分)如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.10【考点】反比例函数图象的对称性.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入x1y2﹣3x2y1,由k=xy得出答案.【解答】解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.6.(3分)已知反比例函数y=,下列结论中不正确的是()A.其图象经过点(﹣1,﹣3)B.其图象分别位于第一、第三象限C.当x>1时,0<y<3D.当x<0时,y随x的增大而增大【考点】反比例函数的性质.【分析】根据反比例函数的性质对各选项进行逐一分析即可.【解答】解:A、∵(﹣1)×(﹣3)=3,∴图象必经过点(﹣1,﹣3),故本选项不符合题意;B、∵k=3>0,∴函数图象的两个分支分布在第一、三象限,故本选项不符合题意;C、∵x=1时,y=3且y随x的增大而增大,∴x>1时,0<y<3,故本选项不符合题意;D、函数图象的两个分支分布在第一、三象限,在每一象限内,y随x的增大而减小,故本选项符合题意.故选:D.7.(3分)反比例函数y=﹣的图象在()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限【考点】反比例函数的性质;反比例函数的图象.【分析】根据k值确定函数图象经过的象限即可.【解答】解:因为k=﹣2020,所以反比例函数y=﹣的图象在第二、四象限,故选:C.8.(3分)如图,矩形ABCD的顶点A和对称中心在反比例函数y=(k≠0,x>0)的图象上,若矩形ABCD的面积为10,则k的值为()A.10B.4C.3D.5【考点】反比例函数系数k的几何意义;中心对称.【分析】设A点的坐标为()则根据矩形的性质得出矩形中心的坐标为:(),即(),进而可得出BC的长度.然后将坐标代入函数解析式即可求出k的值.【解答】解:设A(),∴AB=,∵矩形的面积为10,∴BC=,∴矩形对称中心的坐标为:(),即()∵对称中心在的图象上,∴,∴mk﹣5m=0,∴m(k﹣5)=0,∴m=0(不符合题意,舍去)或k=5,故选:D.法二:解:连接BE,作EH⊥AB于H.设A(),∴AB=,∴E(2m,),∵矩形ABCD的面积为10,∴△ABE的面积为=,∴=,即××(2m﹣m)=,∴k=5.故选:D.9.(3分)如图,点A是第一象限内双曲线y=(m>0)上一点,过点A作AB∥x轴,交双曲线y=(n<0)于点B,作AC∥y轴,交双曲线y=(n<0)于点C,连接BC.若△ABC的面积为,则m,n的值不可能是()A.m=,n=﹣B.m=,n=﹣C.m=1,n=﹣2D.m=4,n=﹣2【考点】反比例函数系数k的几何意义.【分析】根据反比例函数图象上点的坐标特征以及三角形的面积公式进行计算得出答案.【解答】解:设点A的坐标为(a,),∵AB∥x轴,AC∥y轴,∴点B的纵坐标为,点C的横坐标为a,将y=代入反比例函数y=得,x=,∴B(,),∴AB=a﹣,将x=a代入反比例函数y=得,y=,∴C(a,),∴AC=,=AB•AC=(a﹣)×==,∵S△ABC即(m﹣n)2=9m,当m=,n=﹣时,不满足(m﹣n)2=9m,因此选项A符合题意;当m=,n=﹣时,当m=1,n=﹣2时,当m=4,n=﹣2时,均满足(m﹣n)2=9m,因此选项B、C、D均不符合题意;故选:A.10.(3分)若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)【考点】反比例函数图象上点的坐标特征.【分析】将(3,﹣4)代入y=求出k的值,再根据k=xy解答即可.【解答】解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.二.填空题11.(3分)已知y与x成反比例,且当x=﹣3时,y=4,则当x=6时,y的值为﹣2.【考点】反比例函数的定义.【分析】根据待定系数法,可得反比例函数,根据自变量与函数值的对应关系,可得答案.【解答】解:设反比例函数为y=,当x=﹣3,y=4时,4=,解得k=﹣12.反比例函数为y=.当x=6时,y==﹣2,故答案为:﹣2.12.(3分)函数y=(m+1)x是y关于x的反比例函数,则m=3.【考点】反比例函数的定义.【分析】根据反比例函数的一般形式得到m2﹣2m﹣4=﹣1且m+1≠0,由此来求m的值即可.【解答】解:∵函数y=(m+1)是y关于x的反比例函数,∴m2﹣2m﹣4=﹣1且m+1≠0,解得m=3.故答案为:3.13.(3分)反比例函数经过(﹣3,2),则图象在二四象限.【考点】反比例函数的图象.【分析】易得反比例函数的比例系数,若为正数,在一三象限,若为负数在二四象限.【解答】解:∵反比例函数经过(﹣3,2),∴k=﹣3×2=﹣6,∴图象在二四象限,故答案为二四.14.(3分)如果把函数y=x2(x≤2)的图象和函数y=的图象组成一个图象,并称作图象E,那么直线y=3与图象E的交点有2个;若直线y=m(m为常数)与图象E有三个不同的交点,则常数m的取值范围是0<m<2.【考点】反比例函数的图象;二次函数的图象.【分析】在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,根据函数图象即可得到直线y=3与图象E的交点个数以及常数m的取值范围.【解答】解:在同一平面直角坐标系中,画出函数y=x2(x≤2)和函数y=的图象,由图可得,直线y=3与图象E的交点有2个,∵直线y=m(m为常数)与图象E有三个不同的交点,∴直线y=m在直线y=2的下方,且在x轴的上方,∴常数m的取值范围是0<m<2,故答案为:2,0<m<2.15.(3分)如图所示,点P(3a,a)是反比例函数图象y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则k=12.【考点】反比例函数图象的对称性.【分析】根据P(3a,a)和勾股定理,求出圆的半径,进而表示出圆的面积,再根据圆的面积等于阴影部分面积的四倍,求出圆的面积,建立等式即可求出a的值,从而得出反比例函数的解析式.【解答】解:由于函数图象关于原点对称,所以阴影部分面积为圆面积,则圆的面积为10π×4=40π.因为P(3a,a)在第一象限,则a>0,3a>0,根据勾股定理,OP==a.于是π(a)2=40π,a=±2,(负值舍去),故a=2.P点坐标为(6,2).将P(6,2)代入y=,得:k=6×2=12.故答案为:12.三.解答题16.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【考点】反比例函数的定义.【分析】根据反比例函数的定义,可得答案.【解答】解:(1)由平均数,得x=,即y=是反比例函数;(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数改为不是反比例函数.(3)由路程与时间的关系,得t=,即t=是反比例函数.17.有这样一个问题:探究函数y=的图象与性质.小彤根据学习函数的经验,对函数y=的图象与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数y=的自变量x的取值范围是x≠3;(2)下表是y与x的几组对应值:x…﹣2﹣101245678…y…m0﹣132…则m的值为;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图象的一部分,请根据剩余的点补全此函数的图象;(4)观察图象,写出该函数的一条性质当x>3时y随x的增大而减小(答案不唯一);(5)若函数y=的图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),且x1<3<x2<x3,则y1、y2、y3之间的大小关系为y1<y3<y2;【考点】反比例函数的图象;反比例函数的性质.【分析】(1)依据函数表达式中分母不等于0,即可得到自变量x的取值范围;(2)把x=﹣1代入函数解析式,即可得到m的值;(3)依据各点的坐标描点连线,即可得到函数图象;(4)依据函数图象,即可得到函数的增减性;(5)依据函数图象,即可得到当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.【解答】解:(1)∵x﹣3≠0,∴x≠3;(2)当x=﹣1时,y===;(3)如图所示:(4)由图象可得,当x>3时,y随x的增大而减小(答案不唯一);(5)由图象可得,当x1<3时,y1<1;当3<x2<x3时,1<y3<y2.∴y1、y2、y3之间的大小关系为y1<y3<y2.故答案为:x≠3;;当x>3时,y随x的增大而减小;y1<y3<y2.18.在如图所示的平面直角坐标系中,作出函数的图象,并根据图象回答下列问题:(1)当x=﹣2时,求y的值;(2)当2<y<4时,求x的取值范围;(3)当﹣1<x<2,且x≠0时,求y的取值范围.【考点】反比例函数的图象;反比例函数的性质.【分析】(1)把x=﹣2代入函数解析式可得y的值;(2)(3)根据函数图象可直接得到答案.【解答】解:(1)当x=﹣2时,y==﹣3;(2)当2<y<4时:<x<3;(3)由图象可得当﹣1<x<2且x≠0时,y<﹣6或y>3.19.我们已经知道,一次函数y=x+1的图象可以看成由正比例函数y=x的图象沿x轴向左平移1个单位得到;也可以看成由正比例函数y=x的图象沿y轴向上平移1个单位得到.(1)函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到;(2)函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到;(3)如果将二次函数y=﹣x2的图象沿着x轴向右平移a(a>0)个单位,再沿y轴向上平移2a个单位,得到y=﹣x2+mx﹣15的图象,试求m的值.【考点】反比例函数的图象;二次函数图象与几何变换;一次函数的图象;正比例函数的图象;一次函数图象与几何变换.【分析】(1)利用反比例函数图象的左右平移规律是左加右减;(2)利用一次函数图象的左右平移规律是左加右减;(3)利用二次函数图象的平移规律,再对应比较.【解答】解:(1)利用反比例函数图象的左右平移规律是左加右减,函数y=的图象可以看成由反比例函数y=的图象沿x轴向右平移1个单位得到.故答案为:右.(2)利用一次函数图象的上下平移规律是上加下减,函数y=2x+4的图象可以看成由正比例函数y=2x图象沿x轴向左平移2个单位得到.故答案为:左,2.(3)利用二次函数图象的平移规律,y=﹣x2向右平移a个单位,再向上平移2a个单位后可得:y=﹣(x﹣a)2+2a与y=﹣x2+mx﹣15对应后可得:∵a>0,∴故答案为:m=10.20.我们已经学习过反比例函数y=的图象和性质,请你回顾研究它的过程,运用所学知识对函数y=﹣的图象和性质进行探索,并解决下列问题:(1)该函数的图象大致是C.(2)写出该函数两条不同类型的性质:①在第三象限内,y随x的增大而增小;②图象的两个分支分别位于第三、四象限;(3)写出不等式﹣+4>0的解集.【考点】反比例函数的性质;二次函数的图象;二次函数的性质;反比例函数的图象.【分析】(1)对于函数y=﹣的图象,无论x取非零实数时,y的值总小于零,可得图象;(2)可以从函数的增减性方面进行说明,也可以从函数图象位于的象限说明;函数图象关于y轴成轴对称图形;(3)先求出y=﹣4时x的值,再根据图形确定不等式﹣+4>0的解集.【解答】解:(1)∵函数y =﹣<0,∴函数y =﹣的图象是:C故答案为:C.(2)该函数的性质:①在第三象限内,y随x的增大而增小,②图象的两个分支分别位于第三、四象限;故答案为:在第三象限内,y随x的增大而增小,图象的两个分支分别位于第三、四象限;(3)当y=﹣4时,﹣=﹣4,解得:x =,根据函数的图象和性质得,不等式﹣+4>0的解集是:x <﹣或x >.第21页(共21页)。
人教版初三数学9年级下册 第26章(反比例函数)单元测试卷1(含答案)
第1页,共5页人教版九年级数学下册第 26章反比例函数单元测试卷题号一二三总分得分一、选择题(本大题共10小题,共30分)1.如果函数y =(k +4)x k 2−17是反比例函数,那么( )A. k =4B. k =−4C. k =±4D. k ≠42.如果反比例函数y =a−2x(a 是常数)的图象在第一、三象限,那么a 的取值范围是()A. a <0 B. a >0C. a <2D. a >23.在下列反比例函数中,其图象经过点(3,4)的是( )A. y =−12xB. y =12xC. y =7xD. y =−7x4.如图,反比例函数y =−6x 的图象过点A ,则矩形ABOC 的面积为等于( )A. 3B. 1.5C. 6D. −65.一次函数y =kx−k 与反比例函数y =kx (k ≠0)在同一个坐标系中的图象可能是( )A. B.C. D.6.若点A(2,y 1),B(3,y 2)是反比例函数y=−6x 图象上的两点,则y 1与y 2的大小关系是( ).A. y1<y2B. y1>y2C. y1=y2D. 3y1=2y27.若点A(x1,−6),B(x2,−2),C(x3,2)均在反比例函数y=k2+1x的图象上,则x1,x2,x3的大小关系正确的是()A. x1<x2<x3B. x2<x1<x3C. x2<x3<x1D. x3<x2<x18.点M(a,2a)在反比例函数y=8x的图象上,那么a的值是( )A. 4B. −4C. 2D. ±29.点A(−1,1)是反比例函数y=m+1x的图象上一点,则m的值为( )A. −1B. −2C. 0D. 110.如图,直线y=−3x+3与x轴交于点A,与y轴交于点B,以AB为边在直线AB的左侧作正方形ABDC,反比例函数y=kx的图象经过点D,则k的值是( )A. −3B. −4C. −5D. −6二、填空题(本大题共5小题,共15分)11.反比例函数y=6x的图象经过点(m,−3),则m=________.12.反比例函数y=1−2mx的图象有一支位于第一象限,则常数m满足的条件是__.13.反比例函数y=2m−5x的图象的两个分支分别在第二、四象限,则m的取值范围为______,在每个象限内y随x的增大而______.14.已知同一个反比例函数图象上的两点P1(x1,y1)、P2(x2,y2),若x2=x1+2,且1y2=1 y1+12,则这个反比例函数的解析式为______.15.如图,一次函数y=−x+b与反比例函数y=4x(x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D 两点,连结OA,OB,过A作AE⊥x轴于点E,交OB 于点F,设点A的横坐标为m.(1)b=______ (用含m的代数式表示);第3页,共5页(2)若S △OAF +S 四边形EFBC =4,则m 的值是______ .三、解答题(本大题共6小题,共55分)16.在一个不透明的布袋里,装有完全相同的3个小球,小球上分别标有数字1,2,5;先从袋子里任意摸出1个球,记其标有的数字为x ,不放回;再从袋子里任意摸出一个球,记其标有的数字为y ,依次确定有理数xy .(1)请用画树状图或列表的方法,写出xy 的所有可能的有理数;(2)求有理数xy 为整数的概率.17.已知平面直角坐标系xOy 中,O 是坐标原点,点A(2,5)在反比例函数y =kx 的图象上,过点A 的直线y =x +b 交x 轴于点B .(1)求反比例函数解析式;(2)求△OAB 的面积.18.如图,已知反比例函数y =6x 的图象与一次函数y =kx +b 的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;≥kx+b的解集;(2)直接写出不等式6x在第一象限的图像,如图所示,过点A(1,0)作x轴的垂线,交反比19.反比例函数y=kx的图像于点M,△AOM的面积为3.例函数y=kx(1)求反比例函数的解析式.(2)设点B的坐标为(t,0),其中t>1,若以AB为一边的正方形ABCD有一个顶点的图像上,求t的值.在反比例函数y=kx20.阅读材料:公元前3世纪,古希腊学者阿基米德发现了著名的“杠杆原理”.杠杆平衡时,阻力×阻力臂=动力×动力臂.第5页,共5页问题解决:若工人师傅欲用提棍动一块大石头,已知阻力和阻力臂不变,分别为1500N 和0.4m .(1)动力F(N)与动力臂l(m)有怎样的函数关系⋅当动力臂为1.5m 时,提动石头需要多大的力⋅(2)若想使动力F(N)不超过题(1)中所用力的一半,则动力臂至少要加长多少⋅数学思考(3)请用数学知识解释:我们使用攉棍,当阻力与阻力臂一定时,为什么动力臂越长越省力.21.某商场出售一批名牌衬衣,衬衣进价为60元,在营销中发现,该衬衣的日销售量y(件)是日销售价x 元的反比例函数,且当售价定为100元/件时,每日可售出30件.(1)请写出y 关于x 的函数关系式;(2)该商场计划经营此种衬衣的日销售利润为1800元,则其售价应为多少元?。
人教版九年级下册《第二十六章 反比例函数》单元测试卷及答案
人教版九年级下册《第26章反比例函数》单元测试卷(1)一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1 2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1 3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.56.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣69.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.2010.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为.13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.人教版九年级下册《第26章反比例函数》单元测试卷(1)参考答案与试题解析一、选择题1.已知(x1,y1),(x2,y2),(x3,y3)是反比例函数的图象上三点,其中x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y3>y2>y1C.y1>y3>y2D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3,则y1,y2,y3的大小关系.【解答】解:∵反比例函数中k=﹣4<0,∴此函数的图象在二、四象限,且在每一各象限内y随x的增大而增大,∵x1<0<x2<x3,∴(x1,y1)在第二象限,(x2,y2),(x3,y3)在第四象限,∴y1>0,y2<y3<0,即y1>y3>y2.故选:C.2.若点A(﹣2,y1),B(﹣1,y2),C(1,y3)在反比例函数y=﹣的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y3>y1【考点】反比例函数图象上点的坐标特征.【分析】直接把各点代入反比例函数的解析式,求出y1,y2,y3的值,再比较出其大小即可.【解答】解:∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)都在反比例函数y=﹣的图象上,∴y1=﹣=3,y2=﹣=6,y3=﹣=﹣6.∵6>3>﹣6,∴y2>y1>y3.故选:C.3.若反比例函数y=(k≠0)的图象经过点(2,﹣1),则该函数图象一定经过()A.(﹣1,1)B.(4,)C.(﹣1,﹣2)D.(﹣,4)【考点】反比例函数图象上点的坐标特征.【分析】将(2,﹣1)代入y=(k≠0)即可求出k的值,再根据k=xy解答即可.【解答】解:∵反比例函数y=(k≠0)的图象经过点(2,﹣1),∴k=2×(﹣1)=﹣2,A、﹣1×1=﹣1≠﹣2;B、4×=2≠﹣2;C、﹣1×(﹣2)=2≠﹣2,D、﹣×4=﹣2.故选:D.4.近视眼镜的度数y(度)与镜片焦距x(米)之间具有如图所示的反比例函数关系,若要配制一副度数小于400度的近视眼镜,则镜片焦距x的取值范围是()A.0米<x<0.25米B.x>0.25米C.0米<x<0.2米D.x>0.2米【考点】反比例函数的应用.【分析】由于近视眼镜的度数y(度)与镜片焦距x(米)成反比例,可设y=,把点(0.5,200)代入求得k的值,得到反比例函数解析式,根据题意列出不等式,解不等式即可求出焦距x的取值范围.【解答】解:根据题意,近视眼镜的度数y(度)与镜片焦距x(米)成反比例,设y=,∵点(0.5,200)在此函数的图象上,∴k=0.5×200=100,∴y=(x>0),∵y<400,∴<400,∵x>0,∴400x>100,∴x>0.25,即镜片焦距x的取值范围是x>0.25米,故选:B.5.已知△ABC为直角三角形,且∠A=30°,若△ABC的三个顶点均在双曲线y=(k>0)上,斜边AB经过坐标原点,且B点的纵坐标比横坐标少3个单位长度,C点的纵坐标与B点横坐标相等,则k=()A.4B.C.D.5【考点】反比例函数图象上点的坐标特征;反比例函数的性质.【分析】连接OC.证明BC=OB=OC,利用轴对称的性质和勾股定理解决问题即可.【解答】解:连接OC.∵反比例函数y=(k>0)图象是中心对称图形,∴OB=OA,∵△ABC为直角三角形,且∠A=30°,∠ACB=90°,∴OC=OB=BC,∵反比例函数关于直线y=x对称,OC=OB,∴B、C关于直线y=x对称,∴点C的纵坐标与点B的横坐标相同,∴B(a,b),则C(b,a),∵BC=OB,∴2(a﹣b)2=a2+b2,整理得2ab=(a﹣b)2,∵B点的纵坐标比横坐标少3个单位长,∴a﹣b=3,∴ab=,∵点B在双曲线y=(k>0)上,∴k=ab=.故选:B.6.某口罩生产企业于2020年1月份开始了技术改造,其月利润y(万元)与月份x之间的变化如图所示,技术改造完成前是反比例函数图象的一部分,技术改造完成后是一次函数图象的一部分,下列选项错误的是()A.4月份的利润为45万元B.改造完成后每月利润比前一个月增加30万元C.改造完成前后共有5个月的利润低于135万元D.9月份该企业利润达到205万元【考点】反比例函数的应用.【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【解答】解:A、设反比例函数的解析式为y=,把(1,180)代入得,k=180,∴反比例函数的解析式为:y=,当x=4时,y=45,∴4月份的利润为45万元,故此选项正确,不合题意;B、治污改造完成后,从4月到5月,利润从45万到75万,故每月利润比前一个月增加30万元,故此选项正确,不合题意;C、当y=135时,则135=,解得:x=,设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,当x=6时,y=105,当x=7时,y=135,则只有2月,3月,4月,5月,6月共5个月的利润低于135万元,故此选项正确,不符合题意.D、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x﹣75,故y=205时,205=30x﹣75,解得:x=,则9月份之后该厂利润达到205万元,故此选项不正确,符合题意.故选:D.7.在矩形ABCD中,对角线AC=4,AC的垂直平分线EH交CD于点E,交AC于点H.设AB=x,CE=y,则y关于x的函数关系用图象大致可以表示为()A.B.C.D.【考点】动点问题的函数图象;相似三角形的判定与性质.【分析】根据两角可得△ECH∽△CAB,再利用对应边成比例可得y与x的关系式,进而可得对应图象.【解答】解:∵四边形ABCD是矩形,∴DC∥AB,∠B=90°,∴∠ECH=∠CAB.∵AC的垂直平分线EH交CD于点E,交AC于点H,∴∠EHC=90°,CH=AC=2,∴△ECH∽△CAB,∴,即,∴y=(0<x<4).故选:A.8.如图,在平面直角坐标系中,反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,其中P为AB的中点,若△AOB的面积为18.则k的值为()A.﹣18B.﹣12C.﹣9D.﹣6【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.=S△POD=|k|,再证【分析】连接OP,作PD⊥OB于点D,AE⊥OB于E,求得S△AOE=S△POB=6.明BD=DE=OE,得S△POD【解答】解:连接OP,作PD⊥OB于点D,AE⊥OB于E,∵P为AB的中点,∴BD=DE,PD=AE,∵反比例函数y=(k<0,x<0)的图象经过AB上的两点A,P,=S△POD=|k|,∴S△AOE∴,∴OD=2OE,∴BD=DE=OE,=S△POB,∴S△POD∵△AOB的面积为18,∵P为AB的中点,=S△AOB=9,∴S△POB=S△POB=6,∴S△POD∴|k|=6,∵k<0,∴k=﹣12.故选:B.9.如图,在平面直角坐标系中,一次函数y=x+3的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=(x<0)的图象上,则k的值为()A.﹣10B.﹣6C.﹣20D.20【考点】反比例函数图象上点的坐标特征;正方形的性质;一次函数图象上点的坐标特征.【分析】过点C作CE⊥x轴于E,证明△AOB≌△BEC,可得点C坐标,代入求解即可.【解答】解:∵当x=0时,y=×0+3=3,∴A(0,3),∴OA=3;∵当y=0时,0=x+3,∴x=﹣2,∴B(﹣2,0),∴OB=2;过点C作CE⊥x轴于E,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵∠CBE+∠ABO=90°,∠BAO+∠ABO=90°,∴∠CBE=∠BAO.在△AOB和△BEC中,,∴△AOB≌△BEC(AAS),∴BE=AO=3,CE=OB=2,∴OE=3+2=5,∴C点坐标为(﹣5,2),∵点C在反比例函数y=(x<0)的图象上,∴k=﹣5×2=﹣10.故选:A.10.如图,在平面直角坐标系中,点A、B、C为反比例函数y=(k>0)图象上不同的三点,连接OA、OB、OC,过点A作AD⊥x轴于点D,过点B、C分别作BE,CF垂直y 轴于点E、F,OB与CF相交于点G,记四边形BEFG、△COG、△AOD的面积分别为S1、S2、S3,则()A.S1>S2>S3B.S3<S1=S2C.S1=S2<S3D.S2=S3>S1【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数系数k的几何意义得到S1=S2<S3,即可判断.【解答】解:∵点A、B、C为反比例函数y=(k>0)上不同的三点,AD⊥x轴,BE,CF垂直y轴于点E、F,=S△COF=S△AOD=k,∴S△BOE﹣S△GOF=S△COF﹣S△GOF,∴S△BOE∴S1=S2<S3,∴S1﹣S2=0,故A、B、D错误,C正确;故选:C.二、填空题11.如图,A是反比例函数图象上一点,过点A作AB⊥x轴于点B,点P在y轴上,△ABP的面积为1,则k的值为﹣2.【考点】反比例函数系数k的几何意义.【分析】连接OA,作AC⊥y轴于C点,由于AB⊥x轴,则AB∥OP,根据同底等高的=S△P AB=1,则有S矩形ABOC=2S△OAB=2,根据k的几何意义三角形面积相等得到S△OAB得到|k|=2,即k=2或k=﹣2,然后根据反比例函数性质即可得到k=﹣2.【解答】解:连接OA,作AC⊥y轴于C点,如图∵AB⊥x轴,∴AB∥OP,=S△P AB=1,∴S△OAB=2S△OAB=2,∴S矩形ABOC∴|k|=2,即k=2或k=﹣2,∵反比例函数图象过第二象限,∴k=﹣2.故答案为﹣2.12.如图,矩形ABCD的顶点A,C在反比例函数的图象上,若点A 的坐标为(2,6),AB=3,AD∥x轴,则点C的坐标为(4,3).【考点】反比例函数图象上点的坐标特征;矩形的性质.【分析】根据矩形的性质和A点的坐标,即可得出C的纵坐标为3,设C(x,3),根据反比例函数图象上点的坐标特征得出k=3x=2×6,解得x=4,从而得出C的坐标为(3,4).【解答】解:∵点A的坐标为(2,6),AB=3,∴B(2,3),∵四边形ABCD是矩形,∴AD∥BC,∵AD∥x轴,∴BC∥x轴,∴C点的纵坐标为3,设C(x,3),∵矩形ABCD的顶点A,C在反比例函数的图象上,∴k=3x=2×6,∴x=4,∴C(4,3),故答案为(4,3).13.如图,在平面直角坐标系中,等边△OAB和菱形OCDE的边OA、OE都在x轴上,点C在OB边上,连接AD、BD,S△ABD=,反比例函数的图象经过点B,则k的值为2.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;等边三角形的性质;菱形的性质.【分析】连接OD,由△OAB是等边三角形,得到∠AOB=60°,根据平行线的性质得到∠DEO=∠AOB=60°,推出△DEO是等边三角形,得到∠DOE=∠BAO=60°,得=S△AOD,推出S△AOB=S△ABD=2,过B作BH⊥OA于H,到OD∥AB,求得S△BDO=,于是得到结论.由等边三角形的性质得到OH=AH,求得S△OBH【解答】解:连接OD,∵△OAB是等边三角形,∴∠AOB=60°,∵四边形OCDE是菱形,∴DE∥OB,∴∠DEO=∠AOB=60°,∴△DEO是等边三角形,∴∠DOE=∠BAO=60°,∴OD∥AB,=S△AOD,∴S△BDO=S△ADO+S△ABD=S△BDO+S△AOB,∵S四边形ABDO=S△ABD=2,∴S△AOB过B作BH⊥OA于H,∴OH=AH,=,∴S△OBH∵反比例函数y=(x>0)的图象经过点B,∴k的值为2,故答案为:.14.如图,点A,B为反比例函数y=在第一象限上的两点,AC⊥y轴于点C,BD⊥x轴于点D,若B点的横坐标是A点横坐标的一半,且图中阴影部分的面积为k﹣2,则k的值为.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上点的坐标特征,设B(t,),则可表示出A(2t,),由三角形中位线定理,EM=OD=t,EN=OC=,然后根据三角形面积公式得到关于k的方程,解此方程即可.【解答】解:设B(t,),∵AC⊥y轴于点C,BD⊥x轴于点D,B点的横坐标是A点横坐标的一半,∴A(2t,),根据三角形中位线定理,EM=OD=t,EN=OC=,∴阴影部分的面积=EM•BE+=+=k﹣2,∴•+•t=k﹣2.解得,k=,故答案为.15.如图,P是反比例函数y=(x>0)上的一个动点,过P作PA⊥x轴,PB⊥y轴.(1)若矩形的对角线AB=10,则矩形OAPB的周长为4;(2)如图,点E在BP上,且BE=2PE,若E关于直线AB的对称点F恰好落在坐标轴上,连接AE,AF,EF,则△AEF的面积为4或.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质;轴对称的性质.【分析】(1)设矩形OAPB的两边为m、n,利用反比例函数k的几何意义得到mn=6,再根据勾股定理得到m2+n2=102,根据完全平方公式变形得到(m+n)2﹣2mn=100,则可计算出m+n=2,从而得到矩形OAPB的周长;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,利=4,再根据对称轴的性质得AB垂直平分EF,EQ=FQ,用三角形面积公式得到S△ABE=S△ABE=2,则S△AEF=2S△AQE 接着证明FQ垂直平分AB得到BQ=AQ,所以S△AQE=4;当E关于直线AB的对称点F恰好落在y轴上,如图3,证明四边形OAPB为正方=,而S△AOE=S△APE=2,于是得到S△AEF 形得到P(2,2),则可计算出S△BEF=.【解答】解:(1)设矩形OAPB的两边为m、n,则mn=12,∵矩形的对角线AB=10,∴m2+n2=102,∴(m+n)2﹣2mn=100,∴(m+n)2=100+2×12,∴m+n=2,∴矩形OAPB的周长为4,故答案为4;(2)当E关于直线AB的对称点F恰好落在x轴上,如图2,AB与EF相交于点Q,∵矩形OAPB的面积=12,而BE=2PE,=4,∴S△ABE∵点E与点F关于AB对称,∴AB垂直平分EF,EQ=FQ,∴AE=AF,∴∠AEF=∠AFE,∵PB∥OA,∴∠AFE=∠BEF,∴∠BEF=∠AEF,∴FQ垂直平分AB,∴BQ=AQ,=S△ABE=2,∴S△AQE=2S△AQE=4;∴S△AEF当E关于直线AB的对称点F恰好落在y轴上,如图3,∵点E与点F关于AB对称,∴BE=BF,AB⊥EF,∴△BEF为等腰直角三角形,∴AB平分∠OBP,∴四边形OAPB为正方形,∴P(2,2),∴BE=BF=,=××=,∴S△BEF=S△APE=2,而S△AOF=12﹣﹣2﹣2=,∴S△AEF综上所述,△AEF的面积为4或,故答案为4或.三、解答题16.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A(a,﹣2a)、B(﹣2,a),代入反比例函数y=,即可求出a、m的值;可得A、B的坐标,再由点A、B的坐标利用待定系数法即可求出一次函数解析;(2)求得C的坐标,然后根据三角形面积公式求得即可;(3)结合函数图象的上下位置关系结合交点的坐标,即可得出不等式的解集;【解答】解:(1)∵A(a,﹣2a)、B(﹣2,a)两点在反比例函数y=的图象上,∴m=﹣2a•a=﹣2a,解得a=1,m=﹣2,∴A(1,﹣2),B(﹣2,1),反比例函数的解析式为y=﹣.将点A(1,﹣2)、点B(﹣2,1)代入到y=kx+b中,得:,解得:,∴一次函数的解析式为y=﹣x﹣1.(2)在直线y=﹣x﹣1中,令y=0,则﹣x﹣1=0,解得x=﹣1,∴C(﹣1,0),=S△AOC+S△BOC=×1×2+×1=;∴S△AOB(3)观察函数图象,发现:当x<﹣2或0<x<1时,反比例函数图象在一次函数图象的下方,∴不等式kx+b﹣>0的解集为x<﹣2或0<x<1.17.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴上,顶点C(﹣4,3).(1)若顶点B在反比例函数y=的图象上,求k的值;(2)连接OB,过点B作BD⊥OB交x轴于点D,求直线BD的函数解析式.【考点】反比例函数图象上点的坐标特征;菱形的性质.【分析】(1)由C的坐标求出菱形的边长,利用平移规律确定出B的坐标,利用待定系数法求出反比例函数解析式即可;(2)由菱形的性质得出OA=AB,即可得出∠ABO=∠AOB,由∠OBD=90°得出∠ADB =∠ABD,即可得出AD=AB=5,则OD=10,得到D(﹣10,0),然后根据待定系数法即可求得直线BD的解析式.【解答】解:(1)如图,延长BC交y轴于点E,∵C(﹣4,3),∴CE=4,OE=3,∴OC==5,∴BC=5,∴B(﹣9,3),∵顶点B在反比例函数y=的图象上,∴k=﹣9×3=﹣27;(2)∵OA=AB,∴∠ABO=∠AOB,又∵∠DBO=90°,∴∠ADB=∠ABD,∴AD=AB=5,∴OD=10,∴D(﹣10,0),设直线BD的解析式为y=ax+b,∵过D(﹣10,0),B(﹣9,3),∴,解得,直线BD解析式为:y=3x+30.18.如图,反比例函数y=的图象与正比例函数y=x的图象交于点A和B(4,1),点P(1,m)在反比例函数y=的图象上.(1)求反比例函数的表达式和点P的坐标;(2)求△AOP的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据待定系数法即可求得反比例函数的解析式,然后把P(1,m)代入到求得的解析式,即可求得m的值;(2)根据函数的对称性求得A的坐标,即可根据待定系数法求得直线AP的解析式,从=S△AOC+S△POC求得即可.而求得直线AP与y轴的交点C的坐标,然后根据S△AOP【解答】解.(1)把点B(4,1)代入y=,得k=4,∴反比例函数的表达式为y=,∵把P(1,m)代入y=得:m==4,∴点P坐标为(1,4);(2)∵点A与点B关于原点对称,点B(4,1),∴点A(﹣4,﹣1),设AP与y轴交于点C,直线AP的函数关系式为y=ax+b,把点A(﹣4,﹣1)、P(1,4)分别代入得,,解得,∴直线AP的函数关系式为y=x+3,∴点C的坐标(0,3),=S△AOC+S△POC=+=.∴S△AOP19.如图,直线y=x和双曲线交于A,B两点,AE⊥x轴,垂足为E,射线AC⊥AD,AC交y轴于点C,AD交x轴于点D,且四边形ACOD的面积为1.(1)求双曲线的解析式.(2)求A,B两点的坐标.【考点】反比例函数与一次函数的交点问题.=S四【分析】(1)作AF⊥y轴于F,证得△CAF≌△DAE(AAS),即可得出S正方形AFOE=1,从而求得k=S正方形AFOE=1;边形ACOD(2)两解析式联立,组成方程组,解方程组即可求得.【解答】解:(1)作AF⊥y轴于F,∵点A在直线y=x上,∴AF=AE,∵∠CAF+∠DAF=∠DAE+∠DAF=90°,∴∠CAF=∠DAE,在△CAF和△DAE中,,∴△CAF≌△DAE(AAS),=S四边形ACOD=1,∴S正方形AFOE=1,∴k=S正方形AFOE∴双曲线的解析式为;(2)解得或,∴A(1,1),B(﹣1,﹣1).20.如图,直线y=x与反比例函数交于点A,过点A作AB⊥x轴于点B,△AOB的面积为2.点P是反比例函数图象上一点,且横坐标为4,点M、N分别是直线y=x和x 轴上的动点,求使△PMN周长最小时点M、N的坐标.【考点】反比例函数与一次函数的交点问题.【分析】根据反比例系数k的几何意义求得k,得到反比例函数的解析式,代入x=4,即可求得P的坐标,作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小,根据待定系数法求得直线CD的解析式,进而即可求得M、N的坐标.【解答】解:∵点A是反比例函数的图象上一点,过点A作AB⊥x轴于点B,△AOB 的面积为2.=|k|=2,∴S△AOB∴|k|=2×2=4,∵图象在第一象限,∴k=4,∴反比例函数y=(x>0),把x=4代入得y=1,∴P(4,1),作P关于直线y=x的对称点C,则C为(1,4),作P关于x轴的对称点D,则D为(4,﹣1),连接CD交直线y=x于M,交x轴于N,此时△PMN周长最小.最小值为CD,设直线CD的解析式y=mx+n,则,解得,∴直线CD的解析式为y=﹣x+,令y=0,则﹣x+=0,解得x=,∴N(,0),令x=﹣x+,解得x=,∴M(,).21.如图,四边形ABCO是平行四边形且点C(﹣4,0),将平行四边形ABCO绕点A逆时针旋转得到平行四边形ADEF,AD经过点O,点F恰好落在x轴的正半轴上,若点A,D在反比例函数y=的图象上,过A作AH⊥x轴,交EF于点H.(1)证明:△AOF是等边三角形,并求k的值;(2)在x轴上找点G,使△ACG是等腰三角形,求出G的坐标;(3)设P(x1,a),Q(x2,b)(x2>x1>0),M(m,y1),N(n,y2)是双曲线y=上的四点,m=,n=,试判断y1,y2的大小,说明理由.【考点】反比例函数综合题.【分析】(1)由旋转的性质可知AO=AF,且∠AOF=∠BAO,可证得△AOF为等边三角形,由题意可知A、D关于原点对称,则可求得OA的长,设AH交x轴于点K,则可中求得OK和AK的长,可求得A点坐标,代入反比例函数解析式可求得k的值;(2)设G(x,0),由A、C的坐标可分别表示出AG、CG和AC的长,分AG=CG、AG=AC和CG=AC三种情况分别得到关于x的方程,可求得x的值,则可求得G点坐标;(3)把P、Q的坐标代入反比例函数解析式可用x1、x2分别表示出a、b,则可比较m、n的大小关系,利用反比例函数的性质可求得y1,y2的大小.【解答】解:(1)由旋转的性质可得AO=AF=DE=BC,∠BAO=∠OAF,∵AB∥OC,∴∠BAO=∠AOF,∴∠AOF=∠OAF,∴AF=OF,∴AF=OF=OA,∴△AOF为等边三角形,∵点A,D在反比例函数y=的图象上,∴A、D关于原点对称,∴AO=OD=AD=OC=2,如图1,设AH交x轴于点K,在Rt△AOK中,可得∠OAK=30°,∴OK=OA=1,AK=OA=,∴A(1,),∴k=1×=;(2)设G(x,0),且A(1,),C(﹣4,0),∴AG==,CG=|x+4|,AC==2,∵△ACG是等腰三角形,∴有AG=CG、AG=AC和CG=AC三种情况,①当AG=CG时,则=|x+4|,解得x=﹣,此时G点坐标为(﹣,0);②当AG=AC时,则=2,解得x=﹣4(与C点重合,舍去)或x=6,此时G点坐标为(6,0);③当CG=AC时,则|x+4|=2,解得x=﹣4+2或x=﹣4﹣2,此时G点坐标为(﹣4+2,0)或(﹣4﹣2,0);综上可知G点坐标为(﹣,0)或(6,0)或(﹣4+2,0)或(﹣4﹣2,0);(3)y1<y2.理由如下:由(1)可知反比例函数解析式为y=,∵P(x1,a),Q(x2,b)(x2>x1>0)在反比例函数图象上,∴a=,b=,∴m===,∴m2﹣n2=﹣==,∵x2>x1>0,∴>0,即m2﹣n2>0,∴m2>n2,又由题意可知m>0,n>0,∴m>n,∵M(m,y1),N(n,y2)在反比例函数y=的图象上,且在第一象限,∴y1<y2.22.如图在平面直角坐标系中,一次函数y=2x与反比例函数在第一象限交于点P(1,p),点M的横坐标为m(0<m<1)是反比例函数图象上的一点,MN∥x轴交一次函数于点N.(1)求出k的值;(2)是否存在点M,使△MNP是以MN为底的等腰三角形,若存在求出m,若不存在说明理由;(3)以MN为边长,在MN的下方作正方形MNAB,判断边NA与反比例函数图象是否有交点,若有求出交点坐标,若没有并说明理由.【考点】反比例函数综合题.【分析】(1)先求出点P坐标代入解析式可求解;(2)先求出点N坐标代入解析式,可求m的值,与题意相矛盾;(3)求出点A坐标,判断出点A在双曲线的上方,即可求解.【解答】解:(1)∵一次函数y=2x的图象过点P(1,p),∴p=2,∴点P(1,2),∵反比例函数过点P(1,2),∴k=2;(2)不存在,理由如下:由(1)可知:反比例函数的解析式为y=,∴点M(m,),若△MNP是以MN为底的等腰三角形,∴点P在MN的垂直平分线上,∴点N(2﹣m,),∵点N在直线y=2x上,∴=2(2﹣m),∴m=1,∵0<m<1,∴m=1不合题意舍去,∴不存在点M,使△MNP是以MN为底的等腰三角形;(3)没有交点,理由如下:∵点M(m,),MN∥x轴,∴点N(,),∴MN=﹣m,∵四边形MNAB是正方形,∴MN=AN=﹣m,AN⊥MN,∴点A(,+m),当x=时,y=2m,∵0<m<1,∴2m<+m,∴点A在双曲线的上方,∴NA与反比例函数图象没有交点.23.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函数的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)由垂直的定义及锐角三角函数定义求出AO的长,利用勾股定理求出OD 的长,确定出A坐标,进而求出m的值确定出反比例解析式,把B的坐标代入反比例解析式求出n的值,确定出B坐标,利用待定系数法求出一次函数解析式即可;(2)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【解答】解:(1)∵一次函数y=kx+b与反比例函数y=图象交于A与B,且AD⊥x 轴,∴∠ADO=90°,在Rt△ADO中,AD=4,sin∠AOD=,∴=,即AO=5,根据勾股定理得:DO==3,∴A(﹣3,4),代入反比例解析式得:m=﹣12,即y=﹣,把B坐标代入得:n=6,即B(6,﹣2),代入一次函数解析式得:,解得:,即y=﹣x+2;(2)当OE3=OE2=AO=5,即E2(0,﹣5),E3(0,5);当OA=AE1=5时,得到OE1=2AD=8,即E1(0,8);当AE4=OE4时,由A(﹣3,4),O(0,0),得到直线AO解析式为y=﹣x,中点坐标为(﹣1.5,2),∴AO垂直平分线方程为y﹣2=(x+),令x=0,得到y=,即E4(0,),综上,当点E(0,8)或(0,5)或(0,﹣5)或(0,)时,△AOE是等腰三角形.。
新人教版九年级下《第26章反比例函数》单元测试题(含答案解析)
新人教版九年级下册数学《第26章反比例函数》单元测试题一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣12.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)3.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小4.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A.4B.4.2C.4.6D.55.下列各点中,在函数y=﹣图象上的是()A.(﹣3,﹣2)B.(﹣2,3)C.(3,2)D.(﹣3,3)6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是()A.y=B.y=C.y=D.y=7.如图,正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),当y=x的函数值大于y=的函数值时,x的取值范围()A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>28.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为.12.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,B,AC⊥x轴于点C,BD⊥y轴于点D,连接OA,OB,则△OAC与△OBD的面积之和为.13.已知A(x1,y1),B(x2,y2)都在反比例函数的图象y=﹣上,且x1<0<x2,则y1与y2大小关系是.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为(x>0).15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=.△POM17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.21.已知双曲线y=如图所示,点A(﹣1,m),B(n,2).求S.△AOB22.如图,在平面直角坐标系中,Rt△ABC的边AB⊥x轴,垂足为A,C的坐标为(1,0),反比例函数y=(x>0)的图象经过BC的中点D,交AB于点E.已知AB=4,BC=5.求k的值.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=,n=.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案).25.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上的一点,且△ABP的面积是3,求点P的坐标;(3)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.新人教版九年级下册数学《第26章反比例函数》单元测试题参考答案与试题解析一.选择题(共10小题)1.下列关系式中,y是x的反比例函数的是()A.y=4x B.=3C.y=﹣D.y=x2﹣1【分析】根据反比例函数的定义判断即可.【解答】解:A、y=4x是正比例函数;B、=3,可以化为y=3x,是正比例函数;C、y=﹣是反比例函数;D、y=x2﹣1是二次函数;故选:C.【点评】本题考查的是反比例函数的定义,形如y=(k为常数,k≠0)的函数称为反比例函数.2.在同一平面直角坐标系中,函数y=kx与y=的图象大致是()A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)【分析】分k>0和k<0两种情况分类讨论即可确定正确的选项.【解答】解:当k>0时,函数y=kx的图象位于一、三象限,y=的图象位于一、三象限,(1)符合;当k<0时,函数y=kx的图象位于二、四象限,y=的图象位于二、四象限,(4)符合;故选:B.【点评】考查了反比例函数和正比例函数的性质,解题的关键是能够分类讨论,难度不大.3.已知反比例函数y =﹣,下列结论中不正确的是( )A .图象必经过点(﹣3,2)B .图象位于第二、四象限C .若x <﹣2,则0<y <3D .在每一个象限内,y 随x 值的增大而减小【分析】根据反比例函数的性质进行选择即可.【解答】解:A 、图象必经过点(﹣3,2),故A 正确;B 、图象位于第二、四象限,故B 正确;C 、若x <﹣2,则y <3,故C 正确;D 、在每一个象限内,y 随x 值的增大而增大,故D 正确;故选:D .【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.4.如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1.7,则S 1+S 2等于( )A .4B .4.2C .4.6D .5【分析】根据反比例函数系数k 的几何意义可得S 四边形AEOF =4,S 四边形BDOC =4,根据S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,可求S 1+S 2的值.【解答】解:如图,∵A 、B 两点在双曲线y =上,∴S 四边形AEOF =4,S 四边形BDOC =4,∴S 1+S 2=S 四边形AEOF +S 四边形BDOC ﹣2×S 阴影,∴S 1+S 2=8﹣3.4=4.6故选:C .【点评】本题考查了反比例函数系数k 的几何意义,熟练掌握在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |.5.下列各点中,在函数y =﹣图象上的是( )A .(﹣3,﹣2)B .(﹣2,3)C .(3,2)D .(﹣3,3)【分析】只需把所给点的横纵坐标相乘,结果是﹣6的,就在此函数图象上.【解答】解:∵反比例函数y =﹣中,k =﹣6,∴只需把各点横纵坐标相乘,结果为﹣6的点在函数图象上,四个选项中只有B 选项符合.故选:B .【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.6.下列函数中,图象经过点(1,﹣2)的反比例函数关系式是( )A .y =B .y =C .y =D .y =【分析】利用待定系数法求出反比例函数解析式即可.【解答】解:设反比例函数解析式为y =(k ≠0),把(1,﹣2)代入得:k =﹣2,则反比例函数解析式为y =﹣,故选:D .【点评】此题考查了待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键. 7.如图,正比例函数y =x 与反比例函数y =的图象交于A 、B 两点,其中A (2,2),当y =x 的函数值大于y =的函数值时,x 的取值范围( )A.x>2B.x<﹣2C.﹣2<x<0或0<x<2D.﹣2<x<0或x>2【分析】由题意可求点B坐标,根据图象可求解.【解答】解:∵正比例函数y=x与反比例函数y=的图象交于A、B两点,其中A(2,2),∴点B坐标为(﹣2,﹣2)∴当x>2或﹣2<x<0故选:D.【点评】本题考查了反比例函数与一次函数的交点问题,熟练掌握函数图象的性质是解决.8.一司机驾驶汽车从甲地去乙地,他以80千米/时的平均速度用了6小时到达目的地,当他按原路匀速返回时,汽车的速度v(千米/时)与时间t(小时)的函数关系为()A.v=B.v+t=480C.v=D.v=【分析】先求得路程,再由等量关系“速度=路程÷时间”列出关系式即可.【解答】解:由于以80千米/时的平均速度用了6小时到达目的地,那么路程为80×6=480千米,∴汽车的速度v(千米/时)与时间t(小时)的函数关系为v=.故选:A.【点评】本题考查了反比例函数在实际生活中的应用,重点是找出题中的等量关系.9.对于反比例函数y=(k≠0),下列所给的四个结论中,正确的是()A.若点(2,4)在其图象上,则(﹣2,4)也在其图象上B.当k>0时,y随x的增大而减小C.过图象上任一点P作x轴、y轴的垂线,垂足分别A、B,则矩形OAPB的面积为kD.反比例函数的图象关于直线y=x和y=﹣x成轴对称【分析】根据反比例函数的性质一一判断即可;【解答】解:A、若点(2,4)在其图象上,则(﹣2,4)不在其图象上,故本选项不符合题意;B、当k>0时,y随x的增大而减小,错误,应该是当k>0时,在每个象限,y随x的增大而减小;故本选项不符合题意;C、错误,应该是过图象上任一点P作x轴、y轴的线,垂足分别A、B,则矩形OAPB的面积为|k|;故本选项不符合题意;D、正确,本选项符合题意,故选:D.【点评】本题考查反比例函数的性质,解题的关键是熟练掌握反比例函数的性质,灵活运用所学知识解决问题,属于中考常考题型.10.已知反比例函数y=(k≠0)的图象经过(﹣4,2),那么下列四个点中,在这个函数图象上的是()A.(1,8)B.(3,)C.(,6)D.(﹣2,﹣4)【分析】根据反比例函数y=(k≠0)的图象经过(﹣4,2),可以得到k的值,从而可以判断各个选项是否符合题意,本题得以解决.【解答】解:∵反比例函数y=(k≠0)的图象经过(﹣4,2),∴k=xy=(﹣4)×2=﹣8,∵1×8=8≠﹣8,故选项A不符合题意,∵3×(﹣)=﹣8,故选项B符合题意,∵×6=3≠﹣8,故选项C不符合题意,∵(﹣2)×(﹣4)=8≠﹣8,故选项D不符合题意,故选:B.【点评】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.二.填空题(共8小题)11.请写出一个反比例函数的表达式,满足条件当x>0时,y随x的增大而增大”,则此函数的表达式可以为y=.【分析】根据题意和反比例函数的性质可以写出一个符合要求的函数解析式,本题得以解决.【解答】解:∵当x>0时,y随x的增大而增大,∴此函数的解析式可以为y =,故答案为:y =. 【点评】本题考查反比例函数的性质,解答本题的关键是明确题意,写出相应的函数解析式,注意本题答案不唯一.12.如图,在平面直角坐标系xOy 中,函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,连接OA ,OB ,则△OAC 与△OBD 的面积之和为 2 .【分析】根据反比例函数比例系数k 的几何意义可得S △OAC =S △OBD =×2=1,再相加即可.【解答】解:∵函数y =(x >0)的图象经过点A ,B ,AC ⊥x 轴于点C ,BD ⊥y 轴于点D , ∴S △OAC =S △OBD =×2=1,∴S △OAC +S △OBD =1+1=2.故答案为2.【点评】本题考查了反比例函数比例系数k 的几何意义:过反比例函数图象上的点向x 轴或y 轴作垂线,这一点和垂足、原点组成的三角形的面积等于|k |.13.已知A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,且x 1<0<x 2,则y 1与y 2大小关系是 y 1>y 2 .【分析】将点A ,点B 坐标代入解析式,可求y 1,y 2,由x 1<0<x 2,可得y 1>0,y 2<0,即可得y 1与y 2大小关系.【解答】解:∵A (x 1,y 1),B (x 2,y 2)都在反比例函数的图象y =﹣上,∴y 1=,y 2=,∵x 1<0<x 2,∴y 1>0>y 2,故答案为:y 1>y 2【点评】本题考查了反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.如图,C1是反比例函数y=在第一象限内的图象,且过点A(2,1),C2与C1关于x轴对称,那么图象C2对应的函数的表达式为y=﹣(x>0).【分析】根据关于x轴对称的性质得出点A关于x轴的对称点A′坐标(2,﹣1),从而得出C2对应的函数的表达式.【解答】解:∵C2与C1关于x轴对称,∴点A关于x轴的对称点A′在C2上,∵点A(2,1),∴A′坐标(2,﹣1),∴C2对应的函数的表达式为y=﹣,故答案为y=﹣.【点评】本题考查了反比例函数的性质,掌握关于x轴对称点的坐标是解题的关键.15.反比例函数y=的图象与正比例函数y=6x的图象交于点P(m,12),则反比例函数的关系式是y=.【分析】把点P(m,12)代入正比例函数y=6x得到关于m的一元一次方程,解之求得m的值,把P的坐标代入反比例函数y=,得到关于k的一元一次方程,解之,求得k的值,代入即可得到答案.【解答】解:把点P(m,12)代入正比例函数y=6x得:12=6m,解得:m=2,把点P(2,12)代入反比例函数y=得:12=,解得:k=24,即反比例函数得关系式是y=,故答案为:y=.【点评】本题考查了反比例函数和一次函数的交点问题,正确掌握代入法是解题的关键.16.如图、点P在反比例函数y=的图象上,PM⊥y轴于M,S=4,则k=﹣8.△POM【分析】此题可从反比例函数系数k的几何意义入手,△PMO的面积为点P向两条坐标轴作垂线,与坐标轴围成的矩形面积的一半即S=|k|再结合反比例函数所在的象限确定出k的值即可.=|k|=4,【解答】解:由题意知:S△PMO所以|k|=8,即k=±8.又反比例函数是第二象限的图象,k<0,所以k=﹣8,故答案为:﹣8.【点评】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.17.如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过Rt△OAB的斜边OA的中点D,交AB于点C.若点B在x轴上,点A的坐标为(6,4),则△BOC的面积为3.【分析】由于点A的坐标为(6,4),而点D为OA的中点,则D点坐标为(3,2),利用待定系数法科得到k=6,然后利用k的几何意义即可得到△BOC的面积=|k|=×6=3.【解答】解:∵点A的坐标为(6,4),而点D为OA的中点,∴D点坐标为(3,2),把D(3,2)代入y=得k=3×2=6,∴反比例函数的解析式为y=,∴△BOC的面积=|k|=×|6|=3.故答案为:3;【点评】本题考查了反比例y=(k≠0)数k的几何意义:过反比例函数图象上任意一点分别作x 轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.18.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=图象上的三个点,则y1、y2、y3的大小关系是y2>y3>y1.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可【解答】解:∵1>0,∴反比例函数y=图象在一、三象限,并且在每一象限内y随x的增大而减小,∵﹣1<0,∴A点在第三象限,∴y1<0,∵2>1>0,∴B、C两点在第一象限,∴y2>y3>0,∴y2>y3>y1.故答案是:y2>y3>y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三.解答题(共7小题)19.已知y=(m2+2m)x是关x于的反比例函数,求m的值及函数的解析式.【分析】根据反比例函数的定义知m2+2m=﹣1,且m2+2m≠0,据此可以求得m的值,进而得出反比例函数的解析式.【解答】解:∵y=(m2+2m)x是反比例函数,∴m2+2m=﹣1,且m2+2m≠0,∴(m+1)(m+1)=0,∴m+1=0,即m=﹣1;∴反比例函数的解析式y=﹣x﹣1.【点评】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx﹣1(k≠0)的形式.20.已知反比例函数y=(m﹣2)(1)若它的图象位于第一、三象限,求m的值;(2)若它的图象在每一象限内y的值随x值的增大而增大,求m的值.【分析】(1)根据反比例函数的定义与性质,得出,进而求解即可;(2)根据反比例函数的定义与性质,得出,进而求解即可.【解答】解:(1)由题意,可得,解得m=3;(2)由题意,可得,解得m=﹣2.【点评】本题考查了反比例函数的性质;用到的知识点为:反比例函数y =kx (k ≠0)的图象是双曲线;当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.也考查了反比例函数的定义.21.已知双曲线y =如图所示,点A (﹣1,m ),B (n ,2).求S △AOB .【分析】根据点A 、B 两点在反比例函数图象上得其坐标,再根据S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD﹣S △ABE 可得答案.【解答】解:将点A (﹣1,m )、B (n ,2)代入y =,得:m =6、n =﹣3,如图,过点A 作x 轴的平行线,交y 轴于点C ,过点B 作y 轴的平行线,交x 轴于点D ,交CA 于点E ,则DE =OC =6、BD =2、BE =4、OD =3,AC =1、AE =2,∴S △AOB =S 矩形ODEC ﹣S △AOC ﹣S △BOD ﹣S △ABE=3×6﹣×1×6﹣×3×2﹣×2×4=8.【点评】本题主要考查反比例函数系数k 的几何意义,熟练掌握割补法求三角形的面积是解题的关键.22.如图,在平面直角坐标系中,Rt △ABC 的边AB ⊥x 轴,垂足为A ,C 的坐标为(1,0),反比例函数y =(x >0)的图象经过BC 的中点D ,交AB 于点E .已知AB =4,BC =5.求k 的值.【分析】根据勾股定理可求AC=3,则可求点A(4,0),可得点B(4,4),根据中点坐标公式可求点D坐标,把点D坐标代入解析式可求k的值.【解答】解:∵在Rt△ABC中,AB=4,BC=5∴AC===3∵点C坐标(1,0)∴OC=1∴OA=OC+AC=4∴点A坐标(4,0)∴点B(4,4)∵点C(1,0),点B(4,4)∴BC的中点D(,2)∵反比例函数y=(x>0)的图象经过BC的中点D∴2=∴k=5【点评】本题考查了反比例函数图象上点的坐标特征,勾股定理,中点坐标公式,熟练运用反比例函数图象性质是解决问题的关键.23.如图,已知直线y=﹣2x经过点P(﹣2,a),点P关于y轴的对称点P′在反比例函数y=(k≠0)的图象上.(1)求反比例函数的解析式;(2)直接写出当y<4时x的取值范围.【分析】(1)把P的坐标代入直线解析式求出a的值,确定出P′的坐标,即可求出反比例解析式;(2)结合图象确定出所求x的范围即可.【解答】解:(1)把P(﹣2,a)代入直线y=﹣2x解析式得:a=4,即P(﹣2,4),∴点P关于y轴对称点P′为(2,4),代入反比例解析式得:k=8,则反比例解析式为y=;(2)当y<4时,反比例函数自变量x的范围为x>2或x<0;一次函数自变量x的范围是x>﹣2.【点评】此题考查了待定系数法求反比例函数解析式,以及一次函数、反比例函数的性质,熟练掌握待定系数法是解本题的关键.24.如图,一次函数y=kx+b与反比例函数y=(x<0)的图象相交于点A、点B,与X轴交于点C,其中点A(﹣1,3)和点B(﹣3,n).(1)填空:m=﹣3,n=1.(2)求一次函数的解析式和△AOB的面积.(3)根据图象回答:当x为何值时,kx+b≥(请直接写出答案)﹣3≤x≤﹣1.【分析】(1)将A点坐标,B点坐标代入解析式可求m,n的值(2)用待定系数法可求一次函数解析式,根据S△AOB =S△AOC﹣S△BOC可求△AOB的面积.(3)由图象直接可得【解答】解:(1)∵反比例函数y=过点A(﹣1,3),B(﹣3,n)∴m =3×(﹣1)=﹣3,m =﹣3n∴n =1故答案为﹣3,1(2)设一次函数解析式y =kx +b ,且过(﹣1,3),B (﹣3,1)∴解得: ∴解析式y =x +4∵一次函数图象与x 轴交点为C∴0=x +4∴x =﹣4∴C (﹣4,0)∵S △AOB =S △AOC ﹣S △BOC∴S △AOB =×4×3﹣×4×1=4(3)∵kx +b ≥∴一次函数图象在反比例函数图象上方∴﹣3≤x ≤﹣1故答案为﹣3≤x ≤﹣1【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法,利用函数图象上的点满足函数关系式解决问题是本题关键.25.如图,在平面直角坐标系中,一次函数y =kx +b (k ≠0)与反比例函数y =(m ≠0)的图象交于点A (3,1),且过点B (0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P 是x 轴上的一点,且△ABP 的面积是3,求点P 的坐标;(3)若P 是坐标轴上一点,且满足PA =OA ,直接写出点P 的坐标.【分析】(1)将点A(3,1)代入y=,利用待定系数法求得反比例函数的解析式,再将点A(3,1)和B(0,﹣2)代入y=kx+b,利用待定系数法求得一次函数的解析式;(2)首先求得AB与x轴的交点C的坐标,然后根据S△ABP =S△ACP+S△BCP即可列方程求得P的横坐标;(3)分两种情况进行讨论:①点P在x轴上;②点P在y轴上.根据PA=OA,利用等腰三角形的对称性求解.【解答】解:(1)∵反比例函数y=(m≠0)的图象过点A(3,1),∴3=,解得m=3.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(3,1)和B(0,﹣2),∴,解得:,∴一次函数的表达式为y=x﹣2;(2)如图,设一次函数y=x﹣2的图象与x轴的交点为C.令y=0,则x﹣2=0,x=2,∴点C的坐标为(2,0).∵S△ABP =S△ACP+S△BCP=3,∴PC×1+PC×2=3,∴PC=2,∴点P的坐标为(0,0)、(4,0);word 版数学21 / 21 (3)若P 是坐标轴上一点,且满足PA =OA ,则P 点的位置可分两种情况:①如果点P 在x 轴上,那么O 与P 关于直线x =3对称,所以点P 的坐标为(6,0);②如果点P 在y 轴上,那么O 与P 关于直线y =1对称,所以点P 的坐标为(0,2).综上可知,点P 的坐标为(6,0)或(0,2).【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,三角形面积的计算以及等腰三角形的性质,正确求出函数的解析式是关键.。
第26章 反比例函数 人教版数学九年级下册单元达标测试题(含答案)
2022-2023学年人教版九年级数下册《第26章反比例函数》单元达标测试题(附答案)一.选择题(共8小题,满分32分)1.下列函数中,y随x的增大而减少的函数是( )A.y=﹣2x B.y=C.y=D.y=2x2.已知,反比例函数的图象经过点(1,﹣2),(a,b)( )A.﹣2B.C.2D.3.若点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数的图象上,则y1,y2,y3的大小关系是( )A.y1>y2>y3B.y3>y2>y1C.y2>y3>y1D.y2>y1>y34.对于反比例函数,当y<2时,x的取值范围是( )A.﹣3<x<0B.x<﹣3C.x>﹣3D.x<﹣3或x>0 5.函数和y=ax+a(a为常数且a≠0)在同一坐标系中的图象可能是( )A.B.C.D.6.某气球内充满了一定质量的气体,在温度不变的条件下,气球内气体的压强p(Pa)3)的反比例函数,且当V=1.5m3时,p=16000Pa,当气球内的气压大于40000Pa时,为确保气球不爆炸,气球的体积应( )A.不小于0.5m3B.不大于0.5m3C.不小于0.6m3D.不大于0.6m37.如图,O是坐标原点,点B在x轴上(k≠0)图象上,在等腰三角△OAB,且三角形△OAB的面积为12,则k的值为( )A.﹣12B.6C.﹣6D.﹣248.如图,在平面直角坐标系中,正方形OABC的顶点O在坐标原点(2,5),点A在第二象限,反比例函数的图象经过点A( )A.B.C.D.二.填空题(共8小题,满分32分)9.若反比例函数y=的图象经过第二、四象限,则m的取值范围是 .10.已知y与x成反比例,且当x=2时,y=6,x的值为 .11.若一次函数y=2x﹣1的图象与反比例函数的图象相交于点(a,3),则k= .12.点P(m,n)是函数和y=x+4图象的一个交点2+n2的值为 .13.如图,一次函数y1=kx(k≠0)的图象与反比例函数的图象交于点A (1,a)1>y2的解集为 .14.某校科技小组进行野外考察,利用铺垫木板的方式通过了一片烂泥湿地,这是因为人和木板对湿地的压力F一定时(Pa)与木板面积S(m2)存在函数关系:(如图所示)若木板面积为0.2m2,则压强为 Pa.15.如图,点P在反比例函数y=(x>0)的图象上,交反比例函数y=(x<0)的图象于点Q,OQ.若S△POQ=,则k的值为 .16.如图,在平面直角坐标系中,正方形OABC的顶点A在x轴的正半轴上(点D在点A的右侧),点F、G分别是BC、DE的中点,反比例函数y=(k≠0,x>0),若AE=DE =2,AD=4 .三.解答题(共6小题,满分56分)17.已知反比例函数是常数,k≠0)与一次函数y2=﹣x+k图象有一个交点的横坐标是﹣4.(1)求k的值;(2)求另一个交点坐标;(3)直接写出y1>y2时x的取值范围.18.如图,一次函数y=﹣x+5的图象与反比例函数在第一象限的图象交于A (1,m),B(m,1),与x轴交于点D,过点B作x轴的垂线(1)求m的值及反比例函数的解析式;(2)求△BCD的面积;(3)在x轴上有一点P,且满足PA+PB的值最小,请直接写出点P的坐标.19.为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物熏蒸消毒.消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物熏蒸时y与x的函数关系式为y=2x,药物熏蒸完成后y与x成反比例函数关系(3,n).(1)求n的值;(2)当x≥3时,求y与x的函数关系式;(3)当教室空气中的药物浓度不低于2mg/m3时,对杀灭病毒有效.问:本次消毒中有效杀灭病毒的时间持续多长时间?20.如图,在平面直角坐标系xOy中,已知直线y=﹣,D两点,反比例函数y=(x>0),B两点,连结AO,分别过点A,B作x轴的垂线AE和BF(1)若点B的横坐标为12,求△BDF的面积;(2)若阴影部分的面积为12.①记△BDF的面积为S1,△OGE的面积为S2,求证:S1=2S2;②求b的值.21.已知一次函数y1=kx+b(k≠0)的图象与反比例函数的图象交于 A、B两点,已知点A(1,4),点B的横坐标为﹣2.(1)求一次函数与反比例函数的表达式,并在图中画出一次函数的图象;(2)D为x轴上一点,若△ABD的面积为6,求点D的坐标;(3)根据函数图象,直接写出不等式y1≤y2的解集.22.如图,在直角坐标系中,点A(3,a)图象的交点.(1)求反比例函数的表达式和点B的坐标;(2)连结AO,BO,求出△OAB的面积;(3)利用图象,直接写出当时,x的取值范围为 .参考答案一.选择题(共8小题,满分32分)1.解:A.正比例函数y=﹣2x中,y随x增大而减小,符合题意;B.在反比例函数y=中,图象分布在一,在每一象限中,原说法错误;C.在反比例函数y=﹣中,图象分布在二,在每一象限中,原说法错误;D.正比例函数y=2x中,y随x增大而增大,不符合题意.故选:A.2.解:∵反比例函数的图象经过点(1,(a,∴k=1×(﹣8)=ab=﹣2,∴ab=﹣2,故选:A.3.解:∵k=﹣6<0,∴在每一象限内,y随x的增大而增大,∵﹣5<﹣1,∴y1<y3>0,y3<3,∴y3<y1<y7,故选:D.4.解:作出反比例函数图象由图可知,反比例函数图象与y=2的交点为(﹣3,2)则当y<2时,x<﹣3或x>0故选:D.5.解:当a>0时,函数、三象限、二、三象限;当a<0时,函数、四象限、三、四象限.故选:D.6.解:设函数解析式为p=,∵当V=1.5m7时,p=16000Pa,∴k=Vp=24000,∴p=,∵气球内的气压大于40000Pa时,气球将爆炸,∴≤40000,解得:V≥0.6,即气球的体积应不小于5.6m3.故选:C.7.解:过A点作AC⊥OB,∵AB=AO,∴BC=CO.∵点A在反比例函数(k≠0)图象上,∴设点A为(m,),则BO=2CO=4m,∵三角形△OAB的面积为12,又∵,且反比例函数在第二象限.∴k=﹣12.故选:A.8.解:作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90°,∴∠AOD+∠COE=90°,∵∠AOD+∠OAD=90°,∴∠OAD=∠COE,在△AOD和△OCE中,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(m,n),﹣m),∵点B的坐标为(2,5),∴它们的交点F的坐标为(4,),∴,解得,∴k=﹣×=﹣,故选:D.二.填空题(共8小题,满分32分)9.解:∵反比例函数y=的图象经过第二,∴m﹣2<6,得:m<2.故答案为:m<2.10.解:∵y与x成反比例,∴y=(k≠0),∵当x=2时,y=2,∴k=2×6=12,∴反比例函数解析式为y=,∴当y=7时,x=,故答案为:3.11.解:∵一次函数y=2x﹣1的图象与反比例函数的图象相交于点(a,令y=3,代入一次函数中,解得x=2,∴交点坐标为(4,3).将交点代入反比例函数解析式中,解得k=2×5=6.故答案为:6.12.解:∵点P(m,n)是函数,∴mn=3,m+4=n,即m﹣n=﹣4,∴m2+n2=(m﹣n)2+2mn=(﹣4)2+2×2=22,故答案为:22.13.解:∵反比例函数 的图象经过点A(1,∴1×a=3,即a=2,∴A(1,3),又∵一次函数 y1=kx(k≠0)的图象经过点A(7,2),∴1×k=4,即k=2,∴一次函数解析式为:y1=6x,由图可得:当y1>y2 时,一次函数图象在反比例函数图象的上方,∴x>7,故答案为:x>1.14.解:由已知反比例函数解析式为P=,将(0.5,1200)代入,解得:F=600,∴P=,当S=0.6m2时,P=,解得P=3000,∴当木板面积为0.2m8时,压强为3000Pa,故答案为:3000.15.解:∵点P在反比例函数y=(x>0)的图象上,∴S△OPM=×4=7,∵S△POQ=,∴S△OQM=S△POQ﹣S△POM=﹣7=,∴|k|=2S△OQM=6×=,因为反比例函数y=(x<6)的图象在第二象限,所以k=﹣,故答案为:﹣.16.解:作EH⊥AD于H,如图,设正方形的边长为a,则B(a,D(a+4,∵点F为BC的中点,∴F(a,a),∵AE=DE=2,∴AH=DH=AD=2,∴EH==4,∴E(a+7,4),∵G点为DE的中点,∴G(a+3,6),∵点F和点G都在反比例函数y=的图象上,∴a•a=4(a+3),整理得a2﹣7a﹣12=0,解得a1=5,a2=﹣2(舍去),∴F(6,6),∴k=3×7=18.故答案为18.三.解答题(共6小题,满分56分)17.解:(1)联立方程组可得:=﹣x+k,﹣k=4+k,即k=﹣8.(2)y1=﹣,y6=﹣x﹣2,联立:解得:,,∴另一个交点坐标为(2,﹣4).(3)y1>y2,就是反比例函数图象在一次函数图象上边时,自变量的取值范围.即:x>4或﹣4<x<0.18.解:(1)∵一次函数y=﹣x+5的图象过点A(1,m),∴m=﹣5+5=4,∴A(5,4),∵反比例函数的图象过点A(2,∴k=1×4=3,∴反比例函数解析式为y=;(2)∵一次函数y=﹣x+5的图象与x轴交于点D,令y=﹣x+5中y=0,则x=5,∴点D(7,0),由(1)知,m=4,∴B(8,1),∵BC⊥x轴于C,∴C(4,2),∴S△BCD=CD•BC=;(3)作点B关于x轴的对称点B′,连接AB′交x轴于点P,如图所示:∵点B、B′关于x轴对称,∴PB=PB′,∴PB+PA=PB′+PA=AB′,∵两点之间线段最短,∴此时PA+PB最小.∵点B(4,1),∴点B′(5,﹣1),设直线AB′的解析式为y=ax+b,将点A(1,6),﹣1)代入y=ax+b中,得:,解得:,∴直线AB′的解析式为y=﹣x+,令y=0,得x=,∴点P的坐标为(,0).故在x轴上存在点P(,0).19.解:(1)由题意,A(3,即为m=3.(2)由(1)可得A(3,6).设熏蒸完后函数的关系式为:y=,∴k=3×6=18.∴熏蒸完后函数的关系式为:y=.(3)∵药物浓度不低于2mg/m3,∴当5x≥2时,x≥1,当y=≥8时,∴有效时长为9﹣1=3(min),答:有效杀灭病毒的时间持续8min.20.(1)解:当x=12时,y=,得点B的坐标为(12,把B(12,1)代入y=﹣,得b=7,∴直线CD的函数表达式为y=﹣x+7,令y=0,得4=﹣,解得x=14,∴点D的坐标为(14,7),∴S△BDF===5;(2)①证明:∵点A,B在反比例函数y=;0)的图象上,∴S△AOE=S△BOF==6,∵S△AOE+S△BOF=S△AOG+S四边形BGEF+2S△EOG,∴S△AOG+S四边形BGEF+6S△EOG=12,即S△AOG+S四边形BGEF+2S2=12,∵阴影部分的面积为12.∴S△AOG+S四边形BGEF+S△BDF=12,即S△AOG+S四边形BGEF+S8=12,∴S1=2S6;②解:由题意,设点A(m,),),由直线y=﹣x+b,b),6).在Rt△COD中,tan,∴在Rt△BFD中,DF==,如图,过点A作AH⊥y轴于点H,∴在Rt△COD中,CO=OD•tan∠COD,即)∵m≠n,整理得mn=24,∴m=,即AH=DF,∴OE=DF;由①可知,S7=2S2,即DF•BF=7OE•EG,∴BF=2EG,∵EG∥BF,∴,∴OE=EF=DF==b,∴CH=AH=,∴OH=b,∴A(,),把A(,)代入y=,得b7=12,解得b=3.21.解:(1)将(1,4)代入y4=得m=4,∴反比例函数解析式为y2=,将x=﹣2代入y2=得y2=﹣2,∴点B坐标为(﹣2,﹣2),将(1,4),﹣2)代入y1=kx+b得,解得,∴y1=5x+2,图象如下:(2)设直线与x轴交点为C,将y=0代入y2=2x+2得x=﹣2,∴直线与x轴交点C坐标为(﹣1,0),设点D坐标为(n,6),则S△ABD=S△ACD+S△BCD=CD•y A+•|y B|=×|﹣1﹣n|×4+,∴﹣1﹣n=8或﹣1﹣n=﹣2,解得n=﹣3或n=1.∴点D坐标为(﹣3,5)或(1.(3)由图象可得x≤﹣2或4<x≤1时,y1≤y4.22.解:(1)∵点A(3,a)在一次函数y=x﹣2图象上,∴a=8,∴A(3,1),∴m=8,反比例函数解析式为y=,联立方程组,解得,,点B在三象限,故B(﹣1(2)设直线AB与x轴交于点M,当y=8时,x=2,0),∴S△AOB=S△BOM+S△AOM=×2×8+.(3)根据图像,当x−3>时.故答案为:﹣1<x<0或x>3.。
反比例函数单元测试卷含答案
反比例函数单元测试卷含答案一、选择题1. 反比例函数的一般形式是:A. y = kxB. y = ax + bC. y = k/xD. y = mx + c答案: C2. 当x为0时,反比例函数的值为:A. 0B. 1C. 无定义D. 任意值答案: C3. 若反比例函数的k值为正数,x趋近于无穷大,y会趋近于:A. 正无穷大B. 负无穷大C. 0D. 不存在极限答案: B4. 反比例函数的图像是一条:A. 直线B. 抛物线C. 余弦曲线D. 双曲线答案: D5. 若反比例函数的x值为正数,y值为负数,那么k值是:A. 正数B. 负数C. 零D. 无法确定答案: B二、计算题1. 已知反比例函数y = 5/x,当x = 2时,求y的值。
答案: 2.52. 已知反比例函数y = 3/x,当y = 6时,求x的值。
答案: 0.5三、简答题1. 什么是反比例函数?答案: 反比例函数是一种函数关系,当自变量x的值增大时,因变量y的值会减小,并且二者之间呈现出一种倒数关系。
它的一般形式为y = k/x,其中k为常数。
2. 反比例函数的图像有什么特点?答案: 反比例函数的图像是一条双曲线。
当x趋近于无穷大或无穷小时,函数的值趋近于零。
两支曲线的对称轴为y轴,并在y 轴上有一个渐近线。
3. 如何确定反比例函数的常数k的值?答案: 可以通过已知点的坐标进行求解。
将已知的x和y的值代入反比例函数的一般形式中,解方程得到k的值。
以上就是反比例函数单元测试卷的答案。
希望能对你的学习有所帮助!。
第17章反比例函数单元测试题(含答案)
第17章《反比例函数》单元测试题(满分100分,时间40分钟)班级: __________ 姓名:__________学号: __________一、选择题(每题4分,共24分)1.下列函数中, y 是x 的反比例函数的是( )A 、21x y =B 、52+=x yC 、xy=8D 、53+=x y2. 已知反比例函数)0(≠=k xky 上有一个点(-4,-2),则点( )在此函数图象上。
A 、A(3,4)B 、B(2,4)C 、C(-4,2)D 、D(4,-2)3. 若反比例函数y =xk 3-的图像在每一个象限内,y 随x 的增大而增大,则有( ) A 、 k 0≠ B 、k 3≠ C 、k<3 D 、k>34.设A( 1x ,1y ) B (2x ,2y )是反比例函数xy 5= 图像上的两点, 若1x <2x <0 则1y 与 2y之间的关系是( )。
A 、1y <2y <0B 、2y <1y <0C 、1y >2y >0D 、2y >1y >0 5.一次函数y=kx —1 与 反比例函数)0(≠=k xky 的图像的形状大致是( )A B C D6.如图2,双曲线上两点A、B,AP垂直x轴,垂足为P,BD垂直于x 轴,垂足为D。
连接OA、OB,设△AOP 的面积为S 1,△BOD 面积为S 2,则S 1与S 2的大小关系是( )。
A 、S 1=S 2B 、S 1<S 2C 、S 1>S 2D 、无法确定二、填空题(每题4分,共24分) 7.已知反比例函数y=xk的图像经过点(3 ,—2) 则此函数的解析式为____________,当x>0时 y 随x 的增大而____________。
8.写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为___________。
9. 某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .(写出自变量的取值范围)x10.直线b x y +-=5与双曲线xy 2-= 相交于点p (—2 ,m ) ,则 b=____________。
人教版九年级下册数学 第26章 反比例函数 单元测试卷(含答案解析)
人教版九年级下册数学第26章反比例函数单元测试卷一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=23.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.45.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y17.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y18.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣1010.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x 成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:日销售单价x3456(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?参考答案与试题解析一、选择题:(每小题3分,共30分)1.下列函数:①y=﹣2x;②y=;③y=x﹣1;④y=5x2+1,是反比例函数的个数有()A.0个B.1个C.2个D.3个【分析】利用反比例函数定义可得答案.【解答】解:①y=﹣2x是正比例函数;②y=是反比例函数;③y=x﹣1是反比例函数;④y=2x2+1是二次函数,反比例函数共6个,故选:C.2.关于反比例函数y=,下列说法错误的是()A.图象关于原点对称B.y随x的增大而减小C.图象分别位于第一、三象限D.若点M(a,b)在其图象上,则ab=2【分析】利用反比例函数的性质以及反比例函数图象上点的坐标特点可得答案.【解答】解:A、图象关于原点对称;B、在每一象限内y随x的增大而减小;C、图象分别位于第一,故原题说法正确;D、若点M(a,则ab=2;故选:B.3.下列四个点中,在反比例函数y=﹣图象上的是()A.(2,4)B.(2,﹣4)C.(﹣4,﹣2)D.(4,2)【分析】根据反比例函数图象上点的坐标特征对各选项进行逐一判断即可.【解答】解:A、∵2×4=3≠﹣8;B、∵2×(﹣5)=﹣8;C、∵﹣4×(﹣4)=8≠﹣8;D、∵2×2=8≠﹣7.故选:B.4.如图,A是反比例函数图象上第二象限内的一点,若△ABO的面积为2,则k的值为()A.﹣4B.﹣2C.2D.4【分析】根据反比例函数k的几何意义可得|k|=2,再根据图象所在的象限,得出k的值.【解答】解:由反比例函数k的几何意义可得,|k|=3,∴k=±4,又∵图象在第二象限,即k<0,∴k=﹣2,故选:A.5.在同一直角坐标系中反比例函数y=与一次函数y=x+a(a≠0)的图象大致是()A.B.C.D.【分析】直接利用反比例函数以及一次函数图象分析得出答案.【解答】解:∵一次函数y=x+a(a≠0),∴一次函数图象y随x增大而增大,故A,D不符合题意;在B中,反比例函数过一,故a>0、三、四象限,不合题意;在C中,反比例函数过一,故a>7、二、四象限,符合题意;故选:C.6.已知点A(﹣1,y1)、B(﹣2,y2)、C(3,y3)都在反比例函数y=的图象上,则y1、y2、y3的关系是()A.y2>y1>y3B.y2>y3>y1C.y3>y1>y2D.y3>y2>y1【分析】先根据函数解析式中的比例系数k确定函数图象所在的象限,再根据各象限内点的坐标特点及函数的增减性解答.【解答】解:∵在反比例函数y=中,k=1>6,∴此函数图象在一、三象限,∵﹣2<﹣1<6,∴点A(﹣1,y1),B(﹣2,y2)在第三象限,∴y1<y4<0,∵3>7,∴C(3,y3)点在第一象限,∴y5>0,∴y1,y7,y3的大小关系为y3>y7>y1.故选:D.7.已知点(x1,y1),(x2,y2),(x3,y3)在反比例函数的图象上,当x1<x2<0<x3时,y1,y2,y3的大小关系是()A.y1<y3<y2B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】依据反比例函数,可得函数图象在第一、三象限,在每个象限内,y随着x 的增大而减小,进而得到y1,y2,y3的大小关系.【解答】解:∵反比例函数,∴函数图象在第一、三象限,y随着x的增大而减小,又∵x1<x7<0<x3,∴y7<0,y2<8,y3>0,且y3>y2,∴y2<y8<y3,故选:B.8.如图,已知在平面直角坐标系中,Rt△ABC的顶点A(0,3),B(3,0),∠ABC=90°.函数y=(x>0)的图象经过点C,则AC的长为()A.3B.2C.2D.【分析】根据A、B的坐标分别是(0,3)、(3、0)可知OA=OB=3,进而可求出AB2,通过作垂线构造等腰直角三角形,求得BC2=2CD2,设CD=BD=m,则C(3+m,m),代入y=,求得m的值,即可求得BC2,根据勾股定理即可求出AC的长.【解答】解:过点C作CD⊥x轴,垂足为D,∵A、B的坐标分别是(0、(3,∴OA=OB=4,在Rt△AOB中,AB2=OA2+OB6=18,又∵∠ABC=90°,∴∠OAB=∠OBA=45°=∠BCD=∠CBD,∴CD=BD,设CD=BD=m,∴C(3+m,m),∵函数y=(x>4)的图象经过点C,∴m(3+m)=4,解得m=3或﹣4(负数舍去),∴CD=BD=1,∴BC5=2,在Rt△ABC中,AB2+BC5=AC2,∴AC==4故选:B.9.如图,在平面直角坐标系中,第二象限内的点E(﹣3,m)(﹣2,n),若OE=OF,点E、F都在反比例函数y=,则k=()A.﹣4B.﹣6C.﹣8D.﹣10【分析】根据题意m=,n=,然后根据勾股定理得到32+()2=22+()2,解得k=﹣6.【解答】解:∵点E、F都在反比例函数y=,E(﹣3、F(﹣2,∴m=,n=,∵OE=OF,∴38+()2=82+()8,整理得k2=36,∵k<0,∴k=﹣7,故选:B.10.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM ≌△BAN得到DM=AN=2,AM=BN=2,则D(﹣3,2),根据待定系数法即可求得m 的值.【解答】解:作DM⊥x轴于M,BN⊥x轴于N,∵点A的坐标为(﹣1,0),∴OA=3,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为2,把x=1代入y=,得y=4,∴B(1,2),∴BN=4,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=8+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×6=﹣6,故选:C.二、填空题:(18分)11.已知y与x成反比例,并且当x=3时,y=﹣4,当x=﹣2时,y的值为.【分析】首先设y=,然后求出反比例函数解析式,再代入x的值,进而可得y的值.【解答】解:设y=,∵当x=3时,y=﹣4,∴﹣7=,解得:k=﹣12,∴反比例函数关系式为:y=﹣,∵x=﹣2,∴y=﹣=6,故答案为:6.12.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是k1>k2>k3.【分析】根据题意和反比例函数的图象,可以得到k1,k2,k3的大小关系,从而可以解答本题.【解答】解:由图象可得,k1>0,k6<0,k3<8,∵点(﹣1,﹣)在y2=的图象上,)在y3=的图象上,∴﹣<,∴k6>k3,由上可得,k1>k5>k3,故答案为:k1>k5>k3.13.反比例函数,当x>0时,y随x的增大而减小,写出一个m的可能值.【分析】利用反比例函数的性质可得m﹣2>0,再解即可.【解答】解:∵当x>0时,y随x的增大而减小,∴m﹣2>6,解得:m>2,∴m可以是4,故答案为:7.14.若点P(n,1),Q(n+6,3)在反比例函数图象上,请写出反比例函数的解析式y=﹣.【分析】根据反比例函数y=中k=xy,得到n=3(n+6),解方程求得n的值,即可求得反比例函数的解析式.【解答】解:设反比例函数解析式为y=,由题意得,k=n=3(n+6),解得n=﹣6,k=﹣9,∴反比例函数的解析式为y=﹣,故答案为y=﹣.15.如图,直线AB过原点分别交反比例函数y=于A、B,过点A作AC⊥x轴,垂足为C,则△ABC的面积为.【分析】证明△BOC的面积=△AOC的面积,而△AOC的面积=|k|=×6=3,即可求解.【解答】解:∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积,又∵A是反比例函数y=图象上的点,∴△AOC的面积=|k|=,则△ABC的面积为7,故答案为6.16.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴、y轴的正半轴,函数y=(k>0,x>0)交BC于点D,交AB于点E.若BD=2CD,S四边形ODBE=4,则k的值为.【分析】根据反比例函数k的几何意义得,S△OAE=S△OCD=|k|,根据OABC是矩形,求出S△OEB=S△ODB=S四边形ODBE=2,再根据BD=2CD,进而S△OAE=S△OEB=1=|k|,求出k的值即可.【解答】解:连接OB,由反比例函数k的几何意义得,S△OAE=S△OCD=|k|,∵OABC是矩形,∴S△OAB=S△OBC,∴S△OEB=S△ODB=S四边形ODBE=2,∵BD=6CD,∴S△OAE=S△OEB=7=|k|,∴k=2或k=﹣2(舍去),故答案为2.三、解答题:(52分)17.一个不透明的口袋里装着分别标有数字﹣2,﹣1,1,2的四个小球,除数字不同外,小球没有任何区别,每次实验时把小球搅匀.(1)从中任取一球,求所抽取的数字恰好为负数的概率为;(2)从中任取一球,将球上的数字记为x,然后再从剩余的球中任取一球,将球上的数字记为y,试用画树状图(或列表法)表示出点(x,y)所有可能的结果,并求点(x,y)在反比例函数图象上的概率.【分析】(1)共有四个数,其中两个负数,因此可求抽取的数字恰好为负数的概率;(2)用列表法表示所有可能出现的结果情况,得出点(x,y)在反比例函数图象上的情况,进而求出概率.【解答】解:(1)共有四个数,其中两个负数=;故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有12种等可能出现的结果,其中点(x图象上的有4种,因此点(x,y)在反比例函数y==.18.如图,在平面直角坐标系xOy中,直线y=2x+2与函数y=(k≠0)的图象交于A,B两点,且点A的坐标为(1,m).(1)求k,m的值;(2)直接写出关于x的不等式2x+2>的解集;(3)若Q在x轴上,△ABQ的面积是6,求Q点坐标.【分析】(1)将点A坐标代入直线解析式可求m的值,再将点A坐标代入反比例函数解析式可求k的值;(2)解析式联立成方程组,解方程组求得B的坐标,然后根据函数的图象即可求得不等式2x+2>的解集.(3)由直线解析式求得直线与x轴的交点坐标,然后设出Q的坐标,根据三角形面积公式得到•|a+1|•(2+1)=6,解得a的值,即可求得点Q的坐标.【解答】解:(1)∵点A(1,m)在直线y=2x+8上,∴m=2×1+2=4,∴点A的坐标为(1,7),代入函数y=(k≠0)中,∴k=4.(2)解得或,∴B(﹣2,﹣3),∴关于x的不等式2x+2>的解集是﹣5<x<0或x>1.(3)在y=7x+2中令y=0,解得x=﹣4,0).设点Q的坐标是(a,0).∵△ABQ的面积是6,∴•|a+5|•(2+4)=8,则|a+1|=2,解得a=8或﹣3.则点Q的坐标是(﹣3,3)或(1.19.如图,一次函数y=kx+b的图象交反比例函数y=的图象于A(2,﹣4),B(a,﹣1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求△OAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?【分析】(1)先把点A的坐标代入y=,求出m的值得到反比例函数解析式,再求点B 的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积﹣三角形BOC的面积即可求解;(3)观察函数图象即可求得.【解答】解:(1)把A(2,﹣4)的坐标代入y=,∴反比例函数的解析式是y=﹣;把B(a,﹣1)的坐标代入y=﹣,解得:a=8,∴B点坐标为(8,﹣6),把A(2,﹣4),﹣4)的坐标代入y=kx+b,解得:,∴一次函数解析式为y=x﹣5;(2)设直线AB交x轴于C.∵y=x﹣5,∴当y=0时,x=10,∴OC=10,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×10×4﹣=15;(3)由图象知,当0<x<7或x>8时.20.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是4的正方形OABC 的两边AB,BC分别相交于M,N两点,△OMN的面积为6.求k的值.【分析】由正方形OABC的边长是4,得到点M的横坐标和点N的纵坐标为4,求得M(4,),N(,4),根据三角形的面积列方程得到M,N的坐标,然后利用待定系数法确定函数关系式.【解答】解:∵正方形OABC的边长是4,∴点M的横坐标和点N的纵坐标为4,∴M(2,),N(,∴BN=4﹣,BM=4﹣,∵△OMN的面积为6,∴4×4﹣×4×﹣﹣(4﹣)4=6,解得k=8.21.某药品研究所研发一种抗菌新药,测得成人服用该药后血液中的药物浓度(微克/毫升)与服药后时间x(小时)之间的函数关系如图所示,当血液中药物浓度上升(0≤x≤a)时,满足y=2x,下降时,y与x成反比.(1)求a的值,并求当a≤x≤8时,y与x的函数表达式;(2)若血液中药物浓度不低于3微克/毫升的持续时间超过4小时,则称药物治疗有效,请问研发的这种抗菌新药可以作为有效药物投入生产吗?为什么?【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)把y=3分别代入正比例函数和反比例函数解析式求出自变量的值,进而得出答案.【解答】解:(1)有图象知,a=3;又由题意可知:当3≤x≤4时,y与x成反比,设.由图象可知,当x=3时,∴m=3×5=18;∴y=(3≤x≤8);(2)把y=7分别代入y=2x和y =得,x=1.5和x=6,∵6﹣2.5=4.6>4,∴抗菌新药可以作为有效药物投入生产.22.疫情期间,某药店出售一批进价为2元的口罩,在市场营销中发现此口罩的日销售单价x(元)与日销售量y(只)之间有如下关系:3456日销售单价x(元)日销售量y(只)2000150012001000(1)猜测并确定y与x之间的函数关系式;(2)设经营此口罩的销售利润为W元,求出W与x之间的函数关系式,(3)若物价局规定此口罩的售价最高不能超过10元/只,请你求出当日销售单价x定为多少时,才能获得最大日销售利润?最大利润是多少元?【分析】(1)由表知xy=60,据此可得y =(x>0),画出函数图象可得;(2)根据总利润=每个口罩的利润×口罩的日销售数量可得函数解析式;(3)根据反比例函数的性质求解可得.【解答】解:(1)由表可知,xy=6000,∴y = (x>0);(2)根据题意,得:W=(x﹣2)•y=(x﹣5)•=6000﹣;(3)∵x≤10,∴6000﹣≤4800,即当x=10时,W取得最大值,答:当日销售单价x定为10元/个时,才能获得最大日销售利润.。
2022-2023学年人教新版九年级下册数学《第26章 反比例函数》单元测试卷(有答案)
2022-2023学年人教新版九年级下册数学《第26章反比例函数》单元测试卷一.选择题(共10小题,满分30分)1.下列函数中,是反比例函数的为()A.y=2x+1B.y=C.y=D.2y=x2.下列函数:①xy=1,②,③y=kx﹣1(k≠0),④y=3﹣x,其中,y是x的反比例函数的有()A.①②③B.②③④C.①③④D.①②④3.函数y=的图象经过点(﹣1,﹣2),则k的值为()A.B.C.2D.﹣24.下列函数中,y是x的反比例函数的是()A.y=2x B.y=C.y=x+3D.y=x25.设k<0,那么函数y=﹣和y=在同一平面直角坐标系中的大致图象是()A.B.C.D.6.已知点(3,y1),(﹣2,y2),(2,y3)都在反比例函数的图象上,那么y1,y2与y3的大小关系是()A.y3<y1<y2B.y3<y2<y1C.y1<y2<y3D.y1<y3<y27.如图,一次函数y1=k1x+b与反比例函数y2=的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为﹣1,则不等式k1x+b<的解集是()A.﹣1<x<0或x>2B.x<﹣1或0<x<2C.x<﹣1或x>2D.﹣1<x<28.若点(2,3)是反比例函数图象上一点,则此函数图象一定经过点()A.(2,﹣3)B.(3,﹣2)C.(1,﹣6)D.(﹣1,﹣6)9.如图,设直线y=kx(k<0)与双曲线y=﹣相交于A(x1,y1)B(x2,y2)两点,则x1y2﹣3x2y1的值为()A.﹣10B.﹣5C.5D.1010.如图,正方形ABCD的顶点分别在反比例函数y=(k1>0)和y=(k2>0)的图象上.若BD∥y轴,点D的横坐标为3,则k1+k2=()A.36B.18C.12D.9二.填空题(共10小题,满分30分)11.若函数y=是关于x的反比例函数,则a满足的条件是.12.若函数y=(3﹣k)x是反比例函数,那么k的值是.13.请你写出一个反比例函数的解析式使它的图象在第一、三象限.14.函数的图象经过点(1,﹣2),则k的值为.15.反比例函数y=的比例系数为.16.如图,直线y=k1x与双曲线y=相交于点P、Q.若点P的坐标为(1,2),则点Q 的坐标为.17.如图所示,A为反比例函数图象上一点,AB垂直x轴,垂足为B点,若S=3,△AOB 则k的值为.18.设函数y=与y=x+4的图象的交点坐标为(a,b),则﹣的值为.19.已知反比例函数y=图象位于一、三象限,则m的取值范围是.20.如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(﹣1,2),将△AOB绕点A顺时针旋转90°,点O的对应点D恰好落在双曲线y=上,则k的值为.三.解答题(共7小题,满分60分)21.小姚同学根据函数的学习经验,对函数y=进行探究,已知函数的图象经过点(﹣1,),(2,0).(1)填空:a=,b=;(2)在平面直角坐标系中画出函数y1的图象,并写出该函数的一条性质:;(3)若函数y2=k的图象与函数y1的图象有两个交点,请直接写出常数k的取值范围.22.写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.23.已知y=y1+y2,y1与(x﹣1)成反比例,y2与x成正比例,且当x=2时,y1=4,y=2.(1)求y关于x的函数解析式;(2)求当x=3时的函数值.24.请根据学习函数的经验,将下列探究函数y=图象与性质的过程补充完整:(1)函数y=的自变量x的取值范围是;(2)下表列出了y与x的几组对应值,请写出其中m、n的值;m=,n=;x…﹣2﹣10n234…y…﹣m﹣1﹣221…(3)在如图所示的平面直角坐标系中,描全表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,写出该函数的一条性质:;(5)根据图象直接写出>﹣1时x的取值范围:.25.下面是九年级某数学兴趣小组在学习反比例函数的图象与性质时的一个活动片段.大家知道,对于三个反比例函数y=、y=、y=,只研究第一象限的情形,根据对称性,便可知道对应另一象限的情况.(1)绘制函数图象:x…123…y=…21…y=…842…y=…1893…列表:如表是x与y的几组对应值.描点:请根据表中各组对应值(x,y),在平面直角坐标系中描出各点;连线:请用平滑的曲线顺次连接各点,画出图象;(2)观察并猜想结论:对于任意两个不同的反比例函数y=和y=(k1≠k2),它们的图象会不会相交:;你的理由是:.26.将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去.(1)完成下表y1y2y3y4y5(2)观察上表,你发现了什么规律?猜想y2004=.27.如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:A、该函数属于一次函数,故本选项错误;B、该函数是y与x2成反比例关系,故本选项错误;C、该函数符合反比例函数的定义,故本选项正确;D、由已知函数得到y=x,属于正比例函数,故本选项错误;故选:C.2.解:①由原方程知,y=;符合反比例函数的定义;故本选项正确;②符合反比例函数的定义;故本选项正确;③反比例函数的一般式(k≠0)可以转化为y=kx﹣1(k≠0)的形式.故本选项正确;④y=3﹣x属于一次函数;故本选项错误;综上所述,y是x的反比例函数的有①②③;故选:A.3.解:∵函数y=的图象经过点(﹣1,﹣2),∴xy=k,将(﹣1,﹣2)代入得:则k的值为:k=﹣1×(﹣2)=2.故选:C.4.解:A、y=2x是正比例函数,不是反比例函数,故此选项不合题意;B、y=是反比例函数,故此选项符合题意;C、y=x+3是一次函数,故此选项不合题意;D、y=x2是二次函数,故此选项不合题意;故选:B.5.解:∵k<0,∴﹣>0,∴函数y=﹣的图象经过原点,在第一、三象限,∵k<0,∴y=的图象在第二、四象限,故选:D.6.解:∵k=﹣6<0,∴图象位于第二、四象限,在每一象限内,y随x的增大而增大,∴y2>0,y3<y1<0,∴y3<y1<y2,故选:A.7.解:观察函数图象可知,当﹣1<x<0或x>2时,一次函数y1=k1x+b的图象在反比例函数y2=的图象的下方,∴不等式k1x+b<的解集为:﹣1<x<0或x>2,故选:A.8.解:∵点(2,3)是反比例函数图象上一点,∴k=2×3=6,A.2×(﹣3)=﹣6,不符合题意;B.3×(﹣2)=﹣6,不符合题意;C.1×(﹣6)=﹣6,不符合题意;D.﹣1×(﹣6)=6,符合题意;∴只有点(﹣1,﹣6)在反比例函数图象上.故选:D.9.解:由图象可知点A(x1,y1)B(x2,y2)关于原点对称,即x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=﹣得x1y1=﹣5,则原式=x1y2﹣3x2y1,=﹣x1y1+3x1y1,=5﹣15,=﹣10.故选:A.10.解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图象上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图象上,D(3,a)在y=(k2>0)的图象上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B.二.填空题(共10小题,满分30分)11.解:由题可得,a+3≠0,解得a≠﹣3,故答案为:a≠﹣3.12.解:∵函数y=(3﹣k)x是反比例函数,∴k2﹣3k﹣1=﹣1,3﹣k≠0,解得:k1=0,k2=3,(不合题意舍去)那么k的值是:0.故答案为:0.13.解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:2.故答案为:y=等.14.解:设函数的解析式为:y=,∵图象经过点(1,﹣2),∴k=1×(﹣2)=﹣2,故答案为﹣2.15.解:∵y==,∴反比例函数y=的比例系数是,故答案为:.16.解:∵直线y=k1x与双曲线y=的图象均关于原点对称,∴点Q的坐标与点P的坐标关于原点对称,∵点P的坐标为(1,2),∴点Q的坐标为(﹣1,﹣2).17.解:由于点A是反比例函数图象上一点,则S=|k|=3;△AOB 又由于函数图象位于一、三象限,则k=6.故答案为6.18.解:∵函数y=与y=x+4的图象的交点坐标为(a,b),∴ab=2,b﹣a=4,∴﹣===2,故答案为219.解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.20.解:过点D作DF⊥AB,垂足为F,延长CD交x轴于点E,则CE⊥x轴,A(﹣1,2)∵△AOB绕点A顺时针旋转90°∴△AOB≌△ADC,∠BAC=90°又∵∠C=∠ABO=90°,∴四边形ACEB是矩形,∴AC=DF=EB=AB=2,CD=BC=AF=1,∴DE=BF=AB﹣AF=2﹣1=1,OE=OB+BE=2+1=3,∴D(﹣3,1)∵点D恰好落在双曲线y=上,∴k=(﹣3)×1=﹣3.故答案为:﹣3.三.解答题(共7小题,满分60分)21.解:(1)∵函数的图象经过点(﹣1,),(2,0),∴=+2,0=×2+b,∴a=﹣1,b=﹣3,故答案为:﹣1,﹣3;(2)列表:描点、画出函数y1的图象如图:由图象可得:函数值最小是﹣,在x<1时y随x的增大而增大等;故答案为:答案不唯一,比如:函数值最小是﹣,在x<1时y随x的增大而增大等;(3)由图象可知:y>2时,与之对应的有两个点,即函数y2=k的图象与函数y1的图象有两个交点,故答案为:k>2.22.解:(1)根据三角形的面积公式可得:y=x=x,所以不是反比例函数;(2)∵vt=200,∴两个变量之间的函数表达式为,是反比例函数;(3)∵y+10x=100,∴两个变量之间的函数表达式为y=100﹣10x,不是反比例函数.23.解:(1)设y1=,y2=k2x(k2≠0),∴y=+k2x,把x=2,y1=4和x=2,y=2分别代入得,解得,∴y关于x的函数解析式为y=﹣x;(2)当x=3时,y=﹣3=﹣1.24.解:(1)∵x﹣1≠0,∴x≠1,故答案为x≠1;(2)当x=﹣1时,y===﹣;当y=2时,则2=,解得x=,∴m=﹣,n=;(3)如图所示:(4)由图象可得,当x>1时,y随x的增大而减小(答案不唯一),故答案为当x>1时,y随x的增大而减小(答案不唯一);(5)由图象可知,>﹣1时x的取值范围为x<0或x>1.故答案为:x<0或x>1.25.解:(1)画出函数图象如图:(2)观察并猜想结论:对于任意两个不同的反比例函数y=和y=(k1≠k2),它们的图象永远不会相交;理由是:反比例函数y=和y=,由于k1≠k2,所以当x 相等时,各自对应的函数y一定不相等,即对应点的横坐标相同,纵坐标不同,也就是不同的点,因此反映到图象是即不相交.故答案为:不相交,反比例函数y=和y=,由于k1≠k2,所以当x相等时,各自对应的函数y一定不相等,即对应点的横坐标相同,纵坐标不同,也就是不同的点,因此反映到图象是即不相交.26.解:(1)x=,y1=﹣=﹣;x=﹣+1=﹣,y2=﹣=2;x=2+1=3,y3=﹣;x=﹣+1=,y4=﹣=﹣;x=﹣+1=﹣,y5=﹣=2,填表如图所示:y1y2y3y4y52﹣﹣2(2)由(1)计算结果可知,结果依次为:﹣,2,﹣,﹣,2,…,三个数循环,=y3=﹣,所以,y2004=y668×3故答案为:﹣.27.解:(1)∵AC=1,k=2,∴点A(1,2),∴OC=2,OA==.∵点B在反比例函数y=(x>0)的图象上,=|k|=1.∴S△BOD故答案为:;1.(2)∵A,B两点在函数y=(x>0)的图象上,∴A(1,k),B(k,1),∴AO=,AB=.∵AO=AB,∴=,解得:k=2+或k=2﹣.∵k>1,∴k=2+.。
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案
人教版九年级数学下册《第26章 反比例函数》单元测试卷-带参考答案(考试时间:90分钟 试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分) 1.在下列函数中,y 是x 的反比例函数的是( ) A .2y x = B .2x y =C .2y x=D .21yx【答案】C【详解】A .该函数是正比例函数,故本选项错误; B .该函数是正比例函数,故本选项错误; C .该函数符合反比例函数的定义,故本选项正确; D .y 是()1x -的反比例函数,故本选项错误; 故选:C . 2.若双曲线(0)ky k x=<,经过点()12,A y -,()25,B y -则1y 与2y 的大小关系为( ) A .12y y < B .12y y > C .12y y = D .无法比䢂1y 与2y 的大小 【答案】B【详解】解: (0)ky k x=< ∴ 在同一象限内,y 随着x 的增大而增大即可求解()12,A y -,()25,B y -都在第二象限,且25->-∴12y y >.故选:B .3.已知反比例函数4y x=,则它的图象经过点( ) A .(2,8) B .(1,4)- C .(4,1) D .(2,2)-【答案】C【详解】解:由反比例函数4y x=可得:4xy = 2816⨯=,故A 选项不符合题意; 144-⨯=-,故B 选项不符合题意; 414⨯=,故C 选项符合题意;()224⨯-=-,故D 选项不符合题意.故选:C4.反比例函数5m y x-=的图象在第一、三象限,则m 的取值范围是( ) A .5m ≥ B .5m > C .5m ≤ D .5m <【答案】B【详解】解:∵反比例函数5m y x-=图象在第一、三象限 50m ∴->解得5m >. 故选:B5.如图,一次函数1y ax b 的图象与反比例函数2ky x=图象交于()2,A m 、()1,B n -两点,则当12y y >时,x 的取值范围是( )A .1x <-或2x >B .10x -<<或2x >C .12x -<<D .1x <-或02x <<【答案】B【详解】解:∵图象交于()2,A m 、()1,B n -两点 ∵当12y y >时,10x -<<或2x >. 故选B .6.若0ab >,则反比例函数aby x=与一次函数y ax b =+在同一坐标系中的大致图象可能是( )A .B .C .D .【答案】A【详解】解:0ab > ∴aby x=的图象在第一、三象限,排除B ,D ; 0ab >∴a ,b 同号当0a >,0b >时,y ax b =+的图象经过第一、二、三象限 当a<0,0b <时,y ax b =+的图象经过第二、三、四象限 综上可知,只有A 选项符合条件 故选A .7.在平面直角坐标系中,若反比例函数()0ky k x=≠的图像经过点()1,2A 和点()2,B m -,则m 的值为( ) A .1 B .1- C .2 D .2-【答案】B【详解】解:根据题意,将点()1,2A 代入()0ky k x =≠中得:21k =解得:2k =∵反比例函数解析式为2y x =将()2,B m -代入2y x =中得212m ==--故选:B .8.如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流(A)I 与电阻()R Ω成反比例函数的图像,该图像经过点()880,0.25P .根据图像可知,下列说法正确的是( )A .当0.25I <时,880R <B .I 与R 的函数关系式是()2000I R R=> C .当1000R >时,0.22I >D .当8801000R <<时,I 的取值范围是0.220.25I <<【答案】D【详解】解:设I 与R 的函数关系式是(0)UI R R=>∵该图像经过点()880,0.25P ∵0.25880U= ∵220U =∵I 与R 的函数关系式是220(0)I R R=>,故选项B 不符合题意; 当0.25I =时,880R =,当1000R =时0.22I = ∵反比例函数(0)UI R R=>I 随R 的增大而减小 当0.25R <时880I >,当1000R >时0.22I <,故选项A ,C 不符合题意; ∵0.25R =时880I =,当1000R =时0.22I =∵当8801000R <<时,I 的取值范围是0.220.25I <<,故D 符合题意; 故选:D .9.正比例函数y x =与反比例函数1y x=的图象相交于A 、C 两点,AB x ⊥轴于点B ,CD x ⊥轴于点D (如图),则四边形ABCD 的面积为( )A .1B .32C .2D .52【答案】C【详解】解:解方程组1y xy x =⎧⎪⎨=⎪⎩,得:11x y =⎧⎨=⎩或11x y =-⎧⎨=-⎩ 即:正比例函数y x =与反比例函数1y x=的图象相交于两点的坐标分别为(1,1)A (1,1)C -- ∵AB x ⊥ CD x ⊥ ∵(1,0)D - (1,0)B ∵1111212122222四边形=⋅+⋅=⨯⨯+⨯⨯=ABCD S BD AB BD CD 即:四边形ABCD 的面积是2. 故选:C10.如图,正方形ABCD 的顶点分别在反比例函数11(0)k y k x=>和22(0)ky k x =>的图象上.若BD y ∥轴,点C 的纵坐标为4,则12k k +=( )A .32B .30C .28D .26【答案】A【详解】解:连接AC 交BD 于E ,延长BD 交x 轴于F ,连接OD 、OB 如图:四边形ABCD 是正方形AE BE CE DE ∴===设AE BE CE DE m ==== (,4)C aBD y ∥轴(,4)B a m m ∴++ (2,4)A a m + (,4)D a m m +-A ,B 都在反比例函数11(0)k y k x=>的图象上 14(2)(4)()k a m m a m ∴=+=++0m ≠4m a ∴=- (4,8)B a ∴-()4,D a(4,8)B a -在反比例函数11(0)k y k x=>的图象上,(4,)D a 在22(0)ky k x =>的图象上14(8)324k a a ∴=-=- 24k a =12324432k k a a ∴+=-+=;故选:A .二、填空题:(本大题共6小题,每小题3分,满分18分)11.已知反比例函数(0)ky kx=≠ 当x = y =- 则比例系数k 的值是______.【答案】4-【详解】解:把x = y =-4k =-=-;故答案为4-.12.如图 若反比例函数(0)ky x x=<的图像经过点A AB x ⊥轴于B 且AOB 的面积为5 则k =______.【答案】10-【详解】解:∵反比例函数(0)ky x x=<的图像经过点A AB OB ⊥ ∵设,k A a a ⎛⎫ ⎪⎝⎭∵12AOB k S a a=△ ∵反比例函数的图像在第二象限 ∵0k < a<0 则0ka> ∵11522AOB k S a k a ===△ ∵10k =- 故答案为:10-. 13.已知反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 则k 的取值范围是_____.【答案】3k >##3k < 【详解】解:∵反比例函数3ky x-=的图像在每一个象限内 y 随x 的增大而增大 ∵30k -< ∵3k >.故答案为:3k >.14.如图 点M 和点N 分别是反比例函数a y x =(0x <)和by x=(0x >)的图象上的点MN x ∥轴 点P 为x 轴上一点 若4b a -= 则MNP S △的值为_______.【答案】2【详解】解:如图 连接,OM ON∵MN x ∥轴 ∵ ||||22MNP MNO a b S S ∆∆==+ ∵点M 和点N 分别是反比例的数(0)ay x x =<和(0)b y x x=> 的图象上的点 ∵0,0a b <> ∵||||4222222a b a b b a -+=-+== ∵2MNP S =△; 故答案为:2.15.已知点(3,)C n 在函数ky x=(k 是常数 0k ≠)的图象上 若将点C 先向下平移2个单位 再向左平移4个单位 得点D 点D 恰好落在此函数的图象上 n 的值是______. 【答案】12##0.5【详解】解:点(3,)C n 向下平移2个单位 再向左平移4个单位得(,)n --12; ∵(,)D n --12 ∵点C 、点D 均在函数k y x=上 ∵3k n = ()k n =--2 ∵()n n =--32 解得:12n =故答案为:1216.如图 正方形ABCD 的边长为5 点A 的坐标为(4,0) 点B 在y 轴上 若反比例函数(0)ky k x=≠的图象过点C 则k 的值为_______.【答案】3-【详解】解:如图 过点C 作CE y ⊥轴于E 在正方形ABCD 中 AB BC = 90ABC ∠=︒90ABO CBE ∴∠+∠=︒ 90OAB ABO ∠+∠=︒ OAB CBE ∴∠=∠点A 的坐标为(4,0)4∴=OA 5AB =3OB ∴= 在ABO 和BCE 中OAB CBE AOB BEC AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABO BCE ∴≌4OA BE ∴== 3CE OB ==431OE BE OB ∴=-=-= ∴点C 的坐标为(3,1)-反比例函数(0)ky k x=≠的图象过点C 313k xy ∴==-⨯=-故答案为:3-.三、解答题(本大题共6题 满分52分) 17.(8分)已知反比例函数12y x=-. (1)说出这个函数的比例系数和自变量的取值范围. (2)求当3x =-时函数的值.(3)求当y =x 的值. 【答案】(1)12,0k x =-≠ (2)4(3)【详解】(1)解:∵12y x=- ∵12,0k x =-≠;(2)解:把3x =- 代入12y x =-得:1243y =-=-; ∵当3x =-时函数的值为:4;(3)解:把y = 代入12y x =-得:12x - 解得:43x ;∵当y =x 的值为:18.(9分)已知一次函数y =kx +b 与反比例函数y mx=的图像交于A (﹣3 2)、B (1 n )两点.(1)求一次函数和反比例函数的表达式; (2)求∵AOB 的面积;(3)结合图像直接写出不等式kx +b mx>的解集. 【答案】(1)一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=- (2)8(3)x <﹣3或0<x <1【详解】(1)解:∵反比例函数y mx =的图象经过点A (﹣3 2)∵m =﹣3×2=﹣6∵点B (1 n )在反比例函数图象上 ∵n =﹣6. ∵B (1 ﹣6)把A B 的坐标代入y =kx +b 则326k b k b -+=⎧⎨+=-⎩ 解得k =﹣2 b =﹣4∵一次函数的解析式为y =﹣2x ﹣4 反比例函数的解析式为y 6x=-; (2)解:如图 设直线AB 交y 轴于C则C (0 ﹣4)∵S △AOB =S △OCA +S △OCB 12=⨯4×312+⨯4×1=8; (3)解:观察函数图象知 不等式kx +b mx>的解集为x <﹣3或0<x <1. 19.(6分)某气球内充满一定质量的气体 当温度不变时 气球内气体的压强(kPa)p 与气体的体积()3m V 成反比例.当气体的体积30.8m V =时 气球内气体的压强112.5kPa p =.(1)当气体的体积为31m 时 它的压强是多少?(2)当气球内气体的压强大于150kPa 时 气球就会爆炸.问:气球内气体的体积应不小于多少气球才不会爆炸?【答案】(1)当气体的体积为31m 时 它的压强是90kPa (2)当气球内气体的体积应不小于30.6m 时 气球才不会爆炸 【详解】(1)解:设k V p=由题意得:0.8112.5k= ∵90k = ∵90V p=∵当1V =时 90p =∵当气体的体积为31m 时 它的压强是90kPa ; (2)解:当150p =时 900.6150V == ∵900k =>∵V 随p 的增大而增大∵要使气球不会爆炸 则0.6V ≥∵当气球内气体的体积应不小于30.6m 时 气球才不会爆炸.20.(9分)如图 一次函数28y x =-+与函数(0)ky x x=>的图像交于(,6)A m (,2)B n 两点 AC y ⊥轴于C BD x ⊥轴于D .(1)求k 的值;(2)连接OA OB 求AOB 的面积;(3)在x 轴上找一点P 连接AP BP 使ABP 周长最小 求点P 坐标. 【答案】(1)6 (2)8 (3)5,02⎛⎫ ⎪⎝⎭【详解】(1)解:∵一次函数28y x =-+与函数(0)k y x x=>的图像交于(,6)A m (,2)B n 两点 ∵628m =-+ 228n =-+ 解得1m = 3n = ∵点(1,6)A (3,2)B 代入反比例函数得 61k= ∵616k =⨯=.(2)解:如图所示设一次函数图像与x 轴的交点为M 在一次函数28y x =-+中 令0y = 则4x = ∵(4,0)M 且(1,6)A (3,2)B∵114642822AOB AOM BOM S S S =-=⨯⨯-⨯⨯=△△△.(3)解:已知(1,6)A (3,2)B 则点A 关于x 轴的对称点A '的坐标(1,6)- 如图所示 A P AP '= 则ABP 的周长为AP BP AB A P BP AB '++=++设直线BA '的解析式为y kx b =+将点(3,2)B 、(1,6)A '-代入 得326k b k b +=⎧⎨+=-⎩解得410k b =⎧⎨=-⎩ ∵直线BA '的解析式为410=-y x 当0y =时 则4100x -= 解方程得 52x = ∵点P P 的坐标为5,02⎛⎫⎪⎝⎭.21.(10分)已知一次12y x a =-+的图象与反比例函数()20ky k x=≠的图象相交. (1)判断2y 是否经过点(),1k .(2)若1y 的图象过点(),1k 且25a k +=. ∵求2y 的函数表达式.∵当0x >时 比较1y 2y 的大小. 【答案】(1)过 (2)∵21=y x;∵当01x <<时 12y y < 当1x >时 12y y > 当1x =时 12y y = 【详解】(1)∵()20ky k x =≠∵把点(),1k 代入反比例函数 得1kk= ∵2y 经过点(),1k . (2)①∵1y 的图象过点(),1k∵把点(),1k 代入12y x a =-+ 得12k a =-+ 又∵25a k += ∵解得2a = 1k = ∵21=y x∵2y 的函数表达式为:21=y x②如图所示:由函数图象得 当01x <<时 12y y <;当1x >时 12y y >;当1x =时 12y y =.22.(10分)图1 已知双曲线(0)ky k x=>与直线y k x '=交于A 、B 两点 点A 在第一象限 试回答下列问题:(1)若点A 的坐标为(3,1) 则点B 的坐标为 ;(2)如图2 过原点O 作另一条直线l 交双曲线(0)ky k x=>于P Q 两点 点P 在第一象限.∵四边形ABPQ 一定是 ;∵若点A 的坐标为(3,1) 点P 的横坐标为1 求四边形ABPQ 的面积.(3)设点A 、P 的横坐标分别为m 、n 四边形ABPQ 可能是矩形吗?可能是正方形吗?若可能 直接写出m 、n 应满足的条件;若不可能 请说明理由. 【答案】(1)(3,1)-- (2)∵平行四边形;∵16(3)mn k =时 四边形ABPQ 是矩形 不可能是正方形 理由见解析 【详解】(1)A 、B 关于原点对称 (3,1)A ∴点B 的坐标为(3,1)--故答案为:(3,1)--(2)∵A 、B 关于原点对称 P 、Q 关于原点对称 ∴OA OB = OP OQ = ∴四边形ABPQ 是平行四边形故答案为:平行四边形 ∵点A 的坐标为(3,1) ∴313k =⨯=∴反比例函数的解析式为3y x=点P 的横坐标为1 ∴点P 的纵坐标为3∴点P 的坐标为(1,3)由双曲线关于原点对称可知 点Q 的坐标为(1,3)-- 点B 的坐标为(3,1)--如图 过点A 、B 分别作y 轴的平行线 过点P 、Q 分别作x 轴的平行线 分别交于C 、D 、E 、F则四边形CDEF 是矩形 6CD = 6DE = 4DB DP == 2CP CA ==则四边形ABPQ 的面积=矩形CDEF 的面积-ACP △的面积-PDB △的面积-BEQ 的面积-AFQ △的面积36282816=----=(3)当AB PQ ⊥时四边形ABPQ 是正方形 此时点A 、P 在坐标轴上 由于点A P 不可能在坐标轴上且都在第一象限故不可能是正方形 即90POA ∠≠︒ PO AO BO QO ===时 四边形ABPQ 是矩形此时P 、A 关于直线y x =对称 即22k k m n m n ++=化简得mn k =∴mn k =时 四边形ABPQ 是矩形 不可能是正方形。
2021-2022学年人教版九年级数学下册《第26章反比例函数》单元过关测试题(附答案)
2021-2022学年人教版九年级数学下册《第26章反比例函数》单元过关测试题(附答案)一.选择题(共13小题,满分39分)1.下列函数中,y是x的反比例函数是()A.x(y﹣1)=1B.y=C.y=D.y=2.函数是反比例函数,则m的值是()A.m=±1B.m=1C.m=±D.m=﹣13.点(x1,y1)、(x2,y2)、(x3,y3)在反比例函数y=﹣的图象上,且x1<0<x2<x3,则有()A.y1<y2<y3B.y2<y3<y1C.y1<y3<y2D.y3<y2<y14.关于反比例函数,下列说法错误的是()A.图象经过点(1,﹣3)B.y随x的增大而增大C.图象关于原点对称D.图象与坐标轴没有交点5.一次函数y=kx﹣k与反比例函数y=在同一平面直角坐标系中的图象可能是()A.B.C.D.6.若函数的图象经过点(3,﹣4),则它的图象一定还经过点()A.(3,4)B.(2,6)C.(﹣12,1)D.(﹣3,﹣4)7.对于反比例函数,下列结论:①图象分布在第二、四象限;②当x>0时,y随x 的增大而增大;③图象经过点(1,﹣2);④若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2,其中正确的是()A.①②③B.②③④C.①③④D.①②④8.如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥y轴,BC⊥AB于点B,交y轴于点C.若△ABC的面积为3,则k的值为()A.﹣3B.﹣2C.2D.39.如图,双曲线y=与直线y=mx相交于A、B两点,B点坐标为(﹣2,﹣3),则A点坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣2,3)D.(2,﹣3)10.已知P是反比例函数y=(k≠0)图象上一点,P A⊥x轴于A,若S△AOP=4,则这个反比例函数的解析式是()A.B.C.或D.或11.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(4a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点,若图中阴影部分的面积等于16,则k的值为()A.16B.1C.4D.﹣1612.如图,两个反比例函数y=和y=在第一象限内的图象分别是C1和C2,设点P在C1上,P A⊥x轴于点A,交C2于点B,则△POB的面积为()A.1B.2C.4D.无法计算13.如图,点A在反比例函数y=﹣的图象上,AM⊥y轴于点M,点P是x轴上的一点,则△APM的面积是()A.2B.4C.6D.8二.填空题(共8小题,满分32分)14.已知反比例函数y=在每个象限内y随x增大而减小,则m的取值范围是.15.已知反比例函数y=和y=在第一象限内的图象如图所示,则△AMN的面积为.16.反比例函数y=和y=在第一象限的图象如图所示.点A,B分别在y=和y=的图象上,AB∥y轴,点C是y轴上的一个动点,则△ABC的面积为.17.在反比例函数的图象上有两点P(2,n),Q(3,n﹣1),则该反比例函数的解析式为.18.如图,函数y=﹣kx(k≠0)与y=﹣的图象交于A、B两点,过点A作AC垂直于y 轴,垂足为C,则△BOC的面积为.19.如图是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1,k2,k3的大小关系为.20.如图,在平面直角坐标系中,点A是x轴上任意一点,BC∥x轴,分别交y=(x>0),y=﹣(x<0)的图象于B,C两点,若△ABC的面积是2,则k的值为.21.如图,点A在双曲线上,点B在双曲线(k≠0)上,AB∥x轴,分别过点A、B向x轴作垂线,垂足分别为D、C,若矩形ABCD的面积是8,则k的值为.三.解答题(共6小题,满分49分)22.如图,在直角坐标系xOy中,一次函数y=k1x+b的图象与反比例函数的图象交于A(1,4),B(3,m)两点.(1)求反比例函数的解析式;(2)求△AOB的面积;(3)如图写出反比例函数值大于一次函数值的自变量x的取值范围.23.如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(1,3),B(3,n).(1)直接写出m=;n=;(2)请结合图象直接写出不等式kx+b>的解集是;(3)若点P为y轴上一点,△P AB的面积为4,求点P的坐标.24.如图,在平行四边形OABC中,OC=2,∠AOC=45°,点A在x轴上,点D是AB的中点,反比例函数y=(k>0,x>0)的图象经过C、D两点.(1)求k的值;(2)求点D的坐标.25.A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.26.如图是双曲线y1、y2在第一象限的图象,,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若S△AOB=1,求双曲线y2的解析式.27.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=(x>0)的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.参考答案一.选择题(共13小题,满分39分)1.解:A,B,C都不符合反比例函数的定义,错误;D符合反比例函数的定义,正确.故选:D.2.解:∵函数是反比例函数,∴m﹣1≠0,m2﹣2=﹣1.解得m=﹣1.故选:D.3.解:∵k<0,∴函数图象在二,四象限,由x1<0<x2<x3可知,横坐标为x1的点在第二象限,横坐标为x2,x3的点在第四象限.∵第四象限内点的纵坐标总小于第二象限内点的纵坐标,∴y1最大,在第二象限内,y随x的增大而增大,∴y2<y3<y1.故选:B.4.解:A、反比例函数,当x=1时y=﹣3,说法正确,故本选项不符合题意;B、反比例函数中k=﹣3<0,则该函数图象经过第二、四象限,需要强调在每个象限象限内y随x的增大而增大,故说法错误,本选项符合题意;C、反比例函数的图象关于原点对称,说法正确,故本选项不符合题意;D、图象与坐标轴没有交点,说法正确,故本选项不符合题意.故选:B.5.解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.6.解:∵函数的图象经过点(3,﹣4),∴k=3×(﹣4)=﹣12,符合题意的只有C:k=﹣12×1=﹣12.故选:C.7.解:∵于反比例函数,∴该函数的图象分布在第二、四象限,故①正确;当x>0时,y随x的增大而增大,故②正确;当x=1时,y=﹣2,故③正确;若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,故④错误;故选:A.8.解:如图,连接OA、OB,设AB交x轴于点D.∵AB∥y轴,∴S△AOB=S△ABC,即S△AOD+S△BOD=S△ABC=3,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴×|﹣4|+|k|=3,∴|k|=2.∵在第三象限,∴k=2,故选:C.9.解:∵点A与B关于原点对称,∴A点的坐标为(2,3).故选:B.10.解:∵P A⊥x轴于A,∴S△AOP=|k|=4,∴k=±8,∴这个反比例函数的解析式为y=或y=﹣.故选:C.11.解:∵图中阴影部分的面积等于16,∴正方形OABC的面积=16,∵P点坐标为(4a,a),∴4a×4a=16,∴a=1(a=﹣1舍去),∴P点坐标为(4,1),把P(4,1)代入y=,得k=4×1=4.故选:C.12.解:∵P A⊥x轴于点A,交C2于点B,∴S△POA=×4=2,S△BOA=×2=1,∴S△POB=2﹣1=1.故选:A.13.解:如图,连接OA,∵AM⊥OM,∵△APM的面积=△AOM的面积,△AOM的面积=|k|=4,∴△APM的面积=4,故选:B.二.填空题(共8小题,满分32分)14.解:∵在反比例函数y=图象的每个象限内,y随x的增大而减小,∴m﹣4>0,解得m>4.故答案为:m>4.15.解:设A(a,),则M(a,),N(,),∴AN=a﹣=,AM=﹣=,∴△AMN的面积=AN×AM=××=,故答案为:.16.解:连接OA、OB,延长AB,交x轴于D,∵AB∥y轴,∴AD⊥x轴,OC∥AB,∴S△OAB=S△ABC,而S△OAD=×3=,S△OBD=×1=,∴S△OAB=S△OAD﹣S△OBD=1,∴S△ABC=1,故答案为:1.17.解:在反比例函数的图象上有两点P(2,n),Q(3,n﹣1),∴,解得:k=6,∴该反比例函数的解析式为y=,故答案为:y=.18.解:∵函数y=﹣kx(k≠0)与y=﹣的图象交于A、B两点,∴点A与点B关于原点中心对称,∴S△AOC=S△BOC,∵过点A作AC垂直于y轴,垂足为C,∴S△AOC=×|﹣1|=,∴S△BOC=.故答案为:.19.解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=的图象距原点较远,故有:k1<k2<k3;综合可得:k1<k2<k3.故填k1<k2<k3.20.解:连接OC、OB,如图,∵BC∥x轴,∴S△ACB=S△OCB,而S△OCB=•|﹣1|+•|k|,∴•|﹣1|+•|k|=2,而k>0,∴k=3.故答案为:3.21.解:过点A作AE⊥y轴于点E,∵点A在双曲线上,∴矩形EODA的面积为:4,∵矩形ABCD的面积是8,∴矩形EOCB的面积为:4+8=12,则k的值为:xy=k=12.故答案为:12.三.解答题(共6小题,满分49分)22.解:(1)∵A(1,4)在上,∴4=,∴k2=1×4=4,∴y=(x>0)(2)∵把B(3,m)代入中,,∴∵y=k2x+b过点A(1,4)B(3,),∴,∴,∴令y=0,∴C(4,0)S△AOB=S△AOC﹣S△COB=×4×4﹣×4×=8﹣=;(3)0<x<1或x>323.解:(1)∵反比例函数y=的图象经过A(1,3),∴3=,则m=3,∴反比例函数的表达式为y=,又∵点B(3,n)在反比例函数y=的图象上.∴n=1,故答案为:3,1;(2)∵A(1,3),B(3,1),观察图象可知,不等式kx+b>的解集为x<0或1<x <3;(3)∵一次函数y=kx+b的图象经过A(1,3)、B(3,1)两点.∴,解得,∴一次函数的表达式为y=﹣x+4;设直线y=﹣x+4与y轴交于点C,则C(0,4).∵S△P AB=S△PBC﹣S△P AC=PC•(3﹣1)=4,∴PC=4,∴P(0,0)或(0,8).24.解:(1)过C作CE⊥OA于E,∵OC=2,∠AOC=45°,∴OE=OC=sin45°×2=2,∴C(2,2),∵反比例函数y=(k>0,x>0)的图象经过C,∴k=2×2=4;(2)作DF⊥OA于F,由平行四边形OABC可知:BC∥OA,∴B的纵坐标等于C的纵坐标2,∵D是AB的中点,∴DF=1,∵反比例函数y=(k>0,x>0)的图象经过D,∴1=,∴x=4,∴D(4,1).25.解:(1)根据题意,路程为400,设小汽车的行驶时间为t小时,行驶速度为v千米/小时,则v关于t的函数表达式为v=;(2)设从A地匀速行驶到B地要t小时,则≤80,解得:t≥5,∴他从A地匀速行驶到B地至少要5小时;(3)∵v≤100,≤100,解得:t≥4,∴某人从A地出发最少用4个小时才能到达B地,7点至10点40分,是3小时,∴他不能在10点40分之前到达B地.26.解:设双曲线y2的解析式为y2=,由题意得:S△BOC﹣S△AOC=S△AOB,﹣=1,解得;k=6;则双曲线y2的解析式为y2=.27.解:(1)∵反比例函数y=的图象经过点A,A点的坐标为(4,2),∴k=2×4=8,∴反比例函数的解析式为y=;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,由题意可知,CN=2AM=4,ON=2OM=8,∴点C的坐标为C(8,4),设OB=x,则BC=x,BN=8﹣x,在Rt△CNB中,x2﹣(8﹣x)2=42,解得:x=5,∴点B的坐标为B(5,0),设直线BC的函数表达式为y=ax+b,直线BC过点B(5,0),C(8,4),∴,解得:,∴直线BC的解析式为y=x﹣,根据题意得方程组,解此方程组得:或∵点F在第一象限,∴点F的坐标为F(6,).。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测题(有答案解析)
一、选择题1.如图,A 、B 是函数1y x=的图像上关于原点对称的任意两点,BC //x 轴,AC //y 轴,ABC 的面积记为S ,则( )A .1S =B .2S =C .24S <<D .4S =2.已知函数()0ky k x=≠中,在每个象限内,y 的值随x 的值增大而增大,那么它和函数()0y kx k =-≠在同一直角坐标平面内的大致图像是( ).A .B .C .D .3.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<4.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3)5.在同一直角坐标系中,反比例函数y =abx与一次函数y =ax+b 的图象可能是( ) A . B .C.D.6.已知点A(x1,y1)、B(x2,y2)、C(x3,y3)是函数y=﹣2x图象上的点,且x1<0<x2<x3,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y1>y3>y2D.无法确定7.对于反比例函数21kyx+=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(-1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值8.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为( )A.1.5 B.1.8 C.2 D.无法求9.如图,矩形OABC的顶点A、C分别在x轴、y轴上,顶点B在第一象限,AB=1.将线段OA绕点O按逆时针方向旋转600得到线段OP,连接AP,反比例函数y=kx过P、B两点,则k的值为()A.23B.233C.43D.3310.若函数5y x=与1y x =+的图像交于点(),A a b ,则11a b -的值为 ( )A .15-B .15C .5-D .511.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( ) A .①③ B .③④ C .②④ D .②③12.如图,在平面直角坐标系中,点A 是函数()0ky x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小二、填空题13.如图,反比例函数y =kx(x >0)经过A ,B 两点,过点A 作AC ⊥y 轴于点C ,过点B 作BD ⊥y 轴于点D ,过点B 作轴BE ⊥x 于点E ,连接AD ,已知AC =2,BE =2,S 矩形BEOD =16,则S △ACD =_____.14.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;15.如图,已知正比例函数11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图像交于两点M ,N ,若点N 的坐标是(1,2)--,则点M 的坐标为________16.如图,一次函数1y k x b =+的图象过点()0,4A ,且与反比例函数()20k y x x=>的图象相交于B 、C 两点,若2BC AB =,则12k k ⋅的值为______.17.如图,点M 是反比例函数ky x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.18.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.19.已知点(1,),(3,)A a B b 都在反比例函数4y x=的图像上,则,a b 的大小关系为____.(用“<”连接)20.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.三、解答题21.数学活动:问题情境:有这样一个问题:探究函()120y x x x ⎛⎫=+> ⎪⎝⎭的图象与性质. 乐乐根据学习函数的经验,对函数()120y x x x ⎛⎫=+> ⎪⎝⎭的图象和性质进行探究,下面是乐乐的探究过程,请补充完整:(1)补全下表,并在坐标系中补全描点法应描的点,然后画出函数()120y x x x ⎛⎫=+> ⎪⎝⎭的图象;x⋅⋅⋅14 13 121 2 3 4⋅⋅⋅y⋅⋅⋅1722034203 172⋅⋅⋅(2)观察该函数的图象,请写出函数的一条性质______;(3)在同一个坐标系中画出函数4y x =的图象,并根据图像直接写出0x >时关于x 的不等式142y x x x ⎛⎫=+⎪⎝>⎭的解集:______.22.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线ky x=相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式;(2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.23.如图,直线y mx n =+与双曲线ky x=相交于()1,2,(2,)A B b -两点,与x 轴交于点E ,与y 轴相交于点C .(1)求m n ,的值;(2)若点D 与点C 关于x 轴对称,求ABD ∆的面积;(3)在坐标轴上是否存在异于D 点的点,P 使得PAB DAB S S ∆∆=?若存在,直接写出Р点坐标;若不存在,说明理由. 24.已知反比例函数k 1y x-=(k 为常数,k≠1). (1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围. 25.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,他们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ). (1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标. (2)求点(x ,y )在函数y =8x图象上的概率. 26.如图,一次函数y kx b =+与反比例函数6(0)y x x=>的图象交于(),6A m ,()3,B n 两点.(1)求一次函数的解析式; (2)根据图象直接写出60kx b x+-<的x 的取值范围; (3)求AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),求出AC =2b,BC=2a,根据反比例函数图象上点的坐标特征求出ab=1,再根据三角形的面积公式求出即可.【详解】解:设A点的坐标是(a,b),则根据函数的对称性得出B点的坐标是(﹣a,﹣b),则AC=2b,BC=2a,∵A点在y=1x的图象上,∴ab=1,∴ABC的面积S=12BC AC ⨯⨯=122 2a b ⨯⨯=2ab=2×1=2,故选:B.【点睛】本题考查了三角形的面积,反比例函数图象上点的坐标特征,反比例函数系数k的几何意义等知识点,能求出ab=1是解此题的关键.2.A解析:A【分析】首先根据反比例函数图象的性质判断出k的范围,再确定其所在象限,进而确定正比例函数图象所在象限,即可得到答案.【详解】解:∵函数kyx=中,在每个象限内,y随x的增大而增大,∴k<0,∴双曲线在第二、四象限,∴函数y=-kx的图象经过第一、三象限,故选:A.此题主要考查了反比例函数图象的性质与正比例函数图象的性质,图象所在象限受k的影响.3.A解析:A【分析】根据反比例函数2yx=和x1<x2<x3,y2<y1<y3,可得点A,B在第三象限,点C在第一象限,得出x1<x2<0<x3,再选择即可.【详解】解:∵反比例函数2yx=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.4.C解析:C【分析】根据反比例函数图象上点的坐标特征即可求解.【详解】解:∵反比例函数y=kx的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,将四个选项代入反比例函数y=kx的解析式,只有C选项符合题意,故选:C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据A点的坐标求出k值.5.D解析:D【分析】先根据一次函数图象经过的象限得出a、b的正负,由此即可得出反比例函数图象经过的象限,再与函数图象进行对比即可得出结论.∵一次函数图象应该过第一、二、四象限, ∴a <0,b >0, ∴ab <0,∴反比例函数的图象经过二、四象限,故A 选项错误, ∵一次函数图象应该过第一、三、四象限, ∴a >0,b <0, ∴ab <0,∴反比例函数的图象经过二、四象限,故B 选项错误; ∵一次函数图象应该过第一、二、三象限, ∴a >0,b >0, ∴ab >0,∴反比例函数的图象经过一、三象限,故C 选项错误; ∵一次函数图象经过第二、三、四象限, ∴a <0,b <0, ∴ab >0,∴反比例函数的图象经经过一、三象限,故D 选项正确; 故选:D . 【点睛】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.C解析:C 【分析】根据反比例函数图象上点的坐标特征得到y 1=12x -,y 2=22x -,y 3=32x -,然后根据x 1<0<x 2<x 3比较y 1,y 2,y 3的大小. 【详解】点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是2y x=-的图象上的点, ∴y 1=12x -,y 2=22x -,y 3=32x -,而x 1<0<x 2<x 3, ∴y 1>y 3>y 2. 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征:熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.B解析:B【分析】先判断出k 2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A 、∵k 2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B 、∵它的图象分布在第一、三象限,∴在每一象限内y 随x 的增大而减小,故本选项错误;C 、∵它的图象分布在第一、三象限,在每一象限内y 随x 的增大而减小,∵x 1=-1<0,∴y 1<0,∵x 2=1>0,x 3=2>0,∴y 2>y 3,∴y 1<y 3<y 2故本选项正确;D 、∵P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,∴△OPQ 的面积=12(k 2+1)是定值,故本选项正确.故选B .【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=k x(k≠0)中,当k >0时函数图象的两个分支分别位于一三象限是解答此题的关键. 8.C解析:C【分析】根据OA 、OC 的长度,可得反比例函数的比例系数k=6,设正方形ADEF 的边长为x ,则OD DE=(1x)x=6⋅+⋅,解得x 即为正方形的边长.【详解】解:根据OA=1,OC=6,可得反比例函数的比例系数k=OA OC=6⋅,设正方形ADEF 的边长为x ,则OD=OA+AD=1+x ,DE=x ,则OD DE=(1x)x=6⋅+⋅,解得:x=2或-3(舍),故选:C .【点睛】本题主要考察了反比例函数与几何图形的综合、解一元二次函数,解题的关键在于根据图形求出反比例函数的比例系数k .9.D解析:D【分析】本题先设A 点坐标(x ,0),则点B (x ,1),由等边三角性质可知P (12x ,2x )代入函数表达式即可求出结果.【详解】由题意设A 点坐标(x ,0),则点B (x ,1),将点B 代入函数式得k=x ,又由题意将线段OA 绕点O 按逆时针方向旋转60°得到线段OP ,∴OP=OA ,则△AOP 为等边三角形,∴由等边三角形性质设点P (12k,2 k ),把点P代入反比例函数表达式得:2 k =12kk , ∴12⨯212k ⨯, ∵k 0≠,∴k=3,即选D . 【点睛】此题考查反比例函数,等边三角形性质,解题关键是找出点P 坐标,即运用等边三角形性质解题.10.B解析:B【分析】先把A (a ,b )分别代入两个解析式得到5b a =,b =a +1,则ab =5,b -a =1,再变形11a b -得到b a ab-,然后利用整体思想进行计算即可. 【详解】解:把A (a ,b )代入5y x=与y =x +1, 得5b a=,b =a +1, 即ab =5,b -a =1, 所以11a b -=b a ab -=15. 故选:B.【点睛】 本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.11.B解析:B【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 12.A解析:A【分析】根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE SCOF S = 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x =>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S COF S = 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.二、填空题13.6【分析】利用反比例函数比例系数k 的几何意义得到S 矩形BEOD=|k|=16则求出k 得到反比例函数的解析式为y =再利用A 点的横坐标为2可计算出A 点的纵坐标为8从而得到CD=6然后根据三角形面积公式计解析:6【分析】利用反比例函数比例系数k的几何意义得到S矩形BEOD=|k|=16,则求出k得到反比例函数的解析式为y=16x,再利用A点的横坐标为2可计算出A点的纵坐标为8,从而得到CD=6,然后根据三角形面积公式计算S△ACD.【详解】解:∵BE⊥x轴于E,BD⊥y轴于D,∴S矩形BEOD=|k|=16,而0k ,∴k=16,∴反比例函数的解析式为y=16x,∵AC⊥y轴,AC=2,∴A点的横坐标为2,当x=2时,y=16÷2=8,∴CD=OC﹣OD=8﹣2=6,∴S△ACD=12×2×6=6.故答案为6.【点睛】本题考查了反比例函数比例系数k的几何意义:在反比例函数图象y=kx中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.14.【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y=的图象解析:42【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y =3x的图象经过A 、B 两点,A 、B 两点的横坐标分别为1和3, ∴A 、B 两点的纵坐标分别为3和1,即点A 的坐标为(1,3),点B 的坐标为(3,1), ∴AH =3﹣1=2,BH =3﹣1=2,由勾股定理得,AB=,∵四边形ABCD 是菱形,∴BC =AB =∴菱形ABCD 的面积=BC×AH =故答案为【点睛】本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标、点B 的坐标是解题的关键.15.(12)【分析】直接利用正比例函数与反比例函数的性质得出MN 两点关于原点对称进而得出答案【详解】解:∵正比例函数y =k1x (k1≠0)与反比例函数y =(k2≠0)的图象交于MN 两点∴MN 两点关于原点解析:(1,2)【分析】直接利用正比例函数与反比例函数的性质得出M ,N 两点关于原点对称,进而得出答案.【详解】解:∵正比例函数y =k 1x (k 1≠0)与反比例函数y =2k x(k 2≠0)的图象交于M ,N 两点, ∴M ,N 两点关于原点对称,∵点N 的坐标是(﹣1,﹣2),∴点M 的坐标是(1,2).故答案为:(1,2).【点睛】此题主要考查了反比例函数与正比例函数的交点问题,正确得出M ,N 两点位置关系是解题关键. 16.﹣3【分析】由题意可设一次函数的解析式为y =k1x+4然后联立两个函数的解析式可得等式k1x2+4x ﹣k2=0进而可根据根与系数的关系得出x1+x2=﹣x1x2=﹣再由可得点C 的横坐标是点B 横坐标的解析:﹣3【分析】由题意可设一次函数的解析式为y =k 1x +4,然后联立两个函数的解析式可得等式k 1x 2+4x ﹣k 2=0,进而可根据根与系数的关系得出x 1+x 2=﹣14k ,x 1x 2=﹣21k k ,再由2BC AB =可得点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,然后对上述的两个式子整理变形即得结果.【详解】解:∵一次函数y =k 1x +b 的图象过点A (0,4),∴一次函数的解析式为y =k 1x +4,由k 1x +4=2k x,得k 1x 2+4x ﹣k 2=0, 设上述方程的两个实数根为x 1、x 2,则x 1+x 2=﹣14k , x 1x 2=﹣21k k , ∵BC =2AB ,∴点C 的横坐标是点B 横坐标的3倍,不妨设x 2=3x 1,∴x 1+x 2=4x 1=﹣14k ,x 1x 2=3x 12=﹣21k k , ∴221113k k k ⎛⎫⨯-=- ⎪⎝⎭,整理得:k 1k 2=﹣3. 故答案为﹣3.【点睛】本题考查了一次函数与反比例函数的交点、一元二次方程的根与系数的关系等知识,熟练掌握上述知识、掌握求解的方法是关键.17.14【分析】根据点是反比例函数()的图像上一点可得到M 点的坐标;轴垂足为点可知P 点横坐标等于M 点横坐标;再通过的面积建立等式即可计算得到答案【详解】∵是反比例函数()的图像上一点设横坐标∴∵轴垂足为 解析:14【分析】根据点M 是反比例函数k y x=(0k >)的图像上一点,可得到M 点的坐标;MP x ⊥轴,垂足为点P ,可知P 点横坐标等于M 点横坐标;再通过MOP △的面积建立等式,即可计算得到答案.【详解】 ∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a = ∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形 ∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP ∴=72k ∴14k = 故答案为:14.【点睛】本题考察了反比例函数、直角坐标系、直角三角形的知识;求解的关键的熟练掌握反比例函数、直角三角形性质,结合直角坐标系,从而计算得到答案.18.y =【分析】设A 坐标为(xy )根据四边形OABC 为平行四边形利用平移性质确定出A 的坐标利用待定系数法确定出解析式即可【详解】解:设A 坐标为(xy )∵B (2﹣2)C (30)以OCCB 为边作平行四边形O解析:y =2x【分析】设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2), 设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.19.【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式求出a 与b 的值比较大小即可【详解】解:点A (1a )在反比例函数的图像上则有点B (3b )在反比例函数的图像上则有所以故答案为:【点睛】本题主要考 解析:b a <【分析】根据题意把所给点的横纵坐标代入反比例函数的解析式,求出a 与b 的值,比较大小即可.【详解】解:点A (1,a )在反比例函数4y x =的图像上,则有441a ==, 点B (3,b )在反比例函数4y x=的图像上,则有43b =, 所以b a <.故答案为:b a <.【点睛】本题主要考查反比例函数图象上点的坐标特征,注意掌握所有在反比例函数上的点的横纵坐标的积等于比例系数. 20.【分析】过点A 作AH ⊥x 轴于点H 交BD 于点F 则四边形ACOH 和四边形ACDF 均为矩形根据S 矩形BEOD=16可得k 的值即可得到矩形ACOH 和矩形ACDF 的面积进而求出S △ACD 【详解】解:过点A 作A解析:6【分析】过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形,根据S 矩形BEOD =16,可得k 的值,即可得到矩形ACOH 和矩形ACDF 的面积,进而求出S △ACD .【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数()0k y x x=>经过点A ∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.三、解答题21.(1)见解析;(2)当1x >时,y 随x 的增大而增大;(3)01x <<.【分析】(1)求出当x=12,x=2的函数值即可补全表格,利用表格描点把自变量确定为点的横坐标,函数值为纵坐标,描点,连线即可;(2)性质较多写出一条即可①当1x >时,y 随x 的增大而增大;②当01x <<时,y 随x 的增大而减小;③当1x =时,4y =最小位;④当0x >时,互为倒数的两个自变量对应的函数值相等;(3)利用图像法解不等式的解集,找交点,看位置上大下小,定范围即可.【详解】解:(1)当x=12时,1122252y x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭, 当x=2时,1122252y x x ⎛⎫⎛⎫=+=+= ⎪ ⎪⎝⎭⎝⎭, 补全表格:答图①答图②描点、连线画出函数的图象如答图①:(2)观察该函数的图象,写出函数的性质(一条即可):①当1x >时,y 随x 的增大而增大;②当01x <<时,y 随x 的增大而减小;③当1x =时,4y =最小值④当0x >时,互为倒数的两个自变量对应的函数值相等,(3)不等式124x x x ⎛⎫+> ⎪⎝⎭, 如图②根据函数图象y=12x x ⎛⎫+ ⎪⎝⎭图像在y=4x 图像上方, 两图像的交点是x=1,在x=1直线左侧,y 轴右侧y=12x x ⎛⎫+⎪⎝⎭图像在y=4x 图像上方, 不等式124x x x ⎛⎫+> ⎪⎝⎭的解集为01x <<. 【点睛】本题考查复合函数的图像画法,是初等函数的拓展,掌握好初等函数图像的画法,列表、描点、连线基本步骤,会观察图像写性质增减性,最值等,会利用函数图解不等式是难点,关键是找交点,分上大下小定范围是解题关键.22.(1)点(2,1)A ,反比例函数2y x=;(2)点()P 12,或(-1,-2) 【分析】 (1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△,即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.23.(1)1,1m n =-=;(2)3;(3)P 点坐标为(-1,0)或(3,0)或(0,3)【分析】(1)利用待定系数法求出m ,n 的值;(2)根据关于x 轴对称的点的坐标特征求出点D 的坐标,利用三角形面积公式计算即可;(3)分点P 在x 轴上和点P 在y 轴上两种情况,利用三角形面积公式计算即可.【详解】(1)∵点A (-1,2)在双曲线k y x=上,∴-12k =, 解得,2k =-,∴反比例函数解析式为:2y x =-, ∵(2,)B b ∴212b =-=-, 则点B 的坐标为(2,-1),把()1,2,(2,1)A B --代入y mx n =+得:122m n m n-=+⎧⎨=-+⎩, 解得11m n =-⎧⎨=⎩; (2)对于y=-x+1,当x=0时,y=1,∴点C 的坐标为(0,1),∵点D 与点C 关于x 轴对称,∴点D 的坐标为(0,-1),∴△ABD 的面积=12×2×3=3; (3)对于y=-x+1,当y=0时,x=1,∴直线y=-x+1与x 轴的交点坐标为(0,1),当点P 在x 轴上时,设点P 的坐标为(a ,0),S △PAB=12×|1-a|×2+12×|1-a|×1=3, 解得,a=-1或3,此时P 点坐标为(-1,0)或(3,0)当点P 在y 轴上时,设点P 的坐标为(0,b ),S △PAB=12×|1-b|×2+12×|1-b|×1=3, 解得,b=-1或3,∵D (0,-1)∴此时P 点坐标为(0,3)∴P 点坐标为(-1,0)或(3,0)或(0,3).【点睛】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、函数图象上点的坐标特征是解题的关键.24.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k-=⨯,解得:3k=;(2)因为反比例函数k1 yx-=,在这个函数图象的每一分支上,y随x的增大而减小,所以10k->,解得:1k>.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数kyx=(k为常数,0k≠)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy k=.也考查了反比例函数的性质.25.(1)列表如下;(2)16.【分析】(1)先列表格展示所有12种等可能的结果数,然后写出12个点的坐标;(2)根据反比例函数图象上点的坐标特征可判断有两个点在函数8yx=图象上,然后根据概率公式求解.【详解】解:(1)列表得:1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)(2)因为2×4=8,4×2=8,所以点(2,4)和(4,2)在函数8yx=图象上,即点(x,y)在函数8yx=图象上的点有两个,所以点(x ,y )在函数8y x =图象上的概率=21126=. 【点睛】 本题考查了列表法与树状图法,反比例函数上点的坐标特征.利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 的结果数目m ,然后根据概率公式求解. 26.(1)28y x =-+;(2)当01x <<或3x >时,60kx b x+-<;(3)8 【分析】 (1)把A ,B 两点的坐标分别代入6y x=中,求得m ,n 的值,即可确定A ,B 两点的坐标,再利用待定系数法求得一次函数的解析式; (2)将不等式60kx b x+-<转化为6kx b x +<,找出图象中一次函数图象低于反比例函数图象部分对应的x 的取值范围; (3)设一次函数图象分别与x 轴和y 轴交于点D 、C ,C 、D 的坐标都可以求得,则S S S S AOB COD COA BOD =--,求解即可.【详解】解:(1)分别把()(),6,3,A m B n 代入6(0)y x x =>得66,36m n ==, 解得1,2m n ==,所以A 点坐标为()1,6,B 点坐标为()3,2,分别把()()1,6,3,2A B 代入y kx b =+得632k b k b +=⎧⎨+=⎩, 解得28k b =-⎧⎨=⎩, 所以一次函数解析式为28y x =-+; (2)60kx b x +-<,即 6kx b x +<,即要找一次函数图象低于反比例函数图象的部分对应的x 的取值范围,所以当01x <<或3x >时,60kx b x+-<; (3)一次函数图象分别与x 轴和y 轴交于点D 、C ,如图,当0x =时,288y x =-+=,则C 点坐标为()0,8,当0y =时,280x -+=,解得4x =,则D 点坐标为()4,0,所以S S S S AOB COD COA BOD =--111488142222=⨯⨯-⨯⨯-⨯⨯ 8=.【点睛】本题主要考查一次函数和反比例函数交点的问题,熟练掌握待定系数法求函数解析式、反比例函数图象上点的坐标特征、割补法求三角形的面积是解题的关键.。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(有答案解析)
一、选择题1.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x 2C .y=21x D .y=13x2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为()1,1-,点B 在x 轴正半轴上,点D 在第三象限的双曲线8y x=上,过点C 作//CE x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .2.3D .53.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .4.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =5.如图,ABO 中,∠ABO =45°,顶点A 在反比例函数y =3x(x >0)的图象上,则OB 2﹣OA 2的值为( )A .3B .4C .5D .66.如图,正比例函数y = ax 的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式ax<kx的解集为( )A .x < - 2或x > 2B .x < - 2或0 < x < 2C .-2 < x < 0或0 < x < 2D .-2 < x < 0或 x > -27.反比例函数y =kx的图象经过点A (﹣2,3),则此图象一定经过下列哪个点( ) A .(3,2)B .(﹣3,﹣2)C .(﹣3,2)D .(﹣2,﹣3) 8.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<9.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y10.如图,菱形ABCD 的边AD y ⊥轴,垂足为点E ,顶点A 在第二象限,顶点B 在y轴的正半轴上,反比例函数ky x=(0k ≠,0x >)的图像同时经过顶点C 、D ,若点D 的横坐标为1,3BE DE =.则k 的值为( )A .52B .3C .154D .511.若函数2m y x+=的图象在其每一个分支中y 的值随x 值的增大而增大,则m 的取值范围是( ) A .2m ≥B .2m <C .2m ≤-D .2m -<12.对于反比例函数5y x=-,下列说法中不正确的是( ) A .图象经过点(1,5)-B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题13.双曲线y =kx经过点A (a ,﹣2a ),B (﹣2,m ),C (﹣3,n ),则m _____n (>,=,<).14.若点()()125,,3,A y B y --在反比例函数3y x=的图象上,则12,y y ,的大小关系是_________.15.如图,在平面直角坐标系中,反比例函数(0)ky x x=>经过矩形ABOC 的对角线OA 的中点M ,己知矩形ABOC 的面积为24,则k 的值为___________16.如果反比例函数2y x=的图象经过点11(,)A x y ,22(,)B x y ,33(,)C x y 且1230x x x <<<,请比较1y 、2y 、3y 的大小为__________.17.下列y 关于x 的函数中,y 随x 的增大而增大的有_____.(填序号)①y =﹣2x+1,②y 1x=,③y =(x+2)2+1(x >0),④y =﹣2(x ﹣3)2﹣1(x <0) 18.如图,菱形ABCD 的两个顶点A 、B 在函数ky x=(x>0)的图像上,对角线AC//x 轴.若AC=4,点A 的坐标为(2,2),则菱形ABCD 的周长为_____.19.如图,△DEF 的三个顶点分别在反比例函数=xy n 与()0,0xy m x m n =>>>的图象上,若DB ⊥x 轴于B 点,FE ⊥x 轴于C 点,若B 为OC 的中点,△DEF 的面积为6,则m 与n 的关系式是____.20.如图,点A 在反比例函数ky x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.已知,反比例函数ky x=(k 是常数,且0k ≠)的图象经过点(,3)A b . (1)若4b =,求y 关于x 的函数表达式.(2)若点(3,3)B b b 也在该反比例函数图象上,求b 的值.22.如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为()0,3,点A 在x 轴的负半轴上,点M 、D 分别在OA 、AB 上,且2AD AM ==;一次函数y kx b =+的图象过点D 和M ,反比例函数my x=的图像经过点D ,与BC 交点为N .(1)求反比例函数和一次函数的表达式;(2)直接写出使一次函数值大于反比例函数值的x 的取值范围;(3)若点P 在y 轴上,且使四边形OMDP 的面积与四边形OMNC 的面积相等,求点P 的坐标.23.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式. (2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系. 24.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M (-3,1),N (1,n )两点.(1)求这两个函数的表达式;(2)过动点C (m ,0)且垂直于x 轴的直线与一次函数及反比例函数的图象分别交于D 、E 两点,当点E 位于点D 上方时,直接写出m 的取值范围.25.如图,已知在平面直角坐标系中,O 是坐标原点,点A(2,5)在反比例函数1k y x=的图象上.一次函数y 2=x +b 的图象过点A ,且与反比例函数图象的另一交点为B . (1)求反比例函数和一次函数的解析式; (2)连结OA 和OB ,求△OAB 的面积; (3)根据图象直接写出y 1>y 2时,x 的取值范围.26.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少? (2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据反比例函数的定义逐项分析即可. 【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x2,y 是x 的正比例函数,故不符合题意;C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x ,y 是x 的反比例函数,符合题意; 故选:D . 【点睛】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.2.B解析:B 【分析】证明()△△DHA CGDAAS ≅,()△△ANB DGC AAS ≅得到:1AN DG AH===,而11AH m =--=,解得2m =-,即可求解;【详解】 设点8,D m m ⎛⎫ ⎪⎝⎭, 如图所示,过点D 作x 轴的垂线交CE 于点G ,过点A 作x 轴的平行线DG 于点H ,过点A 作AN x ⊥轴于点N ,∵90GDC DCG ∠+∠=︒,90GDC HDA ∠=∠=︒, ∴HDA GCD ∠=∠,又AD CD =,90DHA CGD ∠=∠=︒, ∴()△△DHA CGD AAS ≅,∴HA DG =,DH CG =,同理可得:()△△ANB DGC AAS ≅,∴1AN DG AH===,则点8,1G m m ⎛⎫- ⎪⎝⎭,CG DH =, 11AH m =--=,解得:2m =-,故点()2,5G --,()2,4D --,()2,1H -,则点8,55E ⎛⎫-- ⎪⎝⎭,25GE =,∴223555CE CG GE DH GE =-=-=-=. 故答案选B . 【点睛】本题主要考查了反比例函数图象上点的坐标特征,正方形的性质,准确分析计算是解题的关键.3.C解析:C 【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k 、b 是同号还是异号,再由一次函数图象判断k 、b 是同号还是异号,如果两者相一致就是正确选项,否则是错误选项. 【详解】【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.4.B解析:B 【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵反比例函数3yx ,∴该函数图象关于原点轴对称,故选项A正确;在每个象限内,y随x的增大而减小,故选项B错误;该函数图象为别位于第一、三象限,故选项C正确;若点M(a,b)在其图象上,则ab=3,故选项D正确;故选:B.【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.5.D解析:D【分析】直接利用等腰直角三角形的性质结合勾股定理以及反比例函数图象上点的坐标特点得出答案.【详解】解:如图所示:过点A作AD⊥OB于点D,∵∠ABO=45°,∠ADB=90°,∴∠DAB=45°,∴设AD=x,则BD=x,∵顶点A在反比例函数y=3x(x>0)的图象上,∴DO•AD=3,则DO=3x,故BO=x+ 3x,OB2﹣OA2=(OD+BO)2﹣(OD2+AD2)=(x+ 3x)2﹣x2﹣29x=6.故答案为:D. 【点睛】本题考查了反比例函数的性质以及勾股定理,正确应用勾股定理是解题的关键.6.B解析:B 【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象即可得出结论. 【详解】∵正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称, ∵点A 的横坐标为2, ∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数ky x=的图象的下方, ∴2x <-或02x <<, 故选:B . 【点睛】本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.7.C解析:C 【分析】根据反比例函数图象上点的坐标特征即可求解. 【详解】解:∵反比例函数y =kx的图象经过点A (﹣2,3), ∴k =﹣2×3=﹣6,将四个选项代入反比例函数y =kx的解析式,只有C 选项符合题意, 故选:C . 【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是根据A 点的坐标求出k 值.8.C解析:C 【解析】 试题根据图象可得当12y y <时,x 的取值范围是:x <−6或0<x <2.故选C.9.A解析:A【分析】先判断出k 2+1是正数,再根据反比例函数图象的性质,比例系数k >0时,函数图象位于第一三象限,在每一个象限内y 随x 的增大而减小判断出y 1、y 2、y 3的大小关系,然后即可选取答案.【详解】解:∵k 2≥0,∴k 2+1≥1,是正数,∴反比例函数y =21k x+的图象位于第一三象限,且在每一个象限内y 随x 的增大而减小,∵(2,y 1),(3,y 2),(﹣1,y 3)都在反比例函数图象上,∴0<y 2<y 1,y 3<0,∴y 1>y 2>y 3.故选:A .【点睛】本题考查了反比例函数图象的性质,对于反比例函数y =k x(k ≠0),(1)k >0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内,本题先判断出比例系数k 2+1是正数是解题的关键.10.C解析:C【分析】过点D 作DF ⊥BC 于点F ,设BC =x ,在Rt △DFC 中利用勾股定理列方程即可求出x ,然后设OB =a ,即可表示出C ,D 的坐标,再代入k y x=可求出a ,k 的值. 【详解】解:过点D 作DF ⊥BC 于点F ,∵点D 的横坐标为1,∴BF =DE =1,∴DF =BE =3DE =3,设BC =x ,则CD =x ,CF =x -1,在Rt △DFC 中,由勾股定理得:222DF CF CD +=,∴2223(1)x x +-=,解得:x =5.设OB =a ,则点D 坐标为(1,a +3),点C 坐标为(5,a ),∵点D 、C 在双曲线上∴1×(a +3)=5a∴a =34, ∴点C 坐标为(5,34), ∴k =154. 故选:C.【点睛】本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,根据勾股定理列出方程求出BC 的长度是本题的关键.11.D解析:D【分析】根据k <0,反比例函数的函数值y 在每一个分支中随x 值的增大而增大列出不等式计算即可得解.【详解】解:∵2m y x+=在其每一个分支中y 的值随x 值的增大而增大, 20m ∴+<, 2m ∴<-.故选:D .【点睛】此题考查反比例函数的性质.解题关键在于掌握反比例函数y=k x,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大.12.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.>【分析】先求出反比例函数解析式判断函数的增减性﹣2>﹣3即可判断mn 的大小【详解】∵双曲线y =经过点A (a ﹣2a )∴k =﹣2a2<0∴双曲线在二四象限在每个象限内y 随x 的增大而增大∵B (﹣2m )C解析:>.【分析】先求出反比例函数解析式,判断函数的增减性﹣2>﹣3,即可判断m ,n 的大小..【详解】∵双曲线y =k x经过点A (a ,﹣2a ), ∴k =﹣2a 2<0, ∴双曲线在二、四象限,在每个象限内,y 随x 的增大而增大,∵B (﹣2,m ),C (﹣3,n ),﹣2>﹣3,∴m >n ,故答案为:>.【点睛】本题利用函数的性质比较大小,关键是求出函数解析式,掌握反比例函数的性质. 14.【分析】根据反比例函数的性质解答【详解】∵反比例函数中∴此函数图象的两个分支分别位于一三象限并且在每一象限内随的增大而减小这两点都在反比例函数的图象上在第三象限故答案为:【点睛】此题考查反比例函数的 解析:21y y <【分析】根据反比例函数的性质解答.【详解】∵反比例函数3y x=中30k =>,∴此函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小. ()()125,,3,A y B y --这两点都在反比例函数3y x=的图象上,A B ∴、在第三象限,21y y ∴<,故答案为:21y y <.【点睛】此题考查反比例函数的性质:当k>0时,函数图象的两个分支分别位于一三象限,并且在每一象限内,y 随x 的增大而减小;当k<0时,函数图象的两个分支分别位于二四象限,并且在每一象限内,y 随x 的增大而增大. 15.6【分析】设A (ab )由矩形的面积求得ab 再根据中点定义求得M 点坐标进而用待定系数法求得k 【详解】解:设A (ab )则ab=24∵点M 是OA 的中点∴∵反比例函数经过点M ∴故答案为:6【点睛】本题主要考解析:6【分析】设A (a ,b ),由矩形的面积求得ab ,再根据中点定义求得M 点坐标,进而用待定系数法求得k .【详解】解:设A (a ,b ),则ab=24,∵点M 是OA 的中点, ∴1122M a b ⎛⎫ ⎪⎝⎭,, ∵反比例函数(0)k y x x =>经过点M , ∴1111•2462244k a b ab =⨯===, 故答案为:6【点睛】本题主要考查了矩形的性质,反比例函数的图象与性质,关键是通过A 点坐标与已知矩形面积和未知k 联系起来.16.【分析】根据题意和反比例函数的性质可以得到y1y2y3的大小关系从而可以解答本题【详解】解:∵反比例函数∴在每个象限内y 随x 的增大而减小当x <0时y <0当x >0时y >0∵反比例函数的图象经过点A (x解析:213y y y <<【分析】根据题意和反比例函数的性质,可以得到y 1,y 2,y 3的大小关系,从而可以解答本题.【详解】解:∵反比例函数2y x= ∴在每个象限内,y 随x 的增大而减小,当x <0时,y <0,当x >0时,y >0, ∵反比例函数2y x=的图象经过点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),且1230x x x <<<,∴213y y y <<,故答案为:213y y y <<.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.17.③④【分析】根据一次函数二次函数反比例函数的性质即可一一判断【详解】解:y 随x 的增大而增大的函数有③④故答案为③④【点睛】本题主要考查一次函数二次函数反比例函数的性质解决本题的关键是熟练掌握一次函数解析:③④【分析】根据一次函数、二次函数、反比例函数的性质即可一一判断.【详解】解:y 随x 的增大而增大的函数有③④,故答案为③④.【点睛】本题主要考查一次函数、二次函数、反比例函数的性质,解决本题的关键是熟练掌握一次函数,二次函数,反比例函数图像性质.18.【分析】连接BD 与AC 交于点O 根据AC=4得出AO=OC=2再根据A 的坐标为(22)求出反比例解析式从而计算出B 点的坐标再根据距离公式算出AB 的长度从而求算周长【详解】如图连接BD 与AC 交于点O ∵A解析:【分析】连接BD 与AC 交于点O ,根据AC=4,得出AO=OC=2,再根据A 的坐标为(2,2)求出反比例解析式,从而计算出B 点的坐标,再根据距离公式算出AB 的长度,从而求算周长.【详解】如图,连接BD 与AC 交于点O∵A 的坐标为(2,2)∴反比例函数的解析式为4y x=又∵四边形ABCD 是菱形且AC=4∴AO=OC=2 ∴B 点坐标为()4,1∴()()2242125-+-= ∴菱形ABCD 的周长为:5故答案为:5【点睛】本题考查反比例函数与菱形性质相结合,掌握菱形的对角线平分以及反比例图象上的点的特点是解题关键.19.【分析】设点D 点坐标根据B 是OC 的中点求出E 点坐标进而得到F 点坐标在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解【详解】解:∵∴DE 所在的反比例函数是设由B 是OC 的中点可知E 点坐 解析:24-=m n【分析】设点D 点坐标,根据B 是OC 的中点,求出E 点坐标,进而得到F 点坐标,在根据梯形DFCB 的面积减去梯形DECB 的面积即可列出等量关系求解.【详解】解:∵n m <∴D 、E 所在的反比例函数是=xy n设(,)n D a a ,由B 是OC 的中点可知E 点坐标为:(2,)2n a a,又F 点和E 点横坐标相同,且F 在=xy m 上, 故F 点坐标为:(2,)2m a a又11==()()22梯形梯形DECB ∆-+-+DEF DFCB S S S DB FC BC DB EC BC111()()=()22224=+-+-n m n n a a m n a a a a 又∵△DEF 的面积为6 ∴1()64-=m n ∴24-=m n .故答案为:24-=m n【点睛】 本题考查了反比例函数上点的坐标运算,当两点在反比例函数上时,设其中一个点的坐标,则另一个点的坐标根据题中给定的等量关系用设好的坐标的代数式表示.20.【分析】因为过双曲线上任意一点引x 轴y 轴垂线所得矩形面积S 是个定值|k|△AOB 的面积为矩形面积的一半即|k|【详解】由于点A 在反比例函数的图象上则S △AOB=|k|=2∴k=±4;又由于函数的图象 解析:4y x=- 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值|k|,△AOB 的面积为矩形面积的一半,即12|k|. 【详解】由于点A 在反比例函数k y x =的图象上, 则S △AOB =12|k|=2, ∴k=±4;又由于函数的图象在第二象限,k <0,∴k=-4,∴反比例函数的解析式为4y x =-; 故答案为:4y x =-. 【点睛】 此题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.三、解答题21.(1)12y x=;(2)13b = 【分析】 (1)把A 点代入反比例函数即可求解;(2)把A 、B 两点代入反比例函数列出方程组即可求解;【详解】解:(1)∵4b =,∴A (4,3),把A 点代入反比例函数得:34k =, 即k=12,∴函数解析式为:12y x=; (2)把A 、B 代入反比例函数得:333k b k b b ⎧=⎪⎪⎨⎪=⎪⎩①② 解得:13b =. 【点睛】本题主要考查的是反比例函数的性质,熟练掌握反比例函数的性质是解答本题的关键. 22.(1)反比例函数的解析式为6y x =-,一次函数的解析式为1y x =--;(2)x <-3或0<x <2;(3)703⎛⎫ ⎪⎝⎭,【分析】(1)由正方形OABC 的顶点C 坐标,确定出边长,及四个角为直角,根据2AD AM ==,求出AD 的长,确定出D 坐标,代入反比例解析式求出m 的值,再由2AD AM ==,确定出MO 的长,即M 坐标,将M 与D 坐标代入一次函数解析式求出k 与b 的值,即可确定出一次函数解析式;(2)联立方程组求得一次函数与反比例函数的交点坐标,然后结合函数图像确定使一次函数值大于反比例函数值的x 的取值范围;(3)设P (0,y ),根据四边形OMDP 的面积与四边形OMNC 的面积相等,列方程求出y 的值,确定出P 坐标即可.【详解】解:(1)∵正方形OABC 的顶点C (0,3),∴OA=AB=BC=OC=3,∠OAB=∠B=∠BCO=90°,∵2AD AM ==∴D(-3,2),M(-1,0)把D(-3,2)代入反比例函数myx=中,23m=-,解得m=-6把D(-3,2),M(-1,0)代入一次函数y kx b=+中32k bk b-+=⎧⎨-+=⎩,解得11kb=-⎧⎨=-⎩∴反比例函数的解析式为6yx=-,一次函数的解析式为1y x=--(2)联立方程组61yxy x⎧=-⎪⎨⎪=--⎩,解得1132xy=-⎧⎨=⎩,222-3xy=⎧⎨=⎩∴使一次函数值大于反比例函数值的x的取值范围为x<-3或0<x<2(3)连接MN,DP,OD由题意可得N(-2,3)∴119()(12)3222OMNCS OM NC OC=+=+⨯=四边形1131231222OMD OPDOMDPS S S y y=+=⨯⨯+⨯=+△△四边形由题意,391=22y+,解得7=3y∴P点坐标为73⎛⎫⎪⎝⎭,【点睛】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法确定一次函数、反比例函数解析式,坐标与图形性质,正方形的性质,以及三角形面积计算,熟练掌握待定系数法是解本题的关键.23.(1)16yx=;(2)①13FG BG=,理由见解析;②(21)FG n BG=+【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =, 则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =, ∴2a FG =,又2FB a =, ∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭,∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =, ∴211n BG b n +=+, ∴(21)FG n BG =+.【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.24.(1)y=3x -;2y x =--;(2)m >1或-3<m <0 【分析】(1)把M 代入反比例函数的解析式即可求得k 的值,然后求得n 的值,利用待定系数法即可求得一次函数的解析式;(2)先画出两函数的图象,再根据两函数图象的上下位置关系结合交点的横坐标即可得出m 的取值范围.【详解】(1)∵点M (-3,1)和N (1,n )在反比例函数k y x =的图象上, ∴3k =-,3n =-.∴反比例函数表达式为3x=-, 点N 的坐标为N (1,3-),∵点M (-3,1)和N (1,3-)在一次函数y ax b =+的图象上,∴313a b a b -+=⎧⎨+=-⎩, 解得12a b =-⎧⎨=-⎩, ∴一次函数表达式为2y x =--;(2)一次函数2y x =--的图象与反比例函数3y x=-的图象相交于点M (-3,1)和N (1,3-),观察函数图象可知:若过动点C (m ,0)且垂直于x 轴的直线分别与反比例函数图象和一次函数图象交于E 、D 两点,当点E 位于点D 上方时,则m 的取值范围是:m >1或-3<m <0.【点睛】本题是反比例函数与一次函数的综合题,考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求函数解析式,根据两函数图象的上下位置关系找出不等式的解集是解题的关键.25.(1)反比例函数110y x =,一次函数23y x =+(2)212(3)5x <-或02x << 【分析】(1)本题根据待定系数法,将点A 坐标代入函数解析式求解即可.(2)本题首先求得点B 的坐标,继而求解直线与坐标轴的交点坐标,最后利用割补法求解本题.(3)本题根据图像即可直接作答.【详解】(1)∵点(2,5)A 是直线2y x b =+与反比例函数1k y x =的图象的一个交点, ∴将A 点分别代入得:52b =+;52k =, ∴3b =,10k =.故反比例函数和一次函数的解析式分别为110y x =和23y x =+. (2)如下图所示:联立方程12103y x y x ⎧=⎪⎨⎪=+⎩,得25x y =⎧⎨=⎩或52x y =-⎧⎨=-⎩, ∴点(5,2)B --.∵点C 与点D 分别是直线23y x =+与y 轴的交点和与x 轴的交点,∴点(0,3)C ,点(3,0)D -,即3OD OC ==, ∴11213532222AOB AOD BOD S S S =+=⨯⨯+⨯⨯=. 故△OAB 的面积为212. (3)观察函数图象可知,12y y > 时,x 的取值范围为:5x <-或02x <<.【点睛】本题考查反比例函数与一次函数的综合,待定系数法求解解析式需要熟练掌握,其次求解不规则图形的面积通常利用割补法,比较函数大小时,利用图像法更为高效. 26.(1)1400m ;(2)1400y x=;(3)小芳的骑车速度至少为175/m min . 【分析】(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【详解】(1)小芳家与学校之间的距离是:101401400⨯=(m ); (2)设k y x=,当140x =时,10y =, 解得:1400k =, 故y 与x 的函数表达式为:1400y x=; (3)当8y =时,175x =, 0k >,∴在第一象限内y 随x 的增大而减小,∴小芳的骑车速度至少为175/m min .【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(包含答案解析)(4)
一、选择题1.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .2.下列式子中表示y 是x 的反比例函数的是( ) A .24y x =-B .y=5x 2C .y=21xD .y=13x3.关于反比例函数3y x=,下列说法错误的是( ) A .图象关于原点对称B .y 随x 的增大而减小C .图象分别位于第一、三象限D .若点(,)M a b 在其图象上,则3ab =4.已知()()()112233,,,,,A x y B x y C x y 是反比例函数2y x=上的三点,若123x x x <<,213y y y <<,则下列关系式不正确的是 ( )A .120x x <B .130x x <C .230x x <D .120x x +<5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)ky x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.对于反比例函数21k y x+=,下列说法错误的是( )A .函数图象位于第一、三象限B .函数值y 随x 的增大而减小C .若A (-1,y 1)、B (1,y 2)、C (2,y 3)是图象上三个点,则y 1<y 3<y 2D .P 为图象上任意一点,过P 作PQ ⊥y 轴于Q ,则△OPQ 的面积是定值7.如图,直线1122y x =+与双曲线26y x=交于()2A m ,、()6B n -,两点,则当12y y <时,x 的取值范围是()A .6x <-或2x >B .60x -<<或2x >C .6x <-或02x <<D .62x -<<8.如图,点A 是反比例函数2(0)y x x=>的图象上任意一点,AB x 轴交反比例函数3y x =-的图象于点B ,以AB 为边作ABCD ,其中C 、D 在x 轴上,则ABCDS为( )A .2.5B .3.5C .4D .59.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-10.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,111.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣412.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .48二、填空题13.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y =3x的图象经过A 、B 两点,则菱形ABCD 的面积是_____;14.如图,在平面直角坐标系中,点(6,0)A 、(3,4)B ,点C 是OB 上一点,D 为AC 的中点,若反比例函数(0)ky xx=>过C 、D 两点,则k 的值为______.15.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF 的面积为S 2,则12S S =_____.16.过原点直线l 与反比例函数ky x=的图像交于点(2,)A a -,(,3)B b -,则k 的值为____.17.在反比例函数y =-2k 1x+图象上有三个点A(x 1,y 1)、B(x 2,y 2)、C(x 3,y 3),若x 1<0<x 2<x 3,则y 1、y 2、y 3的大小关系为_______.(用“<”连接)18.如图,反比例函数(0)ky x x=>经过,A B 两点,过点A 作AC y ⊥轴于点C ,过点B 作BD y ⊥轴于点D ,过点B 作轴BE x ⊥于点E ,连接AD ,已知 =2,=2AC BE ,=16BEOD S 矩形,则 ACD S =_____.19.已知点A(-1,2)在反比例函数1myx-=的图象上,则m=_____________.20.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点A在反比例函数221a ayx++=的图象上.若点C的坐标为(2,2)--,则a的值为_______.三、解答题21.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数kyx=(k>0)的图象与BC边交于点E.(1)写出B的坐标;(2)当F为AB的中点时,求反比例函数的解析式;(3)求当k为何值时,△EFA的面积最大,最大面积是多少?22.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数kyx=(k≠0,x>0)的图象相交于A(1,5),B(m,1)两点,与x轴,y轴分别交于点C,D,连接OA,OB.(1)求反比例函数kyx=(k≠0,x>0)和一次函数y=ax+b(a≠0)的表达式;(2)求△AOB的面积.23.如图,已知一次函数12y x b=+的图象与反比例函数()0ky xx=<的图象交于点A(-1,2)和点B.(1)求b和k的值;(2)请求出点B的坐标,并观察图象,直接写出关于x的不等式12kx bx+>的解集;(3)若点P在y轴上一点,当PA PB+最小时,求点P的坐标.24.如图,已知一次函数y=x+b的图像与反比例函数kyx=(x<0)的图像相交于点A(-1,2)和点B,点P在y轴上.(1)求b和k的值;(2)当PA+PB的值最小时,点P的坐标为______;(3)当x+b<kx时,请直接写出x的取值范围.25.某种气球内充满了一定质量的气体.当温度不变时,气球内气体的压强P/(kPa)是气球体积V/(m3)的反比例函数,其图象如图所示.(1)求这个反比例函数的表达式;(2)当气球内气体的气压大于120 kPa时,气球将爆炸.为了安全起见,气球体积应该不小于多少立方米?26.如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数y=ax在第一象限内的图象交于点B(2,n),连结BO,若S△AOB=4.(1)求该反比例函数y =ax的表达式和直线AB :y =kx+b 对应的函数表达式; (2)观察在第一象限内的图象,直接写出不等式kx+b <ax的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案. 【详解】①当k> 0时,y=kx+1过第一、二、三象限,ky x=过第一、三象限; ②当k<0时,y= kx+1过第一、二、四象限,ky x=过第二、四象限, 观察图形可知,只有C 选项符合题意, 故选:C . 【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.2.D解析:D 【分析】根据反比例函数的定义逐项分析即可. 【详解】A. 24y x =-,y 是x 的一次函数,故不符合题意;B. y=5x2,y 是x 的正比例函数,故不符合题意; C. 21y x =,y 是x²的反比例函数,故不符合题意; D. y=13x ,y 是x 的反比例函数,符合题意; 故选:D . 【点睛】本题考查了反比例函数的定义,一般地,形如ky x=(k 为常数,k ≠0)的函数叫做反比例函数.3.B解析:B 【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题. 【详解】解:∵反比例函数3y x=, ∴该函数图象关于原点轴对称,故选项A 正确; 在每个象限内,y 随x 的增大而减小,故选项B 错误; 该函数图象为别位于第一、三象限,故选项C 正确; 若点M (a ,b )在其图象上,则ab=3,故选项D 正确; 故选:B . 【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.4.A解析:A 【分析】根据反比例函数2y x=和x 1<x 2<x 3,y 2<y 1<y 3,可得点A ,B 在第三象限,点C 在第一象限,得出x 1<x 2<0<x 3,再选择即可. 【详解】解:∵反比例函数2y x=中,2>0, ∴在每一象限内,y 随x 的增大而减小, ∵x 1<x 2<x 3,y 2<y 1<y 3,∴点A ,B 在第三象限,点C 在第一象限, ∴x 1<x 2<0<x 3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,解答此题的关键是熟知反比例函数的增减性,本题是逆用,难度有点大.5.C解析:C【详解】∵A(﹣3,4),∴,∵四边形OABC是菱形,∴AO=CB=OC=AB=5,则点B的横坐标为﹣3﹣5=﹣8,故B的坐标为:(﹣8,4),将点B的坐标代入kyx=得,4=8k-,解得:k=﹣32.故选C.考点:菱形的性质;反比例函数图象上点的坐标特征.6.B解析:B【分析】先判断出k2 +1的符号,再根据反比例函数的性质即可得出结论.【详解】A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=-1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=12(k2+1)是定值,故本选项正确.故选B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=kx(k≠0)中,当k>0时函数图象的两个分支分别位于一三象限是解答此题的关键.7.C解析:C【解析】 试题根据图象可得当12y y <时, x 的取值范围是:x <−6或0<x <2. 故选C.8.D解析:D 【分析】过点B 作BH ⊥x 轴于H ,根据坐标特征可得点A 和点B 的纵坐标相同,由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a ),即可求出BH 和AB ,最后根据平行四边形的面积公式即可求出结论. 【详解】解:过点B 作BH ⊥x 轴于H∵四边形ABCD 为平行四边形 ∴//AB x 轴,CD=AB ∴点A 和点B 的纵坐标相同 由题意可设点A 的坐标为(2a,a ),点B 的坐标为(3a -,a )∴BH=a ,CD=AB=2a -(3a -)=5a∴ABCDS=BH·CD=5故选D . 【点睛】此题考查的是反比例函数与几何图形的综合题,掌握利用反比例函数求几何图形的面积是解决此题的关键.9.A解析:A 【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可. 【详解】解:设A (a ,b ),则B (2a ,2b ), ∵点A 在反比例函数12y x=-的图象上,∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 11.B解析:B【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|.【详解】解:作AE ⊥BC 于E ,如图,∵四边形ABCD 为平行四边形,∴AD ∥x 轴,∴四边形ADOE 为矩形,∴S 平行四边形ABCD =S 矩形ADOE ,而S 矩形ADOE =|k|,∴|k|=8,而k <0∴k=-8.故选:B .【点睛】本题考查了反比例函数y=k x (k≠0)系数k 的几何意义:从反比例函数y=k x(k≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|. 12.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k ,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S △AOM =S △OFN ,S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN ,∴S 梯形AMNF =S △AOF =12,∴12(4k+2k)⋅3k=12, ∴k 2=43, ∴m=12k 2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.二、填空题13.【分析】作AH⊥BC交CB的延长线于H根据反比例函数解析式求出A的坐标点B的坐标求出AHBH根据勾股定理求出AB根据菱形的面积公式计算即可【详解】作AH⊥BC交CB的延长线于H∵反比例函数y=的图象解析:42【分析】作AH⊥BC交CB的延长线于H,根据反比例函数解析式求出A的坐标、点B的坐标,求出AH、BH,根据勾股定理求出AB,根据菱形的面积公式计算即可.【详解】作AH⊥BC交CB的延长线于H,∵反比例函数y=3的图象经过A、B两点,A、B两点的横坐标分别为1和3,x∴A、B两点的纵坐标分别为3和1,即点A的坐标为(1,3),点B的坐标为(3,1),∴AH=3﹣1=2,BH=3﹣1=2,由勾股定理得,AB22=2,22∵四边形ABCD是菱形,∴BC=AB=2∴菱形ABCD的面积=BC×AH=2故答案为2【点睛】本题考查的是反比例函数的系数k的几何意义、菱形的性质,根据反比例函数解析式求出A的坐标、点B的坐标是解题的关键.14.【分析】首先求出直线OB的解析式设点C的坐标为D点坐标为分别代入求出k的值即可【详解】解:设直线OB的解析式为∵∴解得:∴直线的解析式为设则即则经检验t=是原方程的解故答案为:【点睛】此题主要考查了解析:163【分析】 首先求出直线OB 的解析式,设点C 的坐标为(6,8)C t t ,D 点坐标为6608,22t t D ++⎛⎫⎪⎝⎭,分别代入(0)k y x x=>,求出k 的值即可. 【详解】解:设直线OB 的解析式为y kx =,∵(3,4)B∴3=4k ,解得:43k = ∴直线OB 的解析式为43y x =设(6,8)C t t ,则6608,22t t D ++⎛⎫ ⎪⎝⎭即(33,4)t t +, 则86433k t t k t t ⎧=⎪⎪⎨⎪=⎪+⎩, 16313k t ⎧=⎪⎪∴⎨⎪=⎪⎩. 经检验,t=13是原方程的解. 故答案为:163. 【点睛】此题主要考查了求反比例函数解析式,设出点C 的坐标,求出点D 的坐标是解答此题的关键. 15.【分析】过点B 作BH ⊥OC 于H 构造出矩形利用矩形的性质进而求解出CDEF 的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B 作BH ⊥OC 于H ∵A (04)B (24)∴OA =4AB =2AB ∥OC ∴ 解析:2360【分析】过点B 作BH ⊥OC 于H ,构造出矩形,利用矩形的性质,进而求解出C 、D 、E 、F 的坐标,最终分别计算出S 1,S 2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8, 由842033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得24x y =⎧⎨=⎩或383x y =⎧⎪⎨=⎪⎩, ∴D (3,83), ∴直线OD 的解析式为89y x =, ∵OE =EC ,∴E (52,0), ∴直线BE 的解析式为y =﹣8x +20, 由82089y x y x =-+⎧⎪⎨=⎪⎩,解得942x y ⎧=⎪⎨⎪=⎩, ∴F (94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.16.-6【分析】由AB在过原点的直线l上且在反比例函数的图像上可得AB关于原点对称根据关于原点对称的点的坐标特征可求出ab的值把a值代入反比例函数解析式即可得答案【详解】∵过原点的直线l与反比例函数y=解析:-6【分析】由A、B在过原点的直线l上且在反比例函数的图像上可得A、B关于原点对称,根据关于原点对称的点的坐标特征可求出a、b的值,把a值代入反比例函数解析式即可得答案.【详解】∵过原点的直线l与反比例函数y=kx的图象交于点A(−2,a),B(b,−3),∴A、B两点关于原点对称,∵关于原点对称的点的横坐标和纵坐标都互为相反数,A(−2,a),B(b,−3),∴a=3,b=2,把A(-2,3)代入y=kx得3=k−2,解得k=-6,故答案为:-6【点睛】本题考查反比例函数图象的性质,反比例函数的图象关于原点对称,熟练掌握图象性质是解题关键.17.y2<y3<y1【分析】因为+1>0所以-(+1)<0此函数分布在二四象限在各象限y 随x 的增加而增大即可判断出y2<y3<y1【详解】∵+1>0∴-(+1)<0∴y =-图象在二四象限第二象限y 为正∴解析:y 2<y 3<y 1【分析】因为2k +1>0,所以-(2k +1)<0,此函数分布在二,四象限,在各象限y 随x 的增加而增大,即可判断出y 2<y 3<y 1.【详解】∵2k +1>0,∴-(2k +1)<0,∴y =-2k 1x+, 图象在二,四象限,第二象限y 为正,∴1y 最大,第四象限内y 随x 增大而增大,所以2y 最小,因此y 2<y 3<y 1.故答案为:y 2<y 3<y 1.【点睛】此题考查反比例函数图像和系数k 的关系,会数形结合是本题解题关键,学会利用图像解题.18.【分析】过点A 作AH ⊥x 轴于点H 交BD 于点F 则四边形ACOH 和四边形ACDF 均为矩形根据S 矩形BEOD=16可得k 的值即可得到矩形ACOH 和矩形ACDF 的面积进而求出S △ACD 【详解】解:过点A 作A解析:6【分析】过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形,根据S 矩形BEOD =16,可得k 的值,即可得到矩形ACOH 和矩形ACDF 的面积,进而求出S △ACD .【详解】解:过点A 作AH ⊥x 轴于点H ,交BD 于点F ,则四边形ACOH 和四边形ACDF 均为矩形∵S 矩形BEOD =16,反比例函数()0k y x x=>经过点B ∴k=16 ∵反比例函数() 0k y x x=>经过点A∴S 矩形ACOH =16∵AC=2∴OC=16÷2=8∴CD=OC-OD=OC-BE=8-2=6∴S 矩形ACDF =2×6=12∴S △ACD =12S 矩形ACDF =12×12=6. 故答案为6.【点睛】 本题主要考查了反比例函数系数k 的几何意义和性质. 通过矩形的面积求出k 的值是解本题的关键.19.-1【分析】将点A (-12)代入反比例函数即可求出m 的值【详解】将点A (-12)代入反比例函数得解得m=-1;故答案为:-1【点睛】本题考查了反比例函数图象上点的坐标特征所有在反比例函数上的点的横纵解析:-1【分析】将点A (-1,2)代入反比例函数1m y x -=即可求出m 的值. 【详解】将点A (-1,2)代入反比例函数1m y x-=,得 121m -=-, 解得,m=-1;故答案为:-1.【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.20.1或-3【分析】由题意根据反比例函数中值的几何意义即函数图像上一点分别作关于xy 轴的垂线与原点所围成的矩形的面积为据此进行分析求解即可【详解】解:由题意图形分成如下几部分∵矩形的对角线为∴即∵根据矩 解析:1或-3【分析】由题意根据反比例函数中k 值的几何意义即函数图像上一点分别作关于x 、y 轴的垂线与原点所围成的矩形的面积为k ,据此进行分析求解即可.【详解】解:由题意图形分成如下几部分,∵矩形ABCD 的对角线为BD ,∴DCB ABD S S =,即164253S S S S S S ++=++,∵根据矩形性质可知1234,S S S S ==,∴56S S =,∵2521S a a =++,点C 的坐标为()2,2--,∴26214S a a =++=,解得a =1或-3.故答案为:1或-3.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题21.(1)B 的坐标为(3,2);(2)函数的解析式为3y x =;(3)当3k =时,S 有最大值,最大值为34. 【分析】(1)根据矩形的性质即可写出B 的坐标;(2)当F 为AB 的中点时,点F 的坐标为(3,1),代入求得函数解析式即可;(3)根据图中的点的坐标表示出三角形的面积,得到关于k 的二次函数,利用二次函数求出最值即可.【详解】(1)∵在矩形OABC 中,OA=3,OC=2,∴B (3,2);(2)∵F 为AB 的中点,∴F (3,1),∵点F 在反比例函数k y x=的图象上, ∴k=3,∴该函数的解析式为3y x =;(3)由题意知E ,F 两点坐标分别为E(2k ,2),F(3,3k ), ∴EFA 12S =AF•BE 13232k k ⎛⎫=⨯- ⎪⎝⎭ 211212k k =- ()2169912k k =--+- 213(3)124k =--+, 当3k =时,S 有最大值,34S =最大值. 【点睛】 本题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,熟练掌握待定系数法是解本题的关键.22.(1)5y x =,6y x =-+;(2)12 【分析】(1)将点A (1,5)代入k y x=(k≠0,x >0),得到k 的值及反比例函数解析式;再将将点B (m ,1)代入反比例函数,得点B 坐标;将点A (1,5),B (5,1)代入y =ax+b ,通过求解二元一次方程组,即可得到答案;(2)结合一次函数6y x =-+,得点D 坐标;再由△AOB 的面积=△BOD 的面积-△AOD 的面积,经计算即可得到答案.【详解】(1)将点A (1,5)代入k y x=(k≠0,x >0) 得:51k =解得:k =5 ∴反比例函数的表达式为:5y x =将点B (m ,1)代入5y x =得:m =5∴点B (5,1)将点A (1,5),B (5,1)代入y =ax+b得551a b a b +=⎧⎨+=⎩解得:16a b =-⎧⎨=⎩∴一次函数表达式为:6y x =-+;(2)由一次函数6y x =-+可知:D (0,6)∴△AOB 的面积=△BOD 的面积-△AOD 的面积1165611222=⨯⨯-⨯⨯=. 【点睛】本题考查了反比例函数、一次函数、二元一次方程组的知识;解题的关键是熟练掌握反比例函数、一次函数、二元一次方程组的性质,从而完成求解.23.(1)b=52,k=-2;(2)-4<x <-1;(3)(0,1710). 【分析】(1)把A (-1,2)代入两个解析式即可得到结论;(2)求出点B 的坐标,根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集;(3)根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y=mx+n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论.【详解】解:(1)∵一次函数y=12x+b 的图象与反比例函数y=k x (x <0)的图象交于点A (-1,2),把A (-1,2)代入两个解析式得:2=12×(-1)+b ,2=-k , 解得:b=52,k=-2; (2)由(1)得:1522y x =+,2y x = 联立一次函数解析式与反比例函数解析式成方程组:15222y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩, 解得:412x y =-⎧⎪⎨=⎪⎩或12x y =-⎧⎨=⎩, ∴点A 的坐标为(-1,2)、点B 的坐标为(-4,12).观察函数图象,发现:当-4<x <-1时,反比例函数图象在一次函数图象下方,∴不等式12k x b x+>的解集为-4<x <-1. (3)作点A 关于y 轴的对称点A′,连接A′B 交y 轴于点P ,此时点P 即是所求,如图所示.∵点A′与点A 关于y 轴对称, ∴点A′的坐标为(1,2),设直线A′B 的解析式为y=mx+n ,则有2142m n m n +=⎧⎪⎨-+=⎪⎩,解得:3101710m n ⎧=⎪⎪⎨⎪=⎪⎩, ∴直线A′B 的解析式为3171010y x =+. 令x=0,则y=1710, ∴点P 的坐标为(0,1710). 【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:求出直线A′B 的解析式;找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.24.(1)b=3,k=-2;(2)5()3P 0,;(3)x<-2或-1<x<0 【分析】(1)根据待定系数法即可求得;(2)联立两函数解析式成方程组,解方程组即可求出点A 、B 的坐标,再根据点A′与点A 关于y 轴对称,求出点A′的坐标,设出直线A′B 的解析式为y =mx +n ,结合点的坐标利用待定系数法即可求出直线A′B 的解析式,令直线A′B 解析式中x 为0,求出y 的值,即可得出结论;(3)根据两函数图象的上下关系结合点A 、B 的坐标,即可得出不等式的解集.【详解】解:(1)∵一次函数y=x+b的图象与反比例函数kyx=(x<0)的图象交于点A(−1,2),把A(−1,2)代入两个解析式得:2=(−1)+b,2=−k,解得:b=3,k=−2;(2)作点A关于y轴的对称点A′,连接A′B交y轴于点P,此时点P即是所求,如图所示.联立一次函数解析式与反比例函数解析式成方程组:3 {2y xyx+-==,解得:2xy⎧⎨⎩=-=1或12xy⎧⎨⎩=-=,∴点A的坐标为(−1,2)、点B的坐标为(−2,1).∵点A′与点A关于y轴对称,∴点A′的坐标为(1,2),设直线A′B的解析式为y=mx+n,则有2{21m nm n+-+==,解得:1353mn⎧⎪⎪⎨⎪⎪⎩==,∴直线A′B的解析式为y=13x+53.令x=0,则y=53,∴点P的坐标为(0,53);(2)观察函数图象,发现:当x<−2或−1<x<0时,一次函数图象在反比例函数图象下方,∴当x+b<kx时,x的取值范围为x<−2或−1<x<0.【点睛】本题考查了反比例函数与一次函数的交点问题、轴对称中的最短线路问题、利用待定系数法求函数解析式以及反比例函数图象上点的坐标特征,解题的关键是:(2)求出直线A′B的解析式;(3)找出交点坐标.本题属于中档题,难度不大,但解题过程稍显繁琐,解决该题型题目时,找出点的坐标,利用待定系数法求出函数解析式是关键.25.(1)P =96V ;(2)为了安全起见,气体的体积应不小于0.8(m 3). 【分析】(1)设函数解析式为P =k V ,把点(1.6,60)的坐标代入函数解析式求出k 值,即可求出函数关系式;(2)依题意P≤120,即96V ≤120,解不等式即可. 【详解】解:(1)设P 与V 的函数关系式为P =k V , 则1.6k =60, 解得:k =96,∴反比例函数的表达式为:P =96V; (2)当P >120KPa 时,气球将爆炸,∴P≤120,即96V≤120, 解得:V≥0.8(m 3). 故为了安全起见,气体的体积应不小于0.8(m 3).【点睛】本题考查待定系数求函数解析式,不等式的应用,难度不大,注意运算能力的提升. 26.(1)y =8x ,y =x+2;(2)0<x <2. 【分析】(1)根据S △AOB 求出n 的值,然后将B 点坐标带入即可求得反比例函数解析式,利用待定系数法,代入A 、B 点坐标即可求得直线AB 的解析式;(2)观察函数图像,直线AB 在BC 段时在反比例函数的下方,因此根据B 、C 的横坐标即可求解.【详解】(1)由A (﹣2,0),得OA =2;∵点B (2,n )在第一象限内,S △AOB =4, ∴12OA•n =4; ∴n =4;∴点B 的坐标是(2,4);∵该反比例函数的解析式为y=ax(a≠0),将点B的坐标代入,得4=12 a,∴a=8;∴反比例函数的解析式为y=8x,∵直线AB的解析式为y=kx+b(k≠0),将点A,B的坐标分别代入,得2024k bk b-+=⎧⎨+=⎩,解得12kb=⎧⎨=⎩,∴直线AB的解析式为y=x+2;(2)由于B点坐标为(2,4),可知不等式kx+b<ax的解集为:0<x<2.故答案为(1)y=8x,y=x+2;(2)0<x<2.【点睛】本题考查了反比例函数的性质,待定系数法求函数解析式,和一次函数于反比例函数综合,正确的识别示意图是本题的关键.。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测题(包含答案解析)(3)
一、选择题1.如图,A 、B 是函数1y x=的图像上关于原点对称的任意两点,BC //x 轴,AC //y 轴,ABC 的面积记为S ,则( )A .1S =B .2S =C .24S <<D .4S =2.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =-B .4y x =-C .4y x=D .4y x=-3.已知反比例函数ky x=的图像过点(2,3)-,那么下列各点也在该函数图像上的是( ) A .(2,3)B .(2,3)--C .(1,6)D .(6,1)-4.在同一坐标系中,y kx k =-与()0ky k x=≠的图象大致是( ) A . B .C .D .5.如图,菱形ABCD 的边AD 与x 轴平行,A 、B 两点的横坐标分别为1和3,反比例函数y=3x的图象经过A 、B 两点,则菱形ABCD 的面积是( )A.42B.4 C.22D.26.规定:如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x2+2x﹣8=0是倍根方程;②若关于x的方程x2+ax+2=0是倍根方程,则a=±3;③若(x﹣3)(mx﹣n)=0是倍根方程,则n=6m或3n=2m;④若点(m,n)在反比例函数y=2x的图象上,则关于x的方程mx2﹣3x+n=0是倍根方程.上述结论中正确的有()A.①②B.③④C.②③D.②④7.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数在第一象限内的图像与△ABC有交点,则的取值范围是A.2≤≤B.6≤≤10C.2≤≤6D.2≤≤8.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为( )A .1.5B .1.8C .2D .无法求9.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者UI R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( )A .B .C .D .10.反比例函数ky x=经过点(2,1),则下列说法错误..的是( ) A .2k =B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小11.已知反比例函数y=21k x +的图上象有三个点(2,1y ), (3, 2y ),(1-, 3y ),则1y ,2y ,3y 的大小关系是( )A .1y >2y >3yB .2y >1y >3yC .3y >1y >2yD .3y >2y >1y12.如图直线y 1=x+1与双曲线y 2=kx交于A (2,m )、B (﹣3,n )两点.则当y 1>y 2时,x 的取值范围是( )A .x >﹣3或0<x <2B .﹣3<x <0或x >2C .x <﹣3或0<x <2D .﹣3<x <2二、填空题13.如图,在ABO ∆中,90BAO AO AB ∠==,,且点4(2)A ,在双曲线(0)ky x x=>上,OB 交双曲线于点C ,则C 点的坐标为______.14.如图,在平面直角坐标系中,函数y kx =与2y x=-的图像交于A 、B 两点,过点A 作y 轴的垂线,交函数1y x=的图像于点C ,连接BC ,则ABC ∆的面积为 _________.15.如图,四边形OABC 和ADEF 均为正方形,反比例函数8y x=的图象分别经过AB 的中点M 及DE 的中点N ,则正方形ADEF 的边长为___16.如图所示,正比例函数y 1=k 1x (k 1≠0)的图像与反比例函数y 2=2k x(k 2≠0)的图像相交于A 、B 两点,其中A 的横坐标为2,当y 1<y 2<0时,则x 的取值范围是______.17.如图,在平面直角坐标系中,菱形OABC 的面积为20,点B 在y 轴上,点C 在反比函数ky x=的图像上,则k 的值为________.18.设A (x 1,y 1),B (x 2,y 2)为函数21k y x-=图象上的两点,且x 1<0<x 2,y 1>y 2,则实数k 的取值范围是__. 19.如图,已知反比例函数y =kx(x >0)与正比例函数y =x (x ≥0)的图象,点A (1,4),点A '(4,b )与点B '均在反比例函数的图象上,点B 在直线y =x 上,四边形AA 'B 'B 是平行四边形,则B 点的坐标为______.20.如图,菱形ABCD 顶点A 在函数y=4x(x>0)的图像上,函数y=kx (k>4,x>0)的图象关于直线AC 对称,且经过点B 、D 两点,若AB=4,∠ADC=150°,则k=______。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测卷(包含答案解析)(3)
一、选择题1.下列函数中,y 总随x 的增大而减小的是( ) A .4y x =- B .4y x =- C .4y x = D .4y x =- 2.已知反比例函数k y x =的图像过点(2,3)-,那么下列各点也在该函数图像上的是( ) A .(2,3) B .(2,3)-- C .(1,6) D .(6,1)-3.如图,已知双曲线()0k y x x =>经过矩形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2.则k =( )A .2B .12C .1D .44.如图,在平面直角坐标系中,正方形ABCD 的顶点A 的坐标为(﹣1,1),点B 在x 轴正半轴上,点D 在第三象限的双曲线y =8x上,过点C 作CE ∥x 轴交双曲线于点E ,则CE 的长为( )A .85B .235C .3.5D .55.规定:如果关于x 的一元二次方程ax 2+bx+c =0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程”现有下列结论①方程x 2+2x ﹣8=0是倍根方程;②若关于x 的方程x 2+ax+2=0是倍根方程,则a =±3;③若(x ﹣3)(mx ﹣n )=0是倍根方程,则n =6m 或3n =2m ;④若点(m ,n )在反比例函数y =2x 的图象上,则关于x 的方程mx 2﹣3x+n =0是倍根方程.上述结论中正确的有( )A .①②B .③④C .②③D .②④6.如图,直线l x ⊥轴于点P ,且与反比例函数11(0)k y x x=>及22(0)k y x x =>的图象分别交于点A ,B ,连接OA ,OB ,已知△OAB 的面积为2,则12k k -的值为( )A .2B .3C .4D .57.如图,反比例函数k y x=的图像经过平行四边形ABCD 的顶点C ,D ,若点A 、点B 、点C 的坐标分别为()3,0,()0,4,(),a b ,且7.5a b +=,则k 的值是( )A .7.5B .9C .10D .12 8.反比例函数y=kb x的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .9.下列函数是y 关于x 的反比例函数的是( )A .y =11x +B .y =21xC .y =﹣12xD .y =﹣2x 10.已知电压U 、电流I 、电阻R 三者之间的关系式为:U IR =(或者U I R=),实际生活中,由于给定已知量不同,因此会有不同的可能图象,图象不可能是( ) A . B .C .D .11.如图,双曲线k y x=经过Rt BOC ∆斜边上的中点A ,且与BC 交于点D ,若BOD 6S ∆=,则k 的值为( )A .2B .4C .6D .812.对于反比例函数5y x =-,下列说法中不正确的是( ) A .图象经过点(1,5)- B .当0x >时,y 的值随x 的值的增大而增大C .图像分布在第二、四象限D .若点11()A x y ,,22()B x y ,都在图像上,且12x x <,则12y y <.二、填空题13.如图,平行四边形OABC 的顶点A C 、的坐标分别为()()3,4,6,0--函数()0k y x x=<的图象经过点B ,则k 的值为__________.14.如图,设点P 在函数5y x=的图象上,PC ⊥x 轴于点C ,交函数y =2x 的图象于点A ,PD ⊥y 轴于点D ,交函数y =2x 的图象于点B ,则四边形PAOB 的面积为_____.15.如果反比例函数2y x=的图象经过点11(,)A x y ,22(,)B x y ,33(,)C x y 且1230x x x <<<,请比较1y 、2y 、3y 的大小为__________.16.如图,点M 是反比例函数k y x=(0k >)的图像上一点,MP x ⊥轴,垂足为点P ,如果MOP △的面积为7,那么k 的值是___________.17.如图,点A 是一次函数13y x =(0)x ≥图像上一点,过点A 作x 轴的垂线l ,点B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数k y x=(0)x >的图像过点B 、C ,若OAB ∆的面积为8,则ABC ∆的面积是_________.18.将x=23代入反比例函数y=-1x 中,所得的函数值记为1y ,又将x=1y +1代入反比例函数y=-1x 中,所得的函数值记为2y ,又将x=2y +1代入反比例函数y=-1x中,所得的函数值记为3y ,…,如此继续下去,则y 2020=______________19.点(),A a b 是一次函数3y x =-+与反比例函数2y x =的交点,则11a b +的值__________.20.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y k x=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.三、解答题21.如图,一次函数()0y kx b k =+≠的图象与反比例函数()0m y m x=≠的图象相交于点()1,2A ,(),1B a -.(1)求反比例函数和一次函数的解析式.(2)若直线()0y kx b k =+≠与x 轴交于点C ,x 轴上是否存在一点P ,使6APC S =?若存在,请求出点P 坐标;若不存在,说明理由.22.如图,为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA=5米,进口//O AB D ,且AB=2米,出口C 点距水面的距离CD 为1米,B 、C 之间的水平距离DE 的长度为多少米?23.在平面直角坐标系xOy 中,直线l :1y x =-与双曲线k y x=相交于点(2,)A m . (1)求点A 坐标及反比例函数的表达式; (2)若直线l 与x 轴交于点B ,点P 在反比例函数的图象上,当OPB △的面积为1时,求点P 的坐标.24.已知反比例函数k 1y x-=(k 为常数,k≠1). (1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而减小,求k 的取值范围. 25.如图,在平面直角坐标系xOy 中,一次函数y =kx +b 的图象与反比例函数y =6x的图象相交于点A (m ,3)、B (–6,n ),与x 轴交于点C .(1)求一次函数y =kx +b 的关系式;(2)结合图象,直接写出满足kx +b >6x 的x 的取值范围; (3)若点P 在x 轴上,且S △ACP =32BOC S △,求点P 的坐标.26.如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x =图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数k y x=的图象没有公共点.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正比例函数的性质,可判断A;根据一次函数的性质,可判断B;根据反比例函数的性质,可判断C、D.【详解】A选项:y随x的增大而减小,符合题意,故A正确;B选项:y随x的增大而增大,不符合题意,故B错误;C选项:在每个象限内y随x的增大而减小,不符合题意,故C错误;D选项:在每个象限内y随x的增大而增大,不符合题意,故D错误.故选:A.【点睛】本题主要考查了反比例函数的增减性,关键是要注意反比例函数在叙述增减性时必须强调在每个象限内.2.D解析:D【分析】先根据反比例函数kyx=经过点(-2,3)求出k的值,再对各选项进行逐一分析即可.【详解】解:∵反比例函数kyx=经过点(-2,3),∴k=-2×3=-6.A、∵2×3=6≠-6,∴此点不在函数图象上,故本选项错误;B、∵(-2)×(-3)=6≠-6,∴此点不在函数图象上,故本选项错误;C、∵1×6=6≠-6,∴此点不在函数图象上,故本选项错误;D、∵6×(-1)=-6,∴此点在函数图象上,故本选项正确.故选:D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.A解析:A【分析】通过设F的坐标,得到点B的坐标,再利用四边形面积OFBE等于矩形面积OABC减去三角形COE和△AOF的面积作等量,解得k值即可.【详解】解:设点F的坐标(m,km),∵点F是AB的中点,∴点B的坐标(m,2km),则 S 四边形OEBF =S 矩形OABC -S △COE -S △AOF ,∴2=m 21122k k k m --(k>0) ∴2=2k-k ,∴k=2,故选:A .【点睛】 本题考查反比例函数的k 的几何意义以及反比例函数上的点的坐标特点、矩形的性质,难点是根据一点的坐标表示其他点的坐标.4.B解析:B【分析】设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,根据AAS 先证明△DHA ≌△CGD 、△ANB ≌△DGC 可得AN =DG =1=AH ,据此可得关于m 的方程,求出m 的值后,进一步即可求得答案.【详解】解:设点D (m ,8m),过点D 作x 轴的垂线交CE 于点G ,过点A 过x 轴的平行线交DG 于点H ,过点A 作AN ⊥x 轴于点N ,如图所示:∵∠GDC +∠DCG =90°,∠GDC +∠HDA =90°,∴∠HDA =∠GCD ,又AD =CD ,∠DHA =∠CGD =90°,∴△DHA ≌△CGD (AAS),∴HA =DG ,DH =CG ,同理△ANB ≌△DGC (AAS),∴AN =DG =1=AH ,则点G (m ,8m﹣1),CG =DH , AH =﹣1﹣m =1,解得:m =﹣2,故点G (﹣2,﹣5),D (﹣2,﹣4),H (﹣2,1),则点E (﹣85,﹣5),GE =25, CE =CG ﹣GE =DH ﹣GE =5﹣25=235, 故选B .【点睛】 本题考查了正方形的性质、反比例函数图象上点的坐标特点和全等三角形的判定与性质,构造全等、充分运用正方形的性质是解题的关键.5.D解析:D【分析】】①通过解方程得到该方程的根,结合“倍根方程”的定义进行判断;②设x 2=2x 1,得到x 1•x 2=2x 12=2,得到当x 1=1时,x 2=2,当x 1=-1时,x 2=-2,于是得到结论;③根据“倍根方程”的定义即可得到结论;④若点(m ,n )在反比例函数y =2x 的图象上,得到mn=2,然后解方程mx 2-3x+n=0即可得到正确的结论;【详解】解:①∵方程x 2+2x-8=0的两个根是x 1=-4,x 2=2,则2×2≠-4,∴方程x 2+2x-8=0不是倍根方程,故①错误;②若关于x 的方程x 2+ax+2=0是倍根方程,则2x 1=x 2,∵x 1+x 2=-a ,x 1•x 2=2,∴2x 12=2,解得x 1=±1,∴x 2=±2,∴a=±3,故②正确;③解方程(x-3)(mx-n )=0得,123,n x x m ==, 若(x-3)(mx-n )=0是倍根方程,则6n m =或23n m ⨯=, ∴n=6m 或3m=2n ,故③错误;④∵点(m ,n )在反比例函数y =2x 的图象上, ∴mn=2,即2n m=, ∴关于x 的方程为2230mx x m -+=, 解方程得1212,x x m m ==,∴x 2=2x 1,∴关于x 的方程mx 2-3x+n=0是倍根方程,故④正确;故选D .【点睛】本题考查了反比例函数图象上点的坐标特征,根与系数的关系,正确的理解倍根方程的定义是解题的关键.6.C解析:C【分析】据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k ,由题意可知△AOB 的面积为12k −22k . 【详解】根据反比例函数k 的几何意义可知:△AOP 的面积为12k ,△BOP 的面积为22k , ∴△AOB 的面积为12k −22k , ∴12k −22k =2, ∴k 1-k 2=4,故选:C .【点睛】本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于中等题型,7.B解析:B【分析】根据平移和平行四边形的性质将点D 也用a 、b 表示,再根据反比例函数图象上的点的横纵坐标的乘积相等列式算出a 、b ,再由点坐标求出k 的值.【详解】解:∵()3,0A ,()0,4B ,∴A 可以看作由B 向右平移3个单位,向下平移4个单位得到的,根据平行四边形的性质,D 也可以看作由C 向右平移3个单位,向下平移4个单位得到的,∵(),C a b ,∴()3,4D a b +-,∵7.5a b +=,∴(),7.5C a a -,()3,3.5D a a +-,∵C 、D 都在反比例函数图象上,∴它们横纵坐标的乘积相等,即()()()7.53 3.5a a a a -=+-,解得 1.5a =,∴()1.57.5 1.59k =⨯-=.故选:B .【点睛】本题考查反比例函数与几何图形的结合,解题的关键是根据题目条件,用同一个未知数设出反比例函数图象上的点,然后用反比例函数图象上点的性质列式求解.8.D解析:D【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=kb x的图象经过第一、三象限, ∴kb >0,∴k ,b 同号, 选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.9.C解析:C【分析】直接利用反比例函数的定义分别判断得出答案.【详解】解:A 、y =11x +是y 与x+1成反比例,故此选项不合题意; B 、y =21x,是y 与x 2成反比例,不符合反比例函数的定义,故此选项不合题意; C 、y =﹣12x ,符合反比例函数的定义,故此选项符合题意; D 、y =﹣2x 是正比例函数,故此选项不合题意. 故选:C .【点睛】本题考查了反比例函数的定义,正确把握定义是解题的关键.10.A解析:A【分析】在实际生活中,电压U 、电流I 、电阻R 三者之中任何一个不能为负,依此可得结果.【详解】A 图象反映的是U I R=,但自变量R 的取值为负值,故选项A 错误;B 、C 、D 选项正确,不符合题意.故选:A .【点睛】此题主要考查了现实生活中函数图象的确立,注意自变量取值不能为负是解答此题的关键. 11.B解析:B【分析】 设,k A x x ⎛⎫ ⎪⎝⎭,根据A 是OB 的中点,可得22,k B x x ⎛⎫ ⎪⎝⎭,再根据BC OC ⊥,点D 在双曲线k y x =上,可得2,2k D x x ⎛⎫ ⎪⎝⎭,根据三角形面积公式列式求出k 的值即可. 【详解】 设,k A x x ⎛⎫ ⎪⎝⎭ ∵A 是OB 的中点 ∴22,k B x x ⎛⎫ ⎪⎝⎭∵BC OC ⊥,点D 在双曲线k y x=上 ∴2,2k D x x ⎛⎫ ⎪⎝⎭ ∴BOD 112322222k k S BD OC x k x x ∆⎛⎫=⨯⨯=⨯-⨯= ⎪⎝⎭ ∵BOD 6S ∆= ∴3642k =÷= 故答案为:B .【点睛】 本题考查了反比例函数的几何问题,掌握反比例函数的性质、中点的性质、三角形面积公式是解题的关键.12.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.-36【分析】根据平行四边形的性质可得AB=CO 再根据AC 点坐标可以算出B 点坐标再把B 点坐标代入反比例函数解析式中即可求出k 的值【详解】解:∵四边形为平行四边形∴AB=COAB//CO ∵∴AB=CO解析:-36【分析】根据平行四边形的性质可得AB=CO ,再根据A 、C 点坐标可以算出B 点坐标,再把B 点坐标代入反比例函数解析式中即可求出k 的值.【详解】解:∵四边形OABC 为平行四边形,∴AB=CO,AB//CO ,∵()6,0C -,∴AB=CO=6,∴B (-9,4)∵反比例函数()0k y x x=<的图象经过点B , ∴k=-9×4=-36,故答案为:-36.【点睛】本题考查反比例函数与几何综合,平行四边形的性质.关键是熟练把握凡是反比例函数图象经过的点都能满足解析式.14.3【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积△OBD 和△OAC 的面积然后求解即可【详解】解:根据题意S 四边形PCOD =PC•PD =5S △OBD =S △OAC =×2=1所以四边形PA解析:3.【分析】根据反比例函数系数k 的几何意义求出四边形PCOD 的面积,△OBD 和△OAC 的面积,然后求解即可.【详解】解:根据题意,S 四边形PCOD =PC •PD =5,S △OBD =S △OAC =12×2=1, 所以,四边形PAOB 的面积=S 四边形PCOD ﹣S △OBD ﹣S △OAC =5﹣1﹣1=3.故答案为:3.【点睛】 本题考查了反比例函数比例系数的几何意义,一般的,从反比例函数k y x=(k 为常数,k ≠0)图象上任一点P ,向x 轴和y 轴作垂线你,以点P 及点P 的两个垂足和坐标原点为顶点的矩形的面积等于常数k ,以点P 及点P 的一个垂足和坐标原点为顶点的三角形的面积等于12k . 15.【分析】根据题意和反比例函数的性质可以得到y1y2y3的大小关系从而可以解答本题【详解】解:∵反比例函数∴在每个象限内y 随x 的增大而减小当x <0时y <0当x >0时y >0∵反比例函数的图象经过点A (x解析:213y y y <<【分析】根据题意和反比例函数的性质,可以得到y 1,y 2,y 3的大小关系,从而可以解答本题.【详解】解:∵反比例函数2y x= ∴在每个象限内,y 随x 的增大而减小,当x <0时,y <0,当x >0时,y >0, ∵反比例函数2y x=的图象经过点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),且1230x x x <<<,∴213y y y <<,故答案为:213y y y <<.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.16.14【分析】根据点是反比例函数()的图像上一点可得到M 点的坐标;轴垂足为点可知P 点横坐标等于M 点横坐标;再通过的面积建立等式即可计算得到答案【详解】∵是反比例函数()的图像上一点设横坐标∴∵轴垂足为 解析:14【分析】根据点M 是反比例函数k y x=(0k >)的图像上一点,可得到M 点的坐标;MP x ⊥轴,垂足为点P ,可知P 点横坐标等于M 点横坐标;再通过MOP △的面积建立等式,即可计算得到答案.【详解】 ∵M 是反比例函数k y x =(0k >)的图像上一点 设M 横坐标x a = ∴,k M a a ⎛⎫ ⎪⎝⎭∵MP x ⊥轴,垂足为点P∴P 点横坐标等于M 点横坐标∴(),0P a∴=a OP ,k MP a= 又∵MP x ⊥轴,垂足为点P∴=90MPO ∠∴MOP △为直角三角形 ∴11222k k S OP MP a a =⨯=⨯=△MOP ∵7S =△MOP ∴=72k ∴14k = 故答案为:14.【点睛】本题考察了反比例函数、直角坐标系、直角三角形的知识;求解的关键的熟练掌握反比例函数、直角三角形性质,结合直角坐标系,从而计算得到答案.17.【分析】过作轴于交于设根据直角三角形斜边中线是斜边一半得:设则因为都在反比例函数的图象上列方程可得结论【详解】如图过作轴于交于∵轴∴∵是等腰直角三角形∴设则设则∵在反比例函数的图象上∴解得∵∴∴∴∵解析:163 【分析】过C 作CD y ⊥轴于D ,交AB 于E ,设2AB a =,根据直角三角形斜边中线是斜边一半得:BE AE CE a ===,设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭,因为B .C 都在反比例函数的图象上,列方程可得结论.【详解】如图,过C 作CD y ⊥轴于D ,交AB 于E .∵AB x ⊥轴∴CD AB ⊥,∵ABC ∆是等腰直角三角形,∴BE AE CE ==,设2AB a =,则BE AE CE a ===, 设1,3A x x ⎛⎫ ⎪⎝⎭,则1,23B x x a ⎛⎫+ ⎪⎝⎭,1,3C x a x a ⎛⎫++ ⎪⎝⎭, ∵B ,C 在反比例函数的图象上,∴112()33x x a x a x a ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭, 解得32x a =, ∵112822OAB S AB DE a x ∆=⋅=⋅⋅=, ∴8ax =,∴2382a =, ∴2163a =, ∵211222ABC S AB CE a a a ∆=⋅=⋅⋅=16 3 =故答案为:163.【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.18.-【分析】分别计算出y1y2y3y4可得到每三个一循环而2020÷3=673 (1)即可得到y2020=y1【详解】解:将x=代入反比例函数y=﹣中得y1=﹣=﹣把x=﹣+1=﹣代入反比例函数y=﹣得解析:-3 2【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2020÷3=673……1,即可得到y2020=y1.【详解】解:将x=23代入反比例函数y=﹣1x中,得y1=﹣123=﹣32,把x=﹣32+1=﹣12代入反比例函数y=﹣1x得y2=﹣112-=2;把x=2+1=3代入反比例函数y=﹣1x得y3=﹣13;把x=﹣13+1=23代入反比例函数y=﹣1x得y4=﹣32;…;如此继续下去每三个一循环,∵2020÷3=673……1,∴y2020=y1=﹣32.故答案为:﹣32.【点睛】本题考查反比例函数的定义.按照题目的叙述计算一下y的值,从中观察得到规律,是解决本题的关键.19.【分析】联立两函数构成方程组解方程组即可【详解】解:由解得或或故答案为:【点睛】本题考查了反比例函数与一次函数的交点坐标解题的关键是学会利用方程组求两个函数的交点坐标属于基础题解析:3 2【分析】联立两函数构成方程组,解方程组即可.【详解】解:由23yxy x⎧=⎪⎨⎪=-+⎩解得12xy=⎧⎨=⎩或21xy=⎧⎨=⎩,()1,2A∴或()2,1,1132a b∴+=,故答案为:32.【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题.20.2【分析】根据题意利用面积法求出AE设出点B坐标表示点A的坐标应用反比例函数上点的横纵坐标乘积为k构造方程求k【详解】连接AC分别交BDx 轴于点EF由已知AB横坐标分别为14∴BE=3∵四边形ABC解析:2.【分析】根据题意,利用面积法求出AE,设出点B坐标,表示点A的坐标.应用反比例函数上点的横纵坐标乘积为k构造方程求k.【详解】连接AC分别交BD、x轴于点E、F.由已知,A、B横坐标分别为1,4,∴BE=3.∵四边形ABCD为菱形,AC、BD为对角线,∴S菱形ABCD=412⨯AE•BE=9,∴AE 32=,设点B 的坐标为(4,y ),则A 点坐标为(1,y 32+) ∵点A 、B 同在y k x =图象上, ∴4y =1•(y 32+), ∴y 12=, ∴B 点坐标为(4,12), ∴k =2故答案为:2.【点睛】 此题考查菱形的性质,反比例函数图象上点的坐标与k 之间的关系,解题关键在于掌握其性质定义.三、解答题21.(1)2y x=;1y x =+;(2)存在;()5,0或()7,0-. 【分析】 (1)把点A (1,2)代入m y x=得到反比例函数的解析式为2y x =;求出2a =-,把点A (1,2),B (−2,−1)代入y =kx +b 得到一次函数的解析式为y =x +1;(2)求出C (−1,0),设P (x ,0),根据三角形的面积公式即可得到结论.【详解】 解:(1)把点()1,2A 代入m y x =,得21m =, ∴2m =,∴反比例函数的解析式为2y x =; 把(),1B a -代入2y x=得,2a =-, ∴()2,1B --, 把点()1,2A ,()2,1B --代入y kx b =+得221k b k b +=⎧⎨-+=-⎩, 解得:11k b =⎧⎨=⎩, ∴一次函数的解析式为:1y x =+.(2)当0y =时,01x =+,解得:1x =-,∴()1,0C -,设(),0P x , ∴11262APC S x =⨯+⨯=△, ∴5x =或7x =-, ∴()5,0或()7,0-.【点睛】本题考查了反比例函数与一次函数的交点问题,三角形的面积计算,待定系数法求函数的解析式,熟练掌握函数图象上点的坐标特征是解题的关键.22.8【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B (2,5),设双曲线BC 的解析式为y=k x ,代入B 点坐标,得到k=10,然后求出D 点横坐标,最后用OD-OE 即可求解.【详解】∵四边形AOEB 是矩形∴BE=OA=5,AB=2∴B(2,5)设双曲线的解析式为y=k x ,将点B 的坐标代入,5=k 2 ∴k=10∴y=10x∵CD 为1∴当y=1时,x=10∴OD=10∴DE 的长=OD-OE=10−2=8∴B 、C 之间的水平距离DE 的长度为8米.【点睛】本题考查反比例函数的应用,矩形的性质,解题突破口是设双曲线BC 的解析式为y=k x . 23.(1)点(2,1)A ,反比例函数2y x=;(2)点()P 12,或(-1,-2) 【分析】(1)代入坐标点先求坐标,再求反比例函数表达式;(2)作图,根据图像求出P 点纵坐标,再代入反比例函数即可求出坐标.【详解】(1)∵A 在y=x-1上,∴当x=2时,y=1,即m=1,点(2,1)A ,再把A 的坐标代入反比例函数解得:2y x=; (2)由函数表达式可求得点(1,0)B ,∵1OPB S =△,即12OB ||1p y =, ∴||1p y =,点()P 12,或(-1,-2); 【点睛】此题考查反比例函数与一次函数相关知识,结合图像是关键.24.(1)3k =;(2)1k >.【分析】(1)根据反比例函数图象上点的坐标特征得到k-1=1×2,然后解方程即可;(2)根据反比例函数的性质得k-1>0,然后解不等式即可.【详解】(1)根据题意得112k -=⨯,解得:3k =;(2)因为反比例函数k 1y x-=, 在这个函数图象的每一分支上,y 随x 的增大而减小,所以10k ->,解得:1k >.【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,0k ≠)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy k=.也考查了反比例函数的性质.25.(1)122y x=+;(2)-6<x<0或2<x;(3)(-2,0)或(-6,0)【分析】(1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;(2)根据函数图像判断即可;(3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=32S△BOC,即可得出|x+4|=2,解之即可得出结论.【详解】(1)∵点A(m,3),B(-6,n)在双曲线y=6x上,∴m=2,n=-1,∴A(2,3),B(-6,-1).将(2,3),B(-6,-1)带入y=kx+b,得:3216k bk b+⎧⎨--+⎩==,解得,122kb==⎧⎪⎨⎪⎩.∴直线的解析式为y=12x+2.(2)由函数图像可知,当kx+b>6x时,-6<x<0或2<x;(3)当y=12x+2=0时,x=-4,∴点C(-4,0).设点P的坐标为(x,0),如图,∵S△ACP=32S△BOC,A(2,3),B(-6,-1),∴12×3|x-(-4)|=32×12×|0-(-4)|×|-1|,即|x+4|=2,解得:x 1=-6,x 2=-2.∴点P 的坐标为(-6,0)或(-2,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB 的解析式;(2)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S △ACP =32S △BOC ,得出|x+4|=2. 26.(1)6y x =;(2)(2,3),(3,2)--;(3)25y x =-+(答案不唯一) 【分析】(1)将x=2代入一次函数,求出其中一个交点是(2,3),再代入反比例函数k y x =即可解答;(2)先求出平移后的一次函数表达式,联立两个函数解析式得到一元二次方程260x x --=即可解答;(3)设一次函数为y=ax+b (a≠0),根据题意得到b=5,联立一次函数与反比例函数解析式,得到2560ax x +-=,若无公共点,则方程无解,利用根的判别式得到25240a ∆=+<,求出a 的取值范围,再在范围内任取一个a 的值即可.【详解】解:(1)∵一次函数1y x =+的图象与反比例函数k y x=的图象的一个交点的横坐标是2,∴当2x =时,3y =,∴其中一个交点是(2,3).∴236k =⨯=.∴反比例函数的表达式是6y x=. (2)∵一次函数1y x =+的图象向下平移2个单位,∴平移后的表达式是1y x =-. 联立6y x=及1y x =-,可得一元二次方程260x x --=, 解得12x =-,23x =.∴平移后的图象与反比例函数图象的交点坐标为(2,3),(3,2)--(3)设一次函数为y=ax+b (a≠0),∵经过点(0,5),则b=5,∴y=ax+5,联立y=ax+5以及6y x=可得:2560ax x +-=, 若一次函数图象与反比例函数图象无交点, 则25240a ∆=+<,解得:2524a <-, ∴25y x =-+(答案不唯一).【点睛】本题考查了一次函数与反比例函数图象交点问题以及函数图象平移问题,解题的关键是熟悉函数图象上点的特征,第(3)问需要先确定a 的取值范围.。
新人教版初中数学九年级数学下册第一单元《反比例函数》检测(答案解析)(1)
一、选择题1.正比例函数1y 的图像与反比例函数2y 的图像相交于点(2,4)A ,下列说法正确的是( )A .反比例函数2y 的解析式是28y x=-B .两个函数图像的另一个交点坐标为(2,4)C .当2x <-或02x <<时,12y y <D .正比例函数1y 与反比例函数2y 都随x 的增大而增大2.如图,正方形ABCD 的顶点A 的坐标为()1,0-,点D 在反比例函数my x=的图象上,B 点在反比例函数3y x=的图像上,AB 的中点E 在y 轴上,则m 的值为( )A .-2B .-3C .-6D .-83.函数y a x a =+与(0)ay a x=≠在同一直角坐标系中的图像可能是( ) A . B . C .D .4.如图,在平面直角坐标系中,菱形OBCD 的边OB 在x 轴上,反比例函数()0ky x x=>的图象经过菱形对角线的交点,A 且与边BC 交于点F ,点C 的坐标为()8,4,则OBF ∆的面积为( )A .104B .83C .103D .1145.如图,正比例函数y ax =的图象与反比例函数ky x=的图象相交于A ,B 两点,其中点A 的横坐标为2,则不等式kax x<的解集为( )A .2x <-或2x >B .2x <-或02x <<C .20x -<<或02x <<D .20x -<<或2x >6.若反比例函数()2221m y m x -=-的图象在第二、四象限,则m 的值是( )A .-1或1B .小于12的任意实数 C .-1D .不能确定7.已知(5,-1)是双曲线(0)ky k x=≠上的一点,则下列各点中不在该图象上的是( ) A .1(,15)3- B .(5,1) C .(1,5)- D .1(10,)2-8.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-9.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .10.如图,点A 、C 为反比例函数y=(0)kx x<图象上的点,过点A 、C 分别作AB ⊥x 轴,CD ⊥x 轴,垂足分别为B 、D ,连接OA 、AC 、OC ,线段OC 交AB 于点E ,点E 恰好为OC 的中点,当△AEC 的面积为32时,k 的值为( )A .4B .6C .﹣4D .﹣611.在平面直角坐标系中,对于不在坐标轴上的任意一点P (x ,y ),我们把的P '(1x,1y )称为点P 的“倒影点”.直线y =﹣2x +1上有两点A 、B ,它们的倒影点A '、B '均在反比例函数y kx=的图象上,若AB 5=k 的值为( )A.8 3 -B.43-C.5 D.1012.对于反比例函数5yx=-,下列说法中不正确的是()A.图象经过点(1,5)-B.当0x>时,y的值随x的值的增大而增大C.图像分布在第二、四象限D.若点11()A x y,,22()B x y,都在图像上,且12x x<,则12y y<.二、填空题13.在直角坐标系中,已知A(0,4)、B(2,4),C为x轴正半轴上一点,且OB平分∠ABC,过B的反比例函数y=kx交线段BC于点D,E为OC的中点,BE与OD交于点F,若记△BDF的面积为S1,△OEF的面积为S2,则12SS=_____.14.如图,已知双曲线()0ky xx=>经过矩形OABC边BC的中点E,与AB交于点F,且四边形OEBF的面积为3,则k=________.15.如图,反比例函数6y x=在第一象限的图象上有两点,,A B 它们的横坐标分别为1,3,则OAB ∆的面积为___.16.如图,Rt △AOB 的一条直角边OB 在x 轴上,双曲线()0ky x x=>经过斜边OA 的中点C ,与另一直角边交于点D ,若3ABOS=,则k 的值为______.17.如图,正方形ABCD 的边长为10,点A 的坐标为()8,0-,点B 在y 轴上,若反比例函数(0)ky k x==的图象过点C ,则该反比例函数的解析式为_________.18.在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____. 19.如图,直线3y x =-+与y 轴交于点A ,与反比例函数()0ky x x=<的图象交于点C ,过点C 作CB x ⊥轴于点B ,若3AO BO =,则k 的值为________.20.如图,平面直角坐标系中,等腰Rt ABC ∆的顶点.A B 分别在x 轴、y 轴的正半轴,90,ABC =∠CA x ⊥轴, 点C 在函数()0k y x x=>的图象上.若2,AB =则k 的值为_____.三、解答题21.如图,在平面直角坐标系中,一次函数152y x =-+的图象于反比例函数(0)ky k x=≠的图象相交于点(8,t)A 和点B .(1)求反比例函数的关系式和点B 的坐标; (2)结合图象,请直接写出在第一象限内,当152kx x-+>时x 的取值范围. 22.如图,直线y mx n =+与双曲线ky x=相交于()1,2,(2,)A B b -两点,与x 轴交于点E ,与y 轴相交于点C .(1)求m n ,的值;(2)若点D 与点C 关于x 轴对称,求ABD ∆的面积;(3)在坐标轴上是否存在异于D 点的点,P 使得PAB DAB S S ∆∆=?若存在,直接写出Р点坐标;若不存在,说明理由.23.在一个不透明的布袋里装有4个标号为1、2、3、4的小球,他们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x ,小敏从剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点P 的坐标(x ,y ). (1)请你运用画树状图或列表的方法,写出点P 所有可能的坐标. (2)求点(x ,y )在函数y =8x图象上的概率. 24.如图,在平面直角坐标系中,O 为坐标原点,点A ,B 在函数y =kx(x >0)的图象上(点B 的横坐标大于点A 的横坐标),点A 的坐标为(2,4),过点A 作AD ⊥x 轴于点D ,过点B 作BC ⊥x 轴于点C ,连接OA ,AB . (1)求k 的值.(2)若点D 为OC 中点,求四边形OABC 的面积.25.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象相交于A (1,a ),B (﹣3,c ),直线y =kx +b 交x 轴、y 轴于C 、D .(1)求m ac+的值;(2)求证:AD=BC;(3)直接写出不等式0mkx bx-->的解集.26.如图,在直角坐标系中,双曲线kyx=与直线y ax b=+相交于()2,3,6,)(A B n-两点,(1)求双曲线和直线的函数解析式;(2)点P在x负半轴上,APB△的面积为14,求点P的坐标;(3)根据图象,直接写出不等式组kax bxax b⎧+⎪⎨⎪+⎩﹤﹥的解集.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由题意可求正比例函数解析式和反比例函数解析式,由正比例函数和反比例函数的性质可分别进行判断求解,即可得出结论.【详解】解:∵正比例函数y1的图象与反比例函数y2的图象相交于点A(2,4),∴正比例函数12y x=,反比例函数28yx=,∴两个函数图象的另一个交点为(−2,−4),∴A,B选项错误;∵正比例函数12y x=中,y随x的增大而增大,反比例函数28yx=中,在每个象限内y随x的增大而减小,∴D选项错误;∵当x<−2或0<x<2时,y1<y2,∴选项C正确;故选:C.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练运用反比例函数与一次函数的性质解决问题是本题的关键.2.D解析:D【分析】作DM⊥x轴于M,BN⊥x轴于N,如图,先根据题意求得AN=2,然后证明△ADM≌△BAN得到DM=AN=2,AM=BN=3,则D(-4,2),根据待定系数法即可求得m 的值.【详解】解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(-1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入3yx=,得y=3,∴B (1,3), ∴BN=3,∵四边形ABCD 为正方形, ∴AD=AB ,∠DAB=90°, ∴∠MAD+∠BAN=90°, 而∠MAD+∠ADM=90°, ∴∠BAN=∠ADM , 在△ADM 和△BAN 中90AND ANB ADM BAN AD AB ∠∠︒⎧⎪∠∠⎨⎪⎩==== ∴△ADM ≌△BAN (AAS ), ∴DM=AN=2,AM=BN=3, ∴134OM OA AM =+=+= , ∴D 42-(,) , ∵点D 在反比例函数my x=,的图象上, ∴428m =-⨯=- , 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,正方形的性质,三角形全等的判定和性质等知识,求得D 的坐标是解题的关键.3.B解析:B 【分析】分a >0与a <0两种情况,根据一次函数和反比例函数的图象与性质解答即可. 【详解】解:当a >0时,y =|a |x +a =ax +a 的图象在第一、二、三象限,ay x=的图象在第一、三象限,此时选项B 正确;当a <0时,y =|a |x +a =﹣ax +a 的图象在第一、三、四象限,ay x=的图象在第二、四象限,此时没有正确选项; 故选:B . 【点睛】本题考查了一次函数与反比例函数的图象与性质,属于常考题型,熟练掌握上述知识是解题关键.4.C解析:C【分析】根据菱形的性质可求出点A 坐标,将点A 的坐标代入到反比例函数解析式可求得k 值,即可确定函数的解析式,过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,首先在Rt △CNB 中,根据勾股定理建立方程求出OB 的长,进而可求得点B 的坐标,然后利用待定系数法可求得直线BC 的解析式,再联立直线和双曲线的解析式求出交点F 坐标,然后根据三角形的面积公式求解可.【详解】解:∵四边形OBCD 是菱形,∴OA =AC ,∵C (8,4),∴A (4,2),把点A (4,2)代入反比例函数()0k y x x =>,得到k =8, ∴反比例函数的解析式为y =8x; 过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N ,如图,设OB =x ,则BC =x ,BN =8﹣x ,在Rt △CNB 中,x 2﹣(8﹣x )2=42,解得:x =5,∴点B 的坐标为(5,0),设直线BC 的函数表达式为y =ax +b ,把点B (5,0),C (8,4)代入得:∴5084a b a b +=⎧⎨+=⎩,解得:43203a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴直线BC 的解析式为42033y x =-, 解方程组420338y x y x⎧=-⎪⎪⎨⎪=⎪⎩,得:18x y =-⎧⎨=-⎩或643x y =⎧⎪⎨=⎪⎩, ∴点F 的坐标为F (6,43), 作FH ⊥x 轴于H ,连接OF ,∴S △OBF =12OB •FH =14105233⨯⨯=, 故选:C .【点睛】本题考查了菱形的性质、利用待定系数法求函数的解析式、两个函数的交点问题以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.5.B解析:B【分析】先根据反比例函数与正比例函数的性质求出B 点横坐标,再由函数图象可得k ax x <,求出x 的取值范围即可.【详解】∵正比例函数y ax =的图象与反比例函数k y x =的图象相交于A ,B 两点, ∴A ,B 两点坐标关于原点对称,∵点A 的横坐标为2,∴B 点的横坐标为-2, ∵k ax x<, ∴在第一和第三象限,正比例函数y ax =的图象在反比例函数k y x=的图象的下方, ∴2x <-或02x <<,故选:B .【点睛】 本题考查了反比例函数与一次函数的交点问题,关键是掌握正比例函数与反比例函数图象交点关于原点对称.6.C解析:C【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C . 【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.7.B解析:B【详解】解:因为点(5,-1)是双曲线(0)k y k x =≠上的一点, 将(5,-1)代入(0)k y k x=≠得k=-5; 四个选项中只有B 不符合要求:k=5×1≠-5.故选B .【点睛】本题考查反比例函数图象上点的坐标特征.8.A解析:A【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 9.C解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.【点睛】此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键. 10.C解析:C【分析】设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭,根据三角形的面积公式求出k 即可.【详解】解:设点C 的坐标为,k m m ⎛⎫ ⎪⎝⎭,则点E 1,22k m m ⎛⎫ ⎪⎝⎭,A 12,2k m m ⎛⎫ ⎪⎝⎭, ∵S △AEC =111233222282k k BD AE m m k m m ⎛⎫⎛⎫⋅=-⋅-=-= ⎪ ⎪⎝⎭⎝⎭, 解得:k=-4,故选C.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是设出点C 的坐标,利用点C 的横坐标表示出A 、E 点的坐标.11.A解析:A【分析】设点A (a ,-2a+1),B (b ,-2b+1)(a <b ),则A '(1a ,112a -),B '(1b ,112b -),由AB =b=a+1,再根据反比例函数图象上点的坐标特征即可得出关于k 、a 、b 的方程组,解之即可得出k 值.【详解】设点A (a ,﹣2a +1),B (b ,﹣2b +1)(a <b ),则A '(1a ,112a -),B '(1b ,112b-).∵AB===(b ﹣a )=∴b ﹣a =1,即b =a +1.∵点A ',B '均在反比例函数y k x =的图象上, ∴k 1a =•1112a b =-•112b-, 解得:k 83=-. 故选:A .【点睛】此题考查反比例函数图象上点的坐标特征、一次函数图象上点的坐标特征以及两点间的距离公式,根据反比例函数图象上点的坐标特征列出关于k 、a 、b 的方程组是解题的关键. 12.D解析:D【分析】根据反比例函数的性质判断即可.【详解】解:A. 把(1,5)-代入反比例函数得,55-=-,本选项正确;B. 50-<,图象分别位于第二、四象限,函数在x<0上为增函数、在x>0上同为增函数,本选项正确;C. 50-<,因此图像分布在第二、四象限,本选项正确;D. 函数在x<0上为增函数、在x>0上同为增函数,若点11()A x y ,,22()B x y ,都在图像上,当120x x <<或120x x <<时,12y y <,本选项错误.故选:D .【点睛】本题考查的知识点是反比例函数的性质,牢记反比例函数图象的性质是解此题的关键.二、填空题13.【分析】过点B 作BH ⊥OC 于H 构造出矩形利用矩形的性质进而求解出CDEF 的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B 作BH ⊥OC 于H ∵A (04)B (24)∴OA =4AB =2AB ∥OC ∴ 解析:2360【分析】过点B 作BH ⊥OC 于H ,构造出矩形,利用矩形的性质,进而求解出C 、D 、E 、F 的坐标,最终分别计算出S 1,S 2,即可求出结果.【详解】如图,过点B 作BH ⊥OC 于H .∵A (0,4)、B (2,4),∴OA =4,AB =2,AB ∥OC ,∴∠ABO =∠BOC ,∵OB 平分∠ABC ,∴∠ABO =∠OBC ,∴∠BOC =∠OBC ,∴CB =OC ,设BC =OC =m ,∵BH ⊥OC ,AB ∥OC ,∴∠AOH =∠OHB =∠ABH =90°,∴四边形ABHO 是矩形,∴BH =OA =4,AB =OH =2,在Rt △BCH 中,则有m 2=42+(m ﹣2)2,∴m =5,∴C (5,0),∴直线B C 的解析式为42033=-+y x , ∵反比例函数k y x=经过点B (2,4), ∴k =8, 由842033y x y x ⎧=⎪⎪⎨⎪=-+⎪⎩,解得24x y =⎧⎨=⎩或383x y =⎧⎪⎨=⎪⎩, ∴D (3,83), ∴直线OD 的解析式为89y x =, ∵OE =EC ,∴E (52,0), ∴直线BE 的解析式为y =﹣8x +20, 由82089y x y x =-+⎧⎪⎨=⎪⎩,解得942x y ⎧=⎪⎨⎪=⎩, ∴F (94,2), ∴S 1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S 2=12×52×2=52, ∴122323245602S S ==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.14.3【分析】设表示点B 坐标再根据四边形OEBF 的面积为3列出方程从而求出k 的值【详解】设则均在反比例函数图象上解得故答案为:3【点睛】本题的难点是根据点E 的坐标得到其他点的坐标准确掌握反比例函数k 值的 解析:3【分析】设(),E a b ,表示点B 坐标,再根据四边形OEBF 的面积为3,列出方程,从而求出k 的值.【详解】设(),E a b ,则k ab =,()2,B a b ,F E 、均在反比例函数图象上,2COE AOF k S S ∴==△△, COE AOF OABC OEBF S S S S =--△△矩形四边形,2OABC S OA AB ab ==矩形3222k k k ∴=--,解得3k =, 故答案为:3.【点睛】本题的难点是根据点E 的坐标得到其他点的坐标,准确掌握反比例函数k 值的几何意义是解决本题的关键.15.8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO=S △ACO =S △OBD =3得出S 四边形AODB 的值是解题关键【详解】解:如图所示:过点A 作AE ⊥x 轴于点E 过点B 作BD ⊥x 轴于点D ∵反比解析:8【分析】根据题意结合反比例函数图象上点的坐标性质S △AEO =S △ACO =S △OBD =3,得出S 四边形AODB 的值是解题关键.【详解】解:如图所示:过点A 作AE ⊥x 轴于点E ,过点B 作BD ⊥x 轴于点D ,∵反比例函数6y x=在第一象限的图象上有两点A ,B ,它们的横坐标分别是1,3, ∴x =1时,y =6;x =3时,y =2,故S △AEO =S △OBD =S △ACO=3, S 四边形AEDB =12×(2+6)×2=8, 故△AOB 的面积是:S 四边形AEDB + S 四边形AECO -S △ACO -S △OBD =8.故答案为:8.【点睛】此题主要考查了反比例函数图象上点的坐标性质,得出四边形AODB 的面积是解题关键. 16.【分析】设点B 的坐标为先根据三角形的面积公式可得从而可得点A 的坐标为再根据线段中点的定义可得点C 的坐标为然后将点C 的坐标代入双曲线的解析式即可得【详解】设点B 的坐标为则解得点C 是OA 的中点即又点在双 解析:32【分析】设点B 的坐标为(,0)(0)a a >,先根据三角形的面积公式可得6AB a=,从而可得点A 的坐标为6(,)A a a ,再根据线段中点的定义可得点C 的坐标为3(,)2a C a,然后将点C 的坐标代入双曲线的解析式即可得.【详解】设点B 的坐标为(,0)(0)a a >,则OB a =, 132ABC S OB AB =⋅=, 32a AB ∴⋅=,解得6AB a=,6(,)A a a ∴, 点C 是OA 的中点,600(,)22a a C ++∴,即3(,)2a C a, 又点3(,)2a C a在双曲线上, 3322a k a ∴=⋅=, 故答案为:32. 【点睛】 本题考查了反比例函数的几何应用,熟练掌握反比例函数的图象与性质是解题关键. 17.【分析】过点C 作轴于点E 由AAS 可证进而得可求点C 坐标即可求解【详解】解:如图过点C 作轴于E ∵四边形是正方形∴∴∵∴∴又∵∴∴∴∴点∵反比例函数的图象过点C ∴∴反比例函数的解析式为故答案为:【点睛】 解析:12y x =【分析】过点C 作CE y ⊥轴于点E ,由“AAS”可证ABO BCE ≌,进而得6CE OB ==,8BE AO ==,可求点C 坐标,即可求解.【详解】解:如图,过点C 作CE y ⊥轴于E ,∵四边形ABCD 是正方形,∴10,90AB BC ABC ==∠=︒,∴22100646OB AB AO =-=-=,∵90ABC AOB ∠=∠=︒,∴90,90ABO CBE ABO BAO ∠+∠=︒∠+∠=︒,∴BAO CBE ∠=∠,又∵90AOB BEC ∠=∠=︒,∴()ABO BCE AAS ≌,∴6,8CE OB BE AO ====,∴2OE =,∴点()6,2C ,∵反比例函数(0)k y k x=≠的图象过点C , ∴6212k =⨯=, ∴反比例函数的解析式为12y x =, 故答案为:12y x =. 【点睛】本题主要是考查正方形的性质及反比例函数,关键是通过正方形的性质构造三角形全等,进而得到点C 的坐标,然后根据求解反比例函数解析式的知识进行求解即可. 18.-1【分析】根据已知条件得到点在第二象限求得点一定在第三象限由于反比例函数的图象经过其中两点于是得到反比例函数的图象经过于是得到结论【详解】解:点分别在三个不同的象限点在第二象限点一定在第三象限在第 解析:-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【详解】 解:点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限, ∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)k y k x=≠的图象经过其中两点, ∴反比例函数(0)k y k x=≠的图象经过(3,2)B ,(6,)C m -, 326m ∴⨯=-, 1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键. 19.-4【分析】先求出点A 的坐标然后表示出AOBO 的长度根据AO=3BO 求出点C 的横坐标代入直线解析式求出纵坐标用待定系数法求出反比例函数解析式【详解】解:∵直线与y 轴的交点A 的坐标为∴∵∴轴∴点C 的横解析:-4【分析】先求出点A 的坐标,然后表示出AO 、BO 的长度,根据AO=3BO ,求出点C 的横坐标,代入直线解析式求出纵坐标,用待定系数法求出反比例函数解析式.【详解】解:∵直线3y x =-+与y 轴的交点A 的坐标为()0,3,∴3AO =.∵3AO BO =,∴1BO =,CB x ⊥轴∴点C 的横坐标为1-.把1x =-代入3y x =-+,得()134y =--+=,∴点C 的坐标为()1,4-,把()1,4C -代入k y x=,得4k =-. 故答案是:-4.【点睛】本题考查的是反比例函数与一次函数的交点问题,根据题意确定点C 的横坐标并求出纵坐标是解题的关键. 20.4【分析】根据等腰三角形的性质和勾股定理求出AC 的值根据等面积法求出OA 的值OA 和AC 分别是点C 的横纵坐标又点C 在反比例函数图像上即可得出答案【详解】∵△ABC 为等腰直角三角形AB=2∴BC=2解得解析:4【分析】根据等腰三角形的性质和勾股定理求出AC 的值,根据等面积法求出OA 的值,OA 和AC 分别是点C 的横纵坐标,又点C 在反比例函数图像上,即可得出答案.【详解】∵△ABC 为等腰直角三角形,AB=2∴BC=2,AC ==1122BC AB OA AC ⨯⨯=⨯⨯ 112222OA ⨯⨯=⨯⨯解得:∴点C的坐标为 又点C 在反比例函数图像上∴4k ==故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C 的横坐标.三、解答题21.(1)B 的坐标为(2,4);(2)2<x <8【分析】(1)把点A (8,t )代入,求得t 的值,然后根据待定系数法即可求得反比例函数的关系式,解析式联立成方程组,解方程组求得点B 的坐标;(2)根据图象即可求得.【详解】解:(1)∵A (8,t )在一次函数y=-12x+5的图象上, ∴t=-12×8+5=1, ∴A (8,1),∵反比例函数y=k x (k≠0)的图象经过点A (8,1), ∴k=8×1=8,∴反比例函数的解析式为y=8x, 解1528y=xy x ⎧=-+⎪⎪⎨⎪⎪⎩ 81x y ⎧⎨⎩==或24x y ⎧⎨⎩== ∴B 的坐标为(2,4);(2)由图象可知,在第一象限内,当152k x x-+>时,x 的取值范围是2<x <8. 【点睛】本题考查了一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小.解题的关键是:确定交点的坐标.22.(1)1,1m n =-=;(2)3;(3)P 点坐标为(-1,0)或(3,0)或(0,3)【分析】(1)利用待定系数法求出m ,n 的值;(2)根据关于x 轴对称的点的坐标特征求出点D 的坐标,利用三角形面积公式计算即可;(3)分点P 在x 轴上和点P 在y 轴上两种情况,利用三角形面积公式计算即可.【详解】(1)∵点A (-1,2)在双曲线k y x =上, ∴-12k =, 解得,2k =-, ∴反比例函数解析式为:2y x =-, ∵(2,)B b ∴212b =-=-, 则点B 的坐标为(2,-1),把()1,2,(2,1)A B --代入y mx n =+得:122m n m n -=+⎧⎨=-+⎩, 解得11m n =-⎧⎨=⎩; (2)对于y=-x+1,当x=0时,y=1,∴点C 的坐标为(0,1),∵点D 与点C 关于x 轴对称,∴点D 的坐标为(0,-1),∴△ABD 的面积=12×2×3=3; (3)对于y=-x+1,当y=0时,x=1,∴直线y=-x+1与x 轴的交点坐标为(0,1),当点P 在x 轴上时,设点P 的坐标为(a ,0),S △PAB=12×|1-a|×2+12×|1-a|×1=3, 解得,a=-1或3,此时P 点坐标为(-1,0)或(3,0)当点P 在y 轴上时,设点P 的坐标为(0,b ),S △PAB=12×|1-b|×2+12×|1-b|×1=3, 解得,b=-1或3,∵D (0,-1)∴此时P点坐标为(0,3)∴P点坐标为(-1,0)或(3,0)或(0,3).【点睛】本题考查的是反比例函数与一次函数的交点问题,掌握待定系数法求函数解析式的一般步骤、函数图象上点的坐标特征是解题的关键.23.(1)列表如下;(2)16.【分析】(1)先列表格展示所有12种等可能的结果数,然后写出12个点的坐标;(2)根据反比例函数图象上点的坐标特征可判断有两个点在函数8yx=图象上,然后根据概率公式求解.【详解】解:(1)列表得:1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3);(2)(2)因为2×4=8,4×2=8,所以点(2,4)和(4,2)在函数8yx=图象上,即点(x,y)在函数8yx=图象上的点有两个,所以点(x,y)在函数8yx=图象上的概率=21126=.【点睛】本题考查了列表法与树状图法,反比例函数上点的坐标特征.利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A的结果数目m,然后根据概率公式求解.24.(1)8;(2)10【分析】(1)将点A的坐标为(2,4)代入y=kx(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【详解】解:(1)将点A 的坐标为(2,4)代入y =k x (x >0), 可得k =xy =2×4=8, ∴k 的值为8;(2)∵k 的值为8, ∴函数y =k x 的解析式为y =8x. ∵D 为OC 中点,OD =2,∴OC =4. ∴点B 的横坐标为4.将x =4代入y =8x . 可得y =2.∴点B 的坐标为(4,2).∴S 四边形OABC =S △AOD +S 四边形ABCD =1124(24)222⨯⨯+⨯+⨯=10.【点睛】本题主要考查了反比例函数图象上点的特征和四边形的面积,运用数形结合思想是解答此题的关键.25.(1)32m a c =+;(2)见解析;(3)0m kx b x -->的解集为x >3或﹣1<x <0. 【分析】 (1)点A 、B 都在反比例函数y=m x 的图象上,则a=-3c=m ,故m a c +=33c c c --+=32; (2)求出D (0,-2c ),C (-2,0),则AD 2=1+9c 2;BC 2=1+9c 2,即可证明;(3)观察函数图象即可求解.【详解】 解:(1)∵点A 、B 都在反比例函数y =m x 的图象上, ∴a =﹣3c =m ,∴3332m c a c c c -==+-+; (2)将A (1,﹣3c )、B (﹣3,c ),分别代入y =kx +b 得33k b c k b c+=-⎧⎨-+=⎩,解得2k c b c =-⎧⎨=-⎩, ∴y =﹣cx ﹣2c ,令x =0,y =﹣2c ,令y =0,即y =﹣cx ﹣2c =0,解得x =﹣2,∴D (0,﹣2c ),C (﹣2,0),∴AD 2=1+9c 2;BC 2=1+9c 2,∴AD =BC ;(3)∵y =kx ﹣b =﹣cx +2c ,∴点(3,﹣c )、(﹣1,3c )为直线y =kx ﹣b =﹣cx +2c 与双曲线m y x =的交点, ∴0m kx b x -->的解集为x >3或﹣1<x <0. 【点睛】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,使用一次函数,体现了方程思想,综合性较强.26.(1)6y x=-,122y =-+;(2)()3,0P -;(3)20x -<< 【分析】 (1)将()2,3A -代入k y x=求出k ,得到B 点坐标,再代入y ax b =+即可求解; (2)作,AD x ⊥轴于,D BE x ⊥轴于E .得到3,1AD BE ==,根据三角形的面积公式求出7PC =,再根据直线解析式求出C 点坐标,故可求出P 点坐标;(3)根据函数图像即可求解.【详解】解:(1)将()2,3A -代入k y x =,得6k =-. ∴双曲线解析式为6y x=-当6x =时,1y =-∴()6,1B -将()()2,3,6,1A B --代入y ax b =+,得 2361a b a b -+=⎧⎨+=-⎩,解得1,22a b =-= ∴直线解析式为122y =-+. (2)作,AD x ⊥轴于,D BE x ⊥轴于E .则3,1AD BE ==.∵1122APB SPC AD PC BE =⋅+⋅ ∴()1142PC AD BE += ∴7PC = 由1202y x =-+=,得4x =. ∴()4,0C ,∴4OC =,∴3OP = ∴()3,0P -(3)由图象,不等式组0k ax b x ax b ⎧+<⎪⎨⎪+>⎩,的解集为20x -<<. 【点睛】此题主要考查一次函数与反比例函数综合,解题的关键是熟知待定系数法的应用.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章《反比例函数》单元过关检测题
班级 姓名
一、填空题:(每题3分,共30分)。
1、已知反比例函数y=
x
k
的图像经过点(3 ,—2),则此函数的解析式为____________;当x>0时 y 随x 的增大而____________
2、写出一个具有性质“在每个象限内y 随x 的增大而减小”的反比例函数的表达式为_______
3、反比例函数4
22
)1(---=m m
x m y 当x <0时 y 随x 的增大而增大,则 m
的值是________,它图象位置在
4、反比例函数y=
8
x
的图像与一次函数y=kx+k 的图像在第一项限交与点B(4,n),则k=______ n=_____ . 5、反比例函数y= ||
k x
,若点A (x 1,y 1),B(x 2,y 2)在此图像的同一分支上,且x 1<x 2,,则y 1_____y 2,
6、若一个长方形的面积是82
cm ,则其长y(cm) 与宽x(cm)之间的关系是____________
7、点A (2,1)在反比例函数y=k
x
的图像上,当1<x<4时,y 的取值范围是________。
8、已知 反比例函数)0(≠=
k x
k
y 当x>0 时,y 随x 增大而增大 ,则k 0, 一次函数 y=kx —k 的图像经过_________象限。
9、如图,点A、B是双曲线3
y x
=
上的点,分别经过A、B两点,向x 轴y 轴作垂线,若S阴影=1,则
12s s += 。
10、反比例函数x
y 6
=
的图像上横坐标和纵坐标都是整数的点的个数是_____________
二、选择题:(每题3分,共30分)。
11.已知点M(—2,3)在双曲线y=
k
x
上,则下列各点一定在双曲线上的是 ( )
A (3 ,—2)
B (—2 ,—3)
C (2 ,3)
D (3 ,2)
12.一个圆柱的侧面展开图是一个面积为4个平方单位的长方形,那么这个圆柱的高h 和底面半径r 之间的函数关系是 ( )
A 正比例函数
B 反比例函数
C 一次函数
D 以上都不是 13.已知反比例函数y=
2
k x
-的图k 的取值范围是
( )
A. k>2
B. k ≥ 2
C. k ≤ 2
D. k<2 14.已知反比例函数y=
k
x
的图像经过点P (—1,2),则这个函数图像位于( )
A 第二、三象限
B 第一、三象限
C 第三、四象限
D 第二、四象限 15.三角形的面积为2
4cm ,底边上的高()y cm 与底边()x cm 之间的函数关系图象大致应为( )
16.当k ≠0时,函数y=kx+k 与y=k
x
在同一坐标系中的图像大致是( )
17.已知三点A(x,y)、B (a,b)、C (1,-2)都在反比例函数图像y=
k
x
上,若x<0,a>0,则下列式子正确的是 ( )
A. y<b<0
B. y<0<b
C. y>b>0
D. y>0>b 18.已知点(a,—1)、 (b, — 254
)、 (c,-25)在函数y= —1
x 的图像上,则下
列关系式正确的是 ( )
A .c>b>a B.a>b>c C.a>c>b D.b>c>a 19.已知反比例函数y=
k
x
的图像在第二、四象限,则一次函数y=kx-5的图像不经过( )
A.第一象限 B 。
第二象限 C 。
第三象限 D 。
第四象限 20.函数y=
32m
x
- ,当x<0时,y 随x 的增大而减小,则满足上述条件的正整数m 有( )
A 、 0个
B 、1个
C 、2个
D 、3个
三、解答:
21.(8分)已知变量y 与()1x +成反比例,且当2x =时,1y =-,求y 和x 之间的
函数关系.
22、画出反比例函数6
y x
=
的图象,并根据图象回答下列问题:
(1)根据图象指出y=2时的值。
(2)根据图象指出当-2<x<-1时,y 的取值范围。
(3)根据图象指出当2<y<3时,x 的取值范围。
23.如图,已知一次函数y=x+1与反比例函数
k
y x
=
的图象都经过点(1,m)。
(1)求反比例函数的关系式;
(2)根据图象直接写出使这两个函数值都小于0时,x 的取值范围。
24.(12分)已知一次函数与反比例函数的图像交于点P (-2,1)和Q(1,m). (1).求反比例函数的解析式; (2)求Q 点的坐标;
(3)在同一直角坐标系中画出这两个函数图像的示意图,并观察图像回答:当x 为何值时,一次函数的值大于反比例函数的值?
25.(12分)(如图,正方形OABC 的面积为9,点O 为坐标原点,点B 在函数
(0,0)k
y k x x
=>>的图象上,点(,)P m n 是
函数(0,0)k
y k x x
=>>的图象上任意一点,
边点P 分别作x 轴、y 轴的垂线,垂足分别
为E 、
F ,并设矩形OEPF 和正方形OABC 不重合部分的面积为S.(提示:考虑点P 在
点B 的左侧或右侧两种情况:矩形OE 1P 1F 1和OE 2P 2F 2) ⑴求B 点的坐标和k 的值; ⑵当9
2
S =
时,求P 点的坐标; ⑶写出S 关于m 的函数关系式.。