反比例函数经典习题及答案
(完整版)反比例函数练习题集锦(含答案)
反比例函数练习题集锦(含答案)1、综合题1、如图,已知直线与双曲线交于两点,且点的横坐标为.(1)求的值;(2)若双曲线上一点的纵坐标为8,求的面积;(3)过原点的另一条直线交双曲线于两点(点在第一象限),若由点为顶点组成的四边形面积为,求点的坐标.2、已知一次函数与双曲线在第一象限交于A、B两点,A点横坐标为1.B点横坐标为4(1)求一次函数的解析式;(2)根据图象指出不等式的解集;(2) 点P是x轴正半轴上一个动点,过P点作x轴的垂线分别交直线和双曲线于M、N,设P点的横坐标是t(t>0),△OMN的面积为S,求S和t的函数关系式,并指出t的取值范围。
二、简答题3、.已知:如图,在平面直角坐标系中,直线AB 分别与轴交于点B、A,与反比例函数的图象分别交(1)求该反比例函数的解析式;(2)求直线AB的解析式.4、如图,已知正比例函数与反比例函数的图象交于两点.(1)求出两点的坐标;的范围;(2)根据图象求使正比例函数值大于反比例函数值的三、计算题5、为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒。
已知药物释放过程中,室内每立方米空气中含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t 的函数关系为(为常数)。
如下图所示,据图中提供的信息,解答下列问题:(1)写出从药物释放开始,y与t之间的两个函数关系式及相应的自变量取值范围;(2)据测定,当空气中每立方米和含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?6、如图,在直角坐标系xOy中,一次函数y=k1x+b 的图象与反比例函数的图象交于A(1,4).B(3,m)两点。
(1)求一次函数的解析式;的面积。
(2)求△AOB7、如图,一次函数y=kx+b的图象与反比例函数y=图象交于A(-2,1)、B(1,n)两点.(1) 求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB的面积。
反比例函数考试题(含答案)
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
(完整版)反比例函数基础练习题及答案
反比例函数练习一一.选择题(共22小题)1.(2015春•泉州校级期中)下列函数中,y是x的反比例函数的为()A.y=2x+1 B.C.D.2y=x2.(2015春•兴化市校级期中)函数y=k是反比例函数,则k的值是()A.﹣1 B.2 C.±2 D.±3.(2015春•衡阳县期中)若y=(m﹣1)x|m|﹣2是反比例函数,则m的值为()A.m=2 B.m=﹣1 C.m=1 D.m=04.(2014•汕尾校级模拟)若y与x成反比例,x与z成反比例,则y是z的()A.正比例函数B.反比例函数C.一次函数D.不能确定5.(2014春•常州期末)反比例函数(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是()A.m<0 B.C.D.m≥6.(2015•贺州)已知k1<0<k2,则函数y=和y=k2x﹣1的图象大致是()A.B. C.D.7.(2015•滦平县二模)在同一直角坐标系中,函数y=kx+k与y=(k≠0)的图象大致为()A.B.C.D.8.(2015•上海模拟)下列函数的图象中,与坐标轴没有公共点的是()A.B.y=2x+1 C.y=﹣x D.y=﹣x2+19.(2015•宝安区二模)若ab>0,则函数y=ax+b与函数在同一坐标系中的大致图象可能是()A.B.C.D.10.(2015•鱼峰区二模)若方程=x+1的解x0满足1<x0<2,则k可能是()A.1 B.2 C.3 D.611.(2012•颍泉区模拟)如图,有反比例函数y=,y=﹣的图象和一个圆,则图中阴影部分的面积是()第11题图第12题图A.πB.2πC.4πD.条件不足,无法求12.(2010•深圳)如图所示,点P(3a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的解析式为()A.y=B.y=C.y=D.y=13.(2014•随州)关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小14.(2014•昆明)如图是反比例函数y=(k为常数,k≠0)的图象,则一次函数y=kx﹣k 的图象大致是()A.B.C.D.15.(2014•天水)已知函数y=的图象如图,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(﹣1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上.其中正确的个数是()A.4个B.3个C.2个D.1个16.(2014•杭州)函数的自变量x满足≤x≤2时,函数值y满足≤y≤1,则这个函数可以是()A.y=B.y=C.y=D.y=17.(2014•阜新)反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣118.(2015•凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是()第18题图第19题图A.10 B.11 C.12 D.1319.(2015•眉山)如图,A、B是双曲线y=上的两点,过A点作AC⊥x轴,交OB于D 点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()A.B.C.3 D.420.(2014•绥化)如图,过点O作直线与双曲线y=(k≠0)交于A、B两点,过点B作BC⊥x轴于点C,作BD⊥y轴于点D.在x轴上分别取点E、F,使点A、E、F在同一条直线上,且AE=AF.设图中矩形ODBC的面积为S1,△EOF的面积为S2,则S1、S2的数量关系是()第20题图第21题图A.S1=S2B.2S1=S2C.3S1=S2D.4S1=S2 21.(2014•抚顺)如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小22.(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C,则△AOC的面积为()A.8 B.10 C.12 D.24二.填空题(共4小题)23.(2015•锦江区一模)已知y=(a﹣1)是反比例函数,则a=.24.(2014•江西模拟)已知反比例函数的解析式为y=,则最小整数k=.25.(2013•路北区二模)函数y=,当y≥﹣2时,x的取值范围是(可结合图象求解).26.(2014•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是.(写出一个符合条件的值即可)三.解答题(共4小题)27.(2014春•东城区校级期中)已知反比例函数y=﹣(1)说出这个函数的比例系数;(2)求当x=﹣10时函数y的值;(3)求当y=6时自变量x的值.28.(2013春•汉阳区校级期中)已知函数y=(5m﹣3)x2﹣n+(n+m),(1)当m,n为何值时是一次函数?(2)当m,n为何值时,为正比例函数?(3)当m,n为何值时,为反比例函数?29.(2013•德宏州)如图,是反比例函数y=的图象的一支.根据给出的图象回答下列问题:(1)该函数的图象位于哪几个象限?请确定m的取值范围;(2)在这个函数图象的某一支上取点A(x1,y1)、B(x2,y2).如果y1<y2,那么x1与x2有怎样的大小关系?30.(2014•苏州)如图,已知函数y=(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=AC时,求CE的长.答案:一.选择题(共22小题)1.C 2.D 3.B 4.A 5.C 6.C 7.B 8.A 9.C 10.C 11.B 12.D 13.D 14.B 15.B 16.A 17.D 18.C 19.B20.B 21.C 22.C二.填空题(共4小题)23.-1 24.1 25.x≤-2或x>0 26.-1(答案不唯一)三.解答题(共4小题)27.28.29.30.。
反比例函数经典例题(有答案)
一、反比例函数的对称性1、直线y=ax (a>0)与双曲线y= 3/x 交于A (x i, y〔)、B (X2, y2)两点,贝U 4x i y2-3x2y i=2、如图1,直线y=kx (k>0)与双曲线y= 2/x交于A, B两点,若A B两点的坐标分别为A (x i, y i),B (x2, y2),贝U x i y2+x2y i 的值为( )A 、-8B 、4C 、-4D 、0解析:直线Y=KX和双曲线Y=2/X图象都关于原点对称因此两交点A、B也关于原点对称X2=-Xi, Y2=-Yi双曲线形式可变化为XY=2即双曲线上点的横纵坐标乘积为 2因此XiYi=2XiY2+X2Yi=Xi(-Yi) + (-Xi) Yi=-XiYi-XiYi=-4图i 图2 图3 图4二、反比例函数中“ K”的求法1、如图2,直线l是经过点(i, 0)且与y轴平行的直线.Rt△ ABC中直角边AC=4, BC=3将BC边在直线l上滑动,使A, B在函数y=k/x的图象上.那么k的值是( )A、3 B 、6 C 、i2 D 、i5/4解析:BC 在直线X=i 上,设B(i , M),贝U C(i, M-3), .••A(5, M-3), 又A B都在双曲线上,二i*M=5*(M-3) , M=i5/4 即K=i5/4 2、如图3,已知点A、B在双曲线y= k/x (x>0)上,Adx轴于点C, Bdy轴于点D, AC与BD交于点P, P是AC的中点,若△ ABP的面积为3,则k=解析:A(xi,k/xi),B(x2,k/x2)AC:x=xi BD:y=k/x2P(xi,k/x2)k/x2=k/2xi 2xi=x2BP=x2-xi=xiAP=k/xi-k/x2=k/2xiS=xi*k/(2xi)*i/2)=k/4=3 k=i23、如图4,双曲线y= k/x (k > 0)经过矩形OABC的边BC的中点E,交AB于点D.若梯形ODBC的面积为3,则双曲线的解析式为( )A、y=i/xB、y=2/xC、y=3/xD、=6/解析:设E(x0,k/x0)E 是BC中点,二B(x0,2k/x0)B、D两点纵坐标相同,二D(x0/2,2k/x0)BD=x0/2,OC=x0,BC=2k/x0梯形面积=(BD+OC/ BC/2=3k/2=3•,- k=2 .•.双曲线的解析式为:y=2/x三、反比例函数“ K”与面积的关系1、如图5,已知双曲线y i=1/x(x >0) , y2=4/x(x >0),点P为双曲线y2=4/x上的一点,且PAlx 轴于点A, PBLy轴于点B, PA PB分别次双曲线y=/x于D C两点,则^ PCD的面积为( ) 图5 图6 图7解析:假设P的坐标为(a,b ),则C (a/4,b), D(a,b/4),PC=3/4*a PD=3/4*bS=1/2*3/4*a*3/4*b因为点P为双曲线y2=4/x上的一点所以a*b=4所以S=9/82、如图6,直线l和双曲线y=k/x(k >0)交于A B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为G D、E,连接OA OB 0P,设AAOC勺面积为S、△ BOD的面积为&、APOE的面积为S3,则( )A S I<S3B 、S I>S2>S3C 、S I=S2>&D 、S=S< S3解析:结合题意可得:AB者S在双曲线y=kx上,则有S1=S2而AB之间,直线在双曲线上方;故S1=SK S3.3、如图7,已知直线y=-x+3与坐标轴交于A、B两点,与双曲线y=k/x交于G D两点,且S3O C=&CO D=S\BOD 贝1J k=。
反比例函数练习题及答案6套
反比例函数练习(1)一、判断题 1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是______________ 三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y = (C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗? ③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。
(完整版)反比例函数经典习题及答案
反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。
A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 38.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4OA 1 A 2 A 3 P 1 P 2 P 3xy11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6y x=-图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 18.已知点P 在函数2y x=(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)OyMNl23.已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;(Ⅱ)当31<<x 时,求y 的取值范围.(7分)24.如图,已知双曲线ky x=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)25.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(0,0)k x << 的图象上,点P(m ,n)是函数ky x=(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F . (1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)A B CO y x y xOFAB EC参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k y x =的图象上,可求得9k =.所以反比例函数的解析式为9y x=. 22.解:设所求反比例函数的表达式为x ky =,因为S △AOT =k 21,所以k 21=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8y x =-;又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y .24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -21×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =2k x的图象经过点(1,1),∴1=2k解得k=2,∴反比例函数的解析式为y=1x.∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2).26.解:(1)设所求的反比例函数为xky =,依题意得: 6 =2k ,∴k=12. ∴反比例函数为x y 12=.(2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3.27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,284(2)S m m=+<-。
反比例函数练习题(超经典含答案)
1.函数ky x=的图象经过点(23),,那么k 等于 A .6 B .16 C .23 D .322.已知反比例函数2k y x-=,其图象在第二、四象限内,则k 的值可为A .0B .2C .3D .53.已知反比例函数y =2x,则下列点中在这个反比例函数图象上的是 A .(1,2)B .(1,-2)C .(-2,-2)D .(-2,1)4.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 A .正比例函数 B .反比例函数 C .一次函数D .二次函数5.已知反比例函数y =-4x,则下列有关该函数的说法正确的是 A .该函数的图象经过点(2,2)B .该函数的图象位于第一、三象限C .当x >0时,y 的值随x 的增大而增大D .当x >-1时,y >46.如图,反比例函数ky x =(k >0)与一次函数12y x b =+的图象相交于两点A(1x ,1y ),B (2x ,2y ),线段AB 交y 轴与C ,当|1x -2x |=2且AC =2BC 时,k 、b 的值分别为A .k =12,b =2 B .k =49,b =1C.k=13,b=13D.k=49,b=137.如图,四边形QABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为A.2 B.3 C.4 D.58.如图,在平面直角坐标系中,梯形OACB的顶点O是坐标原点,OA边在y轴正半轴上,OB边在x轴正半轴上,且OA∥BC,双曲线y=kx(x>0)经过AC边的中点,若S梯形OACB=4,则双曲线y=kx的k值为A.5 B.4 C.3 D.29.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y=4x(x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积是A.2 B.C.4 D.6 10.若y=(5+m)x2+n是反比例函数,则m、n的取值是__________.11.如果函数y=kx-2(k≠0)的图象不经过第一象限,那么函数kyx的图象一定在__________.12.反比例函数y =1k x与正比例函数y =k 2x 的图象的一个交点为(2,m ),则12k k =__________.13.如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,反比例函数y =kx(k ≠0,x >0)的图象经过矩形OABC 的对角线AC 的中点D .若矩形OABC 的面积为16,则k 的值为__________.14.已知函数2212mm y m m x --=+().(1)如果y 是x 的正比例函数,求m 的值;(2)如果y 是x 的反比例函数,求出m 的值,并写出此时y 与x 的函数关系式.15.已知121y y y y =+,与2x 在正比例关系,2y 与x 成反比例函数关系,且1x =时,31y x ==-,时,1y =.(1)求y 与x 的关系式; (2)求当2x =-时,y 的值.16.已知A(-4,2)、B(n,-4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b-mx>0的解集.17.如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.18.如图,点A 、B 为直线y x =上的两点,过A 、B 两点分别作y 轴的平行线交双曲线1y x=(x >0)于点C 、D 两点.若2BD AC =,则224OC OD -的值为A .5B .6C .7D .819.如图,Rt OAB △的顶点与坐标原点重合,903AOB AO BO ∠=︒=,,当A 点在反比例函数9(0)y x x=>图象上移动时,B 点坐标满足的函数解析式是A .1(0)y x x =-< B .3(0)y x x =-< C .1(0)3y x x=-<D .1(0)9y x x=-<20.如图,点A 在反比例函数y =kx(k ≠0)的图象上,且点A 是线段OB 的中点,点D 为x 轴上一点,连接BD 交反比例函数图象于点C ,连接AC ,若BC ∶CD =2∶1,S △ADC =103.则k 的值为A .203 B .16 C .283D .1021.如图,直线y =x +m 与双曲线y =2x相交于A ,B 两点,BC ∥x 轴,AC ∥y 轴,则△ABC 面积的最小值为__________.22.如图,点A 的坐标是(2,0),△ABO 是等边三角形,点B 在第一象限,若反比例函数y =kx的图象经过点B ,则k 的值是__________.23.如图,在函数y 1=1k x (x <0)和y 2=2kx(x >0)的图象上,分别有A 、B 两点,若AB ∥x 轴,交y 轴于点C ,且OA ⊥OB ,S △AOC =12,S △BOC =92,则线段AB 的长度为__________.24.如图,矩形OABC 的顶点A 、C 分别在x 、y 轴的正半轴上,点D 为对角线OB 的中点,点(4)E n ,在边AB 上,反比例函数(0)ky k x=≠在第一象限内的图象经过点D 、E ,且D 点的横坐标是它的纵坐标的2倍. (1)求边AB 的长;(2)求反比例函数的解析式和n 的值;(3)若反比例函数的图象与矩形的边BC 交于点F ,将矩形折叠,使点O 与点F 重合,折痕分别与x 、y 轴正半轴交于点H 、G ,求线段OG 的长.25.如图,直线2(0)y kx k =->与双曲线ky x=在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ,作RM x ⊥轴于点M ,若OPQ △与PRM △的面积是41∶,求k .26.(2018·辽宁本溪)反比例函数(0)ky k x=≠的图象经过点(-2,3),则该反比例函数图象在A .第一、三象限B .第二、四象限C .第二、三象限D .第一、二象限27.(2018·青海)若111()P x y ,,222()P x y ,是函数5y x=图象上的两点,当120x x >>时,下列结论正确的是 A .120y y <<B .210y y <<C .120y y <<D .210y y <<28.(2018·山东莱芜)在平面直角坐标系中,已知△ABC 为等腰直角三角形,CB =CA =5,点C (0,3),点B 在x 轴正半轴上,点A 在第三象限,且在反比例函数y =kx的图象上,则k = A .3B .4C .6D .1229.(2018·山东日照)已知反比例函数y =-8x,下列结论:①图象必经过(-2,4);②图象在二,四象限内;③y 随x 的增大而增大;④当x >-1时,则y >8.其中错误的结论有 A .3个B .2个C .1个D .0个30.(2018·甘肃天水)函数y 1=x 和y 2=1x的图象如图所示,则y 1>y 2时,x 的取值范围是A .x <-1或x >1B .x <-1或0<x <1C .-1<x <0或x >1D .-1<x <0或0<x <131.(2018·湖南益阳)若反比例函数2ky x-=的图象位于第二、四象限,则k 的取值范围是__________.32.(2018·江苏镇江)反比例函数y =kx(k ≠0)的图象经过点A (-2,4),则在每一个象限内,y 随x 的增大而__________.(填“增大”或“减小”) 33.(2018·广西壮族自治区)已知直线y =ax (a ≠0)与反比例函数y =kx(k ≠0)的图象一个交点坐标为(2,4),则它们另一个交点的坐标是__________. 34.(2018·山东济宁)如图,点A 是反比例函数y =4x(x >0)图象上一点,直线y =kx +b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.35.(2018·甘肃兰州)如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2ky x=的图象交于点(12)A ,和(2)B m -,. (1)求一次函数和反比例函数的表达式; (2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE x ∥轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若2AC CD =,求点C 的坐标.4.【答案】B【解析】∵1ax-+y=0,∴y=-1ax-.即y=-ax,∵a≠0,∴y是x的反比例函数.故选B.5.【答案】C【解析】∵当x=2时,y=-2,故不正确;∵-4<0,∴该函数的图象位于第二、四象限,故不正确;∵该函数的图象位于第二、四象限,∴当x>0时,y的值随x的增大而增大,故正确;∵当x>-1时,y<4,故不正确.故选C.6.【答案】D7.【答案】A【解析】∵OA=1,OC=6,∴B点坐标为(1,6),∴k=1×6=6,∴反比例函数解析式为y=6x,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )·t =6,整理为t 2+t -6=0, 解得t 1=-3(舍去),t 2=2,∴正方形ADEF 的边长为2.故选A . 8.【答案】D【解析】过AC 的中点P 作DE x ∥轴交y 轴于D ,交BC 于E ,作PF x ⊥轴于F ,如图,在PAD △和PCE △中,APD CPE ADP PEC PA PC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴PAD PCE △≌△,∴PAD PCE S S =△△, ∴BODEAOBC S S =矩形梯形,∵12DOFP BODES S=矩形矩形,∴114222DOFP AOBC S S ==⨯=矩形梯形, ∴||2k =,而0k >,∴2k =.故选D . 9.【答案】C【解析】因为△OAB 与△ADC 均为正三角形,所以OB 与AD 平行,所以△OBP 与△OAB 的高相等,又因为有共同底边OB ,所以S △OBP =S △OAB .且顶点B 在双曲线y =4x(x >0)上,所以△OBP 的面积为4.故选C . 10.【答案】m ≠-5,n =-3【解析】∵y =(5+m )x 2+n是反比例函数,∴2150n m +=-⎧⎨+≠⎩,解得:m ≠-5,n =-3,故答案为:m ≠-5,n =-3.又因为矩形OABC 的面积为16,所以OA ⋅OC =ab =8,所以k =1644ab ==4,故答案为:4.14.【解析】(1)由221(2)mm y m m x --=+是正比例函数,得m 2-m -1=1且m 2+2m ≠0,解得m =2或m =-1. (2)由221(2)m m y m m x --=+是反比例函数,得m 2-m -1=-1且m 2+2m ≠0,解得m =1.故y 与x 的函数关系式y =3x -1.15.【解析】(1)∵1y 与2x 在正比例关系,2y 与x 成反比例函数关系,∴211y k x =,16.【解析】(1)把A (-4,2)代入my x=,得m =2×(-4)=-8, 所以反比例函数解析式为8y x=-, 把B (n ,-4)代入8y x=-,得-4n =-8,解得n =2, 把A (-4,2)和B (2,-4)代入y =kx +b ,得4224k b k b -+=⎧⎨+=-⎩ ,解得12k b =-⎧⎨=-⎩ ,所以一次函数的解析式为y =-x -2.(2)y =-x -2中,令y =0,则x =-2,即直线y =-x -2与x 轴交于点C (-2,0),∴S △AOB =S △AOC +S △BOC =12×2×2+12×2×4=6. (3)由图可得,不等式0mkx b x +->的解集为:x <-4或0<x <2.17.【解析】(1)∵反比例函数(0)n y x x =>经过点1(4)2F ,,∴n =2,反比例函数解析式为2y x=. ∵2y x=的图象经过点E (1,m ), ∴m =2,点E 坐标为(1,2).18.【答案】B【解析】如图,延长AC交x轴于E,延长BD交x轴于F.设A,B的横坐标分别是a,b,∵点A、B为直线y=x上的两点,∴A的坐标是(a,a),B的坐标是(b,b),则AE=OE=a,BF=OF=b.∵C、D两点在交双曲线y=1x(x>0)上,则CE=1a,DF=1b,∴BD=BF−DF=b−1b,AC=a−1a.又∵BD =2AC ,∴b −1b =2(a −1a ),两边平方得:b 2+21b −2=4(a 2+21a−2), 即b 2+21b =4(a 2+21a )−6.在直角△OCE 中,OC 2=OE 2+CE 2=a 2+21a,同理OD 2=b 2+21b ,∴4OC 2−0D 2=4(a 2+21a )−(b 2+21b)=6,故选B .19.【答案】A20.【答案】B【解析】如图,作AE ⊥OD 于E ,CF ⊥OD 于F .∵BC ∶CD =2∶1,S △ADC =103,∴S △ACB =203,∵OA=OB ,∴B (2m ,2n ),S △AOC =S △ACB =203,∵A、C在y=kx上,BC=2CD,∴C(32m,23n),∵S△AOC=S△AOE+S梯形AEFC-S△OCF=S梯形AEFC,∴12·(n+23n)×12m=203,∴mn=16,故选B.21.【答案】6【解析】设A(a,3a),B(b,3b),则C(a,3b).将y=x+m代入y=3x,得x+m=3x,整理,得x2+mx-3=0,则a+b=-m,ab=-3,∴(a-b)2=(a+b)2-4ab=m2+12.∵S△ABC=12AC·BC=1332ba-()(a-b)=12·3b aab-()·(a-b)=12(a-b)2=12(m2+12)=12m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为:6.2223【解析】∵S△AOC=12,S△BOC=92,∴12|k1|=1122,|k2|=92,∴k1=-1,k2=9,∴两反比例解析式为y=-1x,y=9x,设B点坐标为(9t,t)(t>0),∵AB∥x轴,∴A点的纵坐标为t,把y =t 代入y =-1x 得x =-1t ,∴A 点坐标为(-1t,t ),∵OA ⊥OB ,∴∠AOC =∠OBC ,∴Rt △AOC ∽Rt △OBC ,∴OC ∶BC =AC ∶OC ,即t ∶91t t=∶t ,∴t ,∴A 点坐标为(B 点坐标为(AB 的长度(-..24.【解析】(1)如图,过D 作DM x ⊥轴,交x 轴于点M ,(3)由(12)F ,,得到1CF =, 由折叠得:OGH △≌FGH △, ∴OG FG =, ∵2OC AB ==,设OG FG x ==,得到2CG x =-,在Rt CFG △中,由勾股定理得:222FG CG CF =+,即22(2)1x x =-+, 整理得:45x =, 解得:54x =, 则54OG =. 25.【解析】设()R m n ,,则mn k =, 如图,连接OR ,26.【答案】B【解析】∵反比例函数y =kx(k ≠0)的图象经过点(−2,3),∴k =−2×3=−6,∴k <0,∴反比例函数y =kx(k ≠0)的图象在第二、四象限.故选B .27.【答案】A【解析】反比例函数5y x=中,k =5>0,图象位于一、三象限,在每一象限内,y 随着x 的增大而减小,∵111()P x y ,,222()P x y ,是函数5y x=图象上的两点,120x x >>,∴120y y <<,故选A . 28.【答案】A【解析】如图,作AH ⊥y 轴于H .∵CA =CB ,∠AHC =∠BOC ,∠ACH =∠CBO ,∴△ACH ≌△CBO ,∴AH =OC ,CH =OB ,∵C (0,3),BC =5,∴OC =3,OB ,∴CH =OB =4,AH =OC =3,∴OH =1, ∴A (-3,-1),∵点A 在y =kx上,∴k =3,故选A . 29.【答案】B30.【答案】C【解析】观察图象可知当-1<x <0或x >1时,直线在双曲线的上方,所以y 1>y 2的x 取值范围是-1<x <0或x >1,故选C . 31.【答案】k >2【解析】∵反比例函数y =2kx-的图象在第二、四象限,∴2-k <0,∴k >2.故答案为:k >2.32.【答案】增大【解析】把(-2,4)代入反比例函数y =k x ,得42k =-,∴k =-12, ∵k <0,∴在每一个象限内y 随x 的增大而增大,故答案为:增大.33.【答案】(-2,-4)【解析】∵正比例函数和反比例函数均关于原点对称,∴两函数的交点关于原点对称, ∵一个交点的坐标是(2,4),∴另一个交点的坐标是(-2,-4),故答案为:(-2,-4).34.【答案】2【解析】设A (a ,4a )(a >0),∴AD =4a,OD =a , ∵直线y =kx +b 过点A 并且与两坐标轴分别交于点B ,C ,∴C (0,b ),B (-bk,0), ∵△BOC 的面积是4,∴S △BOC =12OB ×OC =12×b k ×b =4,∴b 2=8k ,∴k =28b ,①∴AD ⊥x 轴,∴OC ∥AD ,∴△BOC ∽△BDA ,∴OB OC BD AD =,∴4bb kb a k a=+,∴a 2k +ab =4,②联立①②得,ab =-4-或ab-4,∴S △DOC =12OD ·OC =12ab2.故答案为:2.35.【解析】(1)∵点(12)A ,在反比例函数2ky x=的图象上,∴30DAC ∠=︒,由题意得,213AD =+=,在Rt ADC △中,tan CD DAC AD ∠=,即3CD =解得,CD =当点C 在点D 的左侧时,点C 的坐标为(11)-,当点C 在点D 的右侧时,点C 的坐标为11)-,,∴当点C 的坐标为(11)--或11)-,时,2AC CD =.。
反比例函数练习题(含答案)
1.1反比例函数知识点一 识别反比例函数关系1.计划修建铁路l km ,铺轨天数为t (d ),每日铺轨量s (km/d ),则在下列三个结论中,正确的是( )①当l 一定时,t 是s 的反比例函数;②当l 一定时,l 是s 的反比例函数;③当s 一定时,l 是t 的反比例函数.A.仅①. B.仅②. C.仅③. D.①,②,③.2.设某矩形的面积为S ,相邻的两条边长分别为x 和y .那么当S 一定时,给出以下四个结论:①x 是y 的正比例函数; ②y 是x 的正比例函数.③x 是y 的反比例函数; ④y 是x 的反比例函数.其中正确的为()A.①,②.B.②,③.C.③,④.D.①,④.3.某厂有煤1500吨,求得这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系为.4.近视眼镜的度数y (度)与镜片焦距x 米成反比例,已知400度近视眼镜镜片的焦距为0.25米,那么眼镜度数y 与镜片焦距x 之间的函数关系式是.知识点二 掌握反比例函数的概念5.下列函数中,不是反比例函数的是() A.5x y =B.(0)3k y k x=-≠C.17x y -=D.1y x =- 6.在35y x -=;35x y =-;11y x =+;及1(1)a y a x +=≠-四个函数中,为反比例函数的是. 7.如果函数22(1)m y m x -=-是反比例函数,那么m 的值是.8. 已知函数12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当1x =时,4y =;当2x =时,5y =.(1)求y 与x 之间的函数关系式;(2)当4x =时,求y 的值.◎快乐晋级9.(易错题)下列关系中的两个量,成反比例的是()A.面积一定时,矩形周长与一边长B.压力一定时,压强与受力面积C.读一本书,已读的页数与余下的页数D.某人年龄与体重10.(易错题)已知y 与x 成反比例函数,且2x =时,3y =,则该函数表达式是() A.6y x =B.16y x=C.6y x =D.16y x -=11.(创新题)已知y 成反比例,当1y =时,4x =,则当2x =时,y =.12.(创新题)我们刚接触了反比例函数,例如,当矩形面积S 一定时,长a 是宽b 的反比例函数,其函数关系式可以写成S a b=(S 为常数,0S ≠) 请你仿照上例另举一个在日常生活、生产或学习中具有反比例函数关系的量的实例,并写出它的函数关系式.实例:函数关系式:13.(易错题)给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.14.(应用题)某三角形的面积为152cm ,它的一边长为x cm ,且此边上高为y cm ,请写出x 与y 之间的关系式,并求出5x =时,y 的值.15.(创新题)已知:12y y y =+,1y 与x 成正比例,2y 与x 成反比例,并且1x =时,4y =;3x =时,5y =.求4x =时,y 的值.解:由1y 与x 成正比例,2y 与x 成反比例,可设1y kx =,2k y x=,又12y y y =+, 所以k y kx x =+.把1x =,4y =代入上式,解得2k =.22y x x=+∴. ∴当4x =时,2124842y =⨯+=. 阅读上述解答过程,其过程是否正确,若不正确,请说明理由,并给出正确的解题过程.◎拓展探究16.你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)是面条的粗细(横截面积)s(mm 2)的反比例函数,其图象如图所示. ⑴写出y 与s 的函数关系式;⑵求当面条粗1.6mm 2时,面条的总长度是多少米?答案:1.A2.C3.1500(0)y x x=> 4.100y x = 5.D6.35y x-=,1(1)a y a x +=≠-; 7.1m =- 8.(1)设11y k x =,1(0)k ≠,222(0)k y k x=≠, 2121k y y y k x x=+=+∴① 1x =∵时,4y =;2x =时,5y =,将它们的值分别代入① 得12214252k k k k +=⎧⎪⎨+=⎪⎩,,解得1222.k k =⎧⎨=⎩, 22y x x=+∴.② (2)将4x =代入②,得2124842y =⨯+=. 9.B10.C1112.实例:当路程S 一定时,时间t 是速度v 的反比例函数. 函数关系式:S t v=(S 是常数,0S ≠). 13.解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.∴命题(2)正确;(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.14.30y x=;5x =时相应地y 值为6(cm ) 15.过程有误,错误出在设1y kx =,2k y x =.实际上,应该设11y k x =,2212(00)k y k k x=≠≠,,因为1y ,2y 是两个不同的函数,所以1k 与2k 不一定相等. 正确答案:可设11y k x =,2212(00)k y k k x =≠≠, 又12y y y =+,21k y k x x =+∴,把x ,y 的值代入得121241353k k k k +=⎧⎪⎨+=⎪⎩,,解得12118218k k ⎧=⎪⎪⎨⎪=⎪⎩, 112188y x x=+∴.∴当4x =时,1121197488432y =⨯+=⨯. 16.解 (1)设反比例函数关系式为s k y =,将P(4,32)代入sk y =即可求出k=128,即sy 128=. (2)把s=1.6代入sy 128=即可求出总长度y=80.即面条总长度为90m.. 说明:这是一道富含浓厚生活气息的反比例函数应用问题,关键是求出解析式.。
完整版)反比例函数练习题含答案
完整版)反比例函数练习题含答案测试1 反比例函数的概念一、填空题1.一般的,形如 y=k/x 的函数称为反比例函数,其中x是自变量,y是因变量。
自变量x的取值范围是x≠0.2.写出下列各题中所要求的两个相关量之间的函数关系式,并指出函数的类别。
1) 商场推出分期付款购电脑活动,每台电脑元,首付4000元,以后每月付y元,x个月全部付清,则y=(8000+)/x,是反比例函数。
2) 某种灯的使用寿命为1000小时,它的使用天数y与平均每天使用的小时数x之间的关系式为 y=1000/x,是反比例函数。
3) 设三角形的底边、对应高、面积分别为a、h、S。
当a=10时,S与h的关系式为 S=10h/2,是正比例函数;当S=18时,a与h的关系式为 h=36/a,是反比例函数。
4) 某工人承包运输粮食的总数是w吨,每天运x吨,共运了y天,则 y=w/x,是反比例函数。
3.下列各函数 y=1/(k2+1)、y=x/(x5+x12)、y=14-3x、y=2x和y=3x-1 中,是y关于x的反比例函数的有:①y=1/(k2+1)、② y=x/(x5+x12)、③ y=2x。
4.若函数 y=m/(x-1) (m是常数) 是反比例函数,则 m=1,解析式为 y=1/(x-1)。
5.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜片的焦距为0.25m,则 y=1000/x。
二、选择题6.已知函数 y=3x/(kx+1),当x=1时,y=-3,那么这个函数的解析式是 y=3x/(3k+1)。
(解析:由 y=-3=3/(3k+1) 可得 k=-1/3,代入原式得 y=3x/(3x-1)。
)7.已知 y 与 x 成反比例,当 x=3 时,y=4,那么 y=3 时,x 的值等于 4/3.三、解答题8.已知 y 与 x 成反比例,当 x=2 时,y=3.1) 求y 与x 的函数关系式:y=k/x,代入已知条件得k=6,因此函数关系式为 y=6/x。
中考数学总复习《反比例函数》练习题(附答案)
中考数学总复习《反比例函数》练习题(附答案)班级:___________姓名:___________考号:_____________一、单选题1.一次函数y1=k1x+b(k1≠0)与反比例函数y2=k2x(k2≠0)的图象交于点A(−1,−2),点B(2,1).当y1<y2时,x的取值范围是()A.x<−1B.−1<x<0或x>2 C.0<x<2D.0<x<2或x<−12.关于函数y=−2x,下列说法中正确的是()A.图像位于第一、三象限B.图像与坐标轴没有交点C.图像是一条直线D.y的值随x的值增大而减小3.如图,在直角坐标系中,点A是双曲线y= 3x(x>0)上的一个动点,点B是x轴正半轴上的一个定点,当点A的横坐标逐渐增大时,△OAB的面积将会()A.逐渐减小B.不变C.逐渐增大D.先减小后增大4.在同一平面直角坐标系中,反比例函数y=-8x与一次函数y=-x+2交于A,B两点,O为坐标原点,则△AOB的面积为()A.2B.6C.10D.85.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数y= k x在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤166.如图,过反比例函数y= 1x(x>0)的图象上任意两点A、B分别作x轴的垂线,垂足分别为C、D,连接OA、OB,设AC与OB的交点为E,△AOE与梯形ECDB的面积分别为S1、S2,比较它们的大小,可得()A.S1>S2B.S1=S2C.S l<S2D.大小关系不能确定7.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.该村人均耕地面积y与总人口x成正比例C.若该村人均耕地面积为2公顷,则总人口有100人D.当该村总人口为50人时,人均耕地面积为1公顷8.在同一直角坐标系中,函数y=kx+1与y=−k x(k≠0)的图象大致是()A.B.C.D.9.如图,在平面直角坐标系xOy中,函数y=kx+b(k≠0)与y= mx(m≠0)的图象相交于点A(-2,3),B(6,-1),则不等式kx+b>mx的解集为()A.x<−2B.−2<x<0或x>6 C.x<6D.0<x<6或x<−210.已知两个函数y1=k1x+b与y2= k2x的图象如图所示,其中A(-1,2),B(2,-1),则不等式k1x+b>k2x的解集为()A.x<−1或x>2B.x<−1或0<x<2 C.−1<x<2D.−1<x<0或0<x<211.在反比例函数y=−3x图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y2 12.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
反比例函数练习题及答案6套文库.doc
反比例函数练习(1)一、判断题1.当尤与y乘积一定时,v就是尤的反比例函数,尤也是),的反比例函数()2.如果一个函数不是正比回函数,就是反比例函数()3.),与疽成反比例时v与]并不成反比例()%1.填空题4.己知三角形的面积是定值S,则三角形的高与底。
的函数关系式是力=这时h是a的;5.如果),与尤成反比例,z与y成正比例,则z与尤成;6.如果函数y = kx2k2+k~2是反比例函数,那么如,此函数的解析式是—7.有一面积为60的梯形,其上底长是下底长的L,若下底长为x,高为y,则y 3与X的函数关系是三、选择题:8.如果函数y = r妇为反比例函数,则m的值是()A -1B 0 cl D 129.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s千米与行进时间t的函数图像的示意图,同学们画出的示意图如下,你认为正确的是()10、下列函数中,y是x反比例函数的是()2 1(A))=M1 (B) y=—(C) y = —(D)2y=x•< 5x%1.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:兄(y)29282726. . ♦ . .♦321 -……一逐渐凋沙弟(X)1234272829... —逐渐增多②这是一个反比例函数吗?③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.② 出兄吃饺子数y与弟吃饺子数x之间的函数关系式(不要求写X),的取值范围)②虽然当弟吃的饺子个数增多时,兄吃的饺子数()「)在减少,但y与尤是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v与全池水放光所用时t如下表:①写出放光池中水用时t(小时)与放水速度V(吨/小时)之间的函数关系.%1.已知y是邪勺反比例函数,当户2时,y=6.⑴写出),与尤的函数关系式;⑵求当x=4时y的值.%1.已知口48CD中,AB = 4, AD = 2, E是AB边上的一动点,设AE=X, DE延长线交CB的延长线于F,设CF = y,求)',与尤之间的函数关系。
反比例函数经典习题及标准答案
反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。
A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 38.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4 OA 1 A 2 A 3 P 1 P 2 P 3xy11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6y x=-图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 18.已知点P 在函数2y x=(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分) 22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT=4,求此函数的表达式. (5分)23.已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;(Ⅱ)当31<<x 时,求y 的取值范围.(7分) 24.如图,已知双曲线ky x =(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)25.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1).(1)求反比例函数的解析式;yFB ECOyMNl(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分) 26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分) 27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(0,0)k x << 的图象上,点P(m ,n)是函数ky x=(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F . (1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k y x =的图象上,可求得9k =.所以反比例函数的解析式为9y x=. 22.解:设所求反比例函数的表达式为x ky =,因为S △AOT =k 21,所以k 21=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8y x =-;又反比例函数x y 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y . 24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -21×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =2k x 的图象经过点(1,1),∴1=2k解得k=2, ∴反比例函数的解析式为y=1x.∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2).26.解:(1)设所求的反比例函数为x k y =,依题意得: 6 =2k ,∴k=12. ∴反比例函数为xy 12=. AB CO y x(2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3. 27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,284(2)S m m=+<-。
(完整版)反比例函数练习题及答案
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
反比例函数练习题及答案
反比例函数练习题及答案反比例函数练题一、填空题(每空3分,共42分)1.已知反比例函数 $y=\frac{k}{x}$,则 $k$ 的值是 $\pm6$,图象在第三象限,当 $x>0$ 时,$y$ 随 $x$ 的增大而减小。
2.已知变量 $y$ 与 $x$ 成反比,当 $x=1$ 时,$y=-6$,则当 $y=3$ 时,$x=-2$。
3.若反比例函数 $y=(2m-1)x$,则函数的解析式为$y=\frac{(2m-1)}{x}$。
4.已知反比例函数 $y=\frac{m^2-2}{(3m-2)x-k^2-21}$ 的图象在第一、三象限,则函数的解析式为 $y=\frac{m^2-2}{(3m-2)x-k^2-21}$。
5.在函数$y=\frac{k}{x^2}$ 的图象上有三个点$(-2,y_1)$,$(-1,y_2)$,$(1,y_3)$,函数值 $y_1$,$y_2$,$y_3$ 的大小为 $\frac{k}{4}$,$k$,$k$。
6.已知 $P_1(x_1,y_1)$,$P_2(x_2,y_2)$ 是反比例函数$y=\frac{k}{x}$($k\neq 0$)图象上的两点,且 $x_1y_2$,则 $k=\frac{x_1x_2(y_1-y_2)}{x_2-x_1}$。
7.已知正比例函数 $y=kx$($k\neq 0$),$y$ 随 $x$ 的增大而增大,那么反比例函数 $y=\frac{k}{x}$,当 $x<0$ 时,$y$ 随 $x$ 的增大而减小。
8.已知 $y_1$ 与 $x$ 成正比例(比例系数为 $k_1$),$y_2$ 与 $x$ 成反比例(比例系数为 $k_2$),若函数$y=y_1+y_2$ 的图象经过点 $(1,2)$,$(2,\frac{1}{k_2})$,则$8k_1+5k_2=0$。
9.若 $m<-1$,则下列函数:① $y=m\sqrt{x}$;② $y=-mx+1$;③ $y=mx$;④ $y=(m+1)x$ 中,$y$ 随 $x$ 增大而增大的是 $y=-mx+1$。
反比例函数经典测试题及答案解析
反比例函数经典测试题及答案解析反比例函数经典测试题及答案解析一、选择题1.已知点M(-1,3)在双曲线y= k/x上,则下列各点一定在该双曲线上的是()A。
(3,-1)B。
(-1,-3)C。
(1,3)D。
(3,1)答案】A解析】分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在。
详解】∵点M(-1,3)在双曲线y= k/x上。
k= -1×3= -3。
3×(-1)= -3。
点(3,-1)在该双曲线上。
1)×(-3)=1×3=3×1=3。
点(-1,-3)、(1,3)、(3,1)均不在该双曲线上。
故选:A.点睛】此题考查反比例函数解析式,正确计算k值是解题的关键。
2.已知点A(-2,y1),B(a,y2),C(3,y3)都在反比例函数y=4/x上,2<a<3,则()A。
y1<y2<y3B。
y3<y2<y1XXX<y1<y2D。
y2<y1<y3答案】D解析】分析】根据k>0,在图象的每一支上,y随x的增大而减小,双曲线在第一三象限,逐一分析即可。
详解】∵反比例函数y=4/x的图象上,且- x<0。
在图象的每一支上,y随x的增大而减小,双曲线在第一三象限。
2<a<3。
4>y1.y2.y3。
C(3,y3)在第一象限。
y3>0。
y2<y1<y3。
故选D。
点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键。
3.如图,在平面直角坐标系中,点A是函数y=k/x(x>0)在第一象限内图象上一动点,过点A分别作AB⊥x轴于点B、AC⊥y轴于点C,AB、AC分别交函数y=1/x的x图象于点E、F,连接OE、OF。
当点A的纵坐标逐渐增大时,四边形OFAE的面积()A。
不变B。
逐渐变大C。
逐渐变小D。
先变大后变小答案】A解析】分析】根据反比例函数系数k的几何意义得出矩形ACOB 的面积为k,四边形OFAE的面积为定值k-1.详解】∵点A是函数y=k/x(x>0)在第一象限内图象上一动点,过点A分别作AB⊥x轴于点B、AC⊥y轴于点C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数练习题
一、精心选一选!(30分)
1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1
y x
=
B .1y x
-=
C .2y x
=
D .2y x
-=
2. 反 比例函数2
k y x
=-(k 为常数,0k ≠)的图象位于( )
A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限
3.已知 反比例函数y =
x
2
k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2
4.反 比例函数x
k
y =
的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2
y x
=
,下列说法不正确...的是( ) A .点(21)--,在它的图象上
B .它的图象在第一、三象限
C .当0x >时,y 随x 的增大而增大
D .当0x <时,y 随x 的增大而减小
6.反比 例函数
2
2)12(--=m x
m y ,当x >0时,y 随x 的增大而增大,则m 的值时( )
A 、±1
B 、小于
2
1
的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。
A 、S 1<S 2<S 3
B 、S 2<S 1<S 3
C 、S 3<S 1<S 2
D 、S 1=S 2=S 3
8.在同 一直角坐标系中,函数x
y 2
-
=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )
10.如图,直线y=mx 与双曲线y=x
k
交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )
A .2
B 、m-2
C 、m
D 、4
O
A 1 A 2 A 3 P 1 P 2 P 3
x
y
11.在反比例函数x
k
y =
(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)
11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8
y x
=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6
y x
=-
图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .
15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)k
y k x
=
>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 18.已知点P 在函数2
y x
=
(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线x
k
y =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.
20.如图,过原点的直线l 与反比例函数1
y x
=-的图象交于M ,N 两点,根据图象猜
想线段MN 的长的最小值是___________. 三、用心解一解!(60分)
21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数k
y x
=
的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)
22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)
O
y
M
N
l
23.已知点P (2,2)在反比例函数x
k
y =
(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;
(Ⅱ)当31<<x 时,求y 的取值范围.(7分)
24.如图,已知双曲线k
y x
=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)
25.若一次函数y =2x -1和反比例函数y =
2k
x
的图象都经过点(1,1). (1)求反比例函数的解析式;
(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)
26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;
(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)
27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数k
y x
=(0,0)k x << 的图象上,点P(m ,n)是函数k
y x
=
(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F . (1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).
(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)
A B C
O y x y x
O
F
A
B E
C
参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;
三、21.解:依题意
得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在
k y x =
的图象上,可求得9k =.所以反比例函数的解析式为9
y x
=. 22.解:设所求反比例函数的表达式为x k
y =,因为S △AOT =k 21,所以k 2
1=4,即8±=k ,又因为图象在第二、
四象限,因此8-=k ,故此函数的表达式为8
y x =-;
又反比例函数x
y 4
=
在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y .
24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -2
1
×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =
2k x
的图象经过点(1,1),∴1=2k
解得k=2,
∴反比例函数的解析式为y=
1
x
.
∵点A 在第三象限,且同时在两个函数图象上, ∴A(1
2-,–2).
26.解:(1)设所求的反比例函数为x
k
y =
,依题意得: 6 =2k ,∴k=12. ∴反比例函数为x y 12=.
(2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =x
y
, ∴34≤m ≤26.
所以m 的取值范围是3
4
≤m ≤3.
27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,28
4(2)S m m
=+<-。