九年级反比例函数练习题含答案
九年级数学:反比例函数练习题(含解析)
九年级数学:反比例函数练习题(含解析)一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为( )A.y =2x +1B.y =22xC.y =-15xD.y =x 2-2x 2﹒函数y =k 23kx 是反比例函数,则k 的值是( )A.-1B.2C.±2D.±2 3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4﹒一次函数y =-x +a -3(a 为常数)与反比例函数y =-4x的图象交于A 、B 两点,当A 、B 两点关于原点对称时,a 的值是( )A.0B.-3C.3D.45﹒反比例函数y =-2x的图象上有两点P 1(x 1,y 1),P 2(x 2,y 2),若x 1<0<x 2,则下列结论正确的是( )A.y 1<y 2<0B.y 1<0<y 2C.y 1>y 2>0D. y 1>0>y 26﹒如图,直线y =-x +3与y 轴交于点A ,与反比例函数y =k x(k ≠0)的图象交于点C ,过点C 作CB ⊥x 轴于点B ,AO =3BO ,则反比例函数的解析式为( )A.y =4xB.y =-4xC.y =2xD.y =-2x7﹒已知反比例函数y =kx的图象经过点P (-1,2),则这个函数的图象位于( )A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限8﹒如果等腰三角形的底边长为x ,底边上的高为y ,它的面积为10时,则y 与x 的函数关系式为( ) A.y =10x B.y =5xC.y =20xD.y =20x9﹒已知变量y 与x 成反比例函数关系,当x =3时,y =-6,那么当y =3时,x 的值是( )A.6B.-6C.9D.-910. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )m 1 2 3 4 5 6 7v -6.10 -2.90 -2.01 -1.51 -1.19 -1.05 -0.86A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m二、细心填一填11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3.13.若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____. 14.如图,直线y =-x +b 与双曲线y =-1x(x <0)交于点A ,与x 轴交于点B ,则OA 2-OB 2=__________.(第14题图)15.一批零件300个,一个工人每小时做15个,用关系表示人数x 与完成任务所需时间y 之间的函数关系为_______________________.16.把一个长、宽、高分别为3cm ,2cm ,1cm 的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S (cm 2)与高h (cm )之间的函数关系式为________________________. 三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M(件)与所需天数t(天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件?19.已知y=y1+y2,y1与x2成正比例关系,y2与x成反比例关系,且当x=1时,y=3;当x=-1时,y=1.(1)求y与x之间的函数表达式;(2)当x=-12时,求y的值.20.反比例函数y=k(k≠0,x>0)的图象与直线y=3x相交于点C,过直线上点A(1,3)x作AB⊥x轴于点B,交反比例函数图于点D,且AB=3BD.(1)求k的值;(2)求点C的坐标;(3)在y轴上确定一点M,使点M到C、D两点距离之和d=MC+MD最小,求点M的坐标.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x(小时)之间的函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系;(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x(元)与销售量y(张)之间有如下关系:x/元 3 4 5 6y/张20 15 12 10(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.21.5 反比例函数课时练习题(1)参考答案一、精心选一选1﹒下列函数中,y 是x 的反比例函数的为()A.y =2x +1B.y =22x C.y =-15xD.y =x 2-2x 解答:A.y =2x+1,y 是x 的一次函数,故A 不合题意;B.y =22x ,y 是x 2的反比例函数,故B 不合题意; C.y =-15x,y 是x 的反比例函数,故C 符合题意;D.y =x 2-2x ,y 是x 的二次函数,故D 不合题意, 故选:C. 2﹒函数y =k 23kx -是反比例函数,则k 的值是( )A.-1B.2C.±2D. 解答:∵y =k 23kx -是反比例函数,∴k 2-3=-1,且k ≠0, 解得:k , 故选:D.3﹒若y 与x 成反比例,x 与z 成反比例,则y 是z 的( )A.正比例函数B.反比例函数C.一次函数D.二次函数 解答:∵y 与x 成反比例,x 与z 成反比例, ∴设y =1k x①,x =k 2z ②, 把②代入①得:y =12k k z, 故y 与z 成反比例函数关系, 故选:B.4﹒一次函数y=-x+a-3(a 为常数)与反比例函数y=-4x的图象交于A、B两点,当A、B 两点关于原点对称时,a的值是()A.0B.-3C.3D.4【解答】设A(t,-4t),∵A、B两点关于原点对称,∴B(-t,4t),把A(t,-4t ),B(-t,4t),分别代入y=-x+a-3得:4343t att at⎧-=-+-⎪⎪⎨⎪=+-⎪⎩①②,①+②得:2a-6=0,则a=3,故选:C.5﹒反比例函数y=-2x的图象上有两点P1(x1,y1),P2(x2,y2),若x1<0<x2,则下列结论正确的是()A.y1<y2<0B.y1<0<y2C.y1>y2>0D. y1>0>y2【解答】∵反比例函数y=﹣2x中k=﹣2<0,∴此函数图象在二、四象限,∵x1<0<x2,∴A(x1,y1)在第二象限;点B(x2,y2)在第四象限,∴y1>0>y2,故选:D.6﹒如图,直线y=-x+3与y轴交于点A,与反比例函数y=kx(k≠0)的图象交于点C,过点C作CB⊥x轴于点B,AO=3BO,则反比例函数的解析式为()A.y=4x B.y=-4xC.y=2x D.y=-2x【解答】∵直线y=﹣x+3与y轴交于点A,∴A(0,3),即OA=3,∵AO=3BO,∴OB=1,∴点C的横坐标为﹣1,∵点C在直线y=﹣x+3上,∴点C(﹣1,4),把C(﹣1,4)代入y=kx得:k=-4,∴反比例函数的解析式为:y=-4x.故选:B.7﹒已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于()A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限【解答】∵反比例函数y=kx的图象经过点P(-1,2),∴k=-1×2=-2<0,∴反比例函数的图象分布在二、四象限,故选:D.8﹒如果等腰三角形的底边长为x,底边上的高为y,它的面积为10时,则y与x的函数关系式为()A.y=10xB.y=5xC.y=20xD.y=20x解答:根据题意,得:12xy=10,∴y=20x,故选:C.9﹒已知变量y与x成反比例函数关系,当x=3时,y=-6,那么当y=3时,x的值是()A.-6B. 6C.-9D.9解答:设y=kx,把x=3,y=-6代入得:k=-18,∴y=18x,∴当x=3时,y=-6,故选:A.10. 某次实验中,测得两个变量v 与m 的对应数据如下表,则v 与m 之间的关系最接近下列函数中的是( )A.v =m 2-2B.v =-6mC.v =-3m -1D.v =-m解答:将m 的值代入各选项的函数关系式中,看v 的值是否与表中数据相近,若相近,则为正确的解析式,如把m =1代入各式:A.v =-1;B.v =-6;C.v =-4;D.v =-6.再把m =2代入各式:A.v =2;B.v =-12;C.v =-7;D.v =-3.由此可发现D 选项的值与表中数据相近,故D 选项符合题意, 故选:D. 二、细心填一填11. 3; 12. m ≠1,4; 13. y =6x; 14. 2; 15. y =20x ; 16. S =6h. 11.若函数y =(m +3)28m x -是反比例函数,则m =_______________. 解答:∵函数y =(m +3)28m x-是反比例函数,∴8-m 2=-1,且m +3≠0, ∴m =3, 故答案为:3. 12.若函数y =1m x-是反比例函数,则m 的取值范围是_______;当m =______时,y 是x 的反比例函数,且比例系数为3. 解答:∵函数y =1m x-是反比例函数, ∴m -1≠0,则m ≠1, 由m -1=3得:m =4, 故答案为:m ≠1,4.13.若函数y =-kx +2k +2与y =kx(k ≠0)的图象有两个不同的交点,则k 的取值范围是_____.【解答】把方程组22y kx kkyx=-++⎧⎪⎨=⎪⎩消去y得:-kx+2k+2=kx,整理得:kx2-(2k+2)x+k=0,由题意得:△=(2k+2)2-4k2>0,解得:k>-12,∴当k>-12时,函数y=-kx+2k+2与y=kx(k≠0)的图象有两个不同的交点,故答案为:k>-12且k≠0.14.如图,直线y=-x+b与双曲线y=-1x(x<0)交于点A,与x轴交于点B,则OA2-OB2=__________.【解答】∵直线y=﹣x+b与双曲线y=﹣1x(x<0)交于点A,设A的坐标(x,y),∴x+y=b,xy=﹣1,而直线y=﹣x+b与x轴交于B点,∴OB=b,∴又OA2=x2+y2,OB2=b2,∴OA2﹣OB2=x2+y2﹣b2=(x+y)2﹣2xy﹣b2=b2+2﹣b2=2.故答案为:2.15.一批零件300个,一个工人每小时做15个,用关系表示人数x与完成任务所需时间y之间的函数关系为_______________________.解答:由题意得:人数x与完成任务所需时间y之间的函数关系为y=30015x=20x,故答案为:y=20x.16.把一个长、宽、高分别为3cm,2cm,1cm的长方形铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积S(cm2)与高h(cm)之间的函数关系式为________________________.解答:由题意得:Sh=3×2×1,则S=6h,故答案为:S=6h.三、解答题17.某服装厂承揽一项生产夏凉小衫1600件的任务,计划用t 天完成.(1)写出每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式; (2)由于气温提前升高,商家与服装厂商议调整计划,决定提前4天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?解答:(1)每天生产夏凉小衫w (件)与生产时间t (天)(t >4)之间的函数关系式为:w =1600t(t >4), (2)由题意,得:16004t --1600t=16001600(4)(4)t t t t ---=264004t t -,答:每天要多做264004t t-(t >4)件夏凉小衫才能完成任务. 18.某开发公司计划生产一批产品,需要加工后才能投放市场,已知甲厂每天可加工60件,8天便可完成任务.(1)这批产品的数量是________件;(2)若这批产品由乙厂加工,请写出乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式;(3)如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工多少件? 解答:(1)60×8=480(件), 故答案为:480;(2)乙厂每天加工件数M (件)与所需天数t (天)之间的函数表达式为y =480t(t >0), (3)把t =5代入上式得M =96,故如果要求乙厂在5天内将所有产品加工完,那么乙厂每天至少加工96件.19.已知y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系,且当x =1时,y =3;当x =-1时,y =1.(1)求y 与x 之间的函数表达式; (2)当x =-12时,求y 的值. 解答:∵y =y 1+y 2,y 1与x 2成正比例关系,y 2与x 成反比例关系, ∴可设y 1=k 1x 2,y 2=2k x,把x =1时,y =3和x =-1时,y =1代入得:121231k k k k +=⎧⎨-=⎩,解得:1221k k =⎧⎨=⎩,∴y 与x 之间的函数表达式为y =2x 2+1x, (2)当x =-12时, y =2×(-12)2+(-2)=-32.20.反比例函数y =k x(k ≠0,x >0)的图象与直线y =3x 相交于点C ,过直线上点A (1,3)作AB ⊥x 轴于点B ,交反比例函数图于点D ,且AB =3BD . (1)求k 的值; (2)求点C 的坐标;(3)在y 轴上确定一点M ,使点M 到C 、D 两点距离之和d =MC +MD 最小,求点M 的坐标. 【解答】(1)∵A (1,3), ∴AB =3,OB =1, ∵AB =3BD , ∴BD =1, ∴D (1,1),将D (1,1)代入反比例函数解析式得:k =1; (2)由(1)知,k =1, ∴反比例函数的解析式为:y =1x,由31y x y x =⎧⎪⎨=⎪⎩得:33x y ⎧=⎪⎨⎪=⎩或33x y ⎧=-⎪⎨⎪=-⎩, ∵x >0,∴C (3,3), (3)如图,作C 关于y 轴的对称点C ′,连接C ′D 交y 轴于M ,则d =MC +MD 最小, ∴C ′(-3,3), 设直线C ′D 的解析式为y =kx +b ,∴331k b k b ⎧=-+⎪⎨⎪=+⎩,解得:323232k b ⎧=-⎪⎨=-⎪⎩, ∴y =(3-23)x +23-2, 当x =0时,y =23-2, ∴M (0,23-2).21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药时间x (小时)之间的函数关系如图所示(当4≤x ≤10时,y 与x 成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y 与x 之间的函数关系; (2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【解答】(1)当0≤x <4时,设直线解析式为:y =kx , 将(4,8)代入得:8=4k , 解得:k =2,故直线解析式为:y =2x ,当4≤x ≤10时,设直反比例函数解析式为:y =k x, 将(4,8)代入得:8=4k , 解得:k =32,故反比例函数解析式为:y =32x ; 因此血液中药物浓度上升阶段的函数关系式为y =2x (0≤x <4),下降阶段的函数关系式为y =32x(4≤x ≤10). (2)当y =4,则4=2x ,解得:x =2, 当y =4,则4=32x,解得:x =8, ∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.某商场出售一批进价为2元的贺卡,在营运过程中发现此商品的日销价为x (元)与销售量y(张)之间有如下关系:(1)猜测并确定y与x的函数关系式;(2)当日销售单价为10元时,贺卡的日销售量是多少张?(3)设此卡的利润为W元,试求出W与x之间的函数关系式,若物价部门规定此卡的销售单价不能超过10元,试求出当日销售单价为多少元时,每天获得的利润最大,并求出最大利润.解答:(1)由表中数据可以发现x与y的乘积是一个定值,所以可知y与x成反比例,设y=kx,把(3,20)代入得:k=60,∴y与x的函数关系式为y=60x;(2)当x=10时,y=6,所以日销售单价为10元时,贺卡的日销售量是6张;(3)∵W=(x-2)y=60-120x,又∵x≤10,∴当x=10时,W最大=60-12010=48,故日销售单价为10元时,每天获得的利润最大,最大利润为48元.23.在平面直角坐标系中,我们不妨把纵坐标是横坐标的2倍的点称之为“理想点”,例如点(-2,-4),(1,2),(3,6)…都是“理想点”,显然这样的“理想点”有无数多个.(1)若点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,求这个反比例函数的表达式;(2)函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”吗?若存在,请求出“理想点”的坐标;若不存在,请说明理由.解答:∵点M(2,a)是反比例函数y=kx(k为常数,k≠0)图象上的“理想点”,∴a=4,∵点M(2,4)在反比例函数y=kx(k为常数,k≠0)图象上∴k=2×4=8,∴反比例函数的解析式为y=8x;(2)假设函数y=3mx-1(m为常数,m≠0)的图象上存在“理想点”(x,2x), 则有3mx-1=2x,整理得:(3m-2)x=1,当3m-2≠0,即m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当3m-2=0,即m=23时,x无解,综合上述,当m≠23时,函数图象上存在“理想点”,为(132m-,232m-),当m=23时,函数图象上不存在“理想点”.。
北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)
北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。
初三数学反比例函数试题答案及解析
初三数学反比例函数试题答案及解析1.若点P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,则m n(填“>”“<”或“=”号).【答案】<.【解析】∵P1(﹣1,m),P2(﹣2,n)在反比例函数(k>0)的图象上,∴﹣1•m=k,﹣2•n=k.∴m=﹣k,n=.∵k>0,∴m<n.【考点】1.曲线上点的坐标与方程的关系;2.实数的大小比较.2.如图,反比例函数(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为【答案】20.【解析】如答图,过D点作x轴的垂线交x轴于H点,∵△ODH的面积=△OBC的面积=,△OAC的面积为5,∴△OBA的面积=.∵AD:OD=1:2,∴OD:OA=2:3.∵DH∥AB,∴△ODH∽△OAB. ∴,即.解得:k=20.【考点】1.反比例函数系数k的几何意义;2.相似三角形的判定和性质.3.已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个【答案】B【解析】①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故正确;②在每个分支上y随x的增大而增大,正确;③若点A(﹣1,a)、点B(2,b)在图象上,由图象可知a>b,所以a<b错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确,故选B.【考点】1、反比例函数的性质;2、反比例函数图象上点的坐标特征4.如图,A、B、C是反比例函数(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条 B.3条 C.2条 D.1条【答案】A【解析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.故满足条件的直线有4条.【考点】反比例函数综合题.5.已知点在双曲线上,若,则(用“>”或“<”或“=”号表示).【答案】>.【解析】∵在双曲线上,∴x1•y1=3,x2•y2=3.∵x1<x2<0,∴y1>y2.【考点】反比例函数图象上点的坐标特征.6.已知正比例函数y=-2x与反比例函数y=的图象的一个交点坐标为(-1,2),则另一个交点的坐标为( )【答案】(1,-2)【解析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.解:根据中心对称的性质可知另一个交点的坐标是:(1,-2).故答案为:(1,-2).7.某村的粮食总产量为a(a为常数)吨,设该村的人均粮食产量为y吨,人口数为x,则y与x之间的函数关系式的大致图象应为()【答案】C【解析】因xy=a,y=,y与x成反比例,所以选C.8.如图,是一辆小汽车沿一条高速公路匀速前进的时间t(小时)与速度x(千米/时)关系的图象,根据图象提供的信息回答下列问题:(1)这条高速公路的全长是多少千米?(2)写出速度与时间之间的函数关系.(3)汽车最大速度可以达到多少?(4)汽车最慢用几个小时可以到达?如果要在3小时以内到达,汽车的速度应不少于多少?【答案】(1)300千米. (2)y=. (3) 300千米/时. (4) 6小时,100千米/时.【解析】(1)以150千米/时行驶了两小时,则路程=150×2=300千米.(2)由速度=,路程为300千米,则有y=.(3)据图象用1小时可以行驶完全程,所以汽车最大速度可以达到300千米/时.(4)据图象,最低速度为50千米/时,需要6小时行驶完全程.9.如图,Rt△ABC中,O为坐标原点,∠AOB=90°,∠B=30°,如果点A在反比例函数(x >0)的图象上运动,那么点B在函数(填函数解析式)的图象上运动.【答案】.【解析】如图分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b),则ab=1.根据两角对应相等的两三角形相似,得出△OAC∽△BOD,由相似三角形的对应边成比例,则BD、OD 都可用含a、b的代数式表示,从而求出BD•OD的积,进而得出结果.试题解析:分别过A、B作AC⊥y轴于C,BD⊥y轴于D.设A(a,b).∵点A在反比例函数(x>0)的图象上,∴ab=1.在△OAC与△BOD中,∠AOC=90°-∠BOD=∠OBD,∠OCA=∠BDO=90°,∴△OAC∽△BOD,∴OC:BD=AC:OD=OA:OB,在Rt△AOB中,∠AOB=90°,∠B=30°,∴OA:OB=1:,∴b:BD=a:OD=1:,∴BD=b,OD=a,∴BD•OD=3ab=3,又∵点B在第四象限,∴点B在函数的图象上运动.考点: 1.反比例函数综合题;2.待定系数法求反比例函数解析式;3.相似三角形的判定与性质.10.如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),双曲线()经过C点,且OB·AC=160,则的值为___________.【答案】48.【解析】过C作CD垂直于x轴,交x轴于点D,由菱形的面积等于对角线乘积的一半,根据已知OB与AC的乘积求出菱形OABC的面积,而菱形的面积可以由OA乘以CD来求,根据OA 的长求出CD的长,在直角三角形OCD中,利用勾股定理求出OD的长,确定出C的坐标,代入反比例解析式中即可求出k的值.∵四边形OABC是菱形,OB与AC为两条对角线,且OB•AC=160,∴菱形OABC的面积为80,即OA•CD=80,∵OA=AC=10,∴CD=8,在Rt△OCD中,OC=10,CD=8,根据勾股定理得:OD=6,即C(6,8),则k的值为48.【考点】反比例函数综合题.11.如果点A(-1,)、B(1,)、C(2,)是反比例函数图象上的三个点,则下列结论正确的是()A.>>B.>>C.>>D.>>【答案】A.【解析】根据反比例函数的比例系数的符号可得反比例函数所在象限为二、四,其中在第四象限的点的纵坐标总小于在第二象限的纵坐标,进而判断在同一象限内的点B和点C的纵坐标的大小即可.∵反比例函数的比例系数为﹣1,∴图象的两个分支在二、四象限;∵第四象限的点的纵坐标总小于在第二象限的纵坐标,点A在第二象限,点B、C在第四象限,∴y最大,1∵1<2,y随x的增大而增大,∴y2<y3,∴y1>y3>y2.故选A.【考点】反比例函数图象上点的坐标特征.12.如图,已知一次函数(m为常数)的图象与反比例函数(k为常数,)的图象相交于点 A(1,3).(1)求这两个函数的解析式及其图象的另一交点的坐标;(2)观察图象,写出使函数值的自变量的取值范围.【答案】(1)一次函数解析式为:y1=x+2,B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.【解析】(1)利用待定系数法把 A(1,3)代入一次函数y1=x+m与反比例函数中,可解出m、k的值,进而可得解析式,求B点坐标,就是把两函数解析式联立,求出x、y的值;(2)根据函数图象可以直接写出答案.试题解析:(1)∵一次函数y1=x+m(m为常数)的图象与反比例函数(k为常数,k≠0)的图象相交于点 A(1,3),∴3=1+m,k=1×3,∴m=2,k=3,∴一次函数解析式为:y1=x+2,反比例函数解析式为:y2=,由,解得:x1=﹣3,x2=1,当x1=﹣3时,y1=﹣1,x 2=1时,y1=3,∴两个函数的交点坐标是:A(1,3)和B(﹣3,﹣1)∴B(﹣3,﹣1);(2)根据图象得:函数值y1≥y2的自变量x的取值范围是:x≥1或﹣3≤x<0.考点:反比例函数解析式,一次函数解析式,反比例函数的性质.13.如图,已知点A(-4,2)、B( n,-4)是一次函数的图象与反比例函数图象的两个交点.(1)求此反比例函数的解析式和点B的坐标;(2)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.【答案】(1)反比例函数的解析式为,点B(2,-4);(2) -4<x<0或x>2【解析】(1)将点A(-4,2)的横、纵坐标分别代入反比例函数解析式,可求得m=-8,然后将点B(n,-4)的横、纵坐标分别代入反比例函数解析式,可求出n的值,即点B的坐标,将A、B两点的坐标分别代入一次函数解析式,可求出直线的解析式;(2)一次函数的值小于反比例函数的值从图象上看,就是直线在双曲线的下方.试题解析:(1)反比例函数的解析式为,点B(2,-4)(2)一次函数的值小于反比例函数值的x的取值范围是:-4<x<0或x>2【考点】反比例函数的图象和性质.14.已知图中的曲线是函数 (m为常数)图象的一支.(1)求常数m的取值范围;(2)若该函数的图象与正比例函数图象在第一象限的交点为A(2,n),求点A的坐标及反比例函数的解析式.【答案】(1)m>5;(2)点A的坐标为(2,4);反比例函数的解析式为.【解析】(1)曲线函数(m为常数)图象的一支在第一象限,则比例系数m-5一定大于0,即可求得m的范围;(2)把A的坐标代入正比例函数解析式,即可求得A的坐标,再代入反比例函数解析式即可求得反比例函数解析式.试题解析:(1)∵函数 (m为常数)图象的一支在第一象限,∴m-5>0,解得m>5. (2)∵函数的图象与正比例函数的图象在第一象限的交点为A(2,n),∴,解得.∴点A的坐标为(2,4);反比例函数的解析式为.【考点】1.反比例函数和正比例函数的图象交点问题;2.曲线上点的坐标与方程的关系;3.反比例函数的性质.15.如果反比例函数y=的图象经过点(-1,-2),则k的值是( ).A. 2B.-2C.-3D.3【答案】D.【解析】直接把点(-1,-2)代入反比例函数y=,求出k的值即可.∵反比例函数y=的图象经过点(-1,-2),∴,解得k=3.故选D.考点: 反比例函数.16.如图,△AOB为等边三角形,点A在第四象限,点B的坐标为(4,0),过点C(4,0)作直线l交AO于D,交AB于E,且点E在某反比例函数图象上,当△ADE和△DCO的面积相等时,k 的值为( )A .B .C .D .【答案】C .【解析】如图,连接AC ,∵点B 的坐标为(4,0),△AOB 为等边三角形,∴AO="OB=4." ∴点A 的坐标为.∵C (4,0),∴AO=OC=4,∴∠OCA=∠OAC. ∵∠AOB=60°,∴∠ACO=30°. 又∵∠B="60°." ∴∠BAC=90°.∵S △ADE =S △DCO ,S △AEC =S △ADE +S △ADC ,S △AOC =S △DCO +S △ADC , ∴S △AEC =S △AOC =,即.∴E 点为AB 的中点. 把E 点代入中得:k=. 故选C .【考点】1. 等边三角形的性质;2. 等腰三角形的判定和性质;3.三角形内角和定理;4.曲线上点的坐标与方程的关系.17. 如图,菱形OABC 的顶点C 的坐标为(3,4),顶点A 在x 轴的正半轴上.反比例函数(x>0)的图象经过顶点B ,则k 的值为A .12B .20C .24D .32【答案】D 。
人教版九年级数学中考反比例函数专项练习及参考答案
人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)
人教版九年级数学下册第二十六章《反比例函数》单元练习题(含答案)一、单选题1.如图,A、B两点在双曲线y=上,分别经过A、B两点向坐标轴作垂线段,已知S阴影=1,则S1+S2=()A.3 B.4 C.1 D.62.矩形的长为x,宽为y,面积为12,则y与x之间的函数关系用图象表示大致为()A.B.C.D.3.若反比例函数图象经过点(﹣1,6),则此函数图象也经过的点是().A.(6,1) B.(3,2) C.(2,3) D.(﹣3,2)4.在2017年石家庄体育中考中,王亮进行了1000米跑步测试,他的跑步速度v(米/分)与测试时间t(分)的函数图象是( )A.A B.B C.C D.D5.如图,A、B、C是反比例函数ky(k<0)x图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有A .4条B .3条C .2条D .1条6.已知点A(x 1,y 1),B( x 2,y 2)在反比例函数y =1x的图象上,若x 1<x 2,且x 1x 2>0,那么y 1与y 2的大小关系是( ) A .y 1>y 2B .y 2>y 1C .y 1<y 2D .y 2<y 17.如图,点A 在双曲线y=kx的图象上,AB ⊥x 轴于B ,且△AOB 的面积为2,则k 的值为( )A .4B .﹣4C .2D .﹣28.如图,在平面直角坐标系xOy 中,已知正比例函数11y k x =的图象与反比例函数22k y x=的图象交于(4,2)A --,(4,2)B 两点,当12y y >时,自变量x 的取值范围是( )A .4x >B .40x -<<C .4x <-或04x <<D .40x -<<或4x >9.若1x与y 成反比例,1y 与z 成正比例,则x 与z 所成的函数关系为( )A .正比例函数关系B .反比例函数关系C .不成比例关系D .一次函数关系 10.已知反比例函数y =k x,当﹣2≤x≤﹣1时,y 的最大值时﹣4,则当x≥8时,y 有( )A.最小值12B.最小值1 C.最大值12D.最大值111.如图所示,菱形ABCD的顶点A、C在y轴正半轴上,反比例函数y=kx(k≠0)经过顶点B,若点C为AO中点,菱形ABCD的面积3,则k的值为()A.32B.3 C.4 D.9212.定义:给定关于x的函数y,若对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1>y2,称该函数为减函数,根据以上定义,则下列函数中是减函数的是()A.y=2x B.y=﹣2x+2 C.y=2xD.y=2x2+2二、填空题13.如图,点P在反比例函数kyx的图象上,PA⊥x轴于点A,PB⊥y轴于点B,且△APB的面积为2,则k等于______.14.如图所示,点B是反比例函数y=图象上一点,过点B分别作x轴、y•轴的垂线,如果构成的矩形面积是4,那么反比例函数的解析式是 _____________15.反比例函数ky x=的图象经过点(2,-1),则k 的值为______. 16.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=kx在第一象限的图象经过点B ,若OA 2﹣AB 2=8,则k 的值为_____.17.如图,点A 在函数y=2x(x >0)的图象上,点B 在函数y=6x (x >0)的图象上,点C在x 轴上.若AB ∥x 轴,则△ABC 的面积为__.18.设函数y =2x与y =3x ﹣6的图象的交点坐标为(a ,b),则代数式13a b -的值是_____.19.如图,在平面直角坐标系中,点A 和点C 分别在y 轴和x 轴正半轴上,以OA 、OC 为边作矩形OABC ,双曲线6y x=(x >0)交AB 于点E,AE ︰EB=1︰3.则矩形OABC 的面积是 __________.20.利用实际问题中的总量不变可建立反比例函数关系式,装货速度×装货时间=__________.三、解答题21.如图,一次函数y kx b =+的图像与反比例函数my x=的图像交于点A ﹙−2,−4﹚、C ﹙4,n ﹚,交y 轴于点B ,交x 轴于点D . (1)求反比例函数my x=和一次函数y kx b =+的表达式;(2)连接OA、OC,求△AOC的面积;(3)写出使一次函数的值大于反比例函数的x的取值范围.22.已知一次函数y=kx+b的图象与反比例函数6yx=的图象相交于A和B两点,点A的横坐标是3,点B的纵坐标是﹣3.(1)求一次函数的解析式;(2)当x为何值时,一次函数的函数值小于零.23.如图,函数kyx= (x>0,k为常数)的图象经过A(1,4),B(m,n),其中m>1,过点B作y轴的垂线,垂足为D,连结AD.(1)求k的值;(2)若△ABD的面积为4,求点B的坐标;并回答当x取何值时,直线AB的图象在反比例函数kyx=图象的上方.24.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=6x的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.(1)求一次函数y=kx+b的关系式;(2)结合图象,直接写出满足kx+b>6x的x的取值范围;(3)若点P在x轴上,且S△ACP=32BOCS△,求点P的坐标.25.已知一次函数与反比例函数的图象交于点P(-3,m),Q(1,-3).(1)求反函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?26.如图,直线y x b =-+与反比例函数3y x=-的图象相交于点(),3A a ,且与x 轴相交于点B .(1)求a 、b 的值;(2)若点P 在x 轴上,且AOP 的面积是AOB 的面积的12,求点P 的坐标.27.如图,直线y =﹣x+2与反比例函数ky x=(k ≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .(1)求a ,b 的值及反比例函数的解析式;(2)若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;(3)在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M 点的坐标;若不存在,说明理由.28.如图,直角坐标系中,直线12y x=-与反比例函数kyx=的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线12y x=-沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.29.服装厂承揽一项生产1600件夏凉小衫的任务,计划用t天完成.(1)写出每天生产夏凉小衫w(件)与生产时间t(天)(4t>)之间的函数关系式;(2)服装厂按计划每天生产100件夏凉小衫,那么需要多少天能够完成任务?(3)由于气温提前升高,商家与服装厂商议调整计划,决定提前6天交货,那么服装厂每天要多做多少件夏凉小衫才能完成任务?参考答案1.D2.C3.D.4.C5.A6.A7.B8.D9.B10.D11.D12.B13.4-14.15.-216.4. 17.2 18.-3 19.24 20.装货总量 21.(1),82y y x x==-;(2)6;(3)-2<x <0或x >4 22.(1)y =x ﹣1;(2)x <1. 23.24.(1)122y x =+;(2)-6<x <0或2<x ;(3)(-2,0)或(-6,0) 25.(1)设反函数的函数关系式为:y=kx, ∵一次函数与反比例函数的图象交于点Q (1,-3), ∴-3=1x, 解得:k=-3,∴反函数的函数关系式为:y=-3x ; (2)将点P (-3,m )代入y=-3x,解得:m=1, ∴P(-3,1), 函数图象如图:(3)观察图象可得:当x<-3或0<x<1时,一次函数的值大于反比例函数的值.26.(1)a=﹣1,b=2;(2)P的坐标为(1,0 )或(﹣1,0 ).27.(1)y=3x-;(2)P(0,2)或(-3,5);(3)M(123-+,0)或(331+,0).28.(1)8yx=-;(2)P(0,6)29.(1)1600(4)w tt=>;(2)服装厂需要16天能够完成任务;(3)服装厂每天要多做60件夏凉小衫才能完成任务.。
人教版初三数学9年级下册 第26章(反比例函数)同步训练题(含答案)
第26章《反比例函数》同步训练人教版九年级数学下册一、单选题1.下列图象中是反比例函数图象的是( ).A .B .C .D .2.在第一象限内各反比例函数的图像分别如图中①②③所示,则相应各反比例函数的比例系数1k ,2k ,3k 的大小关系是( )A .123k k k <<B .132k k k <<C .321k k k <<D .213k k k <<3.下列问题情景中的两个变量成反比例函数关系的是( )A .汽车沿一条公路从A 地驶往B 地所需的时间t 与平均速度v B .圆的周长l 与圆的半径r C .圆的面积s 与圆的半径rD .在电阻不变的情况下,电流强度I 与电压U4.已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是( )A .6y x=B .16y x=C .6y x=D .61y x =-5.已知反比例函数ky x=,当2x =时,3y =-,则k =( )236.若点()111,P x y ,()222,P x y 在反比例函数(0)ky k x=>的图像上,且12x x =-,则( )A .11y y <B .12y y =C .12y y >D .12y y =-7.如图,原点为圆心的圆与反比例函数3y x=的图像交于A 、B 、C 、D 四点,已知点A 的横坐标为1-,则点C 的横坐标为( )A .4B .3C .2D .18.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压()kPa P 是气体体积()3m V 的反比例函数,其图象如图所示,当气球内的气压大于120kPa 时,气球将爆炸,为了安全起见,气球的体积应( ).A .不小于35m4B .小于35m4C .不小于34m5D .小于34m59.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气球体积V 的反比例函数,其图象如图所示,当气球内的气压大于160 kPa 时,气球将爆炸,为了安全,气球的体积应该( )A .不大于53m 3B .小于53m 3C .不小于35m 3D .小于35m 310.如图,将质量为10kg 的铁球放在不计重力的木板OB 上的A 处,木板左端O 处可自由转动,在B 处用力F 竖直向上抬着木板,使其保持水平,已知OA 的长为1m ,OB 的长为xm ,g 取10N/kg ,则F 关于x 的函数解析式为( )A .100F x=B .90F x=C .9F x=D .10F x=二、填空题11.反比例函数3y x=的图象与坐标轴有______个交点,当0x >时,y 随x 的增大而________.12.已知A 是直线2y x =与曲线1m y x-=(m 为常数)一支的交点,过点A 作x 轴的垂线,垂足为B ,且2OB =,则m 的值为________.13.如图,(1,6)A -是双曲线(0)ky x x=<上的一点,P 为y 轴正半轴上的一点,将A 点绕P 点逆时针旋转90︒,恰好落在双曲线上的另一点B ,则点B 的坐标为__________.14.如图所示,反比例函数ky x=(0k ≠,0x >)的图像经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为8,则k 的值为________.15.如图,点A 在曲线y =3x(x >0)上,过点A 作AB ⊥x 轴,垂足为B ,OA 的垂直平分线交OB 、OA 于点C 、D ,当AB =1时,△ABC 的周长为_____.三、解答题16.已知y 与2x 成反比例,并且当3x =时,4y =.(1)写出y 关于x 的函数解析式;(2)当 1.5x =时,求y 的值;(3)当6y =时,求x 的值.17.如图,OPQ △是边长为2的等边三角形,若反比例函数的图象过点P ,求它的解析式.18.某农业大学计划修建一块面积为62210m ⨯的矩形试验田.(1)试验田的长y (单位:m )关于宽x (单位:m )的函数解析式是什么?(2)如果试验田的长与宽的比为2:1,那么试验田的长与宽分别为多少?19.已知点(3,2)P 、点(2,)Q a -都在反比例函数ky x=图象上.过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为1S ;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为2S .求a ,12,S S 的值.20.如图.正方形的中心在直角坐标系的原点,正方形的边与坐标轴平行,点()3,P a a 是正方形与反比例函数图象的一个交点,已知图中阴影部分的面积等于9,求这个反比例函数的表达式.21.某空调生产厂的装配车间计划在一段时期内组装9000台空调.(1)在这段时期内,每天组装的数量m (台/天)与组装的时间t (天)之间有怎样的函数关系?(2)原计划用2个月时间(每月按30天计算)完成这一任务,但由于气温提前升高,厂家决定这批空调提前10天完成组装,那么装配车间每天至少要组装多少台空调?比原计划多多少?22.心理学家研究发现,一般情况下,一节课40分钟,学生的注意力随教师讲课的变化而变化.经过实验分析可知,学生的注意力指标数y 随时间x (分钟)的变化规律如图所示(其中AB ,BC 分别为线段,CD 为双曲线的一部分).(1)分别求出线段AB 和曲线CD 的函数关系式;(2)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?23.如图,点A为双曲线2yx=(0x>)上一点,//AB x轴且交直线y x=-于点B.(1)若点B的纵坐标为2,比较线段AB和OB的大小关系;(2)当点A在双曲线图像上运动时,代数式“22AB OA-”的值会发生变化吗?请你作出判断,并说明理由.参考答案1.C 2.C 3.A 4.C 5.C 6.D 7.B 8.C 9.C 10.A 11.0 减小12.913.(3,2)-或(2,3)-14.215.416.解:(1)根据题意,设y 关于x 的函数解析式2k y x =,将3x =,4y =代入,得:243k =,解得:k =36,∴y 关于x 的函数解析式为236y x =;(2)当 1.5x =时,236=16(1.5)y =;(3)当y =6时,由2366x=得:26x =,解得:x =17.解:过点P 作PD ⊥x 轴于点D ,∵△OPQ 是边长为2的等边三角形,∴OD =12OQ =12×2=1,在Rt △OPD 中,∵OP =2,OD =1,∴PD ==∴P (1,设反比例函数为:y =kx (k ≠0),因为反比例函数的图象过点P ,所以k所以所求解析式为:y 18.解:(1) 由题意得,xy = 2×106,所以y =6210x⨯∴故试验田的长y (单位:m)关于宽x (单位:m)的函数解析式是y =6210x ⨯ (2)设试验田的宽为x m ,则长为2x m 由题意得,2x ·x = 2 ×106,解得x =±103 (负值舍去),∴试验田长与宽分别为2 ×103m 、103m .19.解:∵点P (3,2)、点Q (−2,a )都在反比例函数ky x=的图象上,∴k =3×2=−2×a ,∴k =6,a =−3,∵过点P 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 1;过点Q 分别作两坐标轴的垂线,垂线与两坐标轴围成的矩形面积为S 2,∴S 1=S 2=|6|=6.20.解: 反比例函数的图象关于原点对称,∴阴影部分的面积和正好为正方形面积的14,设正方形的边长为b ,则2194b =,解得6b =,正方形的中心在原点O ,∴直线AB 的解析式为:3x =, 点(3,)P a a 在直线AB 上,如下图:33a ∴=,解得1a =,(3,1)P ∴,点P 在反比例函数(0)ky k x=>的图象上,3k ∴=,∴此反比例函数的解析式为:3y x=.21.解:(1)每天组装的台数m (单位:台/天)与生产时间t (单位:天)之间的函数关系:9000m t=;(2)当50t =时,900018050m ==.所以,这批空调提前10天上市,那么原装配车间每天至少要组装180台空调,原计划用2个月时间(每月按30天计算)完成这一任务,则每天组装150台,即比原计划多:18015030-=台.22.解:(1)设线段AB 所在直线的解析式为1120y k x =+,把点(10,40)B 代入,得12k =,∴1220y x =+;设C 、D 所在双曲线的解析式为22k y x=,把点(25,40)C 代入,得21000k =,∴21000y x=;(2)当15=x 时,1252030y =⨯+=,当230x =时,21000100303y ==,∴12y y <,∴第30分钟时注意力更集中.23.解:(1)∵点B 的纵坐标为2,//AB x 轴,∴(1,2)A ,(2,2)B -,∴3AB =,OB ==∵3>∴AB OB >;(2)代数式22AB OA -不会发生变化.理由:设(,)A a b ,∵A 为双曲线2(0)y x x=>上一点,∴2ab =,∵//AB x 轴且交直线y x =-于点B ,∴点B 纵坐标为b ,∴(,)B b b -,∴()22222()24AB OA a b a b ab -=+-+==,∴代数式“22AB OA -”的值恒定不变.。
初三数学反比例函数的专项培优练习题(含答案)含答案解析
初三数学反比例函数的专项培优练习题(含答案)含答案解析一、反比例函数1.如图,在平面直角坐标系中,一次函数y1=ax+b(a≠0)的图象与y轴相交于点A,与反比例函数y2= (c≠0)的图象相交于点B(3,2)、C(﹣1,n).(1)求一次函数和反比例函数的解析式;(2)根据图象,直接写出y1>y2时x的取值范围;(3)在y轴上是否存在点P,使△PAB为直角三角形?如果存在,请求点P的坐标;若不存在,请说明理由.【答案】(1)解:把B(3,2)代入得:k=6∴反比例函数解析式为:把C(﹣1,n)代入,得:n=﹣6∴C(﹣1,﹣6)把B(3,2)、C(﹣1,﹣6)分别代入y1=ax+b,得:,解得:所以一次函数解析式为y1=2x﹣4(2)解:由图可知,当写出y1>y2时x的取值范围是﹣1<x<0或者x>3.(3)解:y轴上存在点P,使△PAB为直角三角形如图,过B作BP1⊥y轴于P1,∠B P1 A=0,△P1AB为直角三角形此时,P1(0,2)过B作BP2⊥AB交y轴于P2∠P2BA=90,△P2AB为直角三角形在Rt△P1AB中,在Rt△P1 AB和Rt△P2 AB∴∴P2(0,)综上所述,P1(0,2)、P2(0,).【解析】【分析】(1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;(2)利用图象直接得出结论;(3)分三种情况,利用勾股定理或锐角三角函数的定义建立方程求解即可得出结论.2.如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数的图象交于二四象限内的A、B 两点,与x轴交于C点,点B的坐标为(6,n),线段OA=5,E为x轴负半轴上一点,且sin∠AOE=.(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积;(3)直接写出一次函数值大于反比例函数值时自变量x的取值范围.【答案】(1)解:作AD⊥x轴于D,如图,在Rt△OAD中,∵sin∠AOD= = ,∴AD= OA=4,∴OD= =3,∴A(﹣3,4),把A(﹣3,4)代入y= 得m=﹣4×3=﹣12,所以反比例函数解析式为y=﹣;把B(6,n)代入y=﹣得6n=﹣12,解得n=﹣2,把A(﹣3,4)、B(6,﹣2)分别代入y=kx+b得,解得,所以一次函数解析式为y=﹣x+2(2)解:当y=0时,﹣x+2=0,解得x=3,则C(3,0),所以S△AOC= ×4×3=6(3)解:当x<﹣3或0<x<6时,一次函数的值大于反比例函数的值【解析】【分析】(1)作AD⊥x轴于D,如图,先利用解直角三角形确定A(﹣3,4),再把A点坐标代入y= 可求得m=﹣12,则可得到反比例函数解析式;接着把B(6,n)代入反比例函数解析式求出n,然后把A和B点坐标分别代入y=kx+b得到关于a、b的方程组,再解方程组求出a和b的值,从而可确定一次函数解析式;(2)先确定C点坐标,然后根据三角形面积公式求解;(3)观察函数图象,找出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.3.如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC 的形状并证明你的结论.【答案】(1)解:设反比例函数的解析式为(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1。
初三数学中考专题复习 反比例函数 综合练习题 含答案
反比例函数综合练习题1.下列函数关系中,不是反比例函数的是( ) A .xy =-5 B .y =-73x C .y =2x y D .=x42.下列各点中,在反比例函数y =8x 的图象上的是( )A .(-1,8)B .(-2,4)C .(1,7)D .(2,4)3.若反比例函数y =2k -1x 的图象经过第二、四象限,则k 的取值范围是( )A .k>12B .k<12C .k =12D .不存在4. 为了更好的保护水资源,造福人类,某工厂计划建一个容积V(m 3)一定的污水处理池,池的底面积S(m 2)与其深度h(m)满足关系式:V =Sh(V≠0),则S 关于h 的函数图象大致是( )5.在反比例函数y =4x的图象上,阴影部分的面积不等于4的是( )6.若在同一坐标系中,直线y =k 1x 与双曲线y =k 2x 有两个交点,则有( )A .k 1+k 2>0B .k 1+k 2<0C .k 1k 2>0D .k 1k 2<07.如图,点A 和点B 都在反比例函数y =4x的图象上,且线段AB 过原点,过点A 作x 轴的垂线段,垂足为点C ,P 是线段OB 上的动点,连接CP.设△ACP 的面积为S ,则下列说法正确的是( )A .S >2B .S >4C .2<S <4D .2≤S ≤48.如图,A ,B 两点在反比例函数y =k 1x 的图象上,C ,D 两点在反比例函数y =k 2x 的图象上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC =2,BD =3,EF =103,则k 2-k 1=( )A .4 B.143 C.163D .69. 若点A(-5,y 1),B(-3,y 2),C(2,y 3)在反比例函数y =3x 的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 3<y 2B .y 1<y 2<y 3C .y 3<y 2<y 1D .y 2<y 1<y 310. 已知矩形的面积为8,则它的长y 与宽x 之间的函数关系用图象大致可以表示为( )11. 已知反比例函数y =2x ,则自变量x 的取值范围是________.12. 已知y =(m +3)x |m|-4是反比例函数,则m =________.13.已知P 1(x 1,y 1),P 2(x 2,y 2)是同一个反比例函数图象上的两点,若x 2=x 1+2,且1y 2=1y 1+12,则这个反比例函数的表达式为________.14.如图,已知点P(6,3),过点P 作PM⊥x 轴于点M ,PN ⊥y 轴于点N ,反比例函数y =kx 的图象交PM 于点A ,交PN 于点B.若四边形OAPB 的面积为12,则k=________.15.已知直线y =-3x 与双曲线y =m -5x 交于点P (-1,n).(1)求m 的值;(2)若点A (x 1,y 1),B(x 2,y 2)在双曲线y =m -5x 上,且x 1<x 2<0,试比较y 1,y 2的大小.16.如图,一次函数y 1=x +1的图象与反比例函数y 2=kx (k 为常数,且k≠0)的图象都经过点A(m ,2).(1)求点A 的坐标及反比例函数的表达式;(2)结合图象直接比较:当x>0时,y 1与y 2的大小.17.制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(min ).当该材料加热时,温度y 与时间x 成一次函数关系;当停止加热进行操作时,温度y 与时间x 成反比例关系(如图).若该材料在操作加热前的温度为15 ℃,加热5分钟后温度达到60 ℃. (1)分别求出将材料加热和停止加热进行操作时,y 与x 间的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,停止操作,那么从开始加热到停止操作,共经历了多少时间?18.如图,四边形ABCD为正方形,点A,B的坐标分别为(0,2),(0,-3),反比例函数y=错误!的图象经过点C,一次函数y=ax+b的图象经过点A,C.(1)求反比例函数和一次函数的表达式;(2)若点P是反比例函数图象上的一点,△AOP的面积恰好等于正方形ABCD的面积,求P点的坐标.参考答案:1---10 DDBCB CDADB 11. x ≠0 12. 313. y =4x14. 615.(1)∵点P(-1,n)在直线y =-3x 上,∴n =3,∴点P 的坐标为(-1,3).∵点P(-1,3)在双曲线y =m -5x上,∴m =2.(2)由(1)得,双曲线的表达式为y =-3x.在第二象限内,y 随x 的增大而增大,∴当x 1<x 2<0时,y 1<y 2.16.(1)∵一次函数y 1=x +1的图象经过点A(m ,2),∴2=m +1.解得m =1.∴点A 的坐标为A(1,2).∵反比例函数y 2=k x 的图象经过点A(1,2),∴2=k′1.解得k′=2,∴反比例函数的表达式为y 2=2x.(2)由图象,得当0<x <1时,y 1<y 2;当x =1时,y 1=y 2;当x >1时,y 1>y 2.17.(1)当0≤x<5时,为一次函数,设一次函数关系式为y =kx +b ,由于一次函数图象过点(0,15),(5,60),所以⎩⎨⎧15=b ,60=5k +b ,解得⎩⎨⎧k =9,b =15.所以y =9x +15.当x≥5时,为反比例函数,设函数关系式为y =k′x,由于图象过点(5,60),所以k′=300.综上可知,y 与x 间的函数关系式为y =⎩⎨⎧9x +15(0≤x<5),300x (x≥5).(2)当y =15时,x =30015=20,所以从开始加热到停止操作,共经历了20分钟.18.(1)由题意知,C 点坐标为(5,-3),把C(5,-3)代入y =k x 中,-3=k5,∴k =-15.∴反比例函数的表达式为y =-15x.把A(0,2),C(5,-3)两点坐标分别代入y =ax +b 中,得⎩⎨⎧b =2,5a +b =-3.解得⎩⎨⎧a =-1,b =2.∴一次函数的表达式为y =-x +2. (2)设P 点坐标为(x ,y).∵S △OAP =S 正方形ABCD ,S △OAP =12×OA·|x|,S 正方形ABCD =52=25,∴12×OA·|x|=25,12×2|x|=25,x 1=25,x 2=-25将其分别代入y =-15x 中,得y 1=-35,y 2=35.∴P 点坐标为⎝⎛⎭⎪⎫25,-35或⎝ ⎛⎭⎪⎫-25,35.。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
(完整word版)九年级数学反比例函数单元测试题及答案
反比例函数综合检测题一、选择题(每小题3分,共30分)1、反比例函数y =xn 5+图象经过点(2,3),则n 的值是( ).A 、-2B 、-1C 、0D 、12、若反比例函数y =xk(k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1)B 、(-21,2)C 、(-2,-1)D 、(21,2)3、(08双柏县)已知甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h)与行驶速度v (km/h )的函数关系图象大致是( )4、若y 与x 成正比例,x 与z 成反比例,则y 与z 之间的关系是( ).A 、成正比例B 、成反比例C 、不成正比例也不成反比例D 、无法确定5、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限6、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =x1于点Q,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).A 、逐渐增大B 、逐渐减小C 、保持不变D 、无法确定 7、在一个可以改变容积的密闭容器内,装有一定质量m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变.ρ与V 在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m 为( ).A 、1。
4kgB 、5kgC 、6.4kgD 、7kg8、若A (-3,y 1),B (-2,y 2),C(-1,y 3)三点都在函数y =-x1的图象上,则y 1,y 2,y 3的大小关系是( ).A 、y 1>y 2>y 3B 、y 1<y 2<y 3C 、y 1=y 2=y 3D 、y 1<y 3<y 29、已知反比例函数y =xm21-的图象上有A(x 1,y 1)、B (x 2,y 2)两点,当x 1<x 2<0时,y 1<y 2,则m 的取值范围是( ).A 、m <0B 、m >0C 、m <21D 、m >2110、如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围 是( ).Qp xy o t /h Ot /hOt /hOt /hv /(km/h)OA .B .C . .A 、x <-1B 、x >2C 、-1<x <0或x >2D 、x <-1或0<x <2 二、填空题(每小题3分,共30分)11.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 .12、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而(填“增大”或“减小”或“不变").13、若反比例函数y =xb 3-和一次函数y =3x +b 的图象有两个交点,且有一个交点的纵坐标为6,则b= .14、反比例函数y =(m +2)xm2-10的图象分布在第二、四象限内,则m 的值为 .15、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .16、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .17、使函数y =(2m 2-7m -9)xm2-9m +19是反比例函数,且图象在每个象限内y 随x 的增大而减小,则可列方程(不等式组)为 .18、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.19. 如图,直线y =kx(k >0)与双曲线xy 4=交于A (x 1,y 1),B(x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.20、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点,将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .三、解答题(共60分)21、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式. 22、(9分)请你举出一个生活中能用反比例函数关系描 述的实例,写出其函数表达式,并画出函数图象. 举例:函数表达式:23、(10分)如图,已知A(x 1,y 1),B(x 2,y 2)是双曲线y =xk在第一象限内的分支上的两点,连结OA 、OB .(1)试说明y 1<OA <y 1+1y k ; (2)过B 作BC ⊥x 轴于C ,当m =4时, 求△BOC 的面积.24、(10分)如图,已知反比例函数y =-x8与一次函数 y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的 纵坐标都是-2. 求:(1)一次函数的解析式; (2)△AOB 的面积.25、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.26、(12分)如图, 已知反比例函数y =xk的图象与一次函 数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点. (1)求这两个函数的解析式; (2)求△MON 的面积;(3)请判断点P(4,1)是否在这个反比例函数的图象上, 并说明理由.参考答案:一、选择题1、D;2、A ;3、C ;4、B ;5、D ;6、C7、D ;8、B;9、D ; 10、D . 二、填空题 11、y =x 1000; 12、减小; 13、5 ; 14、-3 ;15、y =x s 23 ; 16、y =-x5; 17、⎩⎨⎧---=+-0972119922>m m m m ; 18、|k|; 19、 20; 20、y =-x 12.三、解答题21、y =-x6.22、举例:要编织一块面积为2米2的矩形地毯,地毯的长x (米)与宽y(米)之间的函数关系式为y =x2(x >0).x…21 123 2 … y … 4 234 1…(只要是生活中符合反比例函数关系的实例均可) 画函数图象如右图所示.23、(1)过点A 作AD ⊥x 轴于D,则OD =x 1,AD =y 1,因为点A(x 1,y 1)在双曲线y =x k 上,故x 1=1y k,又在Rt △OAD 中,AD <OA <AD +OD ,所以y 1<OA <y 1+1y k; (2)△BOC 的面积为2. 24、(1)由已知易得A (-2,4),B (4,-2),代入y =kx +b 中,求得y =-x +2;(2)当y =0时,x =2,则y =-x +2与x 轴的交点M (2,0),即|OM |=2,于是S △AOB =S △AOM +S △BOM =21|OM |·|y A |+21|OM |·|y B |=21×2×4+21×2×2=6.25、(1)将N (-1,-4)代入y =x k ,得k =4.∴反比例函数的解析式为y =x 4.将M (2,m )代入y =x4,得m =2.将M (2,2),N (-1,-4)代入y =ax +b ,得⎩⎨⎧-=+-=+.b a ,b a 422解得⎩⎨⎧-==.b ,a 22∴一次函数的解析式为y =2x -2.(2)由图象可知,当x <-1或0<x <2时,反比例函数的值大于一次函数的值.26、解(1)由已知,得-4=1-k ,k =4,∴y =x 4.又∵图象过M (2,m )点,∴m =24=2,∵y =a x +b 图象经过M 、N 两点,∴,422⎩⎨⎧-=+-=+b a b a 解之得,22⎩⎨⎧-==b a ∴y =2x -2.(2)如图,对于y =2x -2,y =0时,x =1,∴A (1,0),OA =1,∴S △MON =S △MOA +S △NOA =21OA ·MC +21OA ·ND =21×1×2+21×1×4=3. (3)将点P(4,1)的坐标代入y =x4,知两边相等,∴P 点在反比例函数图象上.。
九年级上册数学反比例函数练习题(含答案)
九年级上册数学反比例函数练习题1一.选择题(共12小题)姓名:日期:1.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.42.若函数为反比例函数,则A.±.3A.y=y=4A5﹣A.(﹣,﹣)(﹣,)(6y=的图象的任一支上,A.﹣1 B.0 C.1 D.27.如图7,在平面直角坐标系中,点P是反比例函数y=(k>0)图象上的一点,分别过点P作PA⊥x轴于点A,PB⊥y轴于点B.若四边形OAPB的面积为3,则k的值为()A.3 B.﹣3 C. D.﹣第7题第9题第12题8.若双曲线y=过两点(﹣1,y1),(﹣3,y2),则y1与y2的大小关系为()A.y1>y2 B.y1<y2 C.y1=y2 D.y1与y2大小无法确定9.如图9,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为() A.2 B.3 C.4 D.510A..﹣11.当k和一次函数A.12.如图的图象上,C,P是线段A.S13y=(的增大而.14.若点y=15.已知点(m﹣1,y1),(m﹣3,y2)是反比例函数y=(m<0)图象上的两点,则y1y2(填“>”或“=”或“<”)16.如图,点A、B是双曲线y=上的点,分别过点A、B作x轴和y轴的垂线段,若图中阴影部分的面积为2,则两个空白矩形面积的和为.三.解答题(共6小题)17.如果函数y=m是一个经过二、四象限的反比例函数,则求m的值和反比例函数的解析式.18.y是x的反比例函数,下表给出了x与y的一些值:(1(219(1)当(2)当(3)当20.已知.(1)求(221(1)求(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.22.如图,在平面直角坐标系xOy中,一次函数y=﹣ax+b的图象与反比例函数y=的图象相交于点A(﹣4,﹣2),B(m,4),与y轴相交于点C.(1)求反比例函数和一次函数的表达式;(2)求点C的坐标及△AOB的面积.九年级上册数学反比例函数练习题1参考答案与试题解析一.选择题(共12小题)1.C.2.D.3.A.4.B.5.B.6.D.7.A.8.B.9.C.10.B.11.C.12.D.二.填空题(共4小题)13.﹣617.解:y=m∴m2﹣5=y=.18.解:,把﹣(2)﹣3;.19.解:解得:≠;(2(3)当函数y=(5m﹣3)x2﹣n+(m+n)是反比例函数时,,解得:n=3,m=﹣3.20.解:(1)∵y1与(x﹣1)成正比例,y2与(x+1)成反比例,∴y1=k1(x﹣1),y2=,∵y=y1+y2,当x=0时,y=﹣3,当x=1时,y=﹣1.∴,∴k2=﹣2,k1=1,∴y=x﹣1﹣;(2)当x=﹣,y=x﹣1﹣=﹣﹣1﹣=﹣.21.解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2∴点A y=∴m=﹣4(2解得:,22.解:y=的图象上,∴k=﹣4y=;∵点B(y=的图象上,∴将点A得:,解得:,∴一次函数的表达式为y=x+2.(2)令y=x+2中x=0,则y=2,∴点C的坐标为(0,2).∴S△AOB=OC×(x B﹣x A)=×2×[2﹣(﹣4)]=6.。
中考数学《反比例函数》专项练习(附答案解析)
中考数学《反比例函数》专项练习(附答案解析)一、综合题1.已知:如图1,函数y1=kx 和y2=xk(k>1)的图象相交于点A和点B .(1)求点A和点B的坐标(用含k的式子表示);(2)如图2,点C的坐标为(1,k),点D是第一象限内函数y1的图象上的动点,且在点A的右侧,直线AC、BC、AD、BD分别与x轴相交于点E、F、G、H .①判定△CEF的形状,并说明理由;②点D在运动的过程中,∠CAD和∠CBD的度数和是否变化?如果变化,说明理由;如果不变,求出∠CAD和∠CBD的度数和.2.在平面直角坐标系中,我们把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),(√2,√2),…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=nx(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由.3.如图,点A是坐标原点,点D是反比例函数y=6x(x>0)图象上一点,点B在x轴上,AD=BD,四边形ABCD是平行四边形,BC交反比例函数y=6x(x>0)图象于点E.(1)平行四边形BCD 的面积等于 ;(2)设D 点横坐标为m ,试用m 表示点E 的坐标;(要有推理和计算过程) (3)求 CE:EB 的值; (4)求 EB 的最小值.4.如图,一次函数y=kx+b 的图象与反比例函数y= mx 的图象交于点A (﹣3,m+8),B (n ,﹣6)两点.(1)求一次函数与反比例函数的解析式; (2)求△AOB 的面积.5.已知双曲线y=1x (x >0),直线l 1:y ﹣√2=k (x ﹣√2)(k <0)过定点F 且与双曲线交于A ,B 两点,设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),直线l 2:y=﹣x+√2. (1)若k=﹣1,求△OAB 的面积S ; (2)若AB=52√2,求k 的值;(3)设N (0,2√2),P 在双曲线上,M 在直线l 2上且PM ∥x 轴,求PM+PN 最小值,并求PM+PN 取得最小值时P 的坐标.(参考公式:在平面直角坐标系中,若A (x 1,y 1),B (x 2,y 2)则A ,B 两点间的距离为AB=√(x 1−x 2)2+(y 1−y 2)2)6.已知反比例函数y=1−2mx( m为常数)的图象在一、三象限.(1)求m的取值范围.(2)如图,若该反比例函数的图象经过▱ ABCD的顶点D,点A,B的坐标分别为(0,3),(-2,0).①求出反比例函数表达式;②设点P是该反比例函数图象上的一点,若OD=OP,则P点的坐标为▲ .若以D,O,P为顶点的三角形是等腰三角形,则满足条件的点P的个数为▲ .7.绘制函数y=x+1x的图象,我们经历了如下过程:确定自变量x的取值范围是x≠0;列表﹣﹣描点﹣﹣连线,得到该函数的图象如图所示.x …-4 -3 -2 -1 −12−13−141413121 2 3 4 …y …−414−313−212−2−212−313−4144143132122 212313414…观察函数图象,回答下列问题:(1)函数图象在第象限;(2)函数图象的对称性是A.既是轴对称图形,又是中心对称图形B.只是轴对称图形,不是中心对称图形C.不是轴对称图形,而是中心对称图形D.既不是轴对称图形,也不是中心对称图形(3)在x>0时,当x=时,函数y有最(大,小)值,且这个最值等于;在x<0时,当x=时,函数y有最(大,小)值,且这个最值等于;=−2x+1是否有实数解?说明理由.(4)方程x+1x8.菱形ABCD在平面直角坐标系中的位置如图所示,对角线AC与BD的交点E恰好在y轴上,过点D和BC的中点H的直线交AC于点F,线段DE,CD的长是方程x2﹣9x+18=0的两根,请解答下列问题:(1)求点D的坐标;(k≠0)的图象经过点H,则k= ;(2)若反比例函数y= kx(3)点Q在直线BD上,在直线DH上是否存在点P,使以点F,C,P,Q为顶点的四边形是平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.9.设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;的图象与函数y1的图象相交于点A,且点A的纵坐标为2.(2)若反比例函数y2=kx①求k的值;②结合图象,当y1>y2时,写出x的取值范围.10.受新冠肺炎疫情的影响,运城市某化工厂从2020年1月开始产量下降.借此机会,为了贯彻“发展循环经济,提高工厂效益”的绿色发展理念;管理人员对生产线进行为期5个月的升级改造,改造期间的月利润与时间成反比例函数;到5月底开始恢复全面生产后,工厂每月的利润都比前一个月增加10万元.设2020年1月为第1个月,第x个月的利润为y万元,其图象如图所示,试解决下列问题:(1)分别写出该化工厂对生产线进行升级改造前后,y与x的函数表达式.(2)到第几个月时,该化工厂月利润才能再次达到100万元?(3)当月利润少于50万元时,为该化工厂的资金紧张期,问该化工厂资金紧张期共有几个月?11.(如图,四边形ABCD在平面直角坐标系的第一象限内,其四个顶点分别在反比例函数y1=nx 与y2=4nx的图象上,对角线AC⊥BD于点P,AC⊥x轴于点N(2,0)(1)若CN=12,试求n的值;(2)当n=2,点P是线段AC的中点时,试判断四边形ABCD的形状,并说明理由;(3)直线AB与y轴相交于E点.当四边形ABCD为正方形时,请求出OE的长度.12.如图点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA= √5,反比例函数y= kx(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理由.13.如图所示,一次函数y=kx+b的图象与x轴、y轴分别交于点A、B,且与反比例函数y=m的图象在第二象限交于点C,CD⊥x轴,垂足为点D.若OB=2OA=3OD= x12 .(1)求一次函数与反比例函数的解析式;(2)若两函数图象的另一个交点为E,连结DE,求△CDE的面积;(3)直接写出不等式kx+b≤m的解集.x与y2= 14.某校九年级数学小组在课外活动中,研究了同一坐标系中两个反比例函数y1=k1xk2(k2>k1>0)在第一象限图象的性质,经历了如下探究过程:x操作猜想:(1)如图①,当k1=2,k2=6时,在y轴的正方向上取一点A作x轴的平行线交y1于点B,交y2于点C .当OA=1时,AB=,BC=,BC AB =;当OA=3时,AB=,BC=,BCAB=;当OA=a时,猜想BCAB=(2)在y轴的正方向上任意取点A作x轴的平行线,交y1于点B、交y2于点C,请用含k1、k2的式子表示BCAB的值,并利用图②加以证明.(3)如图③,若k2=12,BCAB =12,在y轴的正方向上分别取点A、D(OD>OA)作x轴的平行线,交y1于点B、E,交y2于点C、F,是否存在四边形ADFB是正方形?如果存在,求OA的长和点B的坐标;如果不存在,请说明理由.15.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过M作MH⊥x轴于点H,且tan∠AHO=2.(1)求H点的坐标及k的值;(2)点P在y轴上,使△AMP是以AM为腰的等腰三角形,请直接写出所有满足条件的P 点坐标;(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,点Q(m,0)是x轴上的动点,当△MNQ的面积为3时,请求出所有满足条件的m的值.16.如图,双曲线y1=k1x与直线y2=xk2的图象交于A、B两点.已知点A的坐标为(4,1),点P(a,b)是双曲线y1=k1x上的任意一点,且0<a<4.(1)分别求出y1、y2的函数表达式;(2)连接PA、PB,得到△PAB,若4a=b,求三角形ABP的面积;(3)当点P在双曲线y1=k1x上运动时,设PB交x轴于点E,延长PA交x轴于点F,判断PE与PF的大小关系,并说明理由.参考答案与解析1.【答案】(1)解:由题意,联立{y=kxy=xk,解得{x=ky=1或{x=−ky=−1,∵点A在第一象限,点B在第二象限,且k>1,∴A(k,1),B(−k,−1)(2)解:①△CEF是等腰直角三角形,理由如下:设直线BC的解析式为y=k0x+b0,将点B(−k,−1),C(1,k)代入得:{−kk0+b0=−1k0+b0=k,解得{k0=1b0=k−1,则直线BC的解析式为y=x+k−1,当y=0时,x+k−1=0,解得x=1−k,即F(1−k,0),同理可得:点E的坐标为E(1+k,0),∴CF=√(1−k−1)2+(0−k)2=√2k,CE=√(1+k−1)2+(0−k)2=√2k,EF=1+k−(1−k)=2k,∴CE=CF,CE2+CF2=4k2=EF2,∴△CEF是等腰直角三角形;②由题意,设点D的坐标为D(m,km),则m>k>1,∵△CEF是等腰直角三角形,∴∠CFE=∠CEF=45°,∴∠BFH=∠AEG=135°,设直线BD的解析式为y=k1x+b1,将点B(−k,−1),D(m,km )代入得:{−kk1+b1=−1mk1+b1=km,解得{k1=1mb1=k−mm,则直线BD的解析式为y=1m x+k−mm,当y=0时,1m x+k−mm=0,解得x=m−k,即H(m−k,0),同理可得:点G的坐标为G(k+m,0),∴DH=√(m−k−m)2+(0−km )2=km√1+m2,DG=√(k+m−m)2+(0−km )2=km√1+m2,∴DH=DG,∴∠DHG=∠DGH,∵∠DHG=∠BHF,∴∠DGH=∠BHF,∴∠CAD+∠CBD=∠AEG+∠DGH+∠CBD,=∠BFH+∠BHF+∠CBD,=180°,即∠CAD与∠CBD的度数和不变,度数和为180°2.【答案】(1)解:根据题意,“梦之点”就是有关函数图象与直线y=x的交点,其坐标就是对应的方程组的解.由题意可得:m=2由点P(2, 2)在反比例函数y=nx图象上,可得n=2×2=4故所求的反比例函数的解析式为y=4x(2)解:由题意可得:(Ⅰ)当k=0时,y=s−1,此时“梦之点”的坐标为(s−1, s−1 ) . (Ⅱ)当k≠0 时, (3k−1)x=1−s显然,此方程的解的情况决定函数y=3kx+s−1的图象上“梦之点”的存在情况,当k=13, s≠1时,方程无解,不存在“梦之点”;当k=13, s=1时,方程有无数个解,此时存在无数个“梦之点”,“梦之点”的坐标可表示为(ℎ,ℎ)(ℎ为任意实数);当k≠13时,得{x=1−s3k−1y=1−s3k−1,即“梦之点”的坐标为(1−s3k−1, 1−s3k−1)3.【答案】(1)12(2)解:由题意D(m,6m),由(1)可知AB=2m,∵四边形ABCD是平行四边形,∴CD=AB=2m,∴C(3m,6m) .∵B(2m,0),C(3m,6m),∴直线BC的解析式为y=6m2x−12m,由{y=6xy=6m2x−12m,解得{x=(√2+1)my=6√2−6m或{x=(1−√2)my=6(1+√2)m(舍弃),∴E((√2+1)m,6√2−6m);(3)解:作EF⊥x轴于F,CG⊥x轴于G . ∵EF//CG,∴CE BE=FG BF=√2+1)m (√2+1)m−2m =√2√2−1=√2 ;(4)解:∵CEBE =√2 ∴BE =√2+1 ,要使得 BE 最小,只要 AD 最小, ∵AD =√m 2+36m 2=√(m −6m )2+12 ,∴AD 的最小值为 2√3 , ∴BE 的最小值为√3√2+1=2√6−2√3 .4.【答案】(1)解:将A (﹣3,m+8)代入反比例函数y= mx 得,m −3=m+8,解得m=﹣6, m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2), 反比例函数解析式为y=﹣ 6x ,将点B (n ,﹣6)代入y=﹣ 6x 得,﹣ 6n =﹣6, 解得n=1,所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得, {−3k +b =2k +b =−6 , 解得 {k =−2b =−4,所以,一次函数解析式为y=﹣2x ﹣4; (2)解:设AB 与x 轴相交于点C , 令﹣2x ﹣4=0解得x=﹣2, 所以,点C 的坐标为(﹣2,0), 所以,OC=2, S △AOB =S △AOC +S △BOC , = 12 ×2×3+ 12 ×2×1,=3+1, =4.5.【答案】(1)解:当k=-1时,l 1:y=﹣x+2√2, 联立得,{y =−x +2√2y =1x ,化简得x 2﹣2√2x+1=0, 解得:x 1=√2﹣1,x 2=√2+1,设直线l 1与y 轴交于点C ,则C (0,2√2). S △OAB =S △AOC ﹣S △BOC =12•2√2•(x 2﹣x 1)=2√2;(2)解:根据题意得:{y −√2=k(x −√2)y =1x 整理得:kx 2+√2(1﹣k )x ﹣1=0(k <0), ∵△=[√2(1﹣k )]2﹣4×k ×(﹣1)=2(1+k 2)>0, ∴x 1、x 2 是方程的两根, ∴{x 1+x 2=√2(k−1)k x 1·x 2=−1k①, ∴AB=√(x 1−x 2)2+(y 1−y 2)2=√(x 1−x 2)2+(1x 1−1x 2)2=√(x 1−x 2)2(1+1x 12·x 22)=√[(x 1+x 2)2−4x 1x 2](1+1x 12·x 22),将①代入得,AB=√2(k 2+1)2k 2=√2(k 2+1)−k (k <0),∴√2(k 2+1)−k =5√22,整理得:2k2+5k+2=0,解得:k=﹣2,或 k=12;(3)解:∵直线l1:y﹣√2=k(x﹣√2)(k<0)过定点F, ∴ F(√2,√2).如图:设P(x,1x ),则M(﹣1x+√2,1x),则PM=x+1x ﹣√2=√(x+1x−√2)2=√x2+1x2−2√2(x+1x)+4,∵PF=√(x−√2)2+(1x −√2)2=√x2+1x2−2√2(x+1x)+4,∴PM=PF.∴PM+PN=PF+PN≥NF=2,当点P在NF上时等号成立,此时NF的方程为y=﹣x+2√2,由(1)知P(√2﹣1,√2+1),∴当P(√2﹣1,√2+1)时,PM+PN最小值是2.6.【答案】(1)解:根据题意,得1−2m>0,解得m<12,∴m的取值范围是m<12.(2)解:①∵四边形ABCD是平行四边形,A(0,3),B(−2,0),∴D(2,3) .把D(2,3)代入y=1−2mx ,得3=1−2m2,∴1−2m=6 .∴反比例函数表达式为y=6x;②(3,2)或(-2,-3)或(-3,-2);4 7.【答案】(1)一、三(2)C(3)1;小;2;−1;大;−2(4)解:方程x + 1x =﹣2x +1没有实数解,理由为:y =x + 1x 与y =﹣2x +1在同一直角坐标系中无交点.8.【答案】(1)解:x 2﹣9x+18=0, (x ﹣3)(x ﹣6)=0, x=3或6, ∵CD >DE , ∴CD=6,DE=3, ∵四边形ABCD 是菱形,∴AC ⊥BD ,AE=EC= √62−32 =3 √3 , ∴∠DCA=30°,∠EDC=60°, Rt △DEM 中,∠DEM=30°, ∴DM= 12 DE= 32 , ∵OM ⊥AB ,∴S 菱形ABCD = 12 AC •BD=CD •OM , ∴12×6√3×6 =6OM ,OM=3 √3 , ∴D (﹣ 32 ,3 √3 ) (2)解:(3)解:如图1,①∵DC=BC ,∠DCB=60°, ∴△DCB 是等边三角形, ∵H 是BC 的中点,∴DH⊥BC,∴当Q与B重合时,如图1,四边形CFQP是平行四边形,∵FC=FB,∴∠FCB=∠FBC=30°,∴∠ABF=∠ABC﹣∠CBF=120°﹣30°=90°,∴AB⊥BF,CP⊥AB,Rt△ABF中,∠FAB=30°,AB=6,∴FB=2 √3 =CP,,√3);∴P(92②如图2,∵四边形QPFC是平行四边形,∴CQ∥PH,由①知:PH⊥BC,∴CQ⊥BC,Rt△QBC中,BC=6,∠QBC=60°,∴∠BQC=30°,∴CQ=6 √3,连接QA,∵AE=EC,QE⊥AC,∴QA=QC=6 √3,∴∠QAC=∠QCA=60°,∠CAB=30°,∴∠QAB=90°,∴Q(﹣92,6 √3),由①知:F(32,2 √3),由F到C的平移规律可得P到Q的平移规律,则P(﹣92﹣3,6 √3﹣√3),即P(﹣152,5 √3);③如图3,四边形CQFP是平行四边形,同理知:Q(﹣92,6 √3),F(32,2 √3),C(92,3 √3),∴P(212,﹣√3);综上所述,点P的坐标为:(92,√3)或(﹣152,5 √3)或(212,﹣√3).9.【答案】(1)解:由题意y1=|x|.函数图象如图所示:(2)解:①当点A在第一象限时,由题意A(2,2),∴2=k2,∴k=4.同法当点A在第二象限时,k=−4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<−2时,y1>y2或x>0时,y1>y2.10.【答案】(1)解:由题意得,设前5个月中y= kx,把x=1,y=100代入得,k=100,∴y与x之间的函数关系式为y= 100x(0<x<5,且x为整数),把x=5代入,得y=20,由题意设5月份以后y与x的函数关系式为y=10x+b,把x=5,y=20代入得,20=10×5+b,解得:b=-30,∴y与x之间的函数关系式为y=10x-30(x>5且x为整数);(2)解:在函数y=10x−30中,令y=100,得10x−30=100解得:x=13答:到第13个月时,该化工厂月利润再次达到100万元.(3)解:在函数y=100x中,当y=50时,x=2,∵100>0,y随x的增大而减小,∴当y<50时,x>2在函数y=10x−30中,当y<50时,得10x−30<50解得:x<8∴2<x<8且x为整数;∴x可取3,4,5,6,7;共5个月.答:该化工厂资金紧张期共有5个月.11.【答案】(1)解:∵点N的坐标为(2,0),CN⊥x轴,且CN=12,∴点C的坐标为(2,12).∵点C在反比例函数y1=nx的图象上,∴n=2×12=1.(2)解:四边形ABCD为菱形,理由如下:当n=2时,y1=nx=2x,y2=4nx=8x.当x=2时,y1=2x=1,y2=8x=4,∴点C的坐标为(2,1),点A的坐标为(2,4).∵点P是线段AC的中点,∴点P 的坐标为(2, 52 ). 当y = 52 时, 2x = 52 , 8x = 52 , 解得:x = 45 ,x = 165 ,∴点B 的坐标为( 45 , 52 ),点D 的坐标为( 165 , 52 ), ∴BP =2﹣ 45 = 65 ,DP = 165 ﹣2= 65 , ∴BP =DP .又∵AP =CP ,AC ⊥BD , ∴四边形ABCD 为菱形.(3)解:∵四边形ABCD 为正方形, ∴AC =BD ,且点P 为线段AC 及BD 的中点. 当x =2时,y 1= 12 n ,y 2=2n ,∴点A 的坐标为(2,2n ),点C 的坐标为(2, 12 n ),AC = 32 n , ∴点P 的坐标为(2, 54 n ).同理,点B 的坐标为( 45 , 54 n ),点D 的坐标为( 165 , 54 n ),BD = 125 . ∵AC =BD , ∴32 n = 125 , ∴n = 85 ,∴点A 的坐标为(2, 165 ),点B 的坐标为( 45 ,2). 设直线AB 的解析式为y =kx+b (k ≠0),将A (2, 165 ),B ( 45 ,2)代入y =kx+b ,得: {2k +b =16545k +b =2 ,解得: {b =65k =1 ,∴直线AB 的解析式为y =x+ 65 . 当x =0时,y =x+ 65 = 65 , ∴点E 的坐标为(0, 65 ),∴当四边形ABCD为正方形时,OE的长度为6.512.【答案】(1)证明:∵点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴,∴∠AOB=∠DCA=90°,在Rt△AOB和Rt△DCA中,AO=CD,AB=DA∴Rt△AOB≌Rt△DCA(HL)(2)解:在Rt△ACD中,CD=2,AD= √5,∴AC= =1,∴OC=OA+AC=2+1=3,∴D点坐标为(3,2),∵点E为CD的中点,∴点E的坐标为(3,1),k=3×1=3(3)解:点G在反比例函数的图象上.理由如下:∵△BFG和△DCA关于某点成中心对称,∴△BFG≌△DCA,∴FG=CA=1,BF=DC=2,∠BFG=∠DCA=90°,而OB=AC=1,∴OF=OB+BF=1+2=3,∴G点坐标为(1,3),∵1×3=3,∴G(1,3)在反比例函数y= 的图象上13.【答案】(1)解:∵OB =2OA =3OD =12 ∴OA =6,OD =4 ∴A(6,0),B(0,12)把 A(6,0),B(0,12) 分别代入 y =kx +b 得: {6k +b =0b =12 ,解之得: m =−4×20=−80 ∴一次函数的解析式为 y =−2x +12 令 x =−4 ,则 y =20 ∴C(−4,20)把 C(−4,20) 代入 y =mx 得:m =−4×20=−80∴反比例函数的解析式为 y =−80x ; (2)解:解方程组 {y =−2x +12y =−80x 得: {x 1=−4y 1=20,{x 2=10y 2=−8∴E(10,−8)∴S ΔCDE =S ΔADC +S ΔADE=12AD ⋅(CD +|y E |)=12×(4+6)×(20+8) =140(3)解:如图:当x <-4时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 −4 ≤ x <0 时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 当0<x <10时, y =mx 的图象在 y =kx +b 的下方,即 kx +b > mx ; 当 x ≥10时, y =mx 的图象在 y =kx +b 的上方,即 kx +b ≤ mx ; 综上可得,不等式 kx +b ≤ mx 的解集为 −4 ≤ x <0 或 x ≥10. 14.【答案】(1)2;4;2;23;43;2;2 数学思考: (2)BCAB =k 2−k 1k 1证明:∵AB ·OA =k 1 , AC ·OA =k 2 , ∴AC ·OA −AB ·OA =BC ·OA =k 2−k 1 ,∴BCAB =BC·OAAB·OA=k2−k1k1.推广应用:(3)解:若四边形ADFB是正方形,设点B的坐标为(a,b)(a>0,b>0),则有DF=DA=AB=a,OA=b,OD=a+b,∴点F的坐标为(a,a+b) .∵k2=12,BCAB =k2−k1k1=12,∴12−k1k1=12,解得:k1=8 .∵点B在y=8x 图象上,点F在y=12x图象上,∴ab=8,a (a+b)=12,∴a2=12−8=4,∴a=2,∴b=4,∴OA=4,点B的坐标为(2,4) .15.【答案】(1)解:由y=2x+2可知A(0,2),即OA=2,∵tan∠AHO=2,∴OH=1,∴H(1,0),∵MH⊥x轴,∴点M的横坐标为1,∵点M在直线y=2x+2上,∴点M的纵坐标为4,即M(1,4),∵点M在y=kx上,∴k=1×4=4;(2)解:①当AM=AP时,∵A(0,2),M(1,4),∴AM=√5,则AP=AM=√5,∴此时点P的坐标为(0,2﹣√5)或(0,2+ √5);②若AM=PM时,设P(0,y),则PM=√(1−0)2+(4−y)2,∴√(1−0)2+(4−y)2=√5,解得y=2(舍)或y=6,此时点P的坐标为(0,6),综上所述,点P的坐标为(0,6)或(0,2+ √5),或(0,2﹣√5);(3)解:∵点N(a,1)在反比例函数y=4x(x>0)图象上,∴a=4,∴点N(4,1),延长MN交x轴于点C,设直线MN的解析式为y=mx+n,则有{m+n=44m+n=1,,解得{m=−1n=5,∴直线MN的解析式为y=﹣x+5.∵点C是直线y=﹣x+5与x轴的交点,∴点C的坐标为(5,0),OC=5,∵S△MNQ=3,∴S△MNQ =S△MQC﹣S△NQC=12×QC×4﹣12×QC×1=32QC=3,∴QC=2,∵C(5,0),Q(m,0),∴|m﹣5|=2,∴m=7或3,故答案为7或3.16.【答案】(1)解:把点A(4,1)代入双曲线y1=k1x得k1=4,∴双曲线的解析式为y1=4x;把点A(4,1)代入直线y2=x k2得k2=4,∴直线的解析式为y2=14x(2)解:∵点P(a,b)在y1=4x的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴点P的坐标为(1,4),又∵双曲线y1=4x 与直线y2=14x的图象交于A、B两点,且点A的坐标为(4,1),∴点B的坐标为(−4,−1),过点P作PG∥y轴交AB于点G,如图所示,把x=1代入y2=14x,得到y=14,∴点G的坐标为(1,14),∴PG =4−14=154 , ∴S △ABP =12 PG ( x A −x B )=12×154×8=15 (3)解:PE=PF .理由如下:∵点P ( a , b )在 y 1=4x 的图象上,∴b =4a ,∵点B 的坐标为( −4 , −1 ), 设直线PB 的表达式为 y =mx +n , ∴{am +n =4a −4m +n =−1, ∴{m =1a n =4a −1, ∴直线PB 的表达式为 y =1a x +4a −1 , 当 y =0 时, x =a −4 ,∴E 点的坐标为( a −4 ,0), 同理:直线PA 的表达式为 y =−1a x +4a +1 , 当 y =0 时, x =a +4 ,∴F 点的坐标为( a +4 ,0),过点P 作PH ⊥x 轴于H ,如图所示,∵P 点坐标为(,∴H 点的坐标为( a ,0),∴EH =x H −x E =a −(a −4)=4 , FH =x F −x H =a +4−a =4 , ∴EH=FH ,∴PE=PF .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的概念1.一般的,形如____________的函数称为反比例函数,其中x 是______,y 是______.自变量x 的取值围是______.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别.(1)商场推出分期付款购电脑活动,每台电脑12000元,首付4000元,以后每月付y 元,x 个月全部付清,则y 与x 的关系式为____________,是______函数.(2)某种灯的使用寿命为1000小时,它的使用天数y 与平均每天使用的小时数x 之间的关系式为__________________,是______函数.(3)设三角形的底边、对应高、面积分别为a 、h 、S .当a =10时,S 与h 的关系式为____________,是____________函数; 当S =18时,a 与h 的关系式为____________,是____________函数. (4)某工人承包运输粮食的总数是w 吨,每天运x 吨,共运了y 天,则y 与x 的关系式为______,是______函数.3.下列各函数①x k y =、②x k y 12+=、③x y 53=、④14+=x y 、⑤x y 21-=、⑥31-=x y 、⑦24xy =和⑧y =3x -1中,是y 关于x 的反比例函数的有:____________(填序号). 4.若函数11-=m xy (m 是常数)是反比例函数,则m =____________,解析式为____________.5.近视眼镜的度数y (度)与镜片焦距x (m)成反比例,已知400度近视眼镜片的焦距为0.25m ,则y 与x 的函数关系式为____________. 6.已知函数xky =,当x =1时,y =-3,那么这个函数的解析式是( ). (A)xy 3=(B)x y 3-= (C)x y 31= (D)xy 31-=7.已知y 与x 成反比例,当x =3时,y =4,那么y =3时,x 的值等于( ).(A)4 (B)-4 (C)3 (D)-3 8.已知y 与x 成反比例,当x =2时,y =3. (1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值. 9.若函数522)(--=k xk y (k 为常数)是反比例函数,则k 的值是______,解析式为_________________________.10.已知y 是x 的反比例函数,x 是z 的正比例函数,那么y 是z 的______函数.11.某工厂现有材料100吨,若平均每天用去x 吨,这批原材料能用y 天,则y 与x 之间的函数关系式为( ).(A)y =100x(B)xy 100=(C)xy 100100-= (D)y =100-x 12.下列数表中分别给出了变量y 与变量x 之间的对应关系,其中是反比例函数关系的是( ).13.已知圆柱的体积公式V =S ·h .(1)若圆柱体积V 一定,则圆柱的高h (cm)与底面积S (cm 2)之间是______函数关系; (2)如果S =3cm 2时,h =16cm ,求: ①h (cm)与S (cm 2)之间的函数关系式;②S =4cm 2时h 的值以及h =4cm 时S 的值. 14.已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式. 15.已知函数y =y 1-y 2,且y 1为x 的反比例函数,y 2为x 的正比例函数,且23-=x 和x =1时,y 的值都是1.求y 关于x 的函数关系式.反比例函数的图象和性质(一)1.反比例函数xky =(k 为常数,k ≠0)的图象是______;当k >0时,双曲线的两支分别位于______象限,在每个象限y 值随x 值的增大而______;当k <0时,双曲线的两支分别位于______象限,在每个象限y 值随x 值的增大而______.2.如果函数y =2x k +1的图象是双曲线,那么k =______.3.已知正比例函数y =kx ,y 随x 的增大而减小,那么反比例函数xky =,当x <0时,y 随x 的增大而______.4.如果点(1,-2)在双曲线xky =上,那么该双曲线在第______象限. 5.如果反比例函数xk y 3-=的图象位于第二、四象限,那么满足条件的正整数k 的值是____________. 6.反比例函数xy 1-=的图象大致是图中的( ).7.下列函数中,当x >0时,y 随x 的增大而减小的是( ). (A)y =x(B)xy 1=(C)xy 1-= (D)y =2x8.下列反比例函数图象一定在第一、三象限的是( ).(A)x my =(B)xm y 1+=(C)xm y 12+=(D)xmy -=9.反比例函数y =221)(2--mx m ,当x >0时,y 随x 的增大而增大,则m 的值是( ).(A)±1(B)小于21的实数 (C)-1 (D)110.已知点A (x 1,y 1),B (x 2,y 2)是反比例函数xky =(k >0)的图象上的两点,若x 1<0<x 2,则有( ). (A)y 1<0<y 2 (B)y 2<0<y 1(C)y 1<y 2<0(D)y 2<y 1<011.作出反比例函数xy 12=的图象,并根据图象解答下列问题: (1)当x =4时,求y 的值; (2)当y =-2时,求x 的值; (3)当y >2时,求x 的围.12.已知直线y =kx +b 的图象经过第一、二、四象限,则函数xkby =的图象在第______象限. 13.已知一次函数y =kx +b 与反比例函数xkb y -=3的图象交于点(-1,-1),则此一次函数的解析式为____________,反比例函数的解析式为____________. 14.若反比例函数xky =,当x >0时,y 随x 的增大而增大,则k 的取值围是( ). (A)k <0(B)k >0(C)k ≤0(D)k ≥015.若点(-1,y 1),(2,y 2),(3,y 3)都在反比例函数xy 5=的图象上,则( ). (A)y 1<y 2<y 3 (B)y 2<y 1<y 3(C)y 3<y 2<y 1(D)y 1<y 3<y 216.对于函数xy 2-=,下列结论中,错误..的是( ). (A)当x >0时,y 随x 的增大而增大(B)当x <0时,y 随x 的增大而减小(C)x =1时的函数值小于x =-1时的函数值(D)在函数图象所在的每个象限,y 随x 的增大而增大 17.一次函数y =kx +b 与反比例函数xky =的图象如图所示,则下列说确的是( ).(A)它们的函数值y 随着x 的增大而增大 (B)它们的函数值y 随着x 的增大而减小 (C)k <0(D)它们的自变量x 的取值为全体实数 18.作出反比例函数xy 4-=的图象,结合图象回答: (1)当x =2时,y 的值;(2)当1<x ≤4时,y 的取值围; (3)当1≤y <4时,x 的取值围.19.已知一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-2,1),B (1,n )两点.(1)求反比例函数的解析式和B 点的坐标;(2)在同一直角坐标系中画出这两个函数的图象的示意图,并观察图象回答:当x 为何值时,一次函数的值大于反比例函数的值?(3)直接写出将一次函数的图象向右平移1个单位长度后所得函数图象的解析式.反比例函数的图象和性质(二)1.若反比例函数x ky =与一次函数y =3x +b 都经过点(1,4),则kb =______. 2.反比例函数xy 6-=的图象一定经过点(-2,______).3.若点A (7,y 1),B (5,y 2)在双曲线xy 3-=上,则y 1、y 2中较小的是______.4.函数y 1=x (x ≥0),xy 42=(x >0)的图象如图所示,则结论:①两函数图象的交点A 的坐标为(2,2); ②当x >2时,y 2>y 1; ③当x =1时,BC =3;④当x 逐渐增大时,y 1随着x 的增大而增大,y 2随着x 的增大而减小. 其中正确结论的序号是____________.5.当k <0时,反比例函数xky =和一次函数y =kx +2的图象大致是( ).(A)(B)(C)(D)6.如图,A 、B 是函数xy 2=的图象上关于原点对称的任意两点,B C ∥x 轴,A C ∥y 轴, △ABC 的面积记为S ,则( ).(A)S =2 (B)S =4 (C)2<S <4(D)S >47.若反比例函数xy 2-=的图象经过点(a ,-a ),则a 的值为( ). (A)2(B)2-(C)2±(D)±28.如图,反比例函数xky =的图象与直线y =x -2交于点A ,且A 点纵坐标为1,求该反比例函数的解析式.9.已知关于x 的一次函数y =-2x +m 和反比例函数xn y 1+=的图象都经过点A (-2,1),则m =______,n =______.10.直线y =2x 与双曲线x y 8=有一交点(2,4),则它们的另一交点为______. 11.点A (2,1)在反比例函数xky =的图象上,当1<x <4时,y 的取值围是__________.12.已知y =(a -1)x a 是反比例函数,则它的图象在( ).(A)第一、三象限 (B)第二、四象限 (C)第一、二象限 (D)第三、四象限13.在反比例函xky -=1的图象的每一条曲线上,y 都随x 的增大而增大,则k 的取值可以是( ). (A)-1(B)0(C)1(D)214.如图,点P 在反比例函数xy 1=(x >0)的图象上,且横坐标为2.若将点P 先向右平移两个单位,再向上平移一个单位后得到点P ′.则在第一象限,经过点P ′的反比例函数图象的解析式是( )(A))0(5>-=x x y (B))0(5>=x x y (C))0(5>-=x xy(D))0(6>=x xy15.如图,点A 、B 是函数y =x 与xy 1=的图象的两个交点,作AC ⊥x 轴于C ,作BD ⊥x 轴于D ,则四边形ACBD 的面积为( ).(A)S >2 (B)1<S <2 (C)1(D)216.如图,已知一次函数y 1=x +m (m 为常数)的图象与反比例函数xky =2(k 为常数,k ≠0)的图象相交于点A (1,3).(1)求这两个函数的解析式及其图象的另一交点B 的坐标; (2)观察图象,写出使函数值y 1≥y 2的自变量x 的取值围.17.已知:如图,在平面直角坐标系xOy 中,Rt △OCD 的一边OC 在x 轴上,∠C =90°,点D 在第一象限,OC =3,DC =4,反比例函数的图象经过OD 的中点A .(1)求该反比例函数的解析式;(2)若该反比例函数的图象与Rt △OCD 的另一边交于点B ,求过A 、B 两点的直线的解析式. 18.已知正比例函数和反比例函数的图象都经过点A (3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA 向下平移后与反比例函数的图象交于点B (6,m ),求m 的值和这个一次函数的解析式; (3)在(2)中的一次函数图象与x 轴、y 轴分别交于C 、D ,求四边形OABC 的面积.反比例函数的图象和性质(三)1.正比例函数y =k 1x 与反比例函数x ky 2=交于A 、B 两点,若A 点坐标是(1,2),则B 点坐标是______.2.观察函数xy 2-=的图象,当x =2时,y =______;当x <2时,y 的取值围是______;当y ≥-1时,x 的取值围是______.3.如果双曲线xky =经过点)2,2(-,那么直线y =(k -1)x 一定经过点(2,______). 4.在同一坐标系中,正比例函数y =-3x 与反比例函数)0(>=k xky 的图象有______个交点.5.如果点(-t ,-2t )在双曲线x ky =上,那么k ______0,双曲线在第______象限.6.如图,点B 、P 在函数)0(4>=x xy 的图象上,四边形COAB 是正方形,四边形FOEP 是长方形,下列说法不正确的是( ).(A)长方形BCFG 和长方形GAEP 的面积相等 (B)点B 的坐标为(4,4) (C)xy 4=的图象关于过O 、B 的直线对称 (D)长方形FOEP 和正方形COAB 面积相等 7.反比例函数xky =在第一象限的图象如图所示,则k 的值可能是( ).(A)1(B)2(C)3(D)48.已知点A (m ,2)、B (2,n )都在反比例函数xm y 3+=的图象上. (1)求m 、n 的值;(2)若直线y =mx -n 与x 轴交于点C ,求C 关于y 轴对称点C ′的坐标.9.在平面直角坐标系xOy 中,直线y =x 向上平移1个单位长度得到直线l .直线l 与反比例函数xky =的图象的一个交点为A (a ,2),求k 的值.10.如图,P 是反比例函数图象上第二象限的一点,且矩形PEOF 的面积为3,则反比例函数的解析式是______.11.如图,在直角坐标系中,直线y =6-x 与函数)0(5>=x xy 的图象交于A ,B ,设A (x 1,y 1),那么长为x 1,宽为y 1的矩形的面积和周长分别是______.12.已知函数y =kx (k ≠0)与xy 4-=的图象交于A ,B 两点,若过点A 作AC 垂直于y 轴,垂足为点C ,则△BOC 的面积为____________.13.在同一直角坐标系中,若函数y =k 1x (k 1≠0)的图象与xky 2=)0(2≠k 的图象没有公共点,则k 1k 2______0.(填“>”、“<”或“=”)14.若m <-1,则函数①)0(>=x xmy ,②y =-mx +1,③y =mx ,④y =(m +1)x 中,y 随x 增大而增大的是( ).(A)①④(B)②(C)①②(D)③④15.在同一坐标系中,y =(m -1)x 与xmy -=的图象的大致位置不可能的是( ).16.如图,A 、B 两点在函数)0(>=x xmy 的图象上.(1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数. 17.如图,等腰直角△POA 的直角顶点P 在反比例函数xy 4=)0(>x 的图象上,A 点在x 轴正半轴上,求A 点坐标.18.如图,函数xy 5=在第一象限的图象上有一点C (1,5),过点C 的直线y =-kx +b (k >0)与x 轴交于点A (a ,0).(1)写出a 关于k 的函数关系式;(2)当该直线与双曲线xy 5=在第一象限的另一交点D 的横坐标是9时,求△COA 的面积. 19.如图,一次函数y =kx +b 的图象与反比例函数xmy =的图象交于A (-3,1)、B (2,n )两点,直线AB分别交x 轴、y 轴于D 、C 两点.(1)求上述反比例函数和一次函数的解析式; (2)求CDAD的值.实际问题与反比例函数(一)1.一个水池装水12m 3,如果从水管中每小时流出x m 3的水,经过y h 可以把水放完,那么y 与x 的函数关系式是______,自变量x 的取值围是______. 2.若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系是______ (不考虑x 的取值围).3.某一数学课外兴趣小组的同学每人制作一个面积为200 cm 2的矩形学具进行展示.设矩形的宽为x cm ,长为y cm ,那么这些同学所制作的矩形的长y (cm)与宽x (cm)之间的函数关系的图象大致是( ).4.下列各问题中两个变量之间的关系,不是反比例函数的是( ).(A)小明完成百米赛跑时,所用时间t (s)与他的平均速度v (m/s)之间的关系 (B)长方形的面积为24,它的长y 与宽x 之间的关系(C)压力为600N 时,压强p (Pa)与受力面积S (m 2)之间的关系(D)一个容积为25L 的容器中,所盛水的质量m (kg)与所盛水的体积V (L)之间的关系5.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸气体的体积和气体对汽缸壁所产生的压强,如下表:体积x /ml 100 80 60 40 20 压强y /kPa6075100150300(A)y =3000x(B)y =6000x(C)xy 3000=(D)xy 6000=6.甲、乙两地间的公路长为300km ,一辆汽车从甲地去乙地,汽车在途中的平均速度为v (km/h),到达时所用的时间为t (h),那么t 是v 的______函数,v 关于t 的函数关系式为______.7.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布y (m 2)与半径R (m)的函数关系式是(不考虑塑料埋在土里的部分)__________________.8.一正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示,设小矩形的长和宽分别为x、y,剪去部分的面积为20,若2≤x≤10,则y与x的函数图象是( ).9.一个长方体的体积是100cm3,它的长是y(cm),宽是5cm,高是x(cm).(1)写出长y(cm)关于高x(cm)的函数关系式,以及自变量x的取值围;(2)画出(1)中函数的图象;(3)当高是3cm时,求长.实际问题与反比例函数(二)1.一定质量的氧气,密度是体积V的反比例函数,当V=8m3时,=1.5kg/m3,则与V的函数关系式为______.2.由电学欧姆定律知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=20时,电流强度I=0.25A.则(1)电压U=______V;(2)I与R的函数关系式为______;(3)当R=12.5时的电流强度I=______A;(4)当I=0.5A时,电阻R=______.3.如图所示的是一蓄水池每小时的排水量V/m3·h-1与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______m3;(2)此函数的解析式为____________;(3)若要在6h排完水池中的水,那么每小时的排水量至少应该是______m3;(4)如果每小时的排水量是5m3,那么水池中的水需要______h排完.4.一定质量的二氧化碳,当它的体积V=4m3时,它的密度p=2.25kg/m3.(1)求V与的函数关系式;(2)求当V=6m3时,二氧化碳的密度;(3)结合函数图象回答:当V≤6m3时,二氧化碳的密度有最大值还是最小值?最大(小)值是多少? 5.下列各选项中,两个变量之间是反比例函数关系的有( ).(1)小用10元钱去买铅笔,购买的铅笔数量y(支)与铅笔单价x(元/支)之间的关系(2)一个长方体的体积为50cm3,宽为2cm,它的长y(cm)与高x(cm)之间的关系(3)某村有耕地1000亩,该村人均占有耕地面积y(亩/人)与该村人口数量n(人)之间的关系(4)一个圆柱体,体积为100cm3,它的高h(cm)与底面半径R(cm)之间的关系(A)1个(B)2个(C)3个(D)4个6.一个气球充满了一定质量的气体,当温度不变时,气球气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)写出这一函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?7.一个闭合电路中,当电压为6V时,回答下列问题:(1)写出电路中的电流强度I(A)与电阻R()之间的函数关系式;(2)画出该函数的图象;(3)如果一个用电器的电阻为5,其最大允许通过的电流强度为1A,那么把这个用电器接在这个闭合电路中,会不会被烧?试通过计算说明理由.8.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释效过程中,室每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值围;(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?9.水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:第1天第2天第3天第4天第5天第6天第7天第8天售价400 250 240 200 150 125 120x(元/千克)销售量y/千30 40 48 60 80 96 100克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?反比例函数的概念1.xky =(k 为常数,k ≠0),自变量,函数,不等于0的一切实数. 2.(1)x y 8000=,反比例; (2)x y 1000=,反比例; (3)s =5h ,正比例,h a 36=,反比例;(4)xwy =,反比例.3.②、③和⑧. 4.2,x y 1=. 5.)0(100>⋅=x xy 6.B . 7.A .8.(1)xy 6=; (2)x =-4. 9.-2,⋅-=x y 410.反比例. 11.B . 12.D .13.(1)反比例; (2)①S h 48=; ②h =12(cm), S =12(cm 2).14.⋅-=325x y 15..23x xy -=反比例函数的图象和性质(一)1.双曲线;第一、第三,减小;第二、第四,增大. 2.-2. 3.增大. 4.二、四. 5.1,2. 6.D . 7.B . 8.C . 9.C . 10.A . 11.列表:x … -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 … y… -2 -2.4 -3 -4 -6 -12 126432.42…由图知,(1)y =3; (2)x =-6; (3)0<x <6. 12.二、四象限. 13.y =2x +1,⋅=xy 1 14.A . 15.D 16.B 17.C 18.列表:x … -4 -3 -2 -1 1 2 3 4 … y…134 24-4-2 -34-1 …(1)y =-2;(2)-4<y ≤-1; (3)-4≤x <-1.19.(1)xy 2-=, B (1,-2); (2)图略x <-2或0<x <1时; (3)y =-x . 反比例函数的图象和性质(二)1.4. 2.3. 3.y 2. 4.①③④. 5.B . 6.B . 7.C . 8.xy 3=. 9.-3;-3. 10.(-2,-4). 11..221<<y . 12.B . 13.D. 14.D . 15.D .16.(1)x y 3=,y =x +2;B (-3,-1); (2)-3≤x <0或x ≥1. 17.(1))0(3>=x x y ;(2).332+-=x y 18.(1)x y x y 9,==;(2)23=m ;;29-=x y(3)S 四边形OABC =1081.反比例函数的图象和性质(三)1.(-1,-2). 2.-1,y <-1或y >0,x ≥2或x <0. 3..224--4.0. 5.>;一、三. 6.B . 7.C 8.(1)m =n =3;(2)C ′(-1,0). 9.k =2. 10.⋅-=xy 311.5,12. 12.2. 13.<. 14.C . 15.A . 16.(1)m =6,y =-x +7;(2)3个. 17.A(4,0).18.(1)解⎩⎨⎧=+-=+-0,5b ak b k 得15+=k a ;(2)先求出一次函数解析式95095+-=x y ,A (10,0),因此S △COA =25. 19.(1)2121,3--=-=x y x y ;(2).2=CD AD实际问题与反比例函数(一)1.xy 12=;x >0. 2.⋅=x y 903.A . 4.D . 5.D .6.反比例;⋅=tV 3007.y =30R +R 2(R >0). 8.A .9.(1))0(20>=x x y ; (2)图象略; (3)长cm.320.实际问题与反比例函数(二)1.).0(12>=V vρ 2.(1)5; (2)R I 5=; (3)0.4; (4)10.3.(1)48; (2))0(48>=t tV ; (3)8; (4)9.6. 4.(1))0(9>=ρρV ; (2)=1.5(kg/m 3); (3)有最小值1.5(kg/m 3).5.C . 6.(1)V p 96=; (2)96 kPa ; (3)体积不小于3m 3524.7.(1))0(6>=R RI ; (2)图象略; (3)I =1.2A >1A ,电流强度超过最大限度,会被烧. 8.(1)x y 43=,0≤x ≤12;y =x 108(x >12); (2)4小时. 9.(1)xy 12000=;x 2=300;y 4=50; (2)20天反比例函数全章测试1.反比例函数xm y 1+=的图象经过点(2,1),则m 的值是______. 2.若反比例函数xk y 1+=与正比例函数y =2x 的图象没有交点,则k 的取值围是____ __;若反比例函数xky =与一次函数y =kx +2的图象有交点,则k 的取值围是______. 3.如图,过原点的直线l 与反比例函数xy 1-=的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是____________.4.一个函数具有下列性质:①它的图象经过点(-1,1); ②它的图象在第二、四象限; ③在每个象限,函数值y 随自变量x 的增大而增大. 则这个函数的解析式可以为____________.5.如图,已知点A 在反比例函数的图象上,AB ⊥x 轴于点B ,点C (0,1),若△ABC 的面积是3,则反比例函数的解析式为____________.6.已知反比例函数xky =(k 为常数,k ≠0)的图象经过P (3,3),过点P 作PM ⊥x 轴于M ,若点Q 在反比例函数图象上,并且S △QOM =6,则Q 点坐标为______. 7.下列函数中,是反比例函数的是( ). (A)32x y =(B 32xy =(C)xy 32=(D)xy -=328.如图,在直角坐标中,点A 是x 轴正半轴上的一个定点,点B 是双曲线xy 3=(x >0)上的一个动点,当点B 的横坐标逐渐增大时,△OAB 的面积将会( ).(A)逐渐增大 (B)不变(C)逐渐减小(D)先增大后减小9.如图,直线y =mx 与双曲线xky =交于A ,B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM ,若S △ABM=2,则k 的值是( ).(A)2(B)m -2(C)m(D)410.若反比例函数xky =(k <0)的图象经过点(-2,a ),(-1,b ),(3,c ),则a ,b ,c 的大小关系为( ). (A)c >a >b (B)c >b >a (C)a >b >c(D)b >a >c11.已知k 1<0<k 2,则函数y =k 1x 和x ky 2=的图象大致是( ).12.当x <0时,函数y =(k -1)x 与xky 32-=的y 都随x 的增大而增大,则k 满足( ). (A)k >1 (B)1<k <2 (C)k >2 (D)k <113.某气球充满了一定质量的气体,当温度不变时,气球气体的气压p (kPa)是气体体积V (m 3)的反比例函数,其图象如图所示.当气球的气压大于140kPa 时,气球将爆炸.为了安全起见,气体体积应( ).(A)不大于3m 3524 (B)不小于3m 3524(C)不大于3m 3724 (D)不小于3m 3724 14.一次函数y =kx +b 和反比例函数axky =的图象如图所示,则有( ).(A)k >0,b >0,a >0 (B)k <0,b >0,a <0 (C)k <0,b >0,a >0 (D)k <0,b <0,a >015.如图,双曲线xky =(k >0)经过矩形OABC 的边BC 的中点E ,交AB 于点D 。